Matt Mackall | 10cef60 | 2006-01-08 01:01:45 -0800 | [diff] [blame] | 1 | /* |
| 2 | * SLOB Allocator: Simple List Of Blocks |
| 3 | * |
| 4 | * Matt Mackall <mpm@selenic.com> 12/30/03 |
| 5 | * |
| 6 | * How SLOB works: |
| 7 | * |
| 8 | * The core of SLOB is a traditional K&R style heap allocator, with |
| 9 | * support for returning aligned objects. The granularity of this |
| 10 | * allocator is 8 bytes on x86, though it's perhaps possible to reduce |
| 11 | * this to 4 if it's deemed worth the effort. The slob heap is a |
| 12 | * singly-linked list of pages from __get_free_page, grown on demand |
| 13 | * and allocation from the heap is currently first-fit. |
| 14 | * |
| 15 | * Above this is an implementation of kmalloc/kfree. Blocks returned |
| 16 | * from kmalloc are 8-byte aligned and prepended with a 8-byte header. |
| 17 | * If kmalloc is asked for objects of PAGE_SIZE or larger, it calls |
| 18 | * __get_free_pages directly so that it can return page-aligned blocks |
| 19 | * and keeps a linked list of such pages and their orders. These |
| 20 | * objects are detected in kfree() by their page alignment. |
| 21 | * |
| 22 | * SLAB is emulated on top of SLOB by simply calling constructors and |
| 23 | * destructors for every SLAB allocation. Objects are returned with |
| 24 | * the 8-byte alignment unless the SLAB_MUST_HWCACHE_ALIGN flag is |
| 25 | * set, in which case the low-level allocator will fragment blocks to |
| 26 | * create the proper alignment. Again, objects of page-size or greater |
| 27 | * are allocated by calling __get_free_pages. As SLAB objects know |
| 28 | * their size, no separate size bookkeeping is necessary and there is |
| 29 | * essentially no allocation space overhead. |
| 30 | */ |
| 31 | |
| 32 | #include <linux/config.h> |
| 33 | #include <linux/slab.h> |
| 34 | #include <linux/mm.h> |
| 35 | #include <linux/cache.h> |
| 36 | #include <linux/init.h> |
| 37 | #include <linux/module.h> |
| 38 | #include <linux/timer.h> |
| 39 | |
| 40 | struct slob_block { |
| 41 | int units; |
| 42 | struct slob_block *next; |
| 43 | }; |
| 44 | typedef struct slob_block slob_t; |
| 45 | |
| 46 | #define SLOB_UNIT sizeof(slob_t) |
| 47 | #define SLOB_UNITS(size) (((size) + SLOB_UNIT - 1)/SLOB_UNIT) |
| 48 | #define SLOB_ALIGN L1_CACHE_BYTES |
| 49 | |
| 50 | struct bigblock { |
| 51 | int order; |
| 52 | void *pages; |
| 53 | struct bigblock *next; |
| 54 | }; |
| 55 | typedef struct bigblock bigblock_t; |
| 56 | |
| 57 | static slob_t arena = { .next = &arena, .units = 1 }; |
| 58 | static slob_t *slobfree = &arena; |
| 59 | static bigblock_t *bigblocks; |
| 60 | static DEFINE_SPINLOCK(slob_lock); |
| 61 | static DEFINE_SPINLOCK(block_lock); |
| 62 | |
| 63 | static void slob_free(void *b, int size); |
| 64 | |
| 65 | static void *slob_alloc(size_t size, gfp_t gfp, int align) |
| 66 | { |
| 67 | slob_t *prev, *cur, *aligned = 0; |
| 68 | int delta = 0, units = SLOB_UNITS(size); |
| 69 | unsigned long flags; |
| 70 | |
| 71 | spin_lock_irqsave(&slob_lock, flags); |
| 72 | prev = slobfree; |
| 73 | for (cur = prev->next; ; prev = cur, cur = cur->next) { |
| 74 | if (align) { |
| 75 | aligned = (slob_t *)ALIGN((unsigned long)cur, align); |
| 76 | delta = aligned - cur; |
| 77 | } |
| 78 | if (cur->units >= units + delta) { /* room enough? */ |
| 79 | if (delta) { /* need to fragment head to align? */ |
| 80 | aligned->units = cur->units - delta; |
| 81 | aligned->next = cur->next; |
| 82 | cur->next = aligned; |
| 83 | cur->units = delta; |
| 84 | prev = cur; |
| 85 | cur = aligned; |
| 86 | } |
| 87 | |
| 88 | if (cur->units == units) /* exact fit? */ |
| 89 | prev->next = cur->next; /* unlink */ |
| 90 | else { /* fragment */ |
| 91 | prev->next = cur + units; |
| 92 | prev->next->units = cur->units - units; |
| 93 | prev->next->next = cur->next; |
| 94 | cur->units = units; |
| 95 | } |
| 96 | |
| 97 | slobfree = prev; |
| 98 | spin_unlock_irqrestore(&slob_lock, flags); |
| 99 | return cur; |
| 100 | } |
| 101 | if (cur == slobfree) { |
| 102 | spin_unlock_irqrestore(&slob_lock, flags); |
| 103 | |
| 104 | if (size == PAGE_SIZE) /* trying to shrink arena? */ |
| 105 | return 0; |
| 106 | |
| 107 | cur = (slob_t *)__get_free_page(gfp); |
| 108 | if (!cur) |
| 109 | return 0; |
| 110 | |
| 111 | slob_free(cur, PAGE_SIZE); |
| 112 | spin_lock_irqsave(&slob_lock, flags); |
| 113 | cur = slobfree; |
| 114 | } |
| 115 | } |
| 116 | } |
| 117 | |
| 118 | static void slob_free(void *block, int size) |
| 119 | { |
| 120 | slob_t *cur, *b = (slob_t *)block; |
| 121 | unsigned long flags; |
| 122 | |
| 123 | if (!block) |
| 124 | return; |
| 125 | |
| 126 | if (size) |
| 127 | b->units = SLOB_UNITS(size); |
| 128 | |
| 129 | /* Find reinsertion point */ |
| 130 | spin_lock_irqsave(&slob_lock, flags); |
| 131 | for (cur = slobfree; !(b > cur && b < cur->next); cur = cur->next) |
| 132 | if (cur >= cur->next && (b > cur || b < cur->next)) |
| 133 | break; |
| 134 | |
| 135 | if (b + b->units == cur->next) { |
| 136 | b->units += cur->next->units; |
| 137 | b->next = cur->next->next; |
| 138 | } else |
| 139 | b->next = cur->next; |
| 140 | |
| 141 | if (cur + cur->units == b) { |
| 142 | cur->units += b->units; |
| 143 | cur->next = b->next; |
| 144 | } else |
| 145 | cur->next = b; |
| 146 | |
| 147 | slobfree = cur; |
| 148 | |
| 149 | spin_unlock_irqrestore(&slob_lock, flags); |
| 150 | } |
| 151 | |
| 152 | static int FASTCALL(find_order(int size)); |
| 153 | static int fastcall find_order(int size) |
| 154 | { |
| 155 | int order = 0; |
| 156 | for ( ; size > 4096 ; size >>=1) |
| 157 | order++; |
| 158 | return order; |
| 159 | } |
| 160 | |
| 161 | void *kmalloc(size_t size, gfp_t gfp) |
| 162 | { |
| 163 | slob_t *m; |
| 164 | bigblock_t *bb; |
| 165 | unsigned long flags; |
| 166 | |
| 167 | if (size < PAGE_SIZE - SLOB_UNIT) { |
| 168 | m = slob_alloc(size + SLOB_UNIT, gfp, 0); |
| 169 | return m ? (void *)(m + 1) : 0; |
| 170 | } |
| 171 | |
| 172 | bb = slob_alloc(sizeof(bigblock_t), gfp, 0); |
| 173 | if (!bb) |
| 174 | return 0; |
| 175 | |
| 176 | bb->order = find_order(size); |
| 177 | bb->pages = (void *)__get_free_pages(gfp, bb->order); |
| 178 | |
| 179 | if (bb->pages) { |
| 180 | spin_lock_irqsave(&block_lock, flags); |
| 181 | bb->next = bigblocks; |
| 182 | bigblocks = bb; |
| 183 | spin_unlock_irqrestore(&block_lock, flags); |
| 184 | return bb->pages; |
| 185 | } |
| 186 | |
| 187 | slob_free(bb, sizeof(bigblock_t)); |
| 188 | return 0; |
| 189 | } |
| 190 | |
| 191 | EXPORT_SYMBOL(kmalloc); |
| 192 | |
| 193 | void kfree(const void *block) |
| 194 | { |
| 195 | bigblock_t *bb, **last = &bigblocks; |
| 196 | unsigned long flags; |
| 197 | |
| 198 | if (!block) |
| 199 | return; |
| 200 | |
| 201 | if (!((unsigned long)block & (PAGE_SIZE-1))) { |
| 202 | /* might be on the big block list */ |
| 203 | spin_lock_irqsave(&block_lock, flags); |
| 204 | for (bb = bigblocks; bb; last = &bb->next, bb = bb->next) { |
| 205 | if (bb->pages == block) { |
| 206 | *last = bb->next; |
| 207 | spin_unlock_irqrestore(&block_lock, flags); |
| 208 | free_pages((unsigned long)block, bb->order); |
| 209 | slob_free(bb, sizeof(bigblock_t)); |
| 210 | return; |
| 211 | } |
| 212 | } |
| 213 | spin_unlock_irqrestore(&block_lock, flags); |
| 214 | } |
| 215 | |
| 216 | slob_free((slob_t *)block - 1, 0); |
| 217 | return; |
| 218 | } |
| 219 | |
| 220 | EXPORT_SYMBOL(kfree); |
| 221 | |
| 222 | unsigned int ksize(const void *block) |
| 223 | { |
| 224 | bigblock_t *bb; |
| 225 | unsigned long flags; |
| 226 | |
| 227 | if (!block) |
| 228 | return 0; |
| 229 | |
| 230 | if (!((unsigned long)block & (PAGE_SIZE-1))) { |
| 231 | spin_lock_irqsave(&block_lock, flags); |
| 232 | for (bb = bigblocks; bb; bb = bb->next) |
| 233 | if (bb->pages == block) { |
| 234 | spin_unlock_irqrestore(&slob_lock, flags); |
| 235 | return PAGE_SIZE << bb->order; |
| 236 | } |
| 237 | spin_unlock_irqrestore(&block_lock, flags); |
| 238 | } |
| 239 | |
| 240 | return ((slob_t *)block - 1)->units * SLOB_UNIT; |
| 241 | } |
| 242 | |
| 243 | struct kmem_cache { |
| 244 | unsigned int size, align; |
| 245 | const char *name; |
| 246 | void (*ctor)(void *, struct kmem_cache *, unsigned long); |
| 247 | void (*dtor)(void *, struct kmem_cache *, unsigned long); |
| 248 | }; |
| 249 | |
| 250 | struct kmem_cache *kmem_cache_create(const char *name, size_t size, |
| 251 | size_t align, unsigned long flags, |
| 252 | void (*ctor)(void*, struct kmem_cache *, unsigned long), |
| 253 | void (*dtor)(void*, struct kmem_cache *, unsigned long)) |
| 254 | { |
| 255 | struct kmem_cache *c; |
| 256 | |
| 257 | c = slob_alloc(sizeof(struct kmem_cache), flags, 0); |
| 258 | |
| 259 | if (c) { |
| 260 | c->name = name; |
| 261 | c->size = size; |
| 262 | c->ctor = ctor; |
| 263 | c->dtor = dtor; |
| 264 | /* ignore alignment unless it's forced */ |
| 265 | c->align = (flags & SLAB_MUST_HWCACHE_ALIGN) ? SLOB_ALIGN : 0; |
| 266 | if (c->align < align) |
| 267 | c->align = align; |
| 268 | } |
| 269 | |
| 270 | return c; |
| 271 | } |
| 272 | EXPORT_SYMBOL(kmem_cache_create); |
| 273 | |
| 274 | int kmem_cache_destroy(struct kmem_cache *c) |
| 275 | { |
| 276 | slob_free(c, sizeof(struct kmem_cache)); |
| 277 | return 0; |
| 278 | } |
| 279 | EXPORT_SYMBOL(kmem_cache_destroy); |
| 280 | |
| 281 | void *kmem_cache_alloc(struct kmem_cache *c, gfp_t flags) |
| 282 | { |
| 283 | void *b; |
| 284 | |
| 285 | if (c->size < PAGE_SIZE) |
| 286 | b = slob_alloc(c->size, flags, c->align); |
| 287 | else |
| 288 | b = (void *)__get_free_pages(flags, find_order(c->size)); |
| 289 | |
| 290 | if (c->ctor) |
| 291 | c->ctor(b, c, SLAB_CTOR_CONSTRUCTOR); |
| 292 | |
| 293 | return b; |
| 294 | } |
| 295 | EXPORT_SYMBOL(kmem_cache_alloc); |
| 296 | |
Pekka Enberg | a8c0f9a | 2006-03-25 03:06:42 -0800 | [diff] [blame] | 297 | void *kmem_cache_zalloc(struct kmem_cache *c, gfp_t flags) |
| 298 | { |
| 299 | void *ret = kmem_cache_alloc(c, flags); |
| 300 | if (ret) |
| 301 | memset(ret, 0, c->size); |
| 302 | |
| 303 | return ret; |
| 304 | } |
| 305 | EXPORT_SYMBOL(kmem_cache_zalloc); |
| 306 | |
Matt Mackall | 10cef60 | 2006-01-08 01:01:45 -0800 | [diff] [blame] | 307 | void kmem_cache_free(struct kmem_cache *c, void *b) |
| 308 | { |
| 309 | if (c->dtor) |
| 310 | c->dtor(b, c, 0); |
| 311 | |
| 312 | if (c->size < PAGE_SIZE) |
| 313 | slob_free(b, c->size); |
| 314 | else |
| 315 | free_pages((unsigned long)b, find_order(c->size)); |
| 316 | } |
| 317 | EXPORT_SYMBOL(kmem_cache_free); |
| 318 | |
| 319 | unsigned int kmem_cache_size(struct kmem_cache *c) |
| 320 | { |
| 321 | return c->size; |
| 322 | } |
| 323 | EXPORT_SYMBOL(kmem_cache_size); |
| 324 | |
| 325 | const char *kmem_cache_name(struct kmem_cache *c) |
| 326 | { |
| 327 | return c->name; |
| 328 | } |
| 329 | EXPORT_SYMBOL(kmem_cache_name); |
| 330 | |
| 331 | static struct timer_list slob_timer = TIMER_INITIALIZER( |
| 332 | (void (*)(unsigned long))kmem_cache_init, 0, 0); |
| 333 | |
| 334 | void kmem_cache_init(void) |
| 335 | { |
| 336 | void *p = slob_alloc(PAGE_SIZE, 0, PAGE_SIZE-1); |
| 337 | |
| 338 | if (p) |
| 339 | free_page((unsigned long)p); |
| 340 | |
| 341 | mod_timer(&slob_timer, jiffies + HZ); |
| 342 | } |
| 343 | |
| 344 | atomic_t slab_reclaim_pages = ATOMIC_INIT(0); |
| 345 | EXPORT_SYMBOL(slab_reclaim_pages); |
| 346 | |
| 347 | #ifdef CONFIG_SMP |
| 348 | |
Ingo Molnar | 9934a79 | 2006-02-08 10:11:56 +0100 | [diff] [blame] | 349 | void *__alloc_percpu(size_t size) |
Matt Mackall | 10cef60 | 2006-01-08 01:01:45 -0800 | [diff] [blame] | 350 | { |
| 351 | int i; |
| 352 | struct percpu_data *pdata = kmalloc(sizeof (*pdata), GFP_KERNEL); |
| 353 | |
| 354 | if (!pdata) |
| 355 | return NULL; |
| 356 | |
| 357 | for (i = 0; i < NR_CPUS; i++) { |
| 358 | if (!cpu_possible(i)) |
| 359 | continue; |
| 360 | pdata->ptrs[i] = kmalloc(size, GFP_KERNEL); |
| 361 | if (!pdata->ptrs[i]) |
| 362 | goto unwind_oom; |
| 363 | memset(pdata->ptrs[i], 0, size); |
| 364 | } |
| 365 | |
| 366 | /* Catch derefs w/o wrappers */ |
| 367 | return (void *) (~(unsigned long) pdata); |
| 368 | |
| 369 | unwind_oom: |
| 370 | while (--i >= 0) { |
| 371 | if (!cpu_possible(i)) |
| 372 | continue; |
| 373 | kfree(pdata->ptrs[i]); |
| 374 | } |
| 375 | kfree(pdata); |
| 376 | return NULL; |
| 377 | } |
| 378 | EXPORT_SYMBOL(__alloc_percpu); |
| 379 | |
| 380 | void |
| 381 | free_percpu(const void *objp) |
| 382 | { |
| 383 | int i; |
| 384 | struct percpu_data *p = (struct percpu_data *) (~(unsigned long) objp); |
| 385 | |
| 386 | for (i = 0; i < NR_CPUS; i++) { |
| 387 | if (!cpu_possible(i)) |
| 388 | continue; |
| 389 | kfree(p->ptrs[i]); |
| 390 | } |
| 391 | kfree(p); |
| 392 | } |
| 393 | EXPORT_SYMBOL(free_percpu); |
| 394 | |
| 395 | #endif |