Zang Roy-r61911 | 5e123b8 | 2006-11-08 19:49:13 -0800 | [diff] [blame] | 1 | /******************************************************************************* |
| 2 | |
| 3 | Copyright(c) 2006 Tundra Semiconductor Corporation. |
| 4 | |
| 5 | This program is free software; you can redistribute it and/or modify it |
| 6 | under the terms of the GNU General Public License as published by the Free |
| 7 | Software Foundation; either version 2 of the License, or (at your option) |
| 8 | any later version. |
| 9 | |
| 10 | This program is distributed in the hope that it will be useful, but WITHOUT |
| 11 | ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or |
| 12 | FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for |
| 13 | more details. |
| 14 | |
| 15 | You should have received a copy of the GNU General Public License along with |
| 16 | this program; if not, write to the Free Software Foundation, Inc., 59 |
| 17 | Temple Place - Suite 330, Boston, MA 02111-1307, USA. |
| 18 | |
| 19 | *******************************************************************************/ |
| 20 | |
| 21 | /* This driver is based on the driver code originally developed |
| 22 | * for the Intel IOC80314 (ForestLake) Gigabit Ethernet by |
| 23 | * scott.wood@timesys.com * Copyright (C) 2003 TimeSys Corporation |
| 24 | * |
| 25 | * Currently changes from original version are: |
| 26 | * - porting to Tsi108-based platform and kernel 2.6 (kong.lai@tundra.com) |
| 27 | * - modifications to handle two ports independently and support for |
| 28 | * additional PHY devices (alexandre.bounine@tundra.com) |
| 29 | * - Get hardware information from platform device. (tie-fei.zang@freescale.com) |
| 30 | * |
| 31 | */ |
| 32 | |
| 33 | #include <linux/module.h> |
| 34 | #include <linux/types.h> |
| 35 | #include <linux/init.h> |
| 36 | #include <linux/net.h> |
| 37 | #include <linux/netdevice.h> |
| 38 | #include <linux/etherdevice.h> |
| 39 | #include <linux/skbuff.h> |
| 40 | #include <linux/slab.h> |
Zang Roy-r61911 | 5e123b8 | 2006-11-08 19:49:13 -0800 | [diff] [blame] | 41 | #include <linux/spinlock.h> |
| 42 | #include <linux/delay.h> |
| 43 | #include <linux/crc32.h> |
| 44 | #include <linux/mii.h> |
| 45 | #include <linux/device.h> |
| 46 | #include <linux/pci.h> |
| 47 | #include <linux/rtnetlink.h> |
| 48 | #include <linux/timer.h> |
| 49 | #include <linux/platform_device.h> |
| 50 | #include <linux/etherdevice.h> |
| 51 | |
| 52 | #include <asm/system.h> |
| 53 | #include <asm/io.h> |
| 54 | #include <asm/tsi108.h> |
| 55 | |
| 56 | #include "tsi108_eth.h" |
| 57 | |
| 58 | #define MII_READ_DELAY 10000 /* max link wait time in msec */ |
| 59 | |
| 60 | #define TSI108_RXRING_LEN 256 |
| 61 | |
| 62 | /* NOTE: The driver currently does not support receiving packets |
| 63 | * larger than the buffer size, so don't decrease this (unless you |
| 64 | * want to add such support). |
| 65 | */ |
| 66 | #define TSI108_RXBUF_SIZE 1536 |
| 67 | |
| 68 | #define TSI108_TXRING_LEN 256 |
| 69 | |
| 70 | #define TSI108_TX_INT_FREQ 64 |
| 71 | |
| 72 | /* Check the phy status every half a second. */ |
| 73 | #define CHECK_PHY_INTERVAL (HZ/2) |
| 74 | |
| 75 | static int tsi108_init_one(struct platform_device *pdev); |
| 76 | static int tsi108_ether_remove(struct platform_device *pdev); |
| 77 | |
| 78 | struct tsi108_prv_data { |
| 79 | void __iomem *regs; /* Base of normal regs */ |
| 80 | void __iomem *phyregs; /* Base of register bank used for PHY access */ |
| 81 | |
| 82 | unsigned int phy; /* Index of PHY for this interface */ |
| 83 | unsigned int irq_num; |
| 84 | unsigned int id; |
| 85 | |
| 86 | struct timer_list timer;/* Timer that triggers the check phy function */ |
| 87 | unsigned int rxtail; /* Next entry in rxring to read */ |
| 88 | unsigned int rxhead; /* Next entry in rxring to give a new buffer */ |
| 89 | unsigned int rxfree; /* Number of free, allocated RX buffers */ |
| 90 | |
| 91 | unsigned int rxpending; /* Non-zero if there are still descriptors |
| 92 | * to be processed from a previous descriptor |
| 93 | * interrupt condition that has been cleared */ |
| 94 | |
| 95 | unsigned int txtail; /* Next TX descriptor to check status on */ |
| 96 | unsigned int txhead; /* Next TX descriptor to use */ |
| 97 | |
| 98 | /* Number of free TX descriptors. This could be calculated from |
| 99 | * rxhead and rxtail if one descriptor were left unused to disambiguate |
| 100 | * full and empty conditions, but it's simpler to just keep track |
| 101 | * explicitly. */ |
| 102 | |
| 103 | unsigned int txfree; |
| 104 | |
| 105 | unsigned int phy_ok; /* The PHY is currently powered on. */ |
| 106 | |
| 107 | /* PHY status (duplex is 1 for half, 2 for full, |
| 108 | * so that the default 0 indicates that neither has |
| 109 | * yet been configured). */ |
| 110 | |
| 111 | unsigned int link_up; |
| 112 | unsigned int speed; |
| 113 | unsigned int duplex; |
| 114 | |
| 115 | tx_desc *txring; |
| 116 | rx_desc *rxring; |
| 117 | struct sk_buff *txskbs[TSI108_TXRING_LEN]; |
| 118 | struct sk_buff *rxskbs[TSI108_RXRING_LEN]; |
| 119 | |
| 120 | dma_addr_t txdma, rxdma; |
| 121 | |
| 122 | /* txlock nests in misclock and phy_lock */ |
| 123 | |
| 124 | spinlock_t txlock, misclock; |
| 125 | |
| 126 | /* stats is used to hold the upper bits of each hardware counter, |
| 127 | * and tmpstats is used to hold the full values for returning |
| 128 | * to the caller of get_stats(). They must be separate in case |
| 129 | * an overflow interrupt occurs before the stats are consumed. |
| 130 | */ |
| 131 | |
| 132 | struct net_device_stats stats; |
| 133 | struct net_device_stats tmpstats; |
| 134 | |
| 135 | /* These stats are kept separate in hardware, thus require individual |
| 136 | * fields for handling carry. They are combined in get_stats. |
| 137 | */ |
| 138 | |
| 139 | unsigned long rx_fcs; /* Add to rx_frame_errors */ |
| 140 | unsigned long rx_short_fcs; /* Add to rx_frame_errors */ |
| 141 | unsigned long rx_long_fcs; /* Add to rx_frame_errors */ |
| 142 | unsigned long rx_underruns; /* Add to rx_length_errors */ |
| 143 | unsigned long rx_overruns; /* Add to rx_length_errors */ |
| 144 | |
| 145 | unsigned long tx_coll_abort; /* Add to tx_aborted_errors/collisions */ |
| 146 | unsigned long tx_pause_drop; /* Add to tx_aborted_errors */ |
| 147 | |
| 148 | unsigned long mc_hash[16]; |
| 149 | u32 msg_enable; /* debug message level */ |
| 150 | struct mii_if_info mii_if; |
| 151 | unsigned int init_media; |
| 152 | }; |
| 153 | |
| 154 | /* Structure for a device driver */ |
| 155 | |
| 156 | static struct platform_driver tsi_eth_driver = { |
| 157 | .probe = tsi108_init_one, |
| 158 | .remove = tsi108_ether_remove, |
| 159 | .driver = { |
| 160 | .name = "tsi-ethernet", |
| 161 | }, |
| 162 | }; |
| 163 | |
| 164 | static void tsi108_timed_checker(unsigned long dev_ptr); |
| 165 | |
| 166 | static void dump_eth_one(struct net_device *dev) |
| 167 | { |
| 168 | struct tsi108_prv_data *data = netdev_priv(dev); |
| 169 | |
| 170 | printk("Dumping %s...\n", dev->name); |
| 171 | printk("intstat %x intmask %x phy_ok %d" |
| 172 | " link %d speed %d duplex %d\n", |
| 173 | TSI_READ(TSI108_EC_INTSTAT), |
| 174 | TSI_READ(TSI108_EC_INTMASK), data->phy_ok, |
| 175 | data->link_up, data->speed, data->duplex); |
| 176 | |
| 177 | printk("TX: head %d, tail %d, free %d, stat %x, estat %x, err %x\n", |
| 178 | data->txhead, data->txtail, data->txfree, |
| 179 | TSI_READ(TSI108_EC_TXSTAT), |
| 180 | TSI_READ(TSI108_EC_TXESTAT), |
| 181 | TSI_READ(TSI108_EC_TXERR)); |
| 182 | |
| 183 | printk("RX: head %d, tail %d, free %d, stat %x," |
| 184 | " estat %x, err %x, pending %d\n\n", |
| 185 | data->rxhead, data->rxtail, data->rxfree, |
| 186 | TSI_READ(TSI108_EC_RXSTAT), |
| 187 | TSI_READ(TSI108_EC_RXESTAT), |
| 188 | TSI_READ(TSI108_EC_RXERR), data->rxpending); |
| 189 | } |
| 190 | |
| 191 | /* Synchronization is needed between the thread and up/down events. |
| 192 | * Note that the PHY is accessed through the same registers for both |
| 193 | * interfaces, so this can't be made interface-specific. |
| 194 | */ |
| 195 | |
| 196 | static DEFINE_SPINLOCK(phy_lock); |
| 197 | |
| 198 | static int tsi108_read_mii(struct tsi108_prv_data *data, int reg) |
| 199 | { |
| 200 | unsigned i; |
| 201 | |
| 202 | TSI_WRITE_PHY(TSI108_MAC_MII_ADDR, |
| 203 | (data->phy << TSI108_MAC_MII_ADDR_PHY) | |
| 204 | (reg << TSI108_MAC_MII_ADDR_REG)); |
| 205 | TSI_WRITE_PHY(TSI108_MAC_MII_CMD, 0); |
| 206 | TSI_WRITE_PHY(TSI108_MAC_MII_CMD, TSI108_MAC_MII_CMD_READ); |
| 207 | for (i = 0; i < 100; i++) { |
| 208 | if (!(TSI_READ_PHY(TSI108_MAC_MII_IND) & |
| 209 | (TSI108_MAC_MII_IND_NOTVALID | TSI108_MAC_MII_IND_BUSY))) |
| 210 | break; |
| 211 | udelay(10); |
| 212 | } |
| 213 | |
| 214 | if (i == 100) |
| 215 | return 0xffff; |
| 216 | else |
| 217 | return (TSI_READ_PHY(TSI108_MAC_MII_DATAIN)); |
| 218 | } |
| 219 | |
| 220 | static void tsi108_write_mii(struct tsi108_prv_data *data, |
| 221 | int reg, u16 val) |
| 222 | { |
| 223 | unsigned i = 100; |
| 224 | TSI_WRITE_PHY(TSI108_MAC_MII_ADDR, |
| 225 | (data->phy << TSI108_MAC_MII_ADDR_PHY) | |
| 226 | (reg << TSI108_MAC_MII_ADDR_REG)); |
| 227 | TSI_WRITE_PHY(TSI108_MAC_MII_DATAOUT, val); |
| 228 | while (i--) { |
| 229 | if(!(TSI_READ_PHY(TSI108_MAC_MII_IND) & |
| 230 | TSI108_MAC_MII_IND_BUSY)) |
| 231 | break; |
| 232 | udelay(10); |
| 233 | } |
| 234 | } |
| 235 | |
| 236 | static int tsi108_mdio_read(struct net_device *dev, int addr, int reg) |
| 237 | { |
| 238 | struct tsi108_prv_data *data = netdev_priv(dev); |
| 239 | return tsi108_read_mii(data, reg); |
| 240 | } |
| 241 | |
| 242 | static void tsi108_mdio_write(struct net_device *dev, int addr, int reg, int val) |
| 243 | { |
| 244 | struct tsi108_prv_data *data = netdev_priv(dev); |
| 245 | tsi108_write_mii(data, reg, val); |
| 246 | } |
| 247 | |
| 248 | static inline void tsi108_write_tbi(struct tsi108_prv_data *data, |
| 249 | int reg, u16 val) |
| 250 | { |
| 251 | unsigned i = 1000; |
| 252 | TSI_WRITE(TSI108_MAC_MII_ADDR, |
| 253 | (0x1e << TSI108_MAC_MII_ADDR_PHY) |
| 254 | | (reg << TSI108_MAC_MII_ADDR_REG)); |
| 255 | TSI_WRITE(TSI108_MAC_MII_DATAOUT, val); |
| 256 | while(i--) { |
| 257 | if(!(TSI_READ(TSI108_MAC_MII_IND) & TSI108_MAC_MII_IND_BUSY)) |
| 258 | return; |
| 259 | udelay(10); |
| 260 | } |
| 261 | printk(KERN_ERR "%s function time out \n", __FUNCTION__); |
| 262 | } |
| 263 | |
| 264 | static int mii_speed(struct mii_if_info *mii) |
| 265 | { |
| 266 | int advert, lpa, val, media; |
| 267 | int lpa2 = 0; |
| 268 | int speed; |
| 269 | |
| 270 | if (!mii_link_ok(mii)) |
| 271 | return 0; |
| 272 | |
| 273 | val = (*mii->mdio_read) (mii->dev, mii->phy_id, MII_BMSR); |
| 274 | if ((val & BMSR_ANEGCOMPLETE) == 0) |
| 275 | return 0; |
| 276 | |
| 277 | advert = (*mii->mdio_read) (mii->dev, mii->phy_id, MII_ADVERTISE); |
| 278 | lpa = (*mii->mdio_read) (mii->dev, mii->phy_id, MII_LPA); |
| 279 | media = mii_nway_result(advert & lpa); |
| 280 | |
| 281 | if (mii->supports_gmii) |
| 282 | lpa2 = mii->mdio_read(mii->dev, mii->phy_id, MII_STAT1000); |
| 283 | |
| 284 | speed = lpa2 & (LPA_1000FULL | LPA_1000HALF) ? 1000 : |
| 285 | (media & (ADVERTISE_100FULL | ADVERTISE_100HALF) ? 100 : 10); |
| 286 | return speed; |
| 287 | } |
| 288 | |
| 289 | static void tsi108_check_phy(struct net_device *dev) |
| 290 | { |
| 291 | struct tsi108_prv_data *data = netdev_priv(dev); |
| 292 | u32 mac_cfg2_reg, portctrl_reg; |
| 293 | u32 duplex; |
| 294 | u32 speed; |
| 295 | unsigned long flags; |
| 296 | |
| 297 | /* Do a dummy read, as for some reason the first read |
| 298 | * after a link becomes up returns link down, even if |
| 299 | * it's been a while since the link came up. |
| 300 | */ |
| 301 | |
| 302 | spin_lock_irqsave(&phy_lock, flags); |
| 303 | |
| 304 | if (!data->phy_ok) |
| 305 | goto out; |
| 306 | |
| 307 | tsi108_read_mii(data, MII_BMSR); |
| 308 | |
| 309 | duplex = mii_check_media(&data->mii_if, netif_msg_link(data), data->init_media); |
| 310 | data->init_media = 0; |
| 311 | |
| 312 | if (netif_carrier_ok(dev)) { |
| 313 | |
| 314 | speed = mii_speed(&data->mii_if); |
| 315 | |
| 316 | if ((speed != data->speed) || duplex) { |
| 317 | |
| 318 | mac_cfg2_reg = TSI_READ(TSI108_MAC_CFG2); |
| 319 | portctrl_reg = TSI_READ(TSI108_EC_PORTCTRL); |
| 320 | |
| 321 | mac_cfg2_reg &= ~TSI108_MAC_CFG2_IFACE_MASK; |
| 322 | |
| 323 | if (speed == 1000) { |
| 324 | mac_cfg2_reg |= TSI108_MAC_CFG2_GIG; |
| 325 | portctrl_reg &= ~TSI108_EC_PORTCTRL_NOGIG; |
| 326 | } else { |
| 327 | mac_cfg2_reg |= TSI108_MAC_CFG2_NOGIG; |
| 328 | portctrl_reg |= TSI108_EC_PORTCTRL_NOGIG; |
| 329 | } |
| 330 | |
| 331 | data->speed = speed; |
| 332 | |
| 333 | if (data->mii_if.full_duplex) { |
| 334 | mac_cfg2_reg |= TSI108_MAC_CFG2_FULLDUPLEX; |
| 335 | portctrl_reg &= ~TSI108_EC_PORTCTRL_HALFDUPLEX; |
| 336 | data->duplex = 2; |
| 337 | } else { |
| 338 | mac_cfg2_reg &= ~TSI108_MAC_CFG2_FULLDUPLEX; |
| 339 | portctrl_reg |= TSI108_EC_PORTCTRL_HALFDUPLEX; |
| 340 | data->duplex = 1; |
| 341 | } |
| 342 | |
| 343 | TSI_WRITE(TSI108_MAC_CFG2, mac_cfg2_reg); |
| 344 | TSI_WRITE(TSI108_EC_PORTCTRL, portctrl_reg); |
| 345 | |
| 346 | if (data->link_up == 0) { |
| 347 | /* The manual says it can take 3-4 usecs for the speed change |
| 348 | * to take effect. |
| 349 | */ |
| 350 | udelay(5); |
| 351 | |
| 352 | spin_lock(&data->txlock); |
| 353 | if (is_valid_ether_addr(dev->dev_addr) && data->txfree) |
| 354 | netif_wake_queue(dev); |
| 355 | |
| 356 | data->link_up = 1; |
| 357 | spin_unlock(&data->txlock); |
| 358 | } |
| 359 | } |
| 360 | |
| 361 | } else { |
| 362 | if (data->link_up == 1) { |
| 363 | netif_stop_queue(dev); |
| 364 | data->link_up = 0; |
| 365 | printk(KERN_NOTICE "%s : link is down\n", dev->name); |
| 366 | } |
| 367 | |
| 368 | goto out; |
| 369 | } |
| 370 | |
| 371 | |
| 372 | out: |
| 373 | spin_unlock_irqrestore(&phy_lock, flags); |
| 374 | } |
| 375 | |
| 376 | static inline void |
| 377 | tsi108_stat_carry_one(int carry, int carry_bit, int carry_shift, |
| 378 | unsigned long *upper) |
| 379 | { |
| 380 | if (carry & carry_bit) |
| 381 | *upper += carry_shift; |
| 382 | } |
| 383 | |
| 384 | static void tsi108_stat_carry(struct net_device *dev) |
| 385 | { |
| 386 | struct tsi108_prv_data *data = netdev_priv(dev); |
| 387 | u32 carry1, carry2; |
| 388 | |
| 389 | spin_lock_irq(&data->misclock); |
| 390 | |
| 391 | carry1 = TSI_READ(TSI108_STAT_CARRY1); |
| 392 | carry2 = TSI_READ(TSI108_STAT_CARRY2); |
| 393 | |
| 394 | TSI_WRITE(TSI108_STAT_CARRY1, carry1); |
| 395 | TSI_WRITE(TSI108_STAT_CARRY2, carry2); |
| 396 | |
| 397 | tsi108_stat_carry_one(carry1, TSI108_STAT_CARRY1_RXBYTES, |
| 398 | TSI108_STAT_RXBYTES_CARRY, &data->stats.rx_bytes); |
| 399 | |
| 400 | tsi108_stat_carry_one(carry1, TSI108_STAT_CARRY1_RXPKTS, |
| 401 | TSI108_STAT_RXPKTS_CARRY, |
| 402 | &data->stats.rx_packets); |
| 403 | |
| 404 | tsi108_stat_carry_one(carry1, TSI108_STAT_CARRY1_RXFCS, |
| 405 | TSI108_STAT_RXFCS_CARRY, &data->rx_fcs); |
| 406 | |
| 407 | tsi108_stat_carry_one(carry1, TSI108_STAT_CARRY1_RXMCAST, |
| 408 | TSI108_STAT_RXMCAST_CARRY, |
| 409 | &data->stats.multicast); |
| 410 | |
| 411 | tsi108_stat_carry_one(carry1, TSI108_STAT_CARRY1_RXALIGN, |
| 412 | TSI108_STAT_RXALIGN_CARRY, |
| 413 | &data->stats.rx_frame_errors); |
| 414 | |
| 415 | tsi108_stat_carry_one(carry1, TSI108_STAT_CARRY1_RXLENGTH, |
| 416 | TSI108_STAT_RXLENGTH_CARRY, |
| 417 | &data->stats.rx_length_errors); |
| 418 | |
| 419 | tsi108_stat_carry_one(carry1, TSI108_STAT_CARRY1_RXRUNT, |
| 420 | TSI108_STAT_RXRUNT_CARRY, &data->rx_underruns); |
| 421 | |
| 422 | tsi108_stat_carry_one(carry1, TSI108_STAT_CARRY1_RXJUMBO, |
| 423 | TSI108_STAT_RXJUMBO_CARRY, &data->rx_overruns); |
| 424 | |
| 425 | tsi108_stat_carry_one(carry1, TSI108_STAT_CARRY1_RXFRAG, |
| 426 | TSI108_STAT_RXFRAG_CARRY, &data->rx_short_fcs); |
| 427 | |
| 428 | tsi108_stat_carry_one(carry1, TSI108_STAT_CARRY1_RXJABBER, |
| 429 | TSI108_STAT_RXJABBER_CARRY, &data->rx_long_fcs); |
| 430 | |
| 431 | tsi108_stat_carry_one(carry1, TSI108_STAT_CARRY1_RXDROP, |
| 432 | TSI108_STAT_RXDROP_CARRY, |
| 433 | &data->stats.rx_missed_errors); |
| 434 | |
| 435 | tsi108_stat_carry_one(carry2, TSI108_STAT_CARRY2_TXBYTES, |
| 436 | TSI108_STAT_TXBYTES_CARRY, &data->stats.tx_bytes); |
| 437 | |
| 438 | tsi108_stat_carry_one(carry2, TSI108_STAT_CARRY2_TXPKTS, |
| 439 | TSI108_STAT_TXPKTS_CARRY, |
| 440 | &data->stats.tx_packets); |
| 441 | |
| 442 | tsi108_stat_carry_one(carry2, TSI108_STAT_CARRY2_TXEXDEF, |
| 443 | TSI108_STAT_TXEXDEF_CARRY, |
| 444 | &data->stats.tx_aborted_errors); |
| 445 | |
| 446 | tsi108_stat_carry_one(carry2, TSI108_STAT_CARRY2_TXEXCOL, |
| 447 | TSI108_STAT_TXEXCOL_CARRY, &data->tx_coll_abort); |
| 448 | |
| 449 | tsi108_stat_carry_one(carry2, TSI108_STAT_CARRY2_TXTCOL, |
| 450 | TSI108_STAT_TXTCOL_CARRY, |
| 451 | &data->stats.collisions); |
| 452 | |
| 453 | tsi108_stat_carry_one(carry2, TSI108_STAT_CARRY2_TXPAUSE, |
| 454 | TSI108_STAT_TXPAUSEDROP_CARRY, |
| 455 | &data->tx_pause_drop); |
| 456 | |
| 457 | spin_unlock_irq(&data->misclock); |
| 458 | } |
| 459 | |
| 460 | /* Read a stat counter atomically with respect to carries. |
| 461 | * data->misclock must be held. |
| 462 | */ |
| 463 | static inline unsigned long |
| 464 | tsi108_read_stat(struct tsi108_prv_data * data, int reg, int carry_bit, |
| 465 | int carry_shift, unsigned long *upper) |
| 466 | { |
| 467 | int carryreg; |
| 468 | unsigned long val; |
| 469 | |
| 470 | if (reg < 0xb0) |
| 471 | carryreg = TSI108_STAT_CARRY1; |
| 472 | else |
| 473 | carryreg = TSI108_STAT_CARRY2; |
| 474 | |
| 475 | again: |
| 476 | val = TSI_READ(reg) | *upper; |
| 477 | |
| 478 | /* Check to see if it overflowed, but the interrupt hasn't |
| 479 | * been serviced yet. If so, handle the carry here, and |
| 480 | * try again. |
| 481 | */ |
| 482 | |
| 483 | if (unlikely(TSI_READ(carryreg) & carry_bit)) { |
| 484 | *upper += carry_shift; |
| 485 | TSI_WRITE(carryreg, carry_bit); |
| 486 | goto again; |
| 487 | } |
| 488 | |
| 489 | return val; |
| 490 | } |
| 491 | |
| 492 | static struct net_device_stats *tsi108_get_stats(struct net_device *dev) |
| 493 | { |
| 494 | unsigned long excol; |
| 495 | |
| 496 | struct tsi108_prv_data *data = netdev_priv(dev); |
| 497 | spin_lock_irq(&data->misclock); |
| 498 | |
| 499 | data->tmpstats.rx_packets = |
| 500 | tsi108_read_stat(data, TSI108_STAT_RXPKTS, |
| 501 | TSI108_STAT_CARRY1_RXPKTS, |
| 502 | TSI108_STAT_RXPKTS_CARRY, &data->stats.rx_packets); |
| 503 | |
| 504 | data->tmpstats.tx_packets = |
| 505 | tsi108_read_stat(data, TSI108_STAT_TXPKTS, |
| 506 | TSI108_STAT_CARRY2_TXPKTS, |
| 507 | TSI108_STAT_TXPKTS_CARRY, &data->stats.tx_packets); |
| 508 | |
| 509 | data->tmpstats.rx_bytes = |
| 510 | tsi108_read_stat(data, TSI108_STAT_RXBYTES, |
| 511 | TSI108_STAT_CARRY1_RXBYTES, |
| 512 | TSI108_STAT_RXBYTES_CARRY, &data->stats.rx_bytes); |
| 513 | |
| 514 | data->tmpstats.tx_bytes = |
| 515 | tsi108_read_stat(data, TSI108_STAT_TXBYTES, |
| 516 | TSI108_STAT_CARRY2_TXBYTES, |
| 517 | TSI108_STAT_TXBYTES_CARRY, &data->stats.tx_bytes); |
| 518 | |
| 519 | data->tmpstats.multicast = |
| 520 | tsi108_read_stat(data, TSI108_STAT_RXMCAST, |
| 521 | TSI108_STAT_CARRY1_RXMCAST, |
| 522 | TSI108_STAT_RXMCAST_CARRY, &data->stats.multicast); |
| 523 | |
| 524 | excol = tsi108_read_stat(data, TSI108_STAT_TXEXCOL, |
| 525 | TSI108_STAT_CARRY2_TXEXCOL, |
| 526 | TSI108_STAT_TXEXCOL_CARRY, |
| 527 | &data->tx_coll_abort); |
| 528 | |
| 529 | data->tmpstats.collisions = |
| 530 | tsi108_read_stat(data, TSI108_STAT_TXTCOL, |
| 531 | TSI108_STAT_CARRY2_TXTCOL, |
| 532 | TSI108_STAT_TXTCOL_CARRY, &data->stats.collisions); |
| 533 | |
| 534 | data->tmpstats.collisions += excol; |
| 535 | |
| 536 | data->tmpstats.rx_length_errors = |
| 537 | tsi108_read_stat(data, TSI108_STAT_RXLENGTH, |
| 538 | TSI108_STAT_CARRY1_RXLENGTH, |
| 539 | TSI108_STAT_RXLENGTH_CARRY, |
| 540 | &data->stats.rx_length_errors); |
| 541 | |
| 542 | data->tmpstats.rx_length_errors += |
| 543 | tsi108_read_stat(data, TSI108_STAT_RXRUNT, |
| 544 | TSI108_STAT_CARRY1_RXRUNT, |
| 545 | TSI108_STAT_RXRUNT_CARRY, &data->rx_underruns); |
| 546 | |
| 547 | data->tmpstats.rx_length_errors += |
| 548 | tsi108_read_stat(data, TSI108_STAT_RXJUMBO, |
| 549 | TSI108_STAT_CARRY1_RXJUMBO, |
| 550 | TSI108_STAT_RXJUMBO_CARRY, &data->rx_overruns); |
| 551 | |
| 552 | data->tmpstats.rx_frame_errors = |
| 553 | tsi108_read_stat(data, TSI108_STAT_RXALIGN, |
| 554 | TSI108_STAT_CARRY1_RXALIGN, |
| 555 | TSI108_STAT_RXALIGN_CARRY, |
| 556 | &data->stats.rx_frame_errors); |
| 557 | |
| 558 | data->tmpstats.rx_frame_errors += |
| 559 | tsi108_read_stat(data, TSI108_STAT_RXFCS, |
| 560 | TSI108_STAT_CARRY1_RXFCS, TSI108_STAT_RXFCS_CARRY, |
| 561 | &data->rx_fcs); |
| 562 | |
| 563 | data->tmpstats.rx_frame_errors += |
| 564 | tsi108_read_stat(data, TSI108_STAT_RXFRAG, |
| 565 | TSI108_STAT_CARRY1_RXFRAG, |
| 566 | TSI108_STAT_RXFRAG_CARRY, &data->rx_short_fcs); |
| 567 | |
| 568 | data->tmpstats.rx_missed_errors = |
| 569 | tsi108_read_stat(data, TSI108_STAT_RXDROP, |
| 570 | TSI108_STAT_CARRY1_RXDROP, |
| 571 | TSI108_STAT_RXDROP_CARRY, |
| 572 | &data->stats.rx_missed_errors); |
| 573 | |
| 574 | /* These three are maintained by software. */ |
| 575 | data->tmpstats.rx_fifo_errors = data->stats.rx_fifo_errors; |
| 576 | data->tmpstats.rx_crc_errors = data->stats.rx_crc_errors; |
| 577 | |
| 578 | data->tmpstats.tx_aborted_errors = |
| 579 | tsi108_read_stat(data, TSI108_STAT_TXEXDEF, |
| 580 | TSI108_STAT_CARRY2_TXEXDEF, |
| 581 | TSI108_STAT_TXEXDEF_CARRY, |
| 582 | &data->stats.tx_aborted_errors); |
| 583 | |
| 584 | data->tmpstats.tx_aborted_errors += |
| 585 | tsi108_read_stat(data, TSI108_STAT_TXPAUSEDROP, |
| 586 | TSI108_STAT_CARRY2_TXPAUSE, |
| 587 | TSI108_STAT_TXPAUSEDROP_CARRY, |
| 588 | &data->tx_pause_drop); |
| 589 | |
| 590 | data->tmpstats.tx_aborted_errors += excol; |
| 591 | |
| 592 | data->tmpstats.tx_errors = data->tmpstats.tx_aborted_errors; |
| 593 | data->tmpstats.rx_errors = data->tmpstats.rx_length_errors + |
| 594 | data->tmpstats.rx_crc_errors + |
| 595 | data->tmpstats.rx_frame_errors + |
| 596 | data->tmpstats.rx_fifo_errors + data->tmpstats.rx_missed_errors; |
| 597 | |
| 598 | spin_unlock_irq(&data->misclock); |
| 599 | return &data->tmpstats; |
| 600 | } |
| 601 | |
| 602 | static void tsi108_restart_rx(struct tsi108_prv_data * data, struct net_device *dev) |
| 603 | { |
| 604 | TSI_WRITE(TSI108_EC_RXQ_PTRHIGH, |
| 605 | TSI108_EC_RXQ_PTRHIGH_VALID); |
| 606 | |
| 607 | TSI_WRITE(TSI108_EC_RXCTRL, TSI108_EC_RXCTRL_GO |
| 608 | | TSI108_EC_RXCTRL_QUEUE0); |
| 609 | } |
| 610 | |
| 611 | static void tsi108_restart_tx(struct tsi108_prv_data * data) |
| 612 | { |
| 613 | TSI_WRITE(TSI108_EC_TXQ_PTRHIGH, |
| 614 | TSI108_EC_TXQ_PTRHIGH_VALID); |
| 615 | |
| 616 | TSI_WRITE(TSI108_EC_TXCTRL, TSI108_EC_TXCTRL_IDLEINT | |
| 617 | TSI108_EC_TXCTRL_GO | TSI108_EC_TXCTRL_QUEUE0); |
| 618 | } |
| 619 | |
| 620 | /* txlock must be held by caller, with IRQs disabled, and |
| 621 | * with permission to re-enable them when the lock is dropped. |
| 622 | */ |
| 623 | static void tsi108_complete_tx(struct net_device *dev) |
| 624 | { |
| 625 | struct tsi108_prv_data *data = netdev_priv(dev); |
| 626 | int tx; |
| 627 | struct sk_buff *skb; |
| 628 | int release = 0; |
| 629 | |
| 630 | while (!data->txfree || data->txhead != data->txtail) { |
| 631 | tx = data->txtail; |
| 632 | |
| 633 | if (data->txring[tx].misc & TSI108_TX_OWN) |
| 634 | break; |
| 635 | |
| 636 | skb = data->txskbs[tx]; |
| 637 | |
| 638 | if (!(data->txring[tx].misc & TSI108_TX_OK)) |
| 639 | printk("%s: bad tx packet, misc %x\n", |
| 640 | dev->name, data->txring[tx].misc); |
| 641 | |
| 642 | data->txtail = (data->txtail + 1) % TSI108_TXRING_LEN; |
| 643 | data->txfree++; |
| 644 | |
| 645 | if (data->txring[tx].misc & TSI108_TX_EOF) { |
| 646 | dev_kfree_skb_any(skb); |
| 647 | release++; |
| 648 | } |
| 649 | } |
| 650 | |
| 651 | if (release) { |
| 652 | if (is_valid_ether_addr(dev->dev_addr) && data->link_up) |
| 653 | netif_wake_queue(dev); |
| 654 | } |
| 655 | } |
| 656 | |
| 657 | static int tsi108_send_packet(struct sk_buff * skb, struct net_device *dev) |
| 658 | { |
| 659 | struct tsi108_prv_data *data = netdev_priv(dev); |
| 660 | int frags = skb_shinfo(skb)->nr_frags + 1; |
| 661 | int i; |
| 662 | |
| 663 | if (!data->phy_ok && net_ratelimit()) |
| 664 | printk(KERN_ERR "%s: Transmit while PHY is down!\n", dev->name); |
| 665 | |
| 666 | if (!data->link_up) { |
| 667 | printk(KERN_ERR "%s: Transmit while link is down!\n", |
| 668 | dev->name); |
| 669 | netif_stop_queue(dev); |
| 670 | return NETDEV_TX_BUSY; |
| 671 | } |
| 672 | |
| 673 | if (data->txfree < MAX_SKB_FRAGS + 1) { |
| 674 | netif_stop_queue(dev); |
| 675 | |
| 676 | if (net_ratelimit()) |
| 677 | printk(KERN_ERR "%s: Transmit with full tx ring!\n", |
| 678 | dev->name); |
| 679 | return NETDEV_TX_BUSY; |
| 680 | } |
| 681 | |
| 682 | if (data->txfree - frags < MAX_SKB_FRAGS + 1) { |
| 683 | netif_stop_queue(dev); |
| 684 | } |
| 685 | |
| 686 | spin_lock_irq(&data->txlock); |
| 687 | |
| 688 | for (i = 0; i < frags; i++) { |
| 689 | int misc = 0; |
| 690 | int tx = data->txhead; |
| 691 | |
| 692 | /* This is done to mark every TSI108_TX_INT_FREQ tx buffers with |
| 693 | * the interrupt bit. TX descriptor-complete interrupts are |
| 694 | * enabled when the queue fills up, and masked when there is |
| 695 | * still free space. This way, when saturating the outbound |
| 696 | * link, the tx interrupts are kept to a reasonable level. |
| 697 | * When the queue is not full, reclamation of skbs still occurs |
| 698 | * as new packets are transmitted, or on a queue-empty |
| 699 | * interrupt. |
| 700 | */ |
| 701 | |
| 702 | if ((tx % TSI108_TX_INT_FREQ == 0) && |
| 703 | ((TSI108_TXRING_LEN - data->txfree) >= TSI108_TX_INT_FREQ)) |
| 704 | misc = TSI108_TX_INT; |
| 705 | |
| 706 | data->txskbs[tx] = skb; |
| 707 | |
| 708 | if (i == 0) { |
| 709 | data->txring[tx].buf0 = dma_map_single(NULL, skb->data, |
| 710 | skb->len - skb->data_len, DMA_TO_DEVICE); |
| 711 | data->txring[tx].len = skb->len - skb->data_len; |
| 712 | misc |= TSI108_TX_SOF; |
| 713 | } else { |
| 714 | skb_frag_t *frag = &skb_shinfo(skb)->frags[i - 1]; |
| 715 | |
| 716 | data->txring[tx].buf0 = |
| 717 | dma_map_page(NULL, frag->page, frag->page_offset, |
| 718 | frag->size, DMA_TO_DEVICE); |
| 719 | data->txring[tx].len = frag->size; |
| 720 | } |
| 721 | |
| 722 | if (i == frags - 1) |
| 723 | misc |= TSI108_TX_EOF; |
| 724 | |
| 725 | if (netif_msg_pktdata(data)) { |
| 726 | int i; |
| 727 | printk("%s: Tx Frame contents (%d)\n", dev->name, |
| 728 | skb->len); |
| 729 | for (i = 0; i < skb->len; i++) |
| 730 | printk(" %2.2x", skb->data[i]); |
| 731 | printk(".\n"); |
| 732 | } |
| 733 | data->txring[tx].misc = misc | TSI108_TX_OWN; |
| 734 | |
| 735 | data->txhead = (data->txhead + 1) % TSI108_TXRING_LEN; |
| 736 | data->txfree--; |
| 737 | } |
| 738 | |
| 739 | tsi108_complete_tx(dev); |
| 740 | |
| 741 | /* This must be done after the check for completed tx descriptors, |
| 742 | * so that the tail pointer is correct. |
| 743 | */ |
| 744 | |
| 745 | if (!(TSI_READ(TSI108_EC_TXSTAT) & TSI108_EC_TXSTAT_QUEUE0)) |
| 746 | tsi108_restart_tx(data); |
| 747 | |
| 748 | spin_unlock_irq(&data->txlock); |
| 749 | return NETDEV_TX_OK; |
| 750 | } |
| 751 | |
| 752 | static int tsi108_complete_rx(struct net_device *dev, int budget) |
| 753 | { |
| 754 | struct tsi108_prv_data *data = netdev_priv(dev); |
| 755 | int done = 0; |
| 756 | |
| 757 | while (data->rxfree && done != budget) { |
| 758 | int rx = data->rxtail; |
| 759 | struct sk_buff *skb; |
| 760 | |
| 761 | if (data->rxring[rx].misc & TSI108_RX_OWN) |
| 762 | break; |
| 763 | |
| 764 | skb = data->rxskbs[rx]; |
| 765 | data->rxtail = (data->rxtail + 1) % TSI108_RXRING_LEN; |
| 766 | data->rxfree--; |
| 767 | done++; |
| 768 | |
| 769 | if (data->rxring[rx].misc & TSI108_RX_BAD) { |
| 770 | spin_lock_irq(&data->misclock); |
| 771 | |
| 772 | if (data->rxring[rx].misc & TSI108_RX_CRC) |
| 773 | data->stats.rx_crc_errors++; |
| 774 | if (data->rxring[rx].misc & TSI108_RX_OVER) |
| 775 | data->stats.rx_fifo_errors++; |
| 776 | |
| 777 | spin_unlock_irq(&data->misclock); |
| 778 | |
| 779 | dev_kfree_skb_any(skb); |
| 780 | continue; |
| 781 | } |
| 782 | if (netif_msg_pktdata(data)) { |
| 783 | int i; |
| 784 | printk("%s: Rx Frame contents (%d)\n", |
| 785 | dev->name, data->rxring[rx].len); |
| 786 | for (i = 0; i < data->rxring[rx].len; i++) |
| 787 | printk(" %2.2x", skb->data[i]); |
| 788 | printk(".\n"); |
| 789 | } |
| 790 | |
Zang Roy-r61911 | 5e123b8 | 2006-11-08 19:49:13 -0800 | [diff] [blame] | 791 | skb_put(skb, data->rxring[rx].len); |
| 792 | skb->protocol = eth_type_trans(skb, dev); |
| 793 | netif_receive_skb(skb); |
| 794 | dev->last_rx = jiffies; |
| 795 | } |
| 796 | |
| 797 | return done; |
| 798 | } |
| 799 | |
| 800 | static int tsi108_refill_rx(struct net_device *dev, int budget) |
| 801 | { |
| 802 | struct tsi108_prv_data *data = netdev_priv(dev); |
| 803 | int done = 0; |
| 804 | |
| 805 | while (data->rxfree != TSI108_RXRING_LEN && done != budget) { |
| 806 | int rx = data->rxhead; |
| 807 | struct sk_buff *skb; |
| 808 | |
| 809 | data->rxskbs[rx] = skb = dev_alloc_skb(TSI108_RXBUF_SIZE + 2); |
| 810 | if (!skb) |
| 811 | break; |
| 812 | |
| 813 | skb_reserve(skb, 2); /* Align the data on a 4-byte boundary. */ |
| 814 | |
| 815 | data->rxring[rx].buf0 = dma_map_single(NULL, skb->data, |
| 816 | TSI108_RX_SKB_SIZE, |
| 817 | DMA_FROM_DEVICE); |
| 818 | |
| 819 | /* Sometimes the hardware sets blen to zero after packet |
| 820 | * reception, even though the manual says that it's only ever |
| 821 | * modified by the driver. |
| 822 | */ |
| 823 | |
| 824 | data->rxring[rx].blen = TSI108_RX_SKB_SIZE; |
| 825 | data->rxring[rx].misc = TSI108_RX_OWN | TSI108_RX_INT; |
| 826 | |
| 827 | data->rxhead = (data->rxhead + 1) % TSI108_RXRING_LEN; |
| 828 | data->rxfree++; |
| 829 | done++; |
| 830 | } |
| 831 | |
| 832 | if (done != 0 && !(TSI_READ(TSI108_EC_RXSTAT) & |
| 833 | TSI108_EC_RXSTAT_QUEUE0)) |
| 834 | tsi108_restart_rx(data, dev); |
| 835 | |
| 836 | return done; |
| 837 | } |
| 838 | |
| 839 | static int tsi108_poll(struct net_device *dev, int *budget) |
| 840 | { |
| 841 | struct tsi108_prv_data *data = netdev_priv(dev); |
| 842 | u32 estat = TSI_READ(TSI108_EC_RXESTAT); |
| 843 | u32 intstat = TSI_READ(TSI108_EC_INTSTAT); |
| 844 | int total_budget = min(*budget, dev->quota); |
| 845 | int num_received = 0, num_filled = 0, budget_used; |
| 846 | |
| 847 | intstat &= TSI108_INT_RXQUEUE0 | TSI108_INT_RXTHRESH | |
| 848 | TSI108_INT_RXOVERRUN | TSI108_INT_RXERROR | TSI108_INT_RXWAIT; |
| 849 | |
| 850 | TSI_WRITE(TSI108_EC_RXESTAT, estat); |
| 851 | TSI_WRITE(TSI108_EC_INTSTAT, intstat); |
| 852 | |
| 853 | if (data->rxpending || (estat & TSI108_EC_RXESTAT_Q0_DESCINT)) |
| 854 | num_received = tsi108_complete_rx(dev, total_budget); |
| 855 | |
| 856 | /* This should normally fill no more slots than the number of |
| 857 | * packets received in tsi108_complete_rx(). The exception |
| 858 | * is when we previously ran out of memory for RX SKBs. In that |
| 859 | * case, it's helpful to obey the budget, not only so that the |
| 860 | * CPU isn't hogged, but so that memory (which may still be low) |
| 861 | * is not hogged by one device. |
| 862 | * |
| 863 | * A work unit is considered to be two SKBs to allow us to catch |
| 864 | * up when the ring has shrunk due to out-of-memory but we're |
| 865 | * still removing the full budget's worth of packets each time. |
| 866 | */ |
| 867 | |
| 868 | if (data->rxfree < TSI108_RXRING_LEN) |
| 869 | num_filled = tsi108_refill_rx(dev, total_budget * 2); |
| 870 | |
| 871 | if (intstat & TSI108_INT_RXERROR) { |
| 872 | u32 err = TSI_READ(TSI108_EC_RXERR); |
| 873 | TSI_WRITE(TSI108_EC_RXERR, err); |
| 874 | |
| 875 | if (err) { |
| 876 | if (net_ratelimit()) |
| 877 | printk(KERN_DEBUG "%s: RX error %x\n", |
| 878 | dev->name, err); |
| 879 | |
| 880 | if (!(TSI_READ(TSI108_EC_RXSTAT) & |
| 881 | TSI108_EC_RXSTAT_QUEUE0)) |
| 882 | tsi108_restart_rx(data, dev); |
| 883 | } |
| 884 | } |
| 885 | |
| 886 | if (intstat & TSI108_INT_RXOVERRUN) { |
| 887 | spin_lock_irq(&data->misclock); |
| 888 | data->stats.rx_fifo_errors++; |
| 889 | spin_unlock_irq(&data->misclock); |
| 890 | } |
| 891 | |
| 892 | budget_used = max(num_received, num_filled / 2); |
| 893 | |
| 894 | *budget -= budget_used; |
| 895 | dev->quota -= budget_used; |
| 896 | |
| 897 | if (budget_used != total_budget) { |
| 898 | data->rxpending = 0; |
| 899 | netif_rx_complete(dev); |
| 900 | |
| 901 | TSI_WRITE(TSI108_EC_INTMASK, |
| 902 | TSI_READ(TSI108_EC_INTMASK) |
| 903 | & ~(TSI108_INT_RXQUEUE0 |
| 904 | | TSI108_INT_RXTHRESH | |
| 905 | TSI108_INT_RXOVERRUN | |
| 906 | TSI108_INT_RXERROR | |
| 907 | TSI108_INT_RXWAIT)); |
| 908 | |
| 909 | /* IRQs are level-triggered, so no need to re-check */ |
| 910 | return 0; |
| 911 | } else { |
| 912 | data->rxpending = 1; |
| 913 | } |
| 914 | |
| 915 | return 1; |
| 916 | } |
| 917 | |
| 918 | static void tsi108_rx_int(struct net_device *dev) |
| 919 | { |
| 920 | struct tsi108_prv_data *data = netdev_priv(dev); |
| 921 | |
| 922 | /* A race could cause dev to already be scheduled, so it's not an |
| 923 | * error if that happens (and interrupts shouldn't be re-masked, |
| 924 | * because that can cause harmful races, if poll has already |
| 925 | * unmasked them but not cleared LINK_STATE_SCHED). |
| 926 | * |
| 927 | * This can happen if this code races with tsi108_poll(), which masks |
| 928 | * the interrupts after tsi108_irq_one() read the mask, but before |
| 929 | * netif_rx_schedule is called. It could also happen due to calls |
| 930 | * from tsi108_check_rxring(). |
| 931 | */ |
| 932 | |
| 933 | if (netif_rx_schedule_prep(dev)) { |
| 934 | /* Mask, rather than ack, the receive interrupts. The ack |
| 935 | * will happen in tsi108_poll(). |
| 936 | */ |
| 937 | |
| 938 | TSI_WRITE(TSI108_EC_INTMASK, |
| 939 | TSI_READ(TSI108_EC_INTMASK) | |
| 940 | TSI108_INT_RXQUEUE0 |
| 941 | | TSI108_INT_RXTHRESH | |
| 942 | TSI108_INT_RXOVERRUN | TSI108_INT_RXERROR | |
| 943 | TSI108_INT_RXWAIT); |
| 944 | __netif_rx_schedule(dev); |
| 945 | } else { |
| 946 | if (!netif_running(dev)) { |
| 947 | /* This can happen if an interrupt occurs while the |
| 948 | * interface is being brought down, as the START |
| 949 | * bit is cleared before the stop function is called. |
| 950 | * |
| 951 | * In this case, the interrupts must be masked, or |
| 952 | * they will continue indefinitely. |
| 953 | * |
| 954 | * There's a race here if the interface is brought down |
| 955 | * and then up in rapid succession, as the device could |
| 956 | * be made running after the above check and before |
| 957 | * the masking below. This will only happen if the IRQ |
| 958 | * thread has a lower priority than the task brining |
| 959 | * up the interface. Fixing this race would likely |
| 960 | * require changes in generic code. |
| 961 | */ |
| 962 | |
| 963 | TSI_WRITE(TSI108_EC_INTMASK, |
| 964 | TSI_READ |
| 965 | (TSI108_EC_INTMASK) | |
| 966 | TSI108_INT_RXQUEUE0 | |
| 967 | TSI108_INT_RXTHRESH | |
| 968 | TSI108_INT_RXOVERRUN | |
| 969 | TSI108_INT_RXERROR | |
| 970 | TSI108_INT_RXWAIT); |
| 971 | } |
| 972 | } |
| 973 | } |
| 974 | |
| 975 | /* If the RX ring has run out of memory, try periodically |
| 976 | * to allocate some more, as otherwise poll would never |
| 977 | * get called (apart from the initial end-of-queue condition). |
| 978 | * |
| 979 | * This is called once per second (by default) from the thread. |
| 980 | */ |
| 981 | |
| 982 | static void tsi108_check_rxring(struct net_device *dev) |
| 983 | { |
| 984 | struct tsi108_prv_data *data = netdev_priv(dev); |
| 985 | |
| 986 | /* A poll is scheduled, as opposed to caling tsi108_refill_rx |
| 987 | * directly, so as to keep the receive path single-threaded |
| 988 | * (and thus not needing a lock). |
| 989 | */ |
| 990 | |
| 991 | if (netif_running(dev) && data->rxfree < TSI108_RXRING_LEN / 4) |
| 992 | tsi108_rx_int(dev); |
| 993 | } |
| 994 | |
| 995 | static void tsi108_tx_int(struct net_device *dev) |
| 996 | { |
| 997 | struct tsi108_prv_data *data = netdev_priv(dev); |
| 998 | u32 estat = TSI_READ(TSI108_EC_TXESTAT); |
| 999 | |
| 1000 | TSI_WRITE(TSI108_EC_TXESTAT, estat); |
| 1001 | TSI_WRITE(TSI108_EC_INTSTAT, TSI108_INT_TXQUEUE0 | |
| 1002 | TSI108_INT_TXIDLE | TSI108_INT_TXERROR); |
| 1003 | if (estat & TSI108_EC_TXESTAT_Q0_ERR) { |
| 1004 | u32 err = TSI_READ(TSI108_EC_TXERR); |
| 1005 | TSI_WRITE(TSI108_EC_TXERR, err); |
| 1006 | |
| 1007 | if (err && net_ratelimit()) |
| 1008 | printk(KERN_ERR "%s: TX error %x\n", dev->name, err); |
| 1009 | } |
| 1010 | |
| 1011 | if (estat & (TSI108_EC_TXESTAT_Q0_DESCINT | TSI108_EC_TXESTAT_Q0_EOQ)) { |
| 1012 | spin_lock(&data->txlock); |
| 1013 | tsi108_complete_tx(dev); |
| 1014 | spin_unlock(&data->txlock); |
| 1015 | } |
| 1016 | } |
| 1017 | |
| 1018 | |
| 1019 | static irqreturn_t tsi108_irq(int irq, void *dev_id) |
| 1020 | { |
| 1021 | struct net_device *dev = dev_id; |
| 1022 | struct tsi108_prv_data *data = netdev_priv(dev); |
| 1023 | u32 stat = TSI_READ(TSI108_EC_INTSTAT); |
| 1024 | |
| 1025 | if (!(stat & TSI108_INT_ANY)) |
| 1026 | return IRQ_NONE; /* Not our interrupt */ |
| 1027 | |
| 1028 | stat &= ~TSI_READ(TSI108_EC_INTMASK); |
| 1029 | |
| 1030 | if (stat & (TSI108_INT_TXQUEUE0 | TSI108_INT_TXIDLE | |
| 1031 | TSI108_INT_TXERROR)) |
| 1032 | tsi108_tx_int(dev); |
| 1033 | if (stat & (TSI108_INT_RXQUEUE0 | TSI108_INT_RXTHRESH | |
| 1034 | TSI108_INT_RXWAIT | TSI108_INT_RXOVERRUN | |
| 1035 | TSI108_INT_RXERROR)) |
| 1036 | tsi108_rx_int(dev); |
| 1037 | |
| 1038 | if (stat & TSI108_INT_SFN) { |
| 1039 | if (net_ratelimit()) |
| 1040 | printk(KERN_DEBUG "%s: SFN error\n", dev->name); |
| 1041 | TSI_WRITE(TSI108_EC_INTSTAT, TSI108_INT_SFN); |
| 1042 | } |
| 1043 | |
| 1044 | if (stat & TSI108_INT_STATCARRY) { |
| 1045 | tsi108_stat_carry(dev); |
| 1046 | TSI_WRITE(TSI108_EC_INTSTAT, TSI108_INT_STATCARRY); |
| 1047 | } |
| 1048 | |
| 1049 | return IRQ_HANDLED; |
| 1050 | } |
| 1051 | |
| 1052 | static void tsi108_stop_ethernet(struct net_device *dev) |
| 1053 | { |
| 1054 | struct tsi108_prv_data *data = netdev_priv(dev); |
| 1055 | int i = 1000; |
| 1056 | /* Disable all TX and RX queues ... */ |
| 1057 | TSI_WRITE(TSI108_EC_TXCTRL, 0); |
| 1058 | TSI_WRITE(TSI108_EC_RXCTRL, 0); |
| 1059 | |
| 1060 | /* ...and wait for them to become idle */ |
| 1061 | while(i--) { |
| 1062 | if(!(TSI_READ(TSI108_EC_TXSTAT) & TSI108_EC_TXSTAT_ACTIVE)) |
| 1063 | break; |
| 1064 | udelay(10); |
| 1065 | } |
| 1066 | i = 1000; |
| 1067 | while(i--){ |
| 1068 | if(!(TSI_READ(TSI108_EC_RXSTAT) & TSI108_EC_RXSTAT_ACTIVE)) |
| 1069 | return; |
| 1070 | udelay(10); |
| 1071 | } |
| 1072 | printk(KERN_ERR "%s function time out \n", __FUNCTION__); |
| 1073 | } |
| 1074 | |
| 1075 | static void tsi108_reset_ether(struct tsi108_prv_data * data) |
| 1076 | { |
| 1077 | TSI_WRITE(TSI108_MAC_CFG1, TSI108_MAC_CFG1_SOFTRST); |
| 1078 | udelay(100); |
| 1079 | TSI_WRITE(TSI108_MAC_CFG1, 0); |
| 1080 | |
| 1081 | TSI_WRITE(TSI108_EC_PORTCTRL, TSI108_EC_PORTCTRL_STATRST); |
| 1082 | udelay(100); |
| 1083 | TSI_WRITE(TSI108_EC_PORTCTRL, |
| 1084 | TSI_READ(TSI108_EC_PORTCTRL) & |
| 1085 | ~TSI108_EC_PORTCTRL_STATRST); |
| 1086 | |
| 1087 | TSI_WRITE(TSI108_EC_TXCFG, TSI108_EC_TXCFG_RST); |
| 1088 | udelay(100); |
| 1089 | TSI_WRITE(TSI108_EC_TXCFG, |
| 1090 | TSI_READ(TSI108_EC_TXCFG) & |
| 1091 | ~TSI108_EC_TXCFG_RST); |
| 1092 | |
| 1093 | TSI_WRITE(TSI108_EC_RXCFG, TSI108_EC_RXCFG_RST); |
| 1094 | udelay(100); |
| 1095 | TSI_WRITE(TSI108_EC_RXCFG, |
| 1096 | TSI_READ(TSI108_EC_RXCFG) & |
| 1097 | ~TSI108_EC_RXCFG_RST); |
| 1098 | |
| 1099 | TSI_WRITE(TSI108_MAC_MII_MGMT_CFG, |
| 1100 | TSI_READ(TSI108_MAC_MII_MGMT_CFG) | |
| 1101 | TSI108_MAC_MII_MGMT_RST); |
| 1102 | udelay(100); |
| 1103 | TSI_WRITE(TSI108_MAC_MII_MGMT_CFG, |
| 1104 | (TSI_READ(TSI108_MAC_MII_MGMT_CFG) & |
| 1105 | ~(TSI108_MAC_MII_MGMT_RST | |
| 1106 | TSI108_MAC_MII_MGMT_CLK)) | 0x07); |
| 1107 | } |
| 1108 | |
| 1109 | static int tsi108_get_mac(struct net_device *dev) |
| 1110 | { |
| 1111 | struct tsi108_prv_data *data = netdev_priv(dev); |
| 1112 | u32 word1 = TSI_READ(TSI108_MAC_ADDR1); |
| 1113 | u32 word2 = TSI_READ(TSI108_MAC_ADDR2); |
| 1114 | |
| 1115 | /* Note that the octets are reversed from what the manual says, |
| 1116 | * producing an even weirder ordering... |
| 1117 | */ |
| 1118 | if (word2 == 0 && word1 == 0) { |
| 1119 | dev->dev_addr[0] = 0x00; |
| 1120 | dev->dev_addr[1] = 0x06; |
| 1121 | dev->dev_addr[2] = 0xd2; |
| 1122 | dev->dev_addr[3] = 0x00; |
| 1123 | dev->dev_addr[4] = 0x00; |
| 1124 | if (0x8 == data->phy) |
| 1125 | dev->dev_addr[5] = 0x01; |
| 1126 | else |
| 1127 | dev->dev_addr[5] = 0x02; |
| 1128 | |
| 1129 | word2 = (dev->dev_addr[0] << 16) | (dev->dev_addr[1] << 24); |
| 1130 | |
| 1131 | word1 = (dev->dev_addr[2] << 0) | (dev->dev_addr[3] << 8) | |
| 1132 | (dev->dev_addr[4] << 16) | (dev->dev_addr[5] << 24); |
| 1133 | |
| 1134 | TSI_WRITE(TSI108_MAC_ADDR1, word1); |
| 1135 | TSI_WRITE(TSI108_MAC_ADDR2, word2); |
| 1136 | } else { |
| 1137 | dev->dev_addr[0] = (word2 >> 16) & 0xff; |
| 1138 | dev->dev_addr[1] = (word2 >> 24) & 0xff; |
| 1139 | dev->dev_addr[2] = (word1 >> 0) & 0xff; |
| 1140 | dev->dev_addr[3] = (word1 >> 8) & 0xff; |
| 1141 | dev->dev_addr[4] = (word1 >> 16) & 0xff; |
| 1142 | dev->dev_addr[5] = (word1 >> 24) & 0xff; |
| 1143 | } |
| 1144 | |
| 1145 | if (!is_valid_ether_addr(dev->dev_addr)) { |
| 1146 | printk("KERN_ERR: word1: %08x, word2: %08x\n", word1, word2); |
| 1147 | return -EINVAL; |
| 1148 | } |
| 1149 | |
| 1150 | return 0; |
| 1151 | } |
| 1152 | |
| 1153 | static int tsi108_set_mac(struct net_device *dev, void *addr) |
| 1154 | { |
| 1155 | struct tsi108_prv_data *data = netdev_priv(dev); |
| 1156 | u32 word1, word2; |
| 1157 | int i; |
| 1158 | |
| 1159 | if (!is_valid_ether_addr(addr)) |
| 1160 | return -EINVAL; |
| 1161 | |
| 1162 | for (i = 0; i < 6; i++) |
| 1163 | /* +2 is for the offset of the HW addr type */ |
| 1164 | dev->dev_addr[i] = ((unsigned char *)addr)[i + 2]; |
| 1165 | |
| 1166 | word2 = (dev->dev_addr[0] << 16) | (dev->dev_addr[1] << 24); |
| 1167 | |
| 1168 | word1 = (dev->dev_addr[2] << 0) | (dev->dev_addr[3] << 8) | |
| 1169 | (dev->dev_addr[4] << 16) | (dev->dev_addr[5] << 24); |
| 1170 | |
| 1171 | spin_lock_irq(&data->misclock); |
| 1172 | TSI_WRITE(TSI108_MAC_ADDR1, word1); |
| 1173 | TSI_WRITE(TSI108_MAC_ADDR2, word2); |
| 1174 | spin_lock(&data->txlock); |
| 1175 | |
| 1176 | if (data->txfree && data->link_up) |
| 1177 | netif_wake_queue(dev); |
| 1178 | |
| 1179 | spin_unlock(&data->txlock); |
| 1180 | spin_unlock_irq(&data->misclock); |
| 1181 | return 0; |
| 1182 | } |
| 1183 | |
| 1184 | /* Protected by dev->xmit_lock. */ |
| 1185 | static void tsi108_set_rx_mode(struct net_device *dev) |
| 1186 | { |
| 1187 | struct tsi108_prv_data *data = netdev_priv(dev); |
| 1188 | u32 rxcfg = TSI_READ(TSI108_EC_RXCFG); |
| 1189 | |
| 1190 | if (dev->flags & IFF_PROMISC) { |
| 1191 | rxcfg &= ~(TSI108_EC_RXCFG_UC_HASH | TSI108_EC_RXCFG_MC_HASH); |
| 1192 | rxcfg |= TSI108_EC_RXCFG_UFE | TSI108_EC_RXCFG_MFE; |
| 1193 | goto out; |
| 1194 | } |
| 1195 | |
| 1196 | rxcfg &= ~(TSI108_EC_RXCFG_UFE | TSI108_EC_RXCFG_MFE); |
| 1197 | |
| 1198 | if (dev->flags & IFF_ALLMULTI || dev->mc_count) { |
| 1199 | int i; |
| 1200 | struct dev_mc_list *mc = dev->mc_list; |
| 1201 | rxcfg |= TSI108_EC_RXCFG_MFE | TSI108_EC_RXCFG_MC_HASH; |
| 1202 | |
| 1203 | memset(data->mc_hash, 0, sizeof(data->mc_hash)); |
| 1204 | |
| 1205 | while (mc) { |
| 1206 | u32 hash, crc; |
| 1207 | |
| 1208 | if (mc->dmi_addrlen == 6) { |
| 1209 | crc = ether_crc(6, mc->dmi_addr); |
| 1210 | hash = crc >> 23; |
| 1211 | |
| 1212 | __set_bit(hash, &data->mc_hash[0]); |
| 1213 | } else { |
| 1214 | printk(KERN_ERR |
| 1215 | "%s: got multicast address of length %d " |
| 1216 | "instead of 6.\n", dev->name, |
| 1217 | mc->dmi_addrlen); |
| 1218 | } |
| 1219 | |
| 1220 | mc = mc->next; |
| 1221 | } |
| 1222 | |
| 1223 | TSI_WRITE(TSI108_EC_HASHADDR, |
| 1224 | TSI108_EC_HASHADDR_AUTOINC | |
| 1225 | TSI108_EC_HASHADDR_MCAST); |
| 1226 | |
| 1227 | for (i = 0; i < 16; i++) { |
| 1228 | /* The manual says that the hardware may drop |
| 1229 | * back-to-back writes to the data register. |
| 1230 | */ |
| 1231 | udelay(1); |
| 1232 | TSI_WRITE(TSI108_EC_HASHDATA, |
| 1233 | data->mc_hash[i]); |
| 1234 | } |
| 1235 | } |
| 1236 | |
| 1237 | out: |
| 1238 | TSI_WRITE(TSI108_EC_RXCFG, rxcfg); |
| 1239 | } |
| 1240 | |
| 1241 | static void tsi108_init_phy(struct net_device *dev) |
| 1242 | { |
| 1243 | struct tsi108_prv_data *data = netdev_priv(dev); |
| 1244 | u32 i = 0; |
| 1245 | u16 phyval = 0; |
| 1246 | unsigned long flags; |
| 1247 | |
| 1248 | spin_lock_irqsave(&phy_lock, flags); |
| 1249 | |
| 1250 | tsi108_write_mii(data, MII_BMCR, BMCR_RESET); |
| 1251 | while (i--){ |
| 1252 | if(!(tsi108_read_mii(data, MII_BMCR) & BMCR_RESET)) |
| 1253 | break; |
| 1254 | udelay(10); |
| 1255 | } |
| 1256 | if (i == 0) |
| 1257 | printk(KERN_ERR "%s function time out \n", __FUNCTION__); |
| 1258 | |
| 1259 | #if (TSI108_PHY_TYPE == PHY_BCM54XX) /* Broadcom BCM54xx PHY */ |
| 1260 | tsi108_write_mii(data, 0x09, 0x0300); |
| 1261 | tsi108_write_mii(data, 0x10, 0x1020); |
| 1262 | tsi108_write_mii(data, 0x1c, 0x8c00); |
| 1263 | #endif |
| 1264 | |
| 1265 | tsi108_write_mii(data, |
| 1266 | MII_BMCR, |
| 1267 | BMCR_ANENABLE | BMCR_ANRESTART); |
| 1268 | while (tsi108_read_mii(data, MII_BMCR) & BMCR_ANRESTART) |
| 1269 | cpu_relax(); |
| 1270 | |
| 1271 | /* Set G/MII mode and receive clock select in TBI control #2. The |
| 1272 | * second port won't work if this isn't done, even though we don't |
| 1273 | * use TBI mode. |
| 1274 | */ |
| 1275 | |
| 1276 | tsi108_write_tbi(data, 0x11, 0x30); |
| 1277 | |
| 1278 | /* FIXME: It seems to take more than 2 back-to-back reads to the |
| 1279 | * PHY_STAT register before the link up status bit is set. |
| 1280 | */ |
| 1281 | |
| 1282 | data->link_up = 1; |
| 1283 | |
| 1284 | while (!((phyval = tsi108_read_mii(data, MII_BMSR)) & |
| 1285 | BMSR_LSTATUS)) { |
| 1286 | if (i++ > (MII_READ_DELAY / 10)) { |
| 1287 | data->link_up = 0; |
| 1288 | break; |
| 1289 | } |
| 1290 | spin_unlock_irqrestore(&phy_lock, flags); |
| 1291 | msleep(10); |
| 1292 | spin_lock_irqsave(&phy_lock, flags); |
| 1293 | } |
| 1294 | |
| 1295 | printk(KERN_DEBUG "PHY_STAT reg contains %08x\n", phyval); |
| 1296 | data->phy_ok = 1; |
| 1297 | data->init_media = 1; |
| 1298 | spin_unlock_irqrestore(&phy_lock, flags); |
| 1299 | } |
| 1300 | |
| 1301 | static void tsi108_kill_phy(struct net_device *dev) |
| 1302 | { |
| 1303 | struct tsi108_prv_data *data = netdev_priv(dev); |
| 1304 | unsigned long flags; |
| 1305 | |
| 1306 | spin_lock_irqsave(&phy_lock, flags); |
| 1307 | tsi108_write_mii(data, MII_BMCR, BMCR_PDOWN); |
| 1308 | data->phy_ok = 0; |
| 1309 | spin_unlock_irqrestore(&phy_lock, flags); |
| 1310 | } |
| 1311 | |
| 1312 | static int tsi108_open(struct net_device *dev) |
| 1313 | { |
| 1314 | int i; |
| 1315 | struct tsi108_prv_data *data = netdev_priv(dev); |
| 1316 | unsigned int rxring_size = TSI108_RXRING_LEN * sizeof(rx_desc); |
| 1317 | unsigned int txring_size = TSI108_TXRING_LEN * sizeof(tx_desc); |
| 1318 | |
| 1319 | i = request_irq(data->irq_num, tsi108_irq, 0, dev->name, dev); |
| 1320 | if (i != 0) { |
| 1321 | printk(KERN_ERR "tsi108_eth%d: Could not allocate IRQ%d.\n", |
| 1322 | data->id, data->irq_num); |
| 1323 | return i; |
| 1324 | } else { |
| 1325 | dev->irq = data->irq_num; |
| 1326 | printk(KERN_NOTICE |
| 1327 | "tsi108_open : Port %d Assigned IRQ %d to %s\n", |
| 1328 | data->id, dev->irq, dev->name); |
| 1329 | } |
| 1330 | |
| 1331 | data->rxring = dma_alloc_coherent(NULL, rxring_size, |
| 1332 | &data->rxdma, GFP_KERNEL); |
| 1333 | |
| 1334 | if (!data->rxring) { |
| 1335 | printk(KERN_DEBUG |
| 1336 | "TSI108_ETH: failed to allocate memory for rxring!\n"); |
| 1337 | return -ENOMEM; |
| 1338 | } else { |
| 1339 | memset(data->rxring, 0, rxring_size); |
| 1340 | } |
| 1341 | |
| 1342 | data->txring = dma_alloc_coherent(NULL, txring_size, |
| 1343 | &data->txdma, GFP_KERNEL); |
| 1344 | |
| 1345 | if (!data->txring) { |
| 1346 | printk(KERN_DEBUG |
| 1347 | "TSI108_ETH: failed to allocate memory for txring!\n"); |
| 1348 | pci_free_consistent(0, rxring_size, data->rxring, data->rxdma); |
| 1349 | return -ENOMEM; |
| 1350 | } else { |
| 1351 | memset(data->txring, 0, txring_size); |
| 1352 | } |
| 1353 | |
| 1354 | for (i = 0; i < TSI108_RXRING_LEN; i++) { |
| 1355 | data->rxring[i].next0 = data->rxdma + (i + 1) * sizeof(rx_desc); |
| 1356 | data->rxring[i].blen = TSI108_RXBUF_SIZE; |
| 1357 | data->rxring[i].vlan = 0; |
| 1358 | } |
| 1359 | |
| 1360 | data->rxring[TSI108_RXRING_LEN - 1].next0 = data->rxdma; |
| 1361 | |
| 1362 | data->rxtail = 0; |
| 1363 | data->rxhead = 0; |
| 1364 | |
| 1365 | for (i = 0; i < TSI108_RXRING_LEN; i++) { |
| 1366 | struct sk_buff *skb = dev_alloc_skb(TSI108_RXBUF_SIZE + NET_IP_ALIGN); |
| 1367 | |
| 1368 | if (!skb) { |
| 1369 | /* Bah. No memory for now, but maybe we'll get |
| 1370 | * some more later. |
| 1371 | * For now, we'll live with the smaller ring. |
| 1372 | */ |
| 1373 | printk(KERN_WARNING |
| 1374 | "%s: Could only allocate %d receive skb(s).\n", |
| 1375 | dev->name, i); |
| 1376 | data->rxhead = i; |
| 1377 | break; |
| 1378 | } |
| 1379 | |
| 1380 | data->rxskbs[i] = skb; |
| 1381 | /* Align the payload on a 4-byte boundary */ |
| 1382 | skb_reserve(skb, 2); |
| 1383 | data->rxskbs[i] = skb; |
| 1384 | data->rxring[i].buf0 = virt_to_phys(data->rxskbs[i]->data); |
| 1385 | data->rxring[i].misc = TSI108_RX_OWN | TSI108_RX_INT; |
| 1386 | } |
| 1387 | |
| 1388 | data->rxfree = i; |
| 1389 | TSI_WRITE(TSI108_EC_RXQ_PTRLOW, data->rxdma); |
| 1390 | |
| 1391 | for (i = 0; i < TSI108_TXRING_LEN; i++) { |
| 1392 | data->txring[i].next0 = data->txdma + (i + 1) * sizeof(tx_desc); |
| 1393 | data->txring[i].misc = 0; |
| 1394 | } |
| 1395 | |
| 1396 | data->txring[TSI108_TXRING_LEN - 1].next0 = data->txdma; |
| 1397 | data->txtail = 0; |
| 1398 | data->txhead = 0; |
| 1399 | data->txfree = TSI108_TXRING_LEN; |
| 1400 | TSI_WRITE(TSI108_EC_TXQ_PTRLOW, data->txdma); |
| 1401 | tsi108_init_phy(dev); |
| 1402 | |
| 1403 | setup_timer(&data->timer, tsi108_timed_checker, (unsigned long)dev); |
| 1404 | mod_timer(&data->timer, jiffies + 1); |
| 1405 | |
| 1406 | tsi108_restart_rx(data, dev); |
| 1407 | |
| 1408 | TSI_WRITE(TSI108_EC_INTSTAT, ~0); |
| 1409 | |
| 1410 | TSI_WRITE(TSI108_EC_INTMASK, |
| 1411 | ~(TSI108_INT_TXQUEUE0 | TSI108_INT_RXERROR | |
| 1412 | TSI108_INT_RXTHRESH | TSI108_INT_RXQUEUE0 | |
| 1413 | TSI108_INT_RXOVERRUN | TSI108_INT_RXWAIT | |
| 1414 | TSI108_INT_SFN | TSI108_INT_STATCARRY)); |
| 1415 | |
| 1416 | TSI_WRITE(TSI108_MAC_CFG1, |
| 1417 | TSI108_MAC_CFG1_RXEN | TSI108_MAC_CFG1_TXEN); |
| 1418 | netif_start_queue(dev); |
| 1419 | return 0; |
| 1420 | } |
| 1421 | |
| 1422 | static int tsi108_close(struct net_device *dev) |
| 1423 | { |
| 1424 | struct tsi108_prv_data *data = netdev_priv(dev); |
| 1425 | |
| 1426 | netif_stop_queue(dev); |
| 1427 | |
| 1428 | del_timer_sync(&data->timer); |
| 1429 | |
| 1430 | tsi108_stop_ethernet(dev); |
| 1431 | tsi108_kill_phy(dev); |
| 1432 | TSI_WRITE(TSI108_EC_INTMASK, ~0); |
| 1433 | TSI_WRITE(TSI108_MAC_CFG1, 0); |
| 1434 | |
| 1435 | /* Check for any pending TX packets, and drop them. */ |
| 1436 | |
| 1437 | while (!data->txfree || data->txhead != data->txtail) { |
| 1438 | int tx = data->txtail; |
| 1439 | struct sk_buff *skb; |
| 1440 | skb = data->txskbs[tx]; |
| 1441 | data->txtail = (data->txtail + 1) % TSI108_TXRING_LEN; |
| 1442 | data->txfree++; |
| 1443 | dev_kfree_skb(skb); |
| 1444 | } |
| 1445 | |
| 1446 | synchronize_irq(data->irq_num); |
| 1447 | free_irq(data->irq_num, dev); |
| 1448 | |
| 1449 | /* Discard the RX ring. */ |
| 1450 | |
| 1451 | while (data->rxfree) { |
| 1452 | int rx = data->rxtail; |
| 1453 | struct sk_buff *skb; |
| 1454 | |
| 1455 | skb = data->rxskbs[rx]; |
| 1456 | data->rxtail = (data->rxtail + 1) % TSI108_RXRING_LEN; |
| 1457 | data->rxfree--; |
| 1458 | dev_kfree_skb(skb); |
| 1459 | } |
| 1460 | |
| 1461 | dma_free_coherent(0, |
| 1462 | TSI108_RXRING_LEN * sizeof(rx_desc), |
| 1463 | data->rxring, data->rxdma); |
| 1464 | dma_free_coherent(0, |
| 1465 | TSI108_TXRING_LEN * sizeof(tx_desc), |
| 1466 | data->txring, data->txdma); |
| 1467 | |
| 1468 | return 0; |
| 1469 | } |
| 1470 | |
| 1471 | static void tsi108_init_mac(struct net_device *dev) |
| 1472 | { |
| 1473 | struct tsi108_prv_data *data = netdev_priv(dev); |
| 1474 | |
| 1475 | TSI_WRITE(TSI108_MAC_CFG2, TSI108_MAC_CFG2_DFLT_PREAMBLE | |
| 1476 | TSI108_MAC_CFG2_PADCRC); |
| 1477 | |
| 1478 | TSI_WRITE(TSI108_EC_TXTHRESH, |
| 1479 | (192 << TSI108_EC_TXTHRESH_STARTFILL) | |
| 1480 | (192 << TSI108_EC_TXTHRESH_STOPFILL)); |
| 1481 | |
| 1482 | TSI_WRITE(TSI108_STAT_CARRYMASK1, |
| 1483 | ~(TSI108_STAT_CARRY1_RXBYTES | |
| 1484 | TSI108_STAT_CARRY1_RXPKTS | |
| 1485 | TSI108_STAT_CARRY1_RXFCS | |
| 1486 | TSI108_STAT_CARRY1_RXMCAST | |
| 1487 | TSI108_STAT_CARRY1_RXALIGN | |
| 1488 | TSI108_STAT_CARRY1_RXLENGTH | |
| 1489 | TSI108_STAT_CARRY1_RXRUNT | |
| 1490 | TSI108_STAT_CARRY1_RXJUMBO | |
| 1491 | TSI108_STAT_CARRY1_RXFRAG | |
| 1492 | TSI108_STAT_CARRY1_RXJABBER | |
| 1493 | TSI108_STAT_CARRY1_RXDROP)); |
| 1494 | |
| 1495 | TSI_WRITE(TSI108_STAT_CARRYMASK2, |
| 1496 | ~(TSI108_STAT_CARRY2_TXBYTES | |
| 1497 | TSI108_STAT_CARRY2_TXPKTS | |
| 1498 | TSI108_STAT_CARRY2_TXEXDEF | |
| 1499 | TSI108_STAT_CARRY2_TXEXCOL | |
| 1500 | TSI108_STAT_CARRY2_TXTCOL | |
| 1501 | TSI108_STAT_CARRY2_TXPAUSE)); |
| 1502 | |
| 1503 | TSI_WRITE(TSI108_EC_PORTCTRL, TSI108_EC_PORTCTRL_STATEN); |
| 1504 | TSI_WRITE(TSI108_MAC_CFG1, 0); |
| 1505 | |
| 1506 | TSI_WRITE(TSI108_EC_RXCFG, |
| 1507 | TSI108_EC_RXCFG_SE | TSI108_EC_RXCFG_BFE); |
| 1508 | |
| 1509 | TSI_WRITE(TSI108_EC_TXQ_CFG, TSI108_EC_TXQ_CFG_DESC_INT | |
| 1510 | TSI108_EC_TXQ_CFG_EOQ_OWN_INT | |
| 1511 | TSI108_EC_TXQ_CFG_WSWP | (TSI108_PBM_PORT << |
| 1512 | TSI108_EC_TXQ_CFG_SFNPORT)); |
| 1513 | |
| 1514 | TSI_WRITE(TSI108_EC_RXQ_CFG, TSI108_EC_RXQ_CFG_DESC_INT | |
| 1515 | TSI108_EC_RXQ_CFG_EOQ_OWN_INT | |
| 1516 | TSI108_EC_RXQ_CFG_WSWP | (TSI108_PBM_PORT << |
| 1517 | TSI108_EC_RXQ_CFG_SFNPORT)); |
| 1518 | |
| 1519 | TSI_WRITE(TSI108_EC_TXQ_BUFCFG, |
| 1520 | TSI108_EC_TXQ_BUFCFG_BURST256 | |
| 1521 | TSI108_EC_TXQ_BUFCFG_BSWP | (TSI108_PBM_PORT << |
| 1522 | TSI108_EC_TXQ_BUFCFG_SFNPORT)); |
| 1523 | |
| 1524 | TSI_WRITE(TSI108_EC_RXQ_BUFCFG, |
| 1525 | TSI108_EC_RXQ_BUFCFG_BURST256 | |
| 1526 | TSI108_EC_RXQ_BUFCFG_BSWP | (TSI108_PBM_PORT << |
| 1527 | TSI108_EC_RXQ_BUFCFG_SFNPORT)); |
| 1528 | |
| 1529 | TSI_WRITE(TSI108_EC_INTMASK, ~0); |
| 1530 | } |
| 1531 | |
| 1532 | static int tsi108_do_ioctl(struct net_device *dev, struct ifreq *rq, int cmd) |
| 1533 | { |
| 1534 | struct tsi108_prv_data *data = netdev_priv(dev); |
| 1535 | return generic_mii_ioctl(&data->mii_if, if_mii(rq), cmd, NULL); |
| 1536 | } |
| 1537 | |
| 1538 | static int |
| 1539 | tsi108_init_one(struct platform_device *pdev) |
| 1540 | { |
| 1541 | struct net_device *dev = NULL; |
| 1542 | struct tsi108_prv_data *data = NULL; |
| 1543 | hw_info *einfo; |
| 1544 | int err = 0; |
| 1545 | |
| 1546 | einfo = pdev->dev.platform_data; |
| 1547 | |
| 1548 | if (NULL == einfo) { |
| 1549 | printk(KERN_ERR "tsi-eth %d: Missing additional data!\n", |
| 1550 | pdev->id); |
| 1551 | return -ENODEV; |
| 1552 | } |
| 1553 | |
| 1554 | /* Create an ethernet device instance */ |
| 1555 | |
| 1556 | dev = alloc_etherdev(sizeof(struct tsi108_prv_data)); |
| 1557 | if (!dev) { |
| 1558 | printk("tsi108_eth: Could not allocate a device structure\n"); |
| 1559 | return -ENOMEM; |
| 1560 | } |
| 1561 | |
| 1562 | printk("tsi108_eth%d: probe...\n", pdev->id); |
| 1563 | data = netdev_priv(dev); |
| 1564 | |
| 1565 | pr_debug("tsi108_eth%d:regs:phyresgs:phy:irq_num=0x%x:0x%x:0x%x:0x%x\n", |
| 1566 | pdev->id, einfo->regs, einfo->phyregs, |
| 1567 | einfo->phy, einfo->irq_num); |
| 1568 | |
| 1569 | data->regs = ioremap(einfo->regs, 0x400); |
| 1570 | if (NULL == data->regs) { |
| 1571 | err = -ENOMEM; |
| 1572 | goto regs_fail; |
| 1573 | } |
| 1574 | |
| 1575 | data->phyregs = ioremap(einfo->phyregs, 0x400); |
| 1576 | if (NULL == data->phyregs) { |
| 1577 | err = -ENOMEM; |
| 1578 | goto regs_fail; |
| 1579 | } |
| 1580 | /* MII setup */ |
| 1581 | data->mii_if.dev = dev; |
| 1582 | data->mii_if.mdio_read = tsi108_mdio_read; |
| 1583 | data->mii_if.mdio_write = tsi108_mdio_write; |
| 1584 | data->mii_if.phy_id = einfo->phy; |
| 1585 | data->mii_if.phy_id_mask = 0x1f; |
| 1586 | data->mii_if.reg_num_mask = 0x1f; |
| 1587 | data->mii_if.supports_gmii = mii_check_gmii_support(&data->mii_if); |
| 1588 | |
| 1589 | data->phy = einfo->phy; |
| 1590 | data->irq_num = einfo->irq_num; |
| 1591 | data->id = pdev->id; |
| 1592 | dev->open = tsi108_open; |
| 1593 | dev->stop = tsi108_close; |
| 1594 | dev->hard_start_xmit = tsi108_send_packet; |
| 1595 | dev->set_mac_address = tsi108_set_mac; |
| 1596 | dev->set_multicast_list = tsi108_set_rx_mode; |
| 1597 | dev->get_stats = tsi108_get_stats; |
| 1598 | dev->poll = tsi108_poll; |
| 1599 | dev->do_ioctl = tsi108_do_ioctl; |
| 1600 | dev->weight = 64; /* 64 is more suitable for GigE interface - klai */ |
| 1601 | |
| 1602 | /* Apparently, the Linux networking code won't use scatter-gather |
| 1603 | * if the hardware doesn't do checksums. However, it's faster |
| 1604 | * to checksum in place and use SG, as (among other reasons) |
| 1605 | * the cache won't be dirtied (which then has to be flushed |
| 1606 | * before DMA). The checksumming is done by the driver (via |
| 1607 | * a new function skb_csum_dev() in net/core/skbuff.c). |
| 1608 | */ |
| 1609 | |
| 1610 | dev->features = NETIF_F_HIGHDMA; |
| 1611 | SET_MODULE_OWNER(dev); |
| 1612 | |
| 1613 | spin_lock_init(&data->txlock); |
| 1614 | spin_lock_init(&data->misclock); |
| 1615 | |
| 1616 | tsi108_reset_ether(data); |
| 1617 | tsi108_kill_phy(dev); |
| 1618 | |
| 1619 | if ((err = tsi108_get_mac(dev)) != 0) { |
| 1620 | printk(KERN_ERR "%s: Invalid MAC address. Please correct.\n", |
| 1621 | dev->name); |
| 1622 | goto register_fail; |
| 1623 | } |
| 1624 | |
| 1625 | tsi108_init_mac(dev); |
| 1626 | err = register_netdev(dev); |
| 1627 | if (err) { |
| 1628 | printk(KERN_ERR "%s: Cannot register net device, aborting.\n", |
| 1629 | dev->name); |
| 1630 | goto register_fail; |
| 1631 | } |
| 1632 | |
| 1633 | printk(KERN_INFO "%s: Tsi108 Gigabit Ethernet, MAC: " |
| 1634 | "%02x:%02x:%02x:%02x:%02x:%02x\n", dev->name, |
| 1635 | dev->dev_addr[0], dev->dev_addr[1], dev->dev_addr[2], |
| 1636 | dev->dev_addr[3], dev->dev_addr[4], dev->dev_addr[5]); |
| 1637 | #ifdef DEBUG |
| 1638 | data->msg_enable = DEBUG; |
| 1639 | dump_eth_one(dev); |
| 1640 | #endif |
| 1641 | |
| 1642 | return 0; |
| 1643 | |
| 1644 | register_fail: |
| 1645 | iounmap(data->regs); |
| 1646 | iounmap(data->phyregs); |
| 1647 | |
| 1648 | regs_fail: |
| 1649 | free_netdev(dev); |
| 1650 | return err; |
| 1651 | } |
| 1652 | |
| 1653 | /* There's no way to either get interrupts from the PHY when |
| 1654 | * something changes, or to have the Tsi108 automatically communicate |
| 1655 | * with the PHY to reconfigure itself. |
| 1656 | * |
| 1657 | * Thus, we have to do it using a timer. |
| 1658 | */ |
| 1659 | |
| 1660 | static void tsi108_timed_checker(unsigned long dev_ptr) |
| 1661 | { |
| 1662 | struct net_device *dev = (struct net_device *)dev_ptr; |
| 1663 | struct tsi108_prv_data *data = netdev_priv(dev); |
| 1664 | |
| 1665 | tsi108_check_phy(dev); |
| 1666 | tsi108_check_rxring(dev); |
| 1667 | mod_timer(&data->timer, jiffies + CHECK_PHY_INTERVAL); |
| 1668 | } |
| 1669 | |
| 1670 | static int tsi108_ether_init(void) |
| 1671 | { |
| 1672 | int ret; |
| 1673 | ret = platform_driver_register (&tsi_eth_driver); |
| 1674 | if (ret < 0){ |
| 1675 | printk("tsi108_ether_init: error initializing ethernet " |
| 1676 | "device\n"); |
| 1677 | return ret; |
| 1678 | } |
| 1679 | return 0; |
| 1680 | } |
| 1681 | |
| 1682 | static int tsi108_ether_remove(struct platform_device *pdev) |
| 1683 | { |
| 1684 | struct net_device *dev = platform_get_drvdata(pdev); |
| 1685 | struct tsi108_prv_data *priv = netdev_priv(dev); |
| 1686 | |
| 1687 | unregister_netdev(dev); |
| 1688 | tsi108_stop_ethernet(dev); |
| 1689 | platform_set_drvdata(pdev, NULL); |
| 1690 | iounmap(priv->regs); |
| 1691 | iounmap(priv->phyregs); |
| 1692 | free_netdev(dev); |
| 1693 | |
| 1694 | return 0; |
| 1695 | } |
| 1696 | static void tsi108_ether_exit(void) |
| 1697 | { |
| 1698 | platform_driver_unregister(&tsi_eth_driver); |
| 1699 | } |
| 1700 | |
| 1701 | module_init(tsi108_ether_init); |
| 1702 | module_exit(tsi108_ether_exit); |
| 1703 | |
| 1704 | MODULE_AUTHOR("Tundra Semiconductor Corporation"); |
| 1705 | MODULE_DESCRIPTION("Tsi108 Gigabit Ethernet driver"); |
| 1706 | MODULE_LICENSE("GPL"); |