blob: bf4cc867a6986b6e19a6850e904f616ad35a78fe [file] [log] [blame]
Linus Torvalds1da177e2005-04-16 15:20:36 -07001#ifndef _ASM_IA64_SN_SN_SAL_H
2#define _ASM_IA64_SN_SN_SAL_H
3
4/*
5 * System Abstraction Layer definitions for IA64
6 *
7 * This file is subject to the terms and conditions of the GNU General Public
8 * License. See the file "COPYING" in the main directory of this archive
9 * for more details.
10 *
Russ Anderson93a07d02005-04-25 13:19:52 -070011 * Copyright (c) 2000-2005 Silicon Graphics, Inc. All rights reserved.
Linus Torvalds1da177e2005-04-16 15:20:36 -070012 */
13
14
15#include <linux/config.h>
16#include <asm/sal.h>
17#include <asm/sn/sn_cpuid.h>
18#include <asm/sn/arch.h>
19#include <asm/sn/geo.h>
20#include <asm/sn/nodepda.h>
21#include <asm/sn/shub_mmr.h>
22
23// SGI Specific Calls
24#define SN_SAL_POD_MODE 0x02000001
25#define SN_SAL_SYSTEM_RESET 0x02000002
26#define SN_SAL_PROBE 0x02000003
27#define SN_SAL_GET_MASTER_NASID 0x02000004
28#define SN_SAL_GET_KLCONFIG_ADDR 0x02000005
29#define SN_SAL_LOG_CE 0x02000006
30#define SN_SAL_REGISTER_CE 0x02000007
31#define SN_SAL_GET_PARTITION_ADDR 0x02000009
32#define SN_SAL_XP_ADDR_REGION 0x0200000f
33#define SN_SAL_NO_FAULT_ZONE_VIRTUAL 0x02000010
34#define SN_SAL_NO_FAULT_ZONE_PHYSICAL 0x02000011
35#define SN_SAL_PRINT_ERROR 0x02000012
36#define SN_SAL_SET_ERROR_HANDLING_FEATURES 0x0200001a // reentrant
37#define SN_SAL_GET_FIT_COMPT 0x0200001b // reentrant
Linus Torvalds1da177e2005-04-16 15:20:36 -070038#define SN_SAL_GET_SAPIC_INFO 0x0200001d
Jack Steinerbf1cf98f2005-04-25 11:42:39 -070039#define SN_SAL_GET_SN_INFO 0x0200001e
Linus Torvalds1da177e2005-04-16 15:20:36 -070040#define SN_SAL_CONSOLE_PUTC 0x02000021
41#define SN_SAL_CONSOLE_GETC 0x02000022
42#define SN_SAL_CONSOLE_PUTS 0x02000023
43#define SN_SAL_CONSOLE_GETS 0x02000024
44#define SN_SAL_CONSOLE_GETS_TIMEOUT 0x02000025
45#define SN_SAL_CONSOLE_POLL 0x02000026
46#define SN_SAL_CONSOLE_INTR 0x02000027
47#define SN_SAL_CONSOLE_PUTB 0x02000028
48#define SN_SAL_CONSOLE_XMIT_CHARS 0x0200002a
49#define SN_SAL_CONSOLE_READC 0x0200002b
Bruce Losure25732ad2005-09-02 15:16:35 -050050#define SN_SAL_SYSCTL_OP 0x02000030
Linus Torvalds1da177e2005-04-16 15:20:36 -070051#define SN_SAL_SYSCTL_MODID_GET 0x02000031
52#define SN_SAL_SYSCTL_GET 0x02000032
53#define SN_SAL_SYSCTL_IOBRICK_MODULE_GET 0x02000033
54#define SN_SAL_SYSCTL_IO_PORTSPEED_GET 0x02000035
55#define SN_SAL_SYSCTL_SLAB_GET 0x02000036
56#define SN_SAL_BUS_CONFIG 0x02000037
57#define SN_SAL_SYS_SERIAL_GET 0x02000038
58#define SN_SAL_PARTITION_SERIAL_GET 0x02000039
Jack Steiner771388d2005-11-18 16:11:27 -060059#define SN_SAL_SYSCTL_PARTITION_GET 0x0200003a
Linus Torvalds1da177e2005-04-16 15:20:36 -070060#define SN_SAL_SYSTEM_POWER_DOWN 0x0200003b
61#define SN_SAL_GET_MASTER_BASEIO_NASID 0x0200003c
62#define SN_SAL_COHERENCE 0x0200003d
63#define SN_SAL_MEMPROTECT 0x0200003e
64#define SN_SAL_SYSCTL_FRU_CAPTURE 0x0200003f
65
66#define SN_SAL_SYSCTL_IOBRICK_PCI_OP 0x02000042 // reentrant
67#define SN_SAL_IROUTER_OP 0x02000043
Greg Howard67639de2005-04-25 13:28:52 -070068#define SN_SAL_SYSCTL_EVENT 0x02000044
Linus Torvalds1da177e2005-04-16 15:20:36 -070069#define SN_SAL_IOIF_INTERRUPT 0x0200004a
70#define SN_SAL_HWPERF_OP 0x02000050 // lock
71#define SN_SAL_IOIF_ERROR_INTERRUPT 0x02000051
Mark Maule61b9cf72005-09-23 12:31:53 -050072#define SN_SAL_IOIF_PCI_SAFE 0x02000052
Linus Torvalds1da177e2005-04-16 15:20:36 -070073#define SN_SAL_IOIF_SLOT_ENABLE 0x02000053
74#define SN_SAL_IOIF_SLOT_DISABLE 0x02000054
75#define SN_SAL_IOIF_GET_HUBDEV_INFO 0x02000055
76#define SN_SAL_IOIF_GET_PCIBUS_INFO 0x02000056
77#define SN_SAL_IOIF_GET_PCIDEV_INFO 0x02000057
Prarit Bhargava6d6e4202005-12-23 13:33:25 -050078#define SN_SAL_IOIF_GET_WIDGET_DMAFLUSH_LIST 0x02000058 // deprecated
79#define SN_SAL_IOIF_GET_DEVICE_DMAFLUSH_LIST 0x0200005a
Linus Torvalds1da177e2005-04-16 15:20:36 -070080
81#define SN_SAL_HUB_ERROR_INTERRUPT 0x02000060
Russ Anderson93a07d02005-04-25 13:19:52 -070082#define SN_SAL_BTE_RECOVER 0x02000061
Mark Goodwinecc3c302005-08-16 00:50:00 -070083#define SN_SAL_RESERVED_DO_NOT_USE 0x02000062
84#define SN_SAL_IOIF_GET_PCI_TOPOLOGY 0x02000064
Linus Torvalds1da177e2005-04-16 15:20:36 -070085
Jack Steinera1cddb82005-08-31 08:05:00 -070086#define SN_SAL_GET_PROM_FEATURE_SET 0x02000065
87#define SN_SAL_SET_OS_FEATURE_SET 0x02000066
88
Linus Torvalds1da177e2005-04-16 15:20:36 -070089/*
90 * Service-specific constants
91 */
92
93/* Console interrupt manipulation */
94 /* action codes */
95#define SAL_CONSOLE_INTR_OFF 0 /* turn the interrupt off */
96#define SAL_CONSOLE_INTR_ON 1 /* turn the interrupt on */
97#define SAL_CONSOLE_INTR_STATUS 2 /* retrieve the interrupt status */
98 /* interrupt specification & status return codes */
99#define SAL_CONSOLE_INTR_XMIT 1 /* output interrupt */
100#define SAL_CONSOLE_INTR_RECV 2 /* input interrupt */
101
102/* interrupt handling */
103#define SAL_INTR_ALLOC 1
104#define SAL_INTR_FREE 2
105
106/*
Bruce Losure25732ad2005-09-02 15:16:35 -0500107 * operations available on the generic SN_SAL_SYSCTL_OP
108 * runtime service
109 */
110#define SAL_SYSCTL_OP_IOBOARD 0x0001 /* retrieve board type */
111#define SAL_SYSCTL_OP_TIO_JLCK_RST 0x0002 /* issue TIO clock reset */
112
113/*
Linus Torvalds1da177e2005-04-16 15:20:36 -0700114 * IRouter (i.e. generalized system controller) operations
115 */
116#define SAL_IROUTER_OPEN 0 /* open a subchannel */
117#define SAL_IROUTER_CLOSE 1 /* close a subchannel */
118#define SAL_IROUTER_SEND 2 /* send part of an IRouter packet */
119#define SAL_IROUTER_RECV 3 /* receive part of an IRouter packet */
120#define SAL_IROUTER_INTR_STATUS 4 /* check the interrupt status for
121 * an open subchannel
122 */
123#define SAL_IROUTER_INTR_ON 5 /* enable an interrupt */
124#define SAL_IROUTER_INTR_OFF 6 /* disable an interrupt */
125#define SAL_IROUTER_INIT 7 /* initialize IRouter driver */
126
127/* IRouter interrupt mask bits */
128#define SAL_IROUTER_INTR_XMIT SAL_CONSOLE_INTR_XMIT
129#define SAL_IROUTER_INTR_RECV SAL_CONSOLE_INTR_RECV
130
Russ Anderson6872ec52005-05-16 15:30:00 -0700131/*
132 * Error Handling Features
133 */
Jack Steinera1cddb82005-08-31 08:05:00 -0700134#define SAL_ERR_FEAT_MCA_SLV_TO_OS_INIT_SLV 0x1 // obsolete
135#define SAL_ERR_FEAT_LOG_SBES 0x2 // obsolete
Russ Anderson6872ec52005-05-16 15:30:00 -0700136#define SAL_ERR_FEAT_MFR_OVERRIDE 0x4
137#define SAL_ERR_FEAT_SBE_THRESHOLD 0xffff0000
Linus Torvalds1da177e2005-04-16 15:20:36 -0700138
139/*
140 * SAL Error Codes
141 */
142#define SALRET_MORE_PASSES 1
143#define SALRET_OK 0
144#define SALRET_NOT_IMPLEMENTED (-1)
145#define SALRET_INVALID_ARG (-2)
146#define SALRET_ERROR (-3)
147
Jack Steiner71a5d022005-05-10 08:01:00 -0700148#define SN_SAL_FAKE_PROM 0x02009999
149
Linus Torvalds1da177e2005-04-16 15:20:36 -0700150/**
Prarit Bhargava283c7f62005-07-06 15:29:13 -0700151 * sn_sal_revision - get the SGI SAL revision number
152 *
153 * The SGI PROM stores its version in the sal_[ab]_rev_(major|minor).
154 * This routine simply extracts the major and minor values and
155 * presents them in a u32 format.
156 *
157 * For example, version 4.05 would be represented at 0x0405.
158 */
159static inline u32
160sn_sal_rev(void)
Linus Torvalds1da177e2005-04-16 15:20:36 -0700161{
Bjorn Helgaasb2c99e32006-03-26 01:37:08 -0800162 struct ia64_sal_systab *systab = __va(efi.sal_systab);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700163
Prarit Bhargava283c7f62005-07-06 15:29:13 -0700164 return (u32)(systab->sal_b_rev_major << 8 | systab->sal_b_rev_minor);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700165}
166
167/*
Linus Torvalds1da177e2005-04-16 15:20:36 -0700168 * Returns the master console nasid, if the call fails, return an illegal
169 * value.
170 */
171static inline u64
172ia64_sn_get_console_nasid(void)
173{
174 struct ia64_sal_retval ret_stuff;
175
176 ret_stuff.status = 0;
177 ret_stuff.v0 = 0;
178 ret_stuff.v1 = 0;
179 ret_stuff.v2 = 0;
180 SAL_CALL(ret_stuff, SN_SAL_GET_MASTER_NASID, 0, 0, 0, 0, 0, 0, 0);
181
182 if (ret_stuff.status < 0)
183 return ret_stuff.status;
184
185 /* Master console nasid is in 'v0' */
186 return ret_stuff.v0;
187}
188
189/*
190 * Returns the master baseio nasid, if the call fails, return an illegal
191 * value.
192 */
193static inline u64
194ia64_sn_get_master_baseio_nasid(void)
195{
196 struct ia64_sal_retval ret_stuff;
197
198 ret_stuff.status = 0;
199 ret_stuff.v0 = 0;
200 ret_stuff.v1 = 0;
201 ret_stuff.v2 = 0;
202 SAL_CALL(ret_stuff, SN_SAL_GET_MASTER_BASEIO_NASID, 0, 0, 0, 0, 0, 0, 0);
203
204 if (ret_stuff.status < 0)
205 return ret_stuff.status;
206
207 /* Master baseio nasid is in 'v0' */
208 return ret_stuff.v0;
209}
210
Jack Steiner24ee0a62005-09-12 12:15:43 -0500211static inline void *
Linus Torvalds1da177e2005-04-16 15:20:36 -0700212ia64_sn_get_klconfig_addr(nasid_t nasid)
213{
214 struct ia64_sal_retval ret_stuff;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700215
Linus Torvalds1da177e2005-04-16 15:20:36 -0700216 ret_stuff.status = 0;
217 ret_stuff.v0 = 0;
218 ret_stuff.v1 = 0;
219 ret_stuff.v2 = 0;
220 SAL_CALL(ret_stuff, SN_SAL_GET_KLCONFIG_ADDR, (u64)nasid, 0, 0, 0, 0, 0, 0);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700221 return ret_stuff.v0 ? __va(ret_stuff.v0) : NULL;
222}
223
224/*
225 * Returns the next console character.
226 */
227static inline u64
228ia64_sn_console_getc(int *ch)
229{
230 struct ia64_sal_retval ret_stuff;
231
232 ret_stuff.status = 0;
233 ret_stuff.v0 = 0;
234 ret_stuff.v1 = 0;
235 ret_stuff.v2 = 0;
236 SAL_CALL_NOLOCK(ret_stuff, SN_SAL_CONSOLE_GETC, 0, 0, 0, 0, 0, 0, 0);
237
238 /* character is in 'v0' */
239 *ch = (int)ret_stuff.v0;
240
241 return ret_stuff.status;
242}
243
244/*
245 * Read a character from the SAL console device, after a previous interrupt
246 * or poll operation has given us to know that a character is available
247 * to be read.
248 */
249static inline u64
250ia64_sn_console_readc(void)
251{
252 struct ia64_sal_retval ret_stuff;
253
254 ret_stuff.status = 0;
255 ret_stuff.v0 = 0;
256 ret_stuff.v1 = 0;
257 ret_stuff.v2 = 0;
258 SAL_CALL_NOLOCK(ret_stuff, SN_SAL_CONSOLE_READC, 0, 0, 0, 0, 0, 0, 0);
259
260 /* character is in 'v0' */
261 return ret_stuff.v0;
262}
263
264/*
265 * Sends the given character to the console.
266 */
267static inline u64
268ia64_sn_console_putc(char ch)
269{
270 struct ia64_sal_retval ret_stuff;
271
272 ret_stuff.status = 0;
273 ret_stuff.v0 = 0;
274 ret_stuff.v1 = 0;
275 ret_stuff.v2 = 0;
Prarit Bhargava53493dc2006-01-16 19:54:40 -0800276 SAL_CALL_NOLOCK(ret_stuff, SN_SAL_CONSOLE_PUTC, (u64)ch, 0, 0, 0, 0, 0, 0);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700277
278 return ret_stuff.status;
279}
280
281/*
282 * Sends the given buffer to the console.
283 */
284static inline u64
285ia64_sn_console_putb(const char *buf, int len)
286{
287 struct ia64_sal_retval ret_stuff;
288
289 ret_stuff.status = 0;
290 ret_stuff.v0 = 0;
291 ret_stuff.v1 = 0;
292 ret_stuff.v2 = 0;
Prarit Bhargava53493dc2006-01-16 19:54:40 -0800293 SAL_CALL_NOLOCK(ret_stuff, SN_SAL_CONSOLE_PUTB, (u64)buf, (u64)len, 0, 0, 0, 0, 0);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700294
295 if ( ret_stuff.status == 0 ) {
296 return ret_stuff.v0;
297 }
298 return (u64)0;
299}
300
301/*
302 * Print a platform error record
303 */
304static inline u64
305ia64_sn_plat_specific_err_print(int (*hook)(const char*, ...), char *rec)
306{
307 struct ia64_sal_retval ret_stuff;
308
309 ret_stuff.status = 0;
310 ret_stuff.v0 = 0;
311 ret_stuff.v1 = 0;
312 ret_stuff.v2 = 0;
Prarit Bhargava53493dc2006-01-16 19:54:40 -0800313 SAL_CALL_REENTRANT(ret_stuff, SN_SAL_PRINT_ERROR, (u64)hook, (u64)rec, 0, 0, 0, 0, 0);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700314
315 return ret_stuff.status;
316}
317
318/*
319 * Check for Platform errors
320 */
321static inline u64
322ia64_sn_plat_cpei_handler(void)
323{
324 struct ia64_sal_retval ret_stuff;
325
326 ret_stuff.status = 0;
327 ret_stuff.v0 = 0;
328 ret_stuff.v1 = 0;
329 ret_stuff.v2 = 0;
330 SAL_CALL_NOLOCK(ret_stuff, SN_SAL_LOG_CE, 0, 0, 0, 0, 0, 0, 0);
331
332 return ret_stuff.status;
333}
334
335/*
Jack Steinera1cddb82005-08-31 08:05:00 -0700336 * Set Error Handling Features (Obsolete)
Russ Anderson6872ec52005-05-16 15:30:00 -0700337 */
338static inline u64
339ia64_sn_plat_set_error_handling_features(void)
340{
341 struct ia64_sal_retval ret_stuff;
342
343 ret_stuff.status = 0;
344 ret_stuff.v0 = 0;
345 ret_stuff.v1 = 0;
346 ret_stuff.v2 = 0;
347 SAL_CALL_REENTRANT(ret_stuff, SN_SAL_SET_ERROR_HANDLING_FEATURES,
348 (SAL_ERR_FEAT_MCA_SLV_TO_OS_INIT_SLV | SAL_ERR_FEAT_LOG_SBES),
349 0, 0, 0, 0, 0, 0);
350
351 return ret_stuff.status;
352}
353
354/*
Linus Torvalds1da177e2005-04-16 15:20:36 -0700355 * Checks for console input.
356 */
357static inline u64
358ia64_sn_console_check(int *result)
359{
360 struct ia64_sal_retval ret_stuff;
361
362 ret_stuff.status = 0;
363 ret_stuff.v0 = 0;
364 ret_stuff.v1 = 0;
365 ret_stuff.v2 = 0;
366 SAL_CALL_NOLOCK(ret_stuff, SN_SAL_CONSOLE_POLL, 0, 0, 0, 0, 0, 0, 0);
367
368 /* result is in 'v0' */
369 *result = (int)ret_stuff.v0;
370
371 return ret_stuff.status;
372}
373
374/*
375 * Checks console interrupt status
376 */
377static inline u64
378ia64_sn_console_intr_status(void)
379{
380 struct ia64_sal_retval ret_stuff;
381
382 ret_stuff.status = 0;
383 ret_stuff.v0 = 0;
384 ret_stuff.v1 = 0;
385 ret_stuff.v2 = 0;
386 SAL_CALL_NOLOCK(ret_stuff, SN_SAL_CONSOLE_INTR,
387 0, SAL_CONSOLE_INTR_STATUS,
388 0, 0, 0, 0, 0);
389
390 if (ret_stuff.status == 0) {
391 return ret_stuff.v0;
392 }
393
394 return 0;
395}
396
397/*
398 * Enable an interrupt on the SAL console device.
399 */
400static inline void
Prarit Bhargava53493dc2006-01-16 19:54:40 -0800401ia64_sn_console_intr_enable(u64 intr)
Linus Torvalds1da177e2005-04-16 15:20:36 -0700402{
403 struct ia64_sal_retval ret_stuff;
404
405 ret_stuff.status = 0;
406 ret_stuff.v0 = 0;
407 ret_stuff.v1 = 0;
408 ret_stuff.v2 = 0;
409 SAL_CALL_NOLOCK(ret_stuff, SN_SAL_CONSOLE_INTR,
410 intr, SAL_CONSOLE_INTR_ON,
411 0, 0, 0, 0, 0);
412}
413
414/*
415 * Disable an interrupt on the SAL console device.
416 */
417static inline void
Prarit Bhargava53493dc2006-01-16 19:54:40 -0800418ia64_sn_console_intr_disable(u64 intr)
Linus Torvalds1da177e2005-04-16 15:20:36 -0700419{
420 struct ia64_sal_retval ret_stuff;
421
422 ret_stuff.status = 0;
423 ret_stuff.v0 = 0;
424 ret_stuff.v1 = 0;
425 ret_stuff.v2 = 0;
426 SAL_CALL_NOLOCK(ret_stuff, SN_SAL_CONSOLE_INTR,
427 intr, SAL_CONSOLE_INTR_OFF,
428 0, 0, 0, 0, 0);
429}
430
431/*
432 * Sends a character buffer to the console asynchronously.
433 */
434static inline u64
435ia64_sn_console_xmit_chars(char *buf, int len)
436{
437 struct ia64_sal_retval ret_stuff;
438
439 ret_stuff.status = 0;
440 ret_stuff.v0 = 0;
441 ret_stuff.v1 = 0;
442 ret_stuff.v2 = 0;
443 SAL_CALL_NOLOCK(ret_stuff, SN_SAL_CONSOLE_XMIT_CHARS,
Prarit Bhargava53493dc2006-01-16 19:54:40 -0800444 (u64)buf, (u64)len,
Linus Torvalds1da177e2005-04-16 15:20:36 -0700445 0, 0, 0, 0, 0);
446
447 if (ret_stuff.status == 0) {
448 return ret_stuff.v0;
449 }
450
451 return 0;
452}
453
454/*
455 * Returns the iobrick module Id
456 */
457static inline u64
458ia64_sn_sysctl_iobrick_module_get(nasid_t nasid, int *result)
459{
460 struct ia64_sal_retval ret_stuff;
461
462 ret_stuff.status = 0;
463 ret_stuff.v0 = 0;
464 ret_stuff.v1 = 0;
465 ret_stuff.v2 = 0;
466 SAL_CALL_NOLOCK(ret_stuff, SN_SAL_SYSCTL_IOBRICK_MODULE_GET, nasid, 0, 0, 0, 0, 0, 0);
467
468 /* result is in 'v0' */
469 *result = (int)ret_stuff.v0;
470
471 return ret_stuff.status;
472}
473
474/**
475 * ia64_sn_pod_mode - call the SN_SAL_POD_MODE function
476 *
477 * SN_SAL_POD_MODE actually takes an argument, but it's always
478 * 0 when we call it from the kernel, so we don't have to expose
479 * it to the caller.
480 */
481static inline u64
482ia64_sn_pod_mode(void)
483{
484 struct ia64_sal_retval isrv;
Russ Anderson8eac3752005-05-16 15:19:00 -0700485 SAL_CALL_REENTRANT(isrv, SN_SAL_POD_MODE, 0, 0, 0, 0, 0, 0, 0);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700486 if (isrv.status)
487 return 0;
488 return isrv.v0;
489}
490
491/**
492 * ia64_sn_probe_mem - read from memory safely
493 * @addr: address to probe
494 * @size: number bytes to read (1,2,4,8)
495 * @data_ptr: address to store value read by probe (-1 returned if probe fails)
496 *
497 * Call into the SAL to do a memory read. If the read generates a machine
498 * check, this routine will recover gracefully and return -1 to the caller.
499 * @addr is usually a kernel virtual address in uncached space (i.e. the
500 * address starts with 0xc), but if called in physical mode, @addr should
501 * be a physical address.
502 *
503 * Return values:
504 * 0 - probe successful
505 * 1 - probe failed (generated MCA)
506 * 2 - Bad arg
507 * <0 - PAL error
508 */
509static inline u64
510ia64_sn_probe_mem(long addr, long size, void *data_ptr)
511{
512 struct ia64_sal_retval isrv;
513
514 SAL_CALL(isrv, SN_SAL_PROBE, addr, size, 0, 0, 0, 0, 0);
515
516 if (data_ptr) {
517 switch (size) {
518 case 1:
519 *((u8*)data_ptr) = (u8)isrv.v0;
520 break;
521 case 2:
522 *((u16*)data_ptr) = (u16)isrv.v0;
523 break;
524 case 4:
525 *((u32*)data_ptr) = (u32)isrv.v0;
526 break;
527 case 8:
528 *((u64*)data_ptr) = (u64)isrv.v0;
529 break;
530 default:
531 isrv.status = 2;
532 }
533 }
534 return isrv.status;
535}
536
537/*
538 * Retrieve the system serial number as an ASCII string.
539 */
540static inline u64
541ia64_sn_sys_serial_get(char *buf)
542{
543 struct ia64_sal_retval ret_stuff;
544 SAL_CALL_NOLOCK(ret_stuff, SN_SAL_SYS_SERIAL_GET, buf, 0, 0, 0, 0, 0, 0);
545 return ret_stuff.status;
546}
547
548extern char sn_system_serial_number_string[];
549extern u64 sn_partition_serial_number;
550
551static inline char *
552sn_system_serial_number(void) {
553 if (sn_system_serial_number_string[0]) {
554 return(sn_system_serial_number_string);
555 } else {
556 ia64_sn_sys_serial_get(sn_system_serial_number_string);
557 return(sn_system_serial_number_string);
558 }
559}
560
561
562/*
563 * Returns a unique id number for this system and partition (suitable for
564 * use with license managers), based in part on the system serial number.
565 */
566static inline u64
567ia64_sn_partition_serial_get(void)
568{
569 struct ia64_sal_retval ret_stuff;
Dean Nelsonb48fc7b2005-03-23 19:05:00 -0700570 ia64_sal_oemcall_reentrant(&ret_stuff, SN_SAL_PARTITION_SERIAL_GET, 0,
571 0, 0, 0, 0, 0, 0);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700572 if (ret_stuff.status != 0)
573 return 0;
574 return ret_stuff.v0;
575}
576
577static inline u64
578sn_partition_serial_number_val(void) {
Dean Nelsonb48fc7b2005-03-23 19:05:00 -0700579 if (unlikely(sn_partition_serial_number == 0)) {
580 sn_partition_serial_number = ia64_sn_partition_serial_get();
Linus Torvalds1da177e2005-04-16 15:20:36 -0700581 }
Dean Nelsonb48fc7b2005-03-23 19:05:00 -0700582 return sn_partition_serial_number;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700583}
584
585/*
Jack Steiner771388d2005-11-18 16:11:27 -0600586 * Returns the partition id of the nasid passed in as an argument,
587 * or INVALID_PARTID if the partition id cannot be retrieved.
588 */
589static inline partid_t
590ia64_sn_sysctl_partition_get(nasid_t nasid)
591{
592 struct ia64_sal_retval ret_stuff;
593 SAL_CALL(ret_stuff, SN_SAL_SYSCTL_PARTITION_GET, nasid,
594 0, 0, 0, 0, 0, 0);
595 if (ret_stuff.status != 0)
596 return -1;
597 return ((partid_t)ret_stuff.v0);
598}
599
600/*
Dean Nelsonb48fc7b2005-03-23 19:05:00 -0700601 * Returns the physical address of the partition's reserved page through
602 * an iterative number of calls.
603 *
604 * On first call, 'cookie' and 'len' should be set to 0, and 'addr'
605 * set to the nasid of the partition whose reserved page's address is
606 * being sought.
607 * On subsequent calls, pass the values, that were passed back on the
608 * previous call.
609 *
610 * While the return status equals SALRET_MORE_PASSES, keep calling
611 * this function after first copying 'len' bytes starting at 'addr'
612 * into 'buf'. Once the return status equals SALRET_OK, 'addr' will
613 * be the physical address of the partition's reserved page. If the
614 * return status equals neither of these, an error as occurred.
615 */
616static inline s64
617sn_partition_reserved_page_pa(u64 buf, u64 *cookie, u64 *addr, u64 *len)
618{
619 struct ia64_sal_retval rv;
620 ia64_sal_oemcall_reentrant(&rv, SN_SAL_GET_PARTITION_ADDR, *cookie,
621 *addr, buf, *len, 0, 0, 0);
622 *cookie = rv.v0;
623 *addr = rv.v1;
624 *len = rv.v2;
625 return rv.status;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700626}
627
628/*
629 * Register or unregister a physical address range being referenced across
630 * a partition boundary for which certain SAL errors should be scanned for,
631 * cleaned up and ignored. This is of value for kernel partitioning code only.
632 * Values for the operation argument:
633 * 1 = register this address range with SAL
634 * 0 = unregister this address range with SAL
635 *
636 * SAL maintains a reference count on an address range in case it is registered
637 * multiple times.
638 *
639 * On success, returns the reference count of the address range after the SAL
640 * call has performed the current registration/unregistration. Returns a
641 * negative value if an error occurred.
642 */
643static inline int
644sn_register_xp_addr_region(u64 paddr, u64 len, int operation)
645{
646 struct ia64_sal_retval ret_stuff;
Dean Nelsonb48fc7b2005-03-23 19:05:00 -0700647 ia64_sal_oemcall(&ret_stuff, SN_SAL_XP_ADDR_REGION, paddr, len,
648 (u64)operation, 0, 0, 0, 0);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700649 return ret_stuff.status;
650}
651
652/*
653 * Register or unregister an instruction range for which SAL errors should
654 * be ignored. If an error occurs while in the registered range, SAL jumps
655 * to return_addr after ignoring the error. Values for the operation argument:
656 * 1 = register this instruction range with SAL
657 * 0 = unregister this instruction range with SAL
658 *
659 * Returns 0 on success, or a negative value if an error occurred.
660 */
661static inline int
662sn_register_nofault_code(u64 start_addr, u64 end_addr, u64 return_addr,
663 int virtual, int operation)
664{
665 struct ia64_sal_retval ret_stuff;
666 u64 call;
667 if (virtual) {
668 call = SN_SAL_NO_FAULT_ZONE_VIRTUAL;
669 } else {
670 call = SN_SAL_NO_FAULT_ZONE_PHYSICAL;
671 }
Dean Nelsonb48fc7b2005-03-23 19:05:00 -0700672 ia64_sal_oemcall(&ret_stuff, call, start_addr, end_addr, return_addr,
673 (u64)1, 0, 0, 0);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700674 return ret_stuff.status;
675}
676
677/*
678 * Change or query the coherence domain for this partition. Each cpu-based
679 * nasid is represented by a bit in an array of 64-bit words:
680 * 0 = not in this partition's coherency domain
681 * 1 = in this partition's coherency domain
682 *
683 * It is not possible for the local system's nasids to be removed from
684 * the coherency domain. Purpose of the domain arguments:
685 * new_domain = set the coherence domain to the given nasids
686 * old_domain = return the current coherence domain
687 *
688 * Returns 0 on success, or a negative value if an error occurred.
689 */
690static inline int
691sn_change_coherence(u64 *new_domain, u64 *old_domain)
692{
693 struct ia64_sal_retval ret_stuff;
Dean Nelsonb48fc7b2005-03-23 19:05:00 -0700694 ia64_sal_oemcall(&ret_stuff, SN_SAL_COHERENCE, (u64)new_domain,
695 (u64)old_domain, 0, 0, 0, 0, 0);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700696 return ret_stuff.status;
697}
698
699/*
700 * Change memory access protections for a physical address range.
701 * nasid_array is not used on Altix, but may be in future architectures.
702 * Available memory protection access classes are defined after the function.
703 */
704static inline int
705sn_change_memprotect(u64 paddr, u64 len, u64 perms, u64 *nasid_array)
706{
707 struct ia64_sal_retval ret_stuff;
708 int cnodeid;
709 unsigned long irq_flags;
710
711 cnodeid = nasid_to_cnodeid(get_node_number(paddr));
Linus Torvalds1da177e2005-04-16 15:20:36 -0700712 local_irq_save(irq_flags);
Dean Nelsonb48fc7b2005-03-23 19:05:00 -0700713 ia64_sal_oemcall_nolock(&ret_stuff, SN_SAL_MEMPROTECT, paddr, len,
714 (u64)nasid_array, perms, 0, 0, 0);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700715 local_irq_restore(irq_flags);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700716 return ret_stuff.status;
717}
718#define SN_MEMPROT_ACCESS_CLASS_0 0x14a080
719#define SN_MEMPROT_ACCESS_CLASS_1 0x2520c2
720#define SN_MEMPROT_ACCESS_CLASS_2 0x14a1ca
721#define SN_MEMPROT_ACCESS_CLASS_3 0x14a290
722#define SN_MEMPROT_ACCESS_CLASS_6 0x084080
723#define SN_MEMPROT_ACCESS_CLASS_7 0x021080
724
725/*
726 * Turns off system power.
727 */
728static inline void
729ia64_sn_power_down(void)
730{
731 struct ia64_sal_retval ret_stuff;
732 SAL_CALL(ret_stuff, SN_SAL_SYSTEM_POWER_DOWN, 0, 0, 0, 0, 0, 0, 0);
Jack Steiner68b97532005-08-11 10:28:00 -0700733 while(1)
734 cpu_relax();
Linus Torvalds1da177e2005-04-16 15:20:36 -0700735 /* never returns */
736}
737
738/**
739 * ia64_sn_fru_capture - tell the system controller to capture hw state
740 *
741 * This routine will call the SAL which will tell the system controller(s)
742 * to capture hw mmr information from each SHub in the system.
743 */
744static inline u64
745ia64_sn_fru_capture(void)
746{
747 struct ia64_sal_retval isrv;
748 SAL_CALL(isrv, SN_SAL_SYSCTL_FRU_CAPTURE, 0, 0, 0, 0, 0, 0, 0);
749 if (isrv.status)
750 return 0;
751 return isrv.v0;
752}
753
754/*
755 * Performs an operation on a PCI bus or slot -- power up, power down
756 * or reset.
757 */
758static inline u64
759ia64_sn_sysctl_iobrick_pci_op(nasid_t n, u64 connection_type,
760 u64 bus, char slot,
761 u64 action)
762{
763 struct ia64_sal_retval rv = {0, 0, 0, 0};
764
765 SAL_CALL_NOLOCK(rv, SN_SAL_SYSCTL_IOBRICK_PCI_OP, connection_type, n, action,
766 bus, (u64) slot, 0, 0);
767 if (rv.status)
768 return rv.v0;
769 return 0;
770}
771
772
773/*
774 * Open a subchannel for sending arbitrary data to the system
775 * controller network via the system controller device associated with
776 * 'nasid'. Return the subchannel number or a negative error code.
777 */
778static inline int
779ia64_sn_irtr_open(nasid_t nasid)
780{
781 struct ia64_sal_retval rv;
782 SAL_CALL_REENTRANT(rv, SN_SAL_IROUTER_OP, SAL_IROUTER_OPEN, nasid,
783 0, 0, 0, 0, 0);
784 return (int) rv.v0;
785}
786
787/*
788 * Close system controller subchannel 'subch' previously opened on 'nasid'.
789 */
790static inline int
791ia64_sn_irtr_close(nasid_t nasid, int subch)
792{
793 struct ia64_sal_retval rv;
794 SAL_CALL_REENTRANT(rv, SN_SAL_IROUTER_OP, SAL_IROUTER_CLOSE,
795 (u64) nasid, (u64) subch, 0, 0, 0, 0);
796 return (int) rv.status;
797}
798
799/*
800 * Read data from system controller associated with 'nasid' on
801 * subchannel 'subch'. The buffer to be filled is pointed to by
802 * 'buf', and its capacity is in the integer pointed to by 'len'. The
803 * referent of 'len' is set to the number of bytes read by the SAL
804 * call. The return value is either SALRET_OK (for bytes read) or
805 * SALRET_ERROR (for error or "no data available").
806 */
807static inline int
808ia64_sn_irtr_recv(nasid_t nasid, int subch, char *buf, int *len)
809{
810 struct ia64_sal_retval rv;
811 SAL_CALL_REENTRANT(rv, SN_SAL_IROUTER_OP, SAL_IROUTER_RECV,
812 (u64) nasid, (u64) subch, (u64) buf, (u64) len,
813 0, 0);
814 return (int) rv.status;
815}
816
817/*
818 * Write data to the system controller network via the system
819 * controller associated with 'nasid' on suchannel 'subch'. The
820 * buffer to be written out is pointed to by 'buf', and 'len' is the
821 * number of bytes to be written. The return value is either the
822 * number of bytes written (which could be zero) or a negative error
823 * code.
824 */
825static inline int
826ia64_sn_irtr_send(nasid_t nasid, int subch, char *buf, int len)
827{
828 struct ia64_sal_retval rv;
829 SAL_CALL_REENTRANT(rv, SN_SAL_IROUTER_OP, SAL_IROUTER_SEND,
830 (u64) nasid, (u64) subch, (u64) buf, (u64) len,
831 0, 0);
832 return (int) rv.v0;
833}
834
835/*
836 * Check whether any interrupts are pending for the system controller
837 * associated with 'nasid' and its subchannel 'subch'. The return
838 * value is a mask of pending interrupts (SAL_IROUTER_INTR_XMIT and/or
839 * SAL_IROUTER_INTR_RECV).
840 */
841static inline int
842ia64_sn_irtr_intr(nasid_t nasid, int subch)
843{
844 struct ia64_sal_retval rv;
845 SAL_CALL_REENTRANT(rv, SN_SAL_IROUTER_OP, SAL_IROUTER_INTR_STATUS,
846 (u64) nasid, (u64) subch, 0, 0, 0, 0);
847 return (int) rv.v0;
848}
849
850/*
851 * Enable the interrupt indicated by the intr parameter (either
852 * SAL_IROUTER_INTR_XMIT or SAL_IROUTER_INTR_RECV).
853 */
854static inline int
855ia64_sn_irtr_intr_enable(nasid_t nasid, int subch, u64 intr)
856{
857 struct ia64_sal_retval rv;
858 SAL_CALL_REENTRANT(rv, SN_SAL_IROUTER_OP, SAL_IROUTER_INTR_ON,
859 (u64) nasid, (u64) subch, intr, 0, 0, 0);
860 return (int) rv.v0;
861}
862
863/*
864 * Disable the interrupt indicated by the intr parameter (either
865 * SAL_IROUTER_INTR_XMIT or SAL_IROUTER_INTR_RECV).
866 */
867static inline int
868ia64_sn_irtr_intr_disable(nasid_t nasid, int subch, u64 intr)
869{
870 struct ia64_sal_retval rv;
871 SAL_CALL_REENTRANT(rv, SN_SAL_IROUTER_OP, SAL_IROUTER_INTR_OFF,
872 (u64) nasid, (u64) subch, intr, 0, 0, 0);
873 return (int) rv.v0;
874}
875
Greg Howard67639de2005-04-25 13:28:52 -0700876/*
877 * Set up a node as the point of contact for system controller
878 * environmental event delivery.
879 */
880static inline int
881ia64_sn_sysctl_event_init(nasid_t nasid)
882{
883 struct ia64_sal_retval rv;
884 SAL_CALL_REENTRANT(rv, SN_SAL_SYSCTL_EVENT, (u64) nasid,
885 0, 0, 0, 0, 0, 0);
886 return (int) rv.v0;
887}
888
Bruce Losure25732ad2005-09-02 15:16:35 -0500889/*
890 * Ask the system controller on the specified nasid to reset
891 * the CX corelet clock. Only valid on TIO nodes.
892 */
893static inline int
894ia64_sn_sysctl_tio_clock_reset(nasid_t nasid)
895{
896 struct ia64_sal_retval rv;
897 SAL_CALL_REENTRANT(rv, SN_SAL_SYSCTL_OP, SAL_SYSCTL_OP_TIO_JLCK_RST,
898 nasid, 0, 0, 0, 0, 0);
899 if (rv.status != 0)
900 return (int)rv.status;
901 if (rv.v0 != 0)
902 return (int)rv.v0;
903
904 return 0;
905}
906
907/*
908 * Get the associated ioboard type for a given nasid.
909 */
Prarit Bhargavaf90aa8c2006-03-08 13:30:18 -0500910static inline s64
911ia64_sn_sysctl_ioboard_get(nasid_t nasid, u16 *ioboard)
Bruce Losure25732ad2005-09-02 15:16:35 -0500912{
Prarit Bhargavaf90aa8c2006-03-08 13:30:18 -0500913 struct ia64_sal_retval isrv;
914 SAL_CALL_REENTRANT(isrv, SN_SAL_SYSCTL_OP, SAL_SYSCTL_OP_IOBOARD,
915 nasid, 0, 0, 0, 0, 0);
916 if (isrv.v0 != 0) {
917 *ioboard = isrv.v0;
918 return isrv.status;
919 }
920 if (isrv.v1 != 0) {
921 *ioboard = isrv.v1;
922 return isrv.status;
923 }
Bruce Losure25732ad2005-09-02 15:16:35 -0500924
Prarit Bhargavaf90aa8c2006-03-08 13:30:18 -0500925 return isrv.status;
Bruce Losure25732ad2005-09-02 15:16:35 -0500926}
927
Linus Torvalds1da177e2005-04-16 15:20:36 -0700928/**
929 * ia64_sn_get_fit_compt - read a FIT entry from the PROM header
930 * @nasid: NASID of node to read
931 * @index: FIT entry index to be retrieved (0..n)
932 * @fitentry: 16 byte buffer where FIT entry will be stored.
933 * @banbuf: optional buffer for retrieving banner
934 * @banlen: length of banner buffer
935 *
936 * Access to the physical PROM chips needs to be serialized since reads and
937 * writes can't occur at the same time, so we need to call into the SAL when
938 * we want to look at the FIT entries on the chips.
939 *
940 * Returns:
941 * %SALRET_OK if ok
942 * %SALRET_INVALID_ARG if index too big
943 * %SALRET_NOT_IMPLEMENTED if running on older PROM
944 * ??? if nasid invalid OR banner buffer not large enough
945 */
946static inline int
947ia64_sn_get_fit_compt(u64 nasid, u64 index, void *fitentry, void *banbuf,
948 u64 banlen)
949{
950 struct ia64_sal_retval rv;
951 SAL_CALL_NOLOCK(rv, SN_SAL_GET_FIT_COMPT, nasid, index, fitentry,
952 banbuf, banlen, 0, 0);
953 return (int) rv.status;
954}
955
956/*
957 * Initialize the SAL components of the system controller
958 * communication driver; specifically pass in a sizable buffer that
959 * can be used for allocation of subchannel queues as new subchannels
960 * are opened. "buf" points to the buffer, and "len" specifies its
961 * length.
962 */
963static inline int
964ia64_sn_irtr_init(nasid_t nasid, void *buf, int len)
965{
966 struct ia64_sal_retval rv;
967 SAL_CALL_REENTRANT(rv, SN_SAL_IROUTER_OP, SAL_IROUTER_INIT,
968 (u64) nasid, (u64) buf, (u64) len, 0, 0, 0);
969 return (int) rv.status;
970}
971
972/*
973 * Returns the nasid, subnode & slice corresponding to a SAPIC ID
974 *
975 * In:
976 * arg0 - SN_SAL_GET_SAPIC_INFO
977 * arg1 - sapicid (lid >> 16)
978 * Out:
979 * v0 - nasid
980 * v1 - subnode
981 * v2 - slice
982 */
983static inline u64
984ia64_sn_get_sapic_info(int sapicid, int *nasid, int *subnode, int *slice)
985{
986 struct ia64_sal_retval ret_stuff;
987
988 ret_stuff.status = 0;
989 ret_stuff.v0 = 0;
990 ret_stuff.v1 = 0;
991 ret_stuff.v2 = 0;
992 SAL_CALL_NOLOCK(ret_stuff, SN_SAL_GET_SAPIC_INFO, sapicid, 0, 0, 0, 0, 0, 0);
993
994/***** BEGIN HACK - temp til old proms no longer supported ********/
995 if (ret_stuff.status == SALRET_NOT_IMPLEMENTED) {
996 if (nasid) *nasid = sapicid & 0xfff;
997 if (subnode) *subnode = (sapicid >> 13) & 1;
998 if (slice) *slice = (sapicid >> 12) & 3;
999 return 0;
1000 }
1001/***** END HACK *******/
1002
1003 if (ret_stuff.status < 0)
1004 return ret_stuff.status;
1005
1006 if (nasid) *nasid = (int) ret_stuff.v0;
1007 if (subnode) *subnode = (int) ret_stuff.v1;
1008 if (slice) *slice = (int) ret_stuff.v2;
1009 return 0;
1010}
1011
1012/*
1013 * Returns information about the HUB/SHUB.
1014 * In:
1015 * arg0 - SN_SAL_GET_SN_INFO
1016 * arg1 - 0 (other values reserved for future use)
1017 * Out:
1018 * v0
1019 * [7:0] - shub type (0=shub1, 1=shub2)
1020 * [15:8] - Log2 max number of nodes in entire system (includes
1021 * C-bricks, I-bricks, etc)
1022 * [23:16] - Log2 of nodes per sharing domain
1023 * [31:24] - partition ID
1024 * [39:32] - coherency_id
1025 * [47:40] - regionsize
1026 * v1
1027 * [15:0] - nasid mask (ex., 0x7ff for 11 bit nasid)
1028 * [23:15] - bit position of low nasid bit
1029 */
1030static inline u64
1031ia64_sn_get_sn_info(int fc, u8 *shubtype, u16 *nasid_bitmask, u8 *nasid_shift,
1032 u8 *systemsize, u8 *sharing_domain_size, u8 *partid, u8 *coher, u8 *reg)
1033{
1034 struct ia64_sal_retval ret_stuff;
1035
1036 ret_stuff.status = 0;
1037 ret_stuff.v0 = 0;
1038 ret_stuff.v1 = 0;
1039 ret_stuff.v2 = 0;
1040 SAL_CALL_NOLOCK(ret_stuff, SN_SAL_GET_SN_INFO, fc, 0, 0, 0, 0, 0, 0);
1041
Jack Steiner771388d2005-11-18 16:11:27 -06001042/***** BEGIN HACK - temp til old proms no longer supported ********/
1043 if (ret_stuff.status == SALRET_NOT_IMPLEMENTED) {
Alexey Dobriyan53b35312006-03-24 03:16:13 -08001044 int nasid = get_sapicid() & 0xfff;
Jack Steiner771388d2005-11-18 16:11:27 -06001045#define SH_SHUB_ID_NODES_PER_BIT_MASK 0x001f000000000000UL
1046#define SH_SHUB_ID_NODES_PER_BIT_SHFT 48
1047 if (shubtype) *shubtype = 0;
1048 if (nasid_bitmask) *nasid_bitmask = 0x7ff;
1049 if (nasid_shift) *nasid_shift = 38;
1050 if (systemsize) *systemsize = 10;
1051 if (sharing_domain_size) *sharing_domain_size = 8;
1052 if (partid) *partid = ia64_sn_sysctl_partition_get(nasid);
1053 if (coher) *coher = nasid >> 9;
1054 if (reg) *reg = (HUB_L((u64 *) LOCAL_MMR_ADDR(SH1_SHUB_ID)) & SH_SHUB_ID_NODES_PER_BIT_MASK) >>
1055 SH_SHUB_ID_NODES_PER_BIT_SHFT;
1056 return 0;
1057 }
1058/***** END HACK *******/
1059
Linus Torvalds1da177e2005-04-16 15:20:36 -07001060 if (ret_stuff.status < 0)
1061 return ret_stuff.status;
1062
1063 if (shubtype) *shubtype = ret_stuff.v0 & 0xff;
1064 if (systemsize) *systemsize = (ret_stuff.v0 >> 8) & 0xff;
1065 if (sharing_domain_size) *sharing_domain_size = (ret_stuff.v0 >> 16) & 0xff;
1066 if (partid) *partid = (ret_stuff.v0 >> 24) & 0xff;
1067 if (coher) *coher = (ret_stuff.v0 >> 32) & 0xff;
1068 if (reg) *reg = (ret_stuff.v0 >> 40) & 0xff;
1069 if (nasid_bitmask) *nasid_bitmask = (ret_stuff.v1 & 0xffff);
1070 if (nasid_shift) *nasid_shift = (ret_stuff.v1 >> 16) & 0xff;
1071 return 0;
1072}
1073
1074/*
1075 * This is the access point to the Altix PROM hardware performance
1076 * and status monitoring interface. For info on using this, see
1077 * include/asm-ia64/sn/sn2/sn_hwperf.h
1078 */
1079static inline int
1080ia64_sn_hwperf_op(nasid_t nasid, u64 opcode, u64 a0, u64 a1, u64 a2,
1081 u64 a3, u64 a4, int *v0)
1082{
1083 struct ia64_sal_retval rv;
1084 SAL_CALL_NOLOCK(rv, SN_SAL_HWPERF_OP, (u64)nasid,
1085 opcode, a0, a1, a2, a3, a4);
1086 if (v0)
1087 *v0 = (int) rv.v0;
1088 return (int) rv.status;
1089}
1090
Mark Goodwin4a5c13c2005-04-25 13:04:22 -07001091static inline int
Mark Goodwinecc3c302005-08-16 00:50:00 -07001092ia64_sn_ioif_get_pci_topology(u64 buf, u64 len)
Mark Goodwin4a5c13c2005-04-25 13:04:22 -07001093{
1094 struct ia64_sal_retval rv;
Mark Goodwinecc3c302005-08-16 00:50:00 -07001095 SAL_CALL_NOLOCK(rv, SN_SAL_IOIF_GET_PCI_TOPOLOGY, buf, len, 0, 0, 0, 0, 0);
Mark Goodwin4a5c13c2005-04-25 13:04:22 -07001096 return (int) rv.status;
1097}
1098
Russ Anderson93a07d02005-04-25 13:19:52 -07001099/*
1100 * BTE error recovery is implemented in SAL
1101 */
1102static inline int
1103ia64_sn_bte_recovery(nasid_t nasid)
1104{
1105 struct ia64_sal_retval rv;
1106
1107 rv.status = 0;
Russ Anderson17e8ce02005-12-16 17:19:01 -06001108 SAL_CALL_NOLOCK(rv, SN_SAL_BTE_RECOVER, (u64)nasid, 0, 0, 0, 0, 0, 0);
Russ Anderson93a07d02005-04-25 13:19:52 -07001109 if (rv.status == SALRET_NOT_IMPLEMENTED)
1110 return 0;
1111 return (int) rv.status;
1112}
1113
Jack Steiner71a5d022005-05-10 08:01:00 -07001114static inline int
1115ia64_sn_is_fake_prom(void)
1116{
1117 struct ia64_sal_retval rv;
1118 SAL_CALL_NOLOCK(rv, SN_SAL_FAKE_PROM, 0, 0, 0, 0, 0, 0, 0);
1119 return (rv.status == 0);
1120}
1121
Jack Steinera1cddb82005-08-31 08:05:00 -07001122static inline int
1123ia64_sn_get_prom_feature_set(int set, unsigned long *feature_set)
1124{
1125 struct ia64_sal_retval rv;
1126
1127 SAL_CALL_NOLOCK(rv, SN_SAL_GET_PROM_FEATURE_SET, set, 0, 0, 0, 0, 0, 0);
1128 if (rv.status != 0)
1129 return rv.status;
1130 *feature_set = rv.v0;
1131 return 0;
1132}
1133
1134static inline int
1135ia64_sn_set_os_feature(int feature)
1136{
1137 struct ia64_sal_retval rv;
1138
1139 SAL_CALL_NOLOCK(rv, SN_SAL_SET_OS_FEATURE_SET, feature, 0, 0, 0, 0, 0, 0);
1140 return rv.status;
1141}
1142
Linus Torvalds1da177e2005-04-16 15:20:36 -07001143#endif /* _ASM_IA64_SN_SN_SAL_H */