Chris Metcalf | 867e359 | 2010-05-28 23:09:12 -0400 | [diff] [blame] | 1 | /* |
| 2 | * Copyright 2010 Tilera Corporation. All Rights Reserved. |
| 3 | * |
| 4 | * This program is free software; you can redistribute it and/or |
| 5 | * modify it under the terms of the GNU General Public License |
| 6 | * as published by the Free Software Foundation, version 2. |
| 7 | * |
| 8 | * This program is distributed in the hope that it will be useful, but |
| 9 | * WITHOUT ANY WARRANTY; without even the implied warranty of |
| 10 | * MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or |
| 11 | * NON INFRINGEMENT. See the GNU General Public License for |
| 12 | * more details. |
| 13 | * |
| 14 | * From i386 code copyright (C) 1995 Linus Torvalds |
| 15 | */ |
| 16 | |
| 17 | #include <linux/signal.h> |
| 18 | #include <linux/sched.h> |
| 19 | #include <linux/kernel.h> |
| 20 | #include <linux/errno.h> |
| 21 | #include <linux/string.h> |
| 22 | #include <linux/types.h> |
| 23 | #include <linux/ptrace.h> |
| 24 | #include <linux/mman.h> |
| 25 | #include <linux/mm.h> |
| 26 | #include <linux/smp.h> |
| 27 | #include <linux/smp_lock.h> |
| 28 | #include <linux/interrupt.h> |
| 29 | #include <linux/init.h> |
| 30 | #include <linux/tty.h> |
| 31 | #include <linux/vt_kern.h> /* For unblank_screen() */ |
| 32 | #include <linux/highmem.h> |
| 33 | #include <linux/module.h> |
| 34 | #include <linux/kprobes.h> |
| 35 | #include <linux/hugetlb.h> |
| 36 | #include <linux/syscalls.h> |
| 37 | #include <linux/uaccess.h> |
| 38 | |
| 39 | #include <asm/system.h> |
| 40 | #include <asm/pgalloc.h> |
| 41 | #include <asm/sections.h> |
Chris Metcalf | 0707ad3 | 2010-06-25 17:04:17 -0400 | [diff] [blame] | 42 | #include <asm/traps.h> |
| 43 | #include <asm/syscalls.h> |
Chris Metcalf | 867e359 | 2010-05-28 23:09:12 -0400 | [diff] [blame] | 44 | |
| 45 | #include <arch/interrupts.h> |
| 46 | |
Chris Metcalf | 867e359 | 2010-05-28 23:09:12 -0400 | [diff] [blame] | 47 | static noinline void force_sig_info_fault(int si_signo, int si_code, |
| 48 | unsigned long address, int fault_num, struct task_struct *tsk) |
| 49 | { |
| 50 | siginfo_t info; |
| 51 | |
| 52 | if (unlikely(tsk->pid < 2)) { |
| 53 | panic("Signal %d (code %d) at %#lx sent to %s!", |
| 54 | si_signo, si_code & 0xffff, address, |
| 55 | tsk->pid ? "init" : "the idle task"); |
| 56 | } |
| 57 | |
| 58 | info.si_signo = si_signo; |
| 59 | info.si_errno = 0; |
| 60 | info.si_code = si_code; |
| 61 | info.si_addr = (void __user *)address; |
| 62 | info.si_trapno = fault_num; |
| 63 | force_sig_info(si_signo, &info, tsk); |
| 64 | } |
| 65 | |
| 66 | #ifndef __tilegx__ |
| 67 | /* |
| 68 | * Synthesize the fault a PL0 process would get by doing a word-load of |
| 69 | * an unaligned address or a high kernel address. Called indirectly |
| 70 | * from sys_cmpxchg() in kernel/intvec.S. |
| 71 | */ |
| 72 | int _sys_cmpxchg_badaddr(unsigned long address, struct pt_regs *regs) |
| 73 | { |
| 74 | if (address >= PAGE_OFFSET) |
| 75 | force_sig_info_fault(SIGSEGV, SEGV_MAPERR, address, |
| 76 | INT_DTLB_MISS, current); |
| 77 | else |
| 78 | force_sig_info_fault(SIGBUS, BUS_ADRALN, address, |
| 79 | INT_UNALIGN_DATA, current); |
| 80 | |
| 81 | /* |
| 82 | * Adjust pc to point at the actual instruction, which is unusual |
| 83 | * for syscalls normally, but is appropriate when we are claiming |
| 84 | * that a syscall swint1 caused a page fault or bus error. |
| 85 | */ |
| 86 | regs->pc -= 8; |
| 87 | |
| 88 | /* |
| 89 | * Mark this as a caller-save interrupt, like a normal page fault, |
| 90 | * so that when we go through the signal handler path we will |
| 91 | * properly restore r0, r1, and r2 for the signal handler arguments. |
| 92 | */ |
| 93 | regs->flags |= PT_FLAGS_CALLER_SAVES; |
| 94 | |
| 95 | return 0; |
| 96 | } |
| 97 | #endif |
| 98 | |
| 99 | static inline pmd_t *vmalloc_sync_one(pgd_t *pgd, unsigned long address) |
| 100 | { |
| 101 | unsigned index = pgd_index(address); |
| 102 | pgd_t *pgd_k; |
| 103 | pud_t *pud, *pud_k; |
| 104 | pmd_t *pmd, *pmd_k; |
| 105 | |
| 106 | pgd += index; |
| 107 | pgd_k = init_mm.pgd + index; |
| 108 | |
| 109 | if (!pgd_present(*pgd_k)) |
| 110 | return NULL; |
| 111 | |
| 112 | pud = pud_offset(pgd, address); |
| 113 | pud_k = pud_offset(pgd_k, address); |
| 114 | if (!pud_present(*pud_k)) |
| 115 | return NULL; |
| 116 | |
| 117 | pmd = pmd_offset(pud, address); |
| 118 | pmd_k = pmd_offset(pud_k, address); |
| 119 | if (!pmd_present(*pmd_k)) |
| 120 | return NULL; |
| 121 | if (!pmd_present(*pmd)) { |
| 122 | set_pmd(pmd, *pmd_k); |
| 123 | arch_flush_lazy_mmu_mode(); |
| 124 | } else |
| 125 | BUG_ON(pmd_ptfn(*pmd) != pmd_ptfn(*pmd_k)); |
| 126 | return pmd_k; |
| 127 | } |
| 128 | |
| 129 | /* |
| 130 | * Handle a fault on the vmalloc or module mapping area |
| 131 | */ |
| 132 | static inline int vmalloc_fault(pgd_t *pgd, unsigned long address) |
| 133 | { |
| 134 | pmd_t *pmd_k; |
| 135 | pte_t *pte_k; |
| 136 | |
| 137 | /* Make sure we are in vmalloc area */ |
| 138 | if (!(address >= VMALLOC_START && address < VMALLOC_END)) |
| 139 | return -1; |
| 140 | |
| 141 | /* |
| 142 | * Synchronize this task's top level page-table |
| 143 | * with the 'reference' page table. |
| 144 | */ |
| 145 | pmd_k = vmalloc_sync_one(pgd, address); |
| 146 | if (!pmd_k) |
| 147 | return -1; |
| 148 | if (pmd_huge(*pmd_k)) |
| 149 | return 0; /* support TILE huge_vmap() API */ |
| 150 | pte_k = pte_offset_kernel(pmd_k, address); |
| 151 | if (!pte_present(*pte_k)) |
| 152 | return -1; |
| 153 | return 0; |
| 154 | } |
| 155 | |
| 156 | /* Wait until this PTE has completed migration. */ |
| 157 | static void wait_for_migration(pte_t *pte) |
| 158 | { |
| 159 | if (pte_migrating(*pte)) { |
| 160 | /* |
| 161 | * Wait until the migrater fixes up this pte. |
| 162 | * We scale the loop count by the clock rate so we'll wait for |
| 163 | * a few seconds here. |
| 164 | */ |
| 165 | int retries = 0; |
| 166 | int bound = get_clock_rate(); |
| 167 | while (pte_migrating(*pte)) { |
| 168 | barrier(); |
| 169 | if (++retries > bound) |
| 170 | panic("Hit migrating PTE (%#llx) and" |
| 171 | " page PFN %#lx still migrating", |
| 172 | pte->val, pte_pfn(*pte)); |
| 173 | } |
| 174 | } |
| 175 | } |
| 176 | |
| 177 | /* |
| 178 | * It's not generally safe to use "current" to get the page table pointer, |
| 179 | * since we might be running an oprofile interrupt in the middle of a |
| 180 | * task switch. |
| 181 | */ |
| 182 | static pgd_t *get_current_pgd(void) |
| 183 | { |
| 184 | HV_Context ctx = hv_inquire_context(); |
| 185 | unsigned long pgd_pfn = ctx.page_table >> PAGE_SHIFT; |
| 186 | struct page *pgd_page = pfn_to_page(pgd_pfn); |
| 187 | BUG_ON(PageHighMem(pgd_page)); /* oops, HIGHPTE? */ |
| 188 | return (pgd_t *) __va(ctx.page_table); |
| 189 | } |
| 190 | |
| 191 | /* |
| 192 | * We can receive a page fault from a migrating PTE at any time. |
| 193 | * Handle it by just waiting until the fault resolves. |
| 194 | * |
| 195 | * It's also possible to get a migrating kernel PTE that resolves |
| 196 | * itself during the downcall from hypervisor to Linux. We just check |
| 197 | * here to see if the PTE seems valid, and if so we retry it. |
| 198 | * |
| 199 | * NOTE! We MUST NOT take any locks for this case. We may be in an |
| 200 | * interrupt or a critical region, and must do as little as possible. |
| 201 | * Similarly, we can't use atomic ops here, since we may be handling a |
| 202 | * fault caused by an atomic op access. |
| 203 | */ |
| 204 | static int handle_migrating_pte(pgd_t *pgd, int fault_num, |
| 205 | unsigned long address, |
| 206 | int is_kernel_mode, int write) |
| 207 | { |
| 208 | pud_t *pud; |
| 209 | pmd_t *pmd; |
| 210 | pte_t *pte; |
| 211 | pte_t pteval; |
| 212 | |
| 213 | if (pgd_addr_invalid(address)) |
| 214 | return 0; |
| 215 | |
| 216 | pgd += pgd_index(address); |
| 217 | pud = pud_offset(pgd, address); |
| 218 | if (!pud || !pud_present(*pud)) |
| 219 | return 0; |
| 220 | pmd = pmd_offset(pud, address); |
| 221 | if (!pmd || !pmd_present(*pmd)) |
| 222 | return 0; |
| 223 | pte = pmd_huge_page(*pmd) ? ((pte_t *)pmd) : |
| 224 | pte_offset_kernel(pmd, address); |
| 225 | pteval = *pte; |
| 226 | if (pte_migrating(pteval)) { |
| 227 | wait_for_migration(pte); |
| 228 | return 1; |
| 229 | } |
| 230 | |
| 231 | if (!is_kernel_mode || !pte_present(pteval)) |
| 232 | return 0; |
| 233 | if (fault_num == INT_ITLB_MISS) { |
| 234 | if (pte_exec(pteval)) |
| 235 | return 1; |
| 236 | } else if (write) { |
| 237 | if (pte_write(pteval)) |
| 238 | return 1; |
| 239 | } else { |
| 240 | if (pte_read(pteval)) |
| 241 | return 1; |
| 242 | } |
| 243 | |
| 244 | return 0; |
| 245 | } |
| 246 | |
| 247 | /* |
| 248 | * This routine is responsible for faulting in user pages. |
| 249 | * It passes the work off to one of the appropriate routines. |
| 250 | * It returns true if the fault was successfully handled. |
| 251 | */ |
| 252 | static int handle_page_fault(struct pt_regs *regs, |
| 253 | int fault_num, |
| 254 | int is_page_fault, |
| 255 | unsigned long address, |
| 256 | int write) |
| 257 | { |
| 258 | struct task_struct *tsk; |
| 259 | struct mm_struct *mm; |
| 260 | struct vm_area_struct *vma; |
| 261 | unsigned long stack_offset; |
| 262 | int fault; |
| 263 | int si_code; |
| 264 | int is_kernel_mode; |
| 265 | pgd_t *pgd; |
| 266 | |
| 267 | /* on TILE, protection faults are always writes */ |
| 268 | if (!is_page_fault) |
| 269 | write = 1; |
| 270 | |
| 271 | is_kernel_mode = (EX1_PL(regs->ex1) != USER_PL); |
| 272 | |
| 273 | tsk = validate_current(); |
| 274 | |
| 275 | /* |
| 276 | * Check to see if we might be overwriting the stack, and bail |
| 277 | * out if so. The page fault code is a relatively likely |
| 278 | * place to get trapped in an infinite regress, and once we |
| 279 | * overwrite the whole stack, it becomes very hard to recover. |
| 280 | */ |
| 281 | stack_offset = stack_pointer & (THREAD_SIZE-1); |
| 282 | if (stack_offset < THREAD_SIZE / 8) { |
Chris Metcalf | 0707ad3 | 2010-06-25 17:04:17 -0400 | [diff] [blame] | 283 | pr_alert("Potential stack overrun: sp %#lx\n", |
Chris Metcalf | 867e359 | 2010-05-28 23:09:12 -0400 | [diff] [blame] | 284 | stack_pointer); |
| 285 | show_regs(regs); |
Chris Metcalf | 0707ad3 | 2010-06-25 17:04:17 -0400 | [diff] [blame] | 286 | pr_alert("Killing current process %d/%s\n", |
Chris Metcalf | 867e359 | 2010-05-28 23:09:12 -0400 | [diff] [blame] | 287 | tsk->pid, tsk->comm); |
| 288 | do_group_exit(SIGKILL); |
| 289 | } |
| 290 | |
| 291 | /* |
| 292 | * Early on, we need to check for migrating PTE entries; |
| 293 | * see homecache.c. If we find a migrating PTE, we wait until |
| 294 | * the backing page claims to be done migrating, then we procede. |
| 295 | * For kernel PTEs, we rewrite the PTE and return and retry. |
| 296 | * Otherwise, we treat the fault like a normal "no PTE" fault, |
| 297 | * rather than trying to patch up the existing PTE. |
| 298 | */ |
| 299 | pgd = get_current_pgd(); |
| 300 | if (handle_migrating_pte(pgd, fault_num, address, |
| 301 | is_kernel_mode, write)) |
| 302 | return 1; |
| 303 | |
| 304 | si_code = SEGV_MAPERR; |
| 305 | |
| 306 | /* |
| 307 | * We fault-in kernel-space virtual memory on-demand. The |
| 308 | * 'reference' page table is init_mm.pgd. |
| 309 | * |
| 310 | * NOTE! We MUST NOT take any locks for this case. We may |
| 311 | * be in an interrupt or a critical region, and should |
| 312 | * only copy the information from the master page table, |
| 313 | * nothing more. |
| 314 | * |
| 315 | * This verifies that the fault happens in kernel space |
| 316 | * and that the fault was not a protection fault. |
| 317 | */ |
| 318 | if (unlikely(address >= TASK_SIZE && |
| 319 | !is_arch_mappable_range(address, 0))) { |
| 320 | if (is_kernel_mode && is_page_fault && |
| 321 | vmalloc_fault(pgd, address) >= 0) |
| 322 | return 1; |
| 323 | /* |
| 324 | * Don't take the mm semaphore here. If we fixup a prefetch |
| 325 | * fault we could otherwise deadlock. |
| 326 | */ |
| 327 | mm = NULL; /* happy compiler */ |
| 328 | vma = NULL; |
| 329 | goto bad_area_nosemaphore; |
| 330 | } |
| 331 | |
| 332 | /* |
| 333 | * If we're trying to touch user-space addresses, we must |
| 334 | * be either at PL0, or else with interrupts enabled in the |
| 335 | * kernel, so either way we can re-enable interrupts here. |
| 336 | */ |
| 337 | local_irq_enable(); |
| 338 | |
| 339 | mm = tsk->mm; |
| 340 | |
| 341 | /* |
| 342 | * If we're in an interrupt, have no user context or are running in an |
| 343 | * atomic region then we must not take the fault. |
| 344 | */ |
| 345 | if (in_atomic() || !mm) { |
| 346 | vma = NULL; /* happy compiler */ |
| 347 | goto bad_area_nosemaphore; |
| 348 | } |
| 349 | |
| 350 | /* |
| 351 | * When running in the kernel we expect faults to occur only to |
| 352 | * addresses in user space. All other faults represent errors in the |
| 353 | * kernel and should generate an OOPS. Unfortunately, in the case of an |
| 354 | * erroneous fault occurring in a code path which already holds mmap_sem |
| 355 | * we will deadlock attempting to validate the fault against the |
| 356 | * address space. Luckily the kernel only validly references user |
| 357 | * space from well defined areas of code, which are listed in the |
| 358 | * exceptions table. |
| 359 | * |
| 360 | * As the vast majority of faults will be valid we will only perform |
| 361 | * the source reference check when there is a possibility of a deadlock. |
| 362 | * Attempt to lock the address space, if we cannot we then validate the |
| 363 | * source. If this is invalid we can skip the address space check, |
| 364 | * thus avoiding the deadlock. |
| 365 | */ |
| 366 | if (!down_read_trylock(&mm->mmap_sem)) { |
| 367 | if (is_kernel_mode && |
| 368 | !search_exception_tables(regs->pc)) { |
| 369 | vma = NULL; /* happy compiler */ |
| 370 | goto bad_area_nosemaphore; |
| 371 | } |
| 372 | down_read(&mm->mmap_sem); |
| 373 | } |
| 374 | |
| 375 | vma = find_vma(mm, address); |
| 376 | if (!vma) |
| 377 | goto bad_area; |
| 378 | if (vma->vm_start <= address) |
| 379 | goto good_area; |
| 380 | if (!(vma->vm_flags & VM_GROWSDOWN)) |
| 381 | goto bad_area; |
| 382 | if (regs->sp < PAGE_OFFSET) { |
| 383 | /* |
| 384 | * accessing the stack below sp is always a bug. |
| 385 | */ |
| 386 | if (address < regs->sp) |
| 387 | goto bad_area; |
| 388 | } |
| 389 | if (expand_stack(vma, address)) |
| 390 | goto bad_area; |
| 391 | |
| 392 | /* |
| 393 | * Ok, we have a good vm_area for this memory access, so |
| 394 | * we can handle it.. |
| 395 | */ |
| 396 | good_area: |
| 397 | si_code = SEGV_ACCERR; |
| 398 | if (fault_num == INT_ITLB_MISS) { |
| 399 | if (!(vma->vm_flags & VM_EXEC)) |
| 400 | goto bad_area; |
| 401 | } else if (write) { |
| 402 | #ifdef TEST_VERIFY_AREA |
| 403 | if (!is_page_fault && regs->cs == KERNEL_CS) |
Chris Metcalf | 0707ad3 | 2010-06-25 17:04:17 -0400 | [diff] [blame] | 404 | pr_err("WP fault at "REGFMT"\n", regs->eip); |
Chris Metcalf | 867e359 | 2010-05-28 23:09:12 -0400 | [diff] [blame] | 405 | #endif |
| 406 | if (!(vma->vm_flags & VM_WRITE)) |
| 407 | goto bad_area; |
| 408 | } else { |
| 409 | if (!is_page_fault || !(vma->vm_flags & VM_READ)) |
| 410 | goto bad_area; |
| 411 | } |
| 412 | |
| 413 | survive: |
| 414 | /* |
| 415 | * If for any reason at all we couldn't handle the fault, |
| 416 | * make sure we exit gracefully rather than endlessly redo |
| 417 | * the fault. |
| 418 | */ |
| 419 | fault = handle_mm_fault(mm, vma, address, write); |
| 420 | if (unlikely(fault & VM_FAULT_ERROR)) { |
| 421 | if (fault & VM_FAULT_OOM) |
| 422 | goto out_of_memory; |
| 423 | else if (fault & VM_FAULT_SIGBUS) |
| 424 | goto do_sigbus; |
| 425 | BUG(); |
| 426 | } |
| 427 | if (fault & VM_FAULT_MAJOR) |
| 428 | tsk->maj_flt++; |
| 429 | else |
| 430 | tsk->min_flt++; |
| 431 | |
Chris Metcalf | 0707ad3 | 2010-06-25 17:04:17 -0400 | [diff] [blame] | 432 | #if CHIP_HAS_TILE_DMA() || CHIP_HAS_SN_PROC() |
Chris Metcalf | 867e359 | 2010-05-28 23:09:12 -0400 | [diff] [blame] | 433 | /* |
| 434 | * If this was an asynchronous fault, |
| 435 | * restart the appropriate engine. |
| 436 | */ |
| 437 | switch (fault_num) { |
| 438 | #if CHIP_HAS_TILE_DMA() |
| 439 | case INT_DMATLB_MISS: |
| 440 | case INT_DMATLB_MISS_DWNCL: |
| 441 | case INT_DMATLB_ACCESS: |
| 442 | case INT_DMATLB_ACCESS_DWNCL: |
| 443 | __insn_mtspr(SPR_DMA_CTR, SPR_DMA_CTR__REQUEST_MASK); |
| 444 | break; |
| 445 | #endif |
| 446 | #if CHIP_HAS_SN_PROC() |
| 447 | case INT_SNITLB_MISS: |
| 448 | case INT_SNITLB_MISS_DWNCL: |
| 449 | __insn_mtspr(SPR_SNCTL, |
| 450 | __insn_mfspr(SPR_SNCTL) & |
| 451 | ~SPR_SNCTL__FRZPROC_MASK); |
| 452 | break; |
| 453 | #endif |
| 454 | } |
Chris Metcalf | 0707ad3 | 2010-06-25 17:04:17 -0400 | [diff] [blame] | 455 | #endif |
Chris Metcalf | 867e359 | 2010-05-28 23:09:12 -0400 | [diff] [blame] | 456 | |
| 457 | up_read(&mm->mmap_sem); |
| 458 | return 1; |
| 459 | |
| 460 | /* |
| 461 | * Something tried to access memory that isn't in our memory map.. |
| 462 | * Fix it, but check if it's kernel or user first.. |
| 463 | */ |
| 464 | bad_area: |
| 465 | up_read(&mm->mmap_sem); |
| 466 | |
| 467 | bad_area_nosemaphore: |
| 468 | /* User mode accesses just cause a SIGSEGV */ |
| 469 | if (!is_kernel_mode) { |
| 470 | /* |
| 471 | * It's possible to have interrupts off here. |
| 472 | */ |
| 473 | local_irq_enable(); |
| 474 | |
| 475 | force_sig_info_fault(SIGSEGV, si_code, address, |
| 476 | fault_num, tsk); |
| 477 | return 0; |
| 478 | } |
| 479 | |
| 480 | no_context: |
| 481 | /* Are we prepared to handle this kernel fault? */ |
| 482 | if (fixup_exception(regs)) |
| 483 | return 0; |
| 484 | |
| 485 | /* |
| 486 | * Oops. The kernel tried to access some bad page. We'll have to |
| 487 | * terminate things with extreme prejudice. |
| 488 | */ |
| 489 | |
| 490 | bust_spinlocks(1); |
| 491 | |
| 492 | /* FIXME: no lookup_address() yet */ |
| 493 | #ifdef SUPPORT_LOOKUP_ADDRESS |
| 494 | if (fault_num == INT_ITLB_MISS) { |
| 495 | pte_t *pte = lookup_address(address); |
| 496 | |
| 497 | if (pte && pte_present(*pte) && !pte_exec_kernel(*pte)) |
Chris Metcalf | 0707ad3 | 2010-06-25 17:04:17 -0400 | [diff] [blame] | 498 | pr_crit("kernel tried to execute" |
Chris Metcalf | 867e359 | 2010-05-28 23:09:12 -0400 | [diff] [blame] | 499 | " non-executable page - exploit attempt?" |
| 500 | " (uid: %d)\n", current->uid); |
| 501 | } |
| 502 | #endif |
| 503 | if (address < PAGE_SIZE) |
Chris Metcalf | 0707ad3 | 2010-06-25 17:04:17 -0400 | [diff] [blame] | 504 | pr_alert("Unable to handle kernel NULL pointer dereference\n"); |
Chris Metcalf | 867e359 | 2010-05-28 23:09:12 -0400 | [diff] [blame] | 505 | else |
Chris Metcalf | 0707ad3 | 2010-06-25 17:04:17 -0400 | [diff] [blame] | 506 | pr_alert("Unable to handle kernel paging request\n"); |
| 507 | pr_alert(" at virtual address "REGFMT", pc "REGFMT"\n", |
| 508 | address, regs->pc); |
Chris Metcalf | 867e359 | 2010-05-28 23:09:12 -0400 | [diff] [blame] | 509 | |
| 510 | show_regs(regs); |
| 511 | |
| 512 | if (unlikely(tsk->pid < 2)) { |
| 513 | panic("Kernel page fault running %s!", |
| 514 | tsk->pid ? "init" : "the idle task"); |
| 515 | } |
| 516 | |
| 517 | /* |
| 518 | * More FIXME: we should probably copy the i386 here and |
| 519 | * implement a generic die() routine. Not today. |
| 520 | */ |
| 521 | #ifdef SUPPORT_DIE |
| 522 | die("Oops", regs); |
| 523 | #endif |
| 524 | bust_spinlocks(1); |
| 525 | |
| 526 | do_group_exit(SIGKILL); |
| 527 | |
| 528 | /* |
| 529 | * We ran out of memory, or some other thing happened to us that made |
| 530 | * us unable to handle the page fault gracefully. |
| 531 | */ |
| 532 | out_of_memory: |
| 533 | up_read(&mm->mmap_sem); |
| 534 | if (is_global_init(tsk)) { |
| 535 | yield(); |
| 536 | down_read(&mm->mmap_sem); |
| 537 | goto survive; |
| 538 | } |
Chris Metcalf | 0707ad3 | 2010-06-25 17:04:17 -0400 | [diff] [blame] | 539 | pr_alert("VM: killing process %s\n", tsk->comm); |
Chris Metcalf | 867e359 | 2010-05-28 23:09:12 -0400 | [diff] [blame] | 540 | if (!is_kernel_mode) |
| 541 | do_group_exit(SIGKILL); |
| 542 | goto no_context; |
| 543 | |
| 544 | do_sigbus: |
| 545 | up_read(&mm->mmap_sem); |
| 546 | |
| 547 | /* Kernel mode? Handle exceptions or die */ |
| 548 | if (is_kernel_mode) |
| 549 | goto no_context; |
| 550 | |
| 551 | force_sig_info_fault(SIGBUS, BUS_ADRERR, address, fault_num, tsk); |
| 552 | return 0; |
| 553 | } |
| 554 | |
| 555 | #ifndef __tilegx__ |
| 556 | |
Chris Metcalf | 867e359 | 2010-05-28 23:09:12 -0400 | [diff] [blame] | 557 | /* We must release ICS before panicking or we won't get anywhere. */ |
| 558 | #define ics_panic(fmt, ...) do { \ |
| 559 | __insn_mtspr(SPR_INTERRUPT_CRITICAL_SECTION, 0); \ |
| 560 | panic(fmt, __VA_ARGS__); \ |
| 561 | } while (0) |
| 562 | |
Chris Metcalf | 867e359 | 2010-05-28 23:09:12 -0400 | [diff] [blame] | 563 | /* |
| 564 | * When we take an ITLB or DTLB fault or access violation in the |
| 565 | * supervisor while the critical section bit is set, the hypervisor is |
| 566 | * reluctant to write new values into the EX_CONTEXT_1_x registers, |
| 567 | * since that might indicate we have not yet squirreled the SPR |
| 568 | * contents away and can thus safely take a recursive interrupt. |
| 569 | * Accordingly, the hypervisor passes us the PC via SYSTEM_SAVE_1_2. |
Chris Metcalf | c745a8a | 2010-08-13 08:52:19 -0400 | [diff] [blame^] | 570 | * |
| 571 | * Note that this routine is called before homecache_tlb_defer_enter(), |
| 572 | * which means that we can properly unlock any atomics that might |
| 573 | * be used there (good), but also means we must be very sensitive |
| 574 | * to not touch any data structures that might be located in memory |
| 575 | * that could migrate, as we could be entering the kernel on a dataplane |
| 576 | * cpu that has been deferring kernel TLB updates. This means, for |
| 577 | * example, that we can't migrate init_mm or its pgd. |
Chris Metcalf | 867e359 | 2010-05-28 23:09:12 -0400 | [diff] [blame] | 578 | */ |
| 579 | struct intvec_state do_page_fault_ics(struct pt_regs *regs, int fault_num, |
| 580 | unsigned long address, |
| 581 | unsigned long info) |
| 582 | { |
| 583 | unsigned long pc = info & ~1; |
| 584 | int write = info & 1; |
| 585 | pgd_t *pgd = get_current_pgd(); |
| 586 | |
| 587 | /* Retval is 1 at first since we will handle the fault fully. */ |
| 588 | struct intvec_state state = { |
| 589 | do_page_fault, fault_num, address, write, 1 |
| 590 | }; |
| 591 | |
| 592 | /* Validate that we are plausibly in the right routine. */ |
| 593 | if ((pc & 0x7) != 0 || pc < PAGE_OFFSET || |
| 594 | (fault_num != INT_DTLB_MISS && |
| 595 | fault_num != INT_DTLB_ACCESS)) { |
| 596 | unsigned long old_pc = regs->pc; |
| 597 | regs->pc = pc; |
| 598 | ics_panic("Bad ICS page fault args:" |
| 599 | " old PC %#lx, fault %d/%d at %#lx\n", |
| 600 | old_pc, fault_num, write, address); |
| 601 | } |
| 602 | |
| 603 | /* We might be faulting on a vmalloc page, so check that first. */ |
| 604 | if (fault_num != INT_DTLB_ACCESS && vmalloc_fault(pgd, address) >= 0) |
| 605 | return state; |
| 606 | |
| 607 | /* |
| 608 | * If we faulted with ICS set in sys_cmpxchg, we are providing |
| 609 | * a user syscall service that should generate a signal on |
| 610 | * fault. We didn't set up a kernel stack on initial entry to |
| 611 | * sys_cmpxchg, but instead had one set up by the fault, which |
| 612 | * (because sys_cmpxchg never releases ICS) came to us via the |
| 613 | * SYSTEM_SAVE_1_2 mechanism, and thus EX_CONTEXT_1_[01] are |
| 614 | * still referencing the original user code. We release the |
| 615 | * atomic lock and rewrite pt_regs so that it appears that we |
| 616 | * came from user-space directly, and after we finish the |
| 617 | * fault we'll go back to user space and re-issue the swint. |
| 618 | * This way the backtrace information is correct if we need to |
| 619 | * emit a stack dump at any point while handling this. |
| 620 | * |
| 621 | * Must match register use in sys_cmpxchg(). |
| 622 | */ |
| 623 | if (pc >= (unsigned long) sys_cmpxchg && |
| 624 | pc < (unsigned long) __sys_cmpxchg_end) { |
| 625 | #ifdef CONFIG_SMP |
| 626 | /* Don't unlock before we could have locked. */ |
| 627 | if (pc >= (unsigned long)__sys_cmpxchg_grab_lock) { |
| 628 | int *lock_ptr = (int *)(regs->regs[ATOMIC_LOCK_REG]); |
| 629 | __atomic_fault_unlock(lock_ptr); |
| 630 | } |
| 631 | #endif |
| 632 | regs->sp = regs->regs[27]; |
| 633 | } |
| 634 | |
| 635 | /* |
| 636 | * We can also fault in the atomic assembly, in which |
| 637 | * case we use the exception table to do the first-level fixup. |
| 638 | * We may re-fixup again in the real fault handler if it |
| 639 | * turns out the faulting address is just bad, and not, |
| 640 | * for example, migrating. |
| 641 | */ |
| 642 | else if (pc >= (unsigned long) __start_atomic_asm_code && |
| 643 | pc < (unsigned long) __end_atomic_asm_code) { |
| 644 | const struct exception_table_entry *fixup; |
| 645 | #ifdef CONFIG_SMP |
| 646 | /* Unlock the atomic lock. */ |
| 647 | int *lock_ptr = (int *)(regs->regs[ATOMIC_LOCK_REG]); |
| 648 | __atomic_fault_unlock(lock_ptr); |
| 649 | #endif |
| 650 | fixup = search_exception_tables(pc); |
| 651 | if (!fixup) |
| 652 | ics_panic("ICS atomic fault not in table:" |
| 653 | " PC %#lx, fault %d", pc, fault_num); |
| 654 | regs->pc = fixup->fixup; |
| 655 | regs->ex1 = PL_ICS_EX1(KERNEL_PL, 0); |
| 656 | } |
| 657 | |
| 658 | /* |
| 659 | * NOTE: the one other type of access that might bring us here |
| 660 | * are the memory ops in __tns_atomic_acquire/__tns_atomic_release, |
| 661 | * but we don't have to check specially for them since we can |
| 662 | * always safely return to the address of the fault and retry, |
| 663 | * since no separate atomic locks are involved. |
| 664 | */ |
| 665 | |
| 666 | /* |
| 667 | * Now that we have released the atomic lock (if necessary), |
| 668 | * it's safe to spin if the PTE that caused the fault was migrating. |
| 669 | */ |
| 670 | if (fault_num == INT_DTLB_ACCESS) |
| 671 | write = 1; |
| 672 | if (handle_migrating_pte(pgd, fault_num, address, 1, write)) |
| 673 | return state; |
| 674 | |
| 675 | /* Return zero so that we continue on with normal fault handling. */ |
| 676 | state.retval = 0; |
| 677 | return state; |
| 678 | } |
| 679 | |
| 680 | #endif /* !__tilegx__ */ |
| 681 | |
| 682 | /* |
| 683 | * This routine handles page faults. It determines the address, and the |
| 684 | * problem, and then passes it handle_page_fault() for normal DTLB and |
| 685 | * ITLB issues, and for DMA or SN processor faults when we are in user |
| 686 | * space. For the latter, if we're in kernel mode, we just save the |
| 687 | * interrupt away appropriately and return immediately. We can't do |
| 688 | * page faults for user code while in kernel mode. |
| 689 | */ |
| 690 | void do_page_fault(struct pt_regs *regs, int fault_num, |
| 691 | unsigned long address, unsigned long write) |
| 692 | { |
| 693 | int is_page_fault; |
| 694 | |
| 695 | /* This case should have been handled by do_page_fault_ics(). */ |
| 696 | BUG_ON(write & ~1); |
| 697 | |
| 698 | #if CHIP_HAS_TILE_DMA() |
| 699 | /* |
| 700 | * If it's a DMA fault, suspend the transfer while we're |
| 701 | * handling the miss; we'll restart after it's handled. If we |
| 702 | * don't suspend, it's possible that this process could swap |
| 703 | * out and back in, and restart the engine since the DMA is |
| 704 | * still 'running'. |
| 705 | */ |
| 706 | if (fault_num == INT_DMATLB_MISS || |
| 707 | fault_num == INT_DMATLB_ACCESS || |
| 708 | fault_num == INT_DMATLB_MISS_DWNCL || |
| 709 | fault_num == INT_DMATLB_ACCESS_DWNCL) { |
| 710 | __insn_mtspr(SPR_DMA_CTR, SPR_DMA_CTR__SUSPEND_MASK); |
| 711 | while (__insn_mfspr(SPR_DMA_USER_STATUS) & |
| 712 | SPR_DMA_STATUS__BUSY_MASK) |
| 713 | ; |
| 714 | } |
| 715 | #endif |
| 716 | |
| 717 | /* Validate fault num and decide if this is a first-time page fault. */ |
| 718 | switch (fault_num) { |
| 719 | case INT_ITLB_MISS: |
| 720 | case INT_DTLB_MISS: |
| 721 | #if CHIP_HAS_TILE_DMA() |
| 722 | case INT_DMATLB_MISS: |
| 723 | case INT_DMATLB_MISS_DWNCL: |
| 724 | #endif |
| 725 | #if CHIP_HAS_SN_PROC() |
| 726 | case INT_SNITLB_MISS: |
| 727 | case INT_SNITLB_MISS_DWNCL: |
| 728 | #endif |
| 729 | is_page_fault = 1; |
| 730 | break; |
| 731 | |
| 732 | case INT_DTLB_ACCESS: |
| 733 | #if CHIP_HAS_TILE_DMA() |
| 734 | case INT_DMATLB_ACCESS: |
| 735 | case INT_DMATLB_ACCESS_DWNCL: |
| 736 | #endif |
| 737 | is_page_fault = 0; |
| 738 | break; |
| 739 | |
| 740 | default: |
| 741 | panic("Bad fault number %d in do_page_fault", fault_num); |
| 742 | } |
| 743 | |
| 744 | if (EX1_PL(regs->ex1) != USER_PL) { |
| 745 | struct async_tlb *async; |
| 746 | switch (fault_num) { |
| 747 | #if CHIP_HAS_TILE_DMA() |
| 748 | case INT_DMATLB_MISS: |
| 749 | case INT_DMATLB_ACCESS: |
| 750 | case INT_DMATLB_MISS_DWNCL: |
| 751 | case INT_DMATLB_ACCESS_DWNCL: |
| 752 | async = ¤t->thread.dma_async_tlb; |
| 753 | break; |
| 754 | #endif |
| 755 | #if CHIP_HAS_SN_PROC() |
| 756 | case INT_SNITLB_MISS: |
| 757 | case INT_SNITLB_MISS_DWNCL: |
| 758 | async = ¤t->thread.sn_async_tlb; |
| 759 | break; |
| 760 | #endif |
| 761 | default: |
| 762 | async = NULL; |
| 763 | } |
| 764 | if (async) { |
| 765 | |
| 766 | /* |
| 767 | * No vmalloc check required, so we can allow |
| 768 | * interrupts immediately at this point. |
| 769 | */ |
| 770 | local_irq_enable(); |
| 771 | |
| 772 | set_thread_flag(TIF_ASYNC_TLB); |
| 773 | if (async->fault_num != 0) { |
| 774 | panic("Second async fault %d;" |
| 775 | " old fault was %d (%#lx/%ld)", |
| 776 | fault_num, async->fault_num, |
| 777 | address, write); |
| 778 | } |
| 779 | BUG_ON(fault_num == 0); |
| 780 | async->fault_num = fault_num; |
| 781 | async->is_fault = is_page_fault; |
| 782 | async->is_write = write; |
| 783 | async->address = address; |
| 784 | return; |
| 785 | } |
| 786 | } |
| 787 | |
| 788 | handle_page_fault(regs, fault_num, is_page_fault, address, write); |
| 789 | } |
| 790 | |
| 791 | |
| 792 | #if CHIP_HAS_TILE_DMA() || CHIP_HAS_SN_PROC() |
| 793 | /* |
| 794 | * Check an async_tlb structure to see if a deferred fault is waiting, |
| 795 | * and if so pass it to the page-fault code. |
| 796 | */ |
| 797 | static void handle_async_page_fault(struct pt_regs *regs, |
| 798 | struct async_tlb *async) |
| 799 | { |
| 800 | if (async->fault_num) { |
| 801 | /* |
| 802 | * Clear async->fault_num before calling the page-fault |
| 803 | * handler so that if we re-interrupt before returning |
| 804 | * from the function we have somewhere to put the |
| 805 | * information from the new interrupt. |
| 806 | */ |
| 807 | int fault_num = async->fault_num; |
| 808 | async->fault_num = 0; |
| 809 | handle_page_fault(regs, fault_num, async->is_fault, |
| 810 | async->address, async->is_write); |
| 811 | } |
| 812 | } |
| 813 | #endif /* CHIP_HAS_TILE_DMA() || CHIP_HAS_SN_PROC() */ |
| 814 | |
| 815 | |
| 816 | /* |
| 817 | * This routine effectively re-issues asynchronous page faults |
| 818 | * when we are returning to user space. |
| 819 | */ |
| 820 | void do_async_page_fault(struct pt_regs *regs) |
| 821 | { |
| 822 | /* |
| 823 | * Clear thread flag early. If we re-interrupt while processing |
| 824 | * code here, we will reset it and recall this routine before |
| 825 | * returning to user space. |
| 826 | */ |
| 827 | clear_thread_flag(TIF_ASYNC_TLB); |
| 828 | |
| 829 | #if CHIP_HAS_TILE_DMA() |
| 830 | handle_async_page_fault(regs, ¤t->thread.dma_async_tlb); |
| 831 | #endif |
| 832 | #if CHIP_HAS_SN_PROC() |
| 833 | handle_async_page_fault(regs, ¤t->thread.sn_async_tlb); |
| 834 | #endif |
| 835 | } |
| 836 | |
| 837 | void vmalloc_sync_all(void) |
| 838 | { |
| 839 | #ifdef __tilegx__ |
| 840 | /* Currently all L1 kernel pmd's are static and shared. */ |
| 841 | BUG_ON(pgd_index(VMALLOC_END) != pgd_index(VMALLOC_START)); |
| 842 | #else |
| 843 | /* |
| 844 | * Note that races in the updates of insync and start aren't |
| 845 | * problematic: insync can only get set bits added, and updates to |
| 846 | * start are only improving performance (without affecting correctness |
| 847 | * if undone). |
| 848 | */ |
| 849 | static DECLARE_BITMAP(insync, PTRS_PER_PGD); |
| 850 | static unsigned long start = PAGE_OFFSET; |
| 851 | unsigned long address; |
| 852 | |
| 853 | BUILD_BUG_ON(PAGE_OFFSET & ~PGDIR_MASK); |
| 854 | for (address = start; address >= PAGE_OFFSET; address += PGDIR_SIZE) { |
| 855 | if (!test_bit(pgd_index(address), insync)) { |
| 856 | unsigned long flags; |
| 857 | struct list_head *pos; |
| 858 | |
| 859 | spin_lock_irqsave(&pgd_lock, flags); |
| 860 | list_for_each(pos, &pgd_list) |
| 861 | if (!vmalloc_sync_one(list_to_pgd(pos), |
| 862 | address)) { |
| 863 | /* Must be at first entry in list. */ |
| 864 | BUG_ON(pos != pgd_list.next); |
| 865 | break; |
| 866 | } |
| 867 | spin_unlock_irqrestore(&pgd_lock, flags); |
| 868 | if (pos != pgd_list.next) |
| 869 | set_bit(pgd_index(address), insync); |
| 870 | } |
| 871 | if (address == start && test_bit(pgd_index(address), insync)) |
| 872 | start = address + PGDIR_SIZE; |
| 873 | } |
| 874 | #endif |
| 875 | } |