Varun Wadekar | f1df57d | 2012-01-13 16:38:37 +1100 | [diff] [blame] | 1 | /* |
| 2 | * drivers/crypto/tegra-aes.c |
| 3 | * |
| 4 | * Driver for NVIDIA Tegra AES hardware engine residing inside the |
| 5 | * Bit Stream Engine for Video (BSEV) hardware block. |
| 6 | * |
| 7 | * The programming sequence for this engine is with the help |
| 8 | * of commands which travel via a command queue residing between the |
| 9 | * CPU and the BSEV block. The BSEV engine has an internal RAM (VRAM) |
| 10 | * where the final input plaintext, keys and the IV have to be copied |
| 11 | * before starting the encrypt/decrypt operation. |
| 12 | * |
| 13 | * Copyright (c) 2010, NVIDIA Corporation. |
| 14 | * |
| 15 | * This program is free software; you can redistribute it and/or modify |
| 16 | * it under the terms of the GNU General Public License as published by |
| 17 | * the Free Software Foundation; either version 2 of the License, or |
| 18 | * (at your option) any later version. |
| 19 | * |
| 20 | * This program is distributed in the hope that it will be useful, but WITHOUT |
| 21 | * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or |
| 22 | * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for |
| 23 | * more details. |
| 24 | * |
| 25 | * You should have received a copy of the GNU General Public License along |
| 26 | * with this program; if not, write to the Free Software Foundation, Inc., |
| 27 | * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. |
| 28 | */ |
| 29 | |
| 30 | #include <linux/module.h> |
| 31 | #include <linux/init.h> |
| 32 | #include <linux/errno.h> |
| 33 | #include <linux/kernel.h> |
| 34 | #include <linux/clk.h> |
| 35 | #include <linux/platform_device.h> |
| 36 | #include <linux/scatterlist.h> |
| 37 | #include <linux/dma-mapping.h> |
| 38 | #include <linux/io.h> |
| 39 | #include <linux/mutex.h> |
| 40 | #include <linux/interrupt.h> |
| 41 | #include <linux/completion.h> |
| 42 | #include <linux/workqueue.h> |
| 43 | |
| 44 | #include <mach/clk.h> |
| 45 | |
| 46 | #include <crypto/scatterwalk.h> |
| 47 | #include <crypto/aes.h> |
| 48 | #include <crypto/internal/rng.h> |
| 49 | |
| 50 | #include "tegra-aes.h" |
| 51 | |
| 52 | #define FLAGS_MODE_MASK 0x00FF |
| 53 | #define FLAGS_ENCRYPT BIT(0) |
| 54 | #define FLAGS_CBC BIT(1) |
| 55 | #define FLAGS_GIV BIT(2) |
| 56 | #define FLAGS_RNG BIT(3) |
| 57 | #define FLAGS_OFB BIT(4) |
| 58 | #define FLAGS_NEW_KEY BIT(5) |
| 59 | #define FLAGS_NEW_IV BIT(6) |
| 60 | #define FLAGS_INIT BIT(7) |
| 61 | #define FLAGS_FAST BIT(8) |
| 62 | #define FLAGS_BUSY 9 |
| 63 | |
| 64 | /* |
| 65 | * Defines AES engine Max process bytes size in one go, which takes 1 msec. |
| 66 | * AES engine spends about 176 cycles/16-bytes or 11 cycles/byte |
| 67 | * The duration CPU can use the BSE to 1 msec, then the number of available |
| 68 | * cycles of AVP/BSE is 216K. In this duration, AES can process 216/11 ~= 19KB |
| 69 | * Based on this AES_HW_DMA_BUFFER_SIZE_BYTES is configured to 16KB. |
| 70 | */ |
| 71 | #define AES_HW_DMA_BUFFER_SIZE_BYTES 0x4000 |
| 72 | |
| 73 | /* |
| 74 | * The key table length is 64 bytes |
| 75 | * (This includes first upto 32 bytes key + 16 bytes original initial vector |
| 76 | * and 16 bytes updated initial vector) |
| 77 | */ |
| 78 | #define AES_HW_KEY_TABLE_LENGTH_BYTES 64 |
| 79 | |
| 80 | /* |
| 81 | * The memory being used is divides as follows: |
| 82 | * 1. Key - 32 bytes |
| 83 | * 2. Original IV - 16 bytes |
| 84 | * 3. Updated IV - 16 bytes |
| 85 | * 4. Key schedule - 256 bytes |
| 86 | * |
| 87 | * 1+2+3 constitute the hw key table. |
| 88 | */ |
| 89 | #define AES_HW_IV_SIZE 16 |
| 90 | #define AES_HW_KEYSCHEDULE_LEN 256 |
| 91 | #define AES_IVKEY_SIZE (AES_HW_KEY_TABLE_LENGTH_BYTES + AES_HW_KEYSCHEDULE_LEN) |
| 92 | |
| 93 | /* Define commands required for AES operation */ |
| 94 | enum { |
| 95 | CMD_BLKSTARTENGINE = 0x0E, |
| 96 | CMD_DMASETUP = 0x10, |
| 97 | CMD_DMACOMPLETE = 0x11, |
| 98 | CMD_SETTABLE = 0x15, |
| 99 | CMD_MEMDMAVD = 0x22, |
| 100 | }; |
| 101 | |
| 102 | /* Define sub-commands */ |
| 103 | enum { |
| 104 | SUBCMD_VRAM_SEL = 0x1, |
| 105 | SUBCMD_CRYPTO_TABLE_SEL = 0x3, |
| 106 | SUBCMD_KEY_TABLE_SEL = 0x8, |
| 107 | }; |
| 108 | |
| 109 | /* memdma_vd command */ |
| 110 | #define MEMDMA_DIR_DTOVRAM 0 /* sdram -> vram */ |
| 111 | #define MEMDMA_DIR_VTODRAM 1 /* vram -> sdram */ |
| 112 | #define MEMDMA_DIR_SHIFT 25 |
| 113 | #define MEMDMA_NUM_WORDS_SHIFT 12 |
| 114 | |
| 115 | /* command queue bit shifts */ |
| 116 | enum { |
| 117 | CMDQ_KEYTABLEADDR_SHIFT = 0, |
| 118 | CMDQ_KEYTABLEID_SHIFT = 17, |
| 119 | CMDQ_VRAMSEL_SHIFT = 23, |
| 120 | CMDQ_TABLESEL_SHIFT = 24, |
| 121 | CMDQ_OPCODE_SHIFT = 26, |
| 122 | }; |
| 123 | |
| 124 | /* |
| 125 | * The secure key slot contains a unique secure key generated |
| 126 | * and loaded by the bootloader. This slot is marked as non-accessible |
| 127 | * to the kernel. |
| 128 | */ |
| 129 | #define SSK_SLOT_NUM 4 |
| 130 | |
| 131 | #define AES_NR_KEYSLOTS 8 |
| 132 | #define TEGRA_AES_QUEUE_LENGTH 50 |
| 133 | #define DEFAULT_RNG_BLK_SZ 16 |
| 134 | |
| 135 | /* The command queue depth */ |
| 136 | #define AES_HW_MAX_ICQ_LENGTH 5 |
| 137 | |
| 138 | struct tegra_aes_slot { |
| 139 | struct list_head node; |
| 140 | int slot_num; |
| 141 | }; |
| 142 | |
| 143 | static struct tegra_aes_slot ssk = { |
| 144 | .slot_num = SSK_SLOT_NUM, |
| 145 | }; |
| 146 | |
| 147 | struct tegra_aes_reqctx { |
| 148 | unsigned long mode; |
| 149 | }; |
| 150 | |
| 151 | struct tegra_aes_dev { |
| 152 | struct device *dev; |
| 153 | void __iomem *io_base; |
| 154 | dma_addr_t ivkey_phys_base; |
| 155 | void __iomem *ivkey_base; |
| 156 | struct clk *aes_clk; |
| 157 | struct tegra_aes_ctx *ctx; |
| 158 | int irq; |
| 159 | unsigned long flags; |
| 160 | struct completion op_complete; |
| 161 | u32 *buf_in; |
| 162 | dma_addr_t dma_buf_in; |
| 163 | u32 *buf_out; |
| 164 | dma_addr_t dma_buf_out; |
| 165 | u8 *iv; |
| 166 | u8 dt[DEFAULT_RNG_BLK_SZ]; |
| 167 | int ivlen; |
| 168 | u64 ctr; |
| 169 | spinlock_t lock; |
| 170 | struct crypto_queue queue; |
| 171 | struct tegra_aes_slot *slots; |
| 172 | struct ablkcipher_request *req; |
| 173 | size_t total; |
| 174 | struct scatterlist *in_sg; |
| 175 | size_t in_offset; |
| 176 | struct scatterlist *out_sg; |
| 177 | size_t out_offset; |
| 178 | }; |
| 179 | |
| 180 | static struct tegra_aes_dev *aes_dev; |
| 181 | |
| 182 | struct tegra_aes_ctx { |
| 183 | struct tegra_aes_dev *dd; |
| 184 | unsigned long flags; |
| 185 | struct tegra_aes_slot *slot; |
| 186 | u8 key[AES_MAX_KEY_SIZE]; |
| 187 | size_t keylen; |
| 188 | }; |
| 189 | |
| 190 | static struct tegra_aes_ctx rng_ctx = { |
| 191 | .flags = FLAGS_NEW_KEY, |
| 192 | .keylen = AES_KEYSIZE_128, |
| 193 | }; |
| 194 | |
| 195 | /* keep registered devices data here */ |
| 196 | static struct list_head dev_list; |
| 197 | static DEFINE_SPINLOCK(list_lock); |
| 198 | static DEFINE_MUTEX(aes_lock); |
| 199 | |
| 200 | static void aes_workqueue_handler(struct work_struct *work); |
| 201 | static DECLARE_WORK(aes_work, aes_workqueue_handler); |
| 202 | static struct workqueue_struct *aes_wq; |
| 203 | |
| 204 | extern unsigned long long tegra_chip_uid(void); |
| 205 | |
| 206 | static inline u32 aes_readl(struct tegra_aes_dev *dd, u32 offset) |
| 207 | { |
| 208 | return readl(dd->io_base + offset); |
| 209 | } |
| 210 | |
| 211 | static inline void aes_writel(struct tegra_aes_dev *dd, u32 val, u32 offset) |
| 212 | { |
| 213 | writel(val, dd->io_base + offset); |
| 214 | } |
| 215 | |
| 216 | static int aes_start_crypt(struct tegra_aes_dev *dd, u32 in_addr, u32 out_addr, |
| 217 | int nblocks, int mode, bool upd_iv) |
| 218 | { |
| 219 | u32 cmdq[AES_HW_MAX_ICQ_LENGTH]; |
| 220 | int i, eng_busy, icq_empty, ret; |
| 221 | u32 value; |
| 222 | |
| 223 | /* reset all the interrupt bits */ |
| 224 | aes_writel(dd, 0xFFFFFFFF, TEGRA_AES_INTR_STATUS); |
| 225 | |
| 226 | /* enable error, dma xfer complete interrupts */ |
| 227 | aes_writel(dd, 0x33, TEGRA_AES_INT_ENB); |
| 228 | |
| 229 | cmdq[0] = CMD_DMASETUP << CMDQ_OPCODE_SHIFT; |
| 230 | cmdq[1] = in_addr; |
| 231 | cmdq[2] = CMD_BLKSTARTENGINE << CMDQ_OPCODE_SHIFT | (nblocks-1); |
| 232 | cmdq[3] = CMD_DMACOMPLETE << CMDQ_OPCODE_SHIFT; |
| 233 | |
| 234 | value = aes_readl(dd, TEGRA_AES_CMDQUE_CONTROL); |
| 235 | /* access SDRAM through AHB */ |
| 236 | value &= ~TEGRA_AES_CMDQ_CTRL_SRC_STM_SEL_FIELD; |
| 237 | value &= ~TEGRA_AES_CMDQ_CTRL_DST_STM_SEL_FIELD; |
| 238 | value |= TEGRA_AES_CMDQ_CTRL_SRC_STM_SEL_FIELD | |
| 239 | TEGRA_AES_CMDQ_CTRL_DST_STM_SEL_FIELD | |
| 240 | TEGRA_AES_CMDQ_CTRL_ICMDQEN_FIELD; |
| 241 | aes_writel(dd, value, TEGRA_AES_CMDQUE_CONTROL); |
| 242 | dev_dbg(dd->dev, "cmd_q_ctrl=0x%x", value); |
| 243 | |
| 244 | value = (0x1 << TEGRA_AES_SECURE_INPUT_ALG_SEL_SHIFT) | |
| 245 | ((dd->ctx->keylen * 8) << |
| 246 | TEGRA_AES_SECURE_INPUT_KEY_LEN_SHIFT) | |
| 247 | ((u32)upd_iv << TEGRA_AES_SECURE_IV_SELECT_SHIFT); |
| 248 | |
| 249 | if (mode & FLAGS_CBC) { |
| 250 | value |= ((((mode & FLAGS_ENCRYPT) ? 2 : 3) |
| 251 | << TEGRA_AES_SECURE_XOR_POS_SHIFT) | |
| 252 | (((mode & FLAGS_ENCRYPT) ? 2 : 3) |
| 253 | << TEGRA_AES_SECURE_VCTRAM_SEL_SHIFT) | |
| 254 | ((mode & FLAGS_ENCRYPT) ? 1 : 0) |
| 255 | << TEGRA_AES_SECURE_CORE_SEL_SHIFT); |
| 256 | } else if (mode & FLAGS_OFB) { |
| 257 | value |= ((TEGRA_AES_SECURE_XOR_POS_FIELD) | |
| 258 | (2 << TEGRA_AES_SECURE_INPUT_SEL_SHIFT) | |
| 259 | (TEGRA_AES_SECURE_CORE_SEL_FIELD)); |
| 260 | } else if (mode & FLAGS_RNG) { |
| 261 | value |= (((mode & FLAGS_ENCRYPT) ? 1 : 0) |
| 262 | << TEGRA_AES_SECURE_CORE_SEL_SHIFT | |
| 263 | TEGRA_AES_SECURE_RNG_ENB_FIELD); |
| 264 | } else { |
| 265 | value |= (((mode & FLAGS_ENCRYPT) ? 1 : 0) |
| 266 | << TEGRA_AES_SECURE_CORE_SEL_SHIFT); |
| 267 | } |
| 268 | |
| 269 | dev_dbg(dd->dev, "secure_in_sel=0x%x", value); |
| 270 | aes_writel(dd, value, TEGRA_AES_SECURE_INPUT_SELECT); |
| 271 | |
| 272 | aes_writel(dd, out_addr, TEGRA_AES_SECURE_DEST_ADDR); |
| 273 | INIT_COMPLETION(dd->op_complete); |
| 274 | |
| 275 | for (i = 0; i < AES_HW_MAX_ICQ_LENGTH - 1; i++) { |
| 276 | do { |
| 277 | value = aes_readl(dd, TEGRA_AES_INTR_STATUS); |
| 278 | eng_busy = value & TEGRA_AES_ENGINE_BUSY_FIELD; |
| 279 | icq_empty = value & TEGRA_AES_ICQ_EMPTY_FIELD; |
| 280 | } while (eng_busy & (!icq_empty)); |
| 281 | aes_writel(dd, cmdq[i], TEGRA_AES_ICMDQUE_WR); |
| 282 | } |
| 283 | |
| 284 | ret = wait_for_completion_timeout(&dd->op_complete, |
| 285 | msecs_to_jiffies(150)); |
| 286 | if (ret == 0) { |
| 287 | dev_err(dd->dev, "timed out (0x%x)\n", |
| 288 | aes_readl(dd, TEGRA_AES_INTR_STATUS)); |
| 289 | return -ETIMEDOUT; |
| 290 | } |
| 291 | |
| 292 | aes_writel(dd, cmdq[AES_HW_MAX_ICQ_LENGTH - 1], TEGRA_AES_ICMDQUE_WR); |
| 293 | return 0; |
| 294 | } |
| 295 | |
| 296 | static void aes_release_key_slot(struct tegra_aes_slot *slot) |
| 297 | { |
| 298 | if (slot->slot_num == SSK_SLOT_NUM) |
| 299 | return; |
| 300 | |
| 301 | spin_lock(&list_lock); |
| 302 | list_add_tail(&slot->node, &dev_list); |
| 303 | slot = NULL; |
| 304 | spin_unlock(&list_lock); |
| 305 | } |
| 306 | |
| 307 | static struct tegra_aes_slot *aes_find_key_slot(void) |
| 308 | { |
| 309 | struct tegra_aes_slot *slot = NULL; |
| 310 | struct list_head *new_head; |
| 311 | int empty; |
| 312 | |
| 313 | spin_lock(&list_lock); |
| 314 | empty = list_empty(&dev_list); |
| 315 | if (!empty) { |
| 316 | slot = list_entry(&dev_list, struct tegra_aes_slot, node); |
| 317 | new_head = dev_list.next; |
| 318 | list_del(&dev_list); |
| 319 | dev_list.next = new_head->next; |
| 320 | dev_list.prev = NULL; |
| 321 | } |
| 322 | spin_unlock(&list_lock); |
| 323 | |
| 324 | return slot; |
| 325 | } |
| 326 | |
| 327 | static int aes_set_key(struct tegra_aes_dev *dd) |
| 328 | { |
| 329 | u32 value, cmdq[2]; |
| 330 | struct tegra_aes_ctx *ctx = dd->ctx; |
| 331 | int eng_busy, icq_empty, dma_busy; |
| 332 | bool use_ssk = false; |
| 333 | |
| 334 | /* use ssk? */ |
| 335 | if (!dd->ctx->slot) { |
| 336 | dev_dbg(dd->dev, "using ssk"); |
| 337 | dd->ctx->slot = &ssk; |
| 338 | use_ssk = true; |
| 339 | } |
| 340 | |
| 341 | /* enable key schedule generation in hardware */ |
| 342 | value = aes_readl(dd, TEGRA_AES_SECURE_CONFIG_EXT); |
| 343 | value &= ~TEGRA_AES_SECURE_KEY_SCH_DIS_FIELD; |
| 344 | aes_writel(dd, value, TEGRA_AES_SECURE_CONFIG_EXT); |
| 345 | |
| 346 | /* select the key slot */ |
| 347 | value = aes_readl(dd, TEGRA_AES_SECURE_CONFIG); |
| 348 | value &= ~TEGRA_AES_SECURE_KEY_INDEX_FIELD; |
| 349 | value |= (ctx->slot->slot_num << TEGRA_AES_SECURE_KEY_INDEX_SHIFT); |
| 350 | aes_writel(dd, value, TEGRA_AES_SECURE_CONFIG); |
| 351 | |
| 352 | if (use_ssk) |
| 353 | return 0; |
| 354 | |
| 355 | /* copy the key table from sdram to vram */ |
| 356 | cmdq[0] = CMD_MEMDMAVD << CMDQ_OPCODE_SHIFT | |
| 357 | MEMDMA_DIR_DTOVRAM << MEMDMA_DIR_SHIFT | |
| 358 | AES_HW_KEY_TABLE_LENGTH_BYTES / sizeof(u32) << |
| 359 | MEMDMA_NUM_WORDS_SHIFT; |
| 360 | cmdq[1] = (u32)dd->ivkey_phys_base; |
| 361 | |
| 362 | aes_writel(dd, cmdq[0], TEGRA_AES_ICMDQUE_WR); |
| 363 | aes_writel(dd, cmdq[1], TEGRA_AES_ICMDQUE_WR); |
| 364 | |
| 365 | do { |
| 366 | value = aes_readl(dd, TEGRA_AES_INTR_STATUS); |
| 367 | eng_busy = value & TEGRA_AES_ENGINE_BUSY_FIELD; |
| 368 | icq_empty = value & TEGRA_AES_ICQ_EMPTY_FIELD; |
| 369 | dma_busy = value & TEGRA_AES_DMA_BUSY_FIELD; |
| 370 | } while (eng_busy & (!icq_empty) & dma_busy); |
| 371 | |
| 372 | /* settable command to get key into internal registers */ |
| 373 | value = CMD_SETTABLE << CMDQ_OPCODE_SHIFT | |
| 374 | SUBCMD_CRYPTO_TABLE_SEL << CMDQ_TABLESEL_SHIFT | |
| 375 | SUBCMD_VRAM_SEL << CMDQ_VRAMSEL_SHIFT | |
| 376 | (SUBCMD_KEY_TABLE_SEL | ctx->slot->slot_num) << |
| 377 | CMDQ_KEYTABLEID_SHIFT; |
| 378 | aes_writel(dd, value, TEGRA_AES_ICMDQUE_WR); |
| 379 | |
| 380 | do { |
| 381 | value = aes_readl(dd, TEGRA_AES_INTR_STATUS); |
| 382 | eng_busy = value & TEGRA_AES_ENGINE_BUSY_FIELD; |
| 383 | icq_empty = value & TEGRA_AES_ICQ_EMPTY_FIELD; |
| 384 | } while (eng_busy & (!icq_empty)); |
| 385 | |
| 386 | return 0; |
| 387 | } |
| 388 | |
| 389 | static int tegra_aes_handle_req(struct tegra_aes_dev *dd) |
| 390 | { |
| 391 | struct crypto_async_request *async_req, *backlog; |
| 392 | struct crypto_ablkcipher *tfm; |
| 393 | struct tegra_aes_ctx *ctx; |
| 394 | struct tegra_aes_reqctx *rctx; |
| 395 | struct ablkcipher_request *req; |
| 396 | unsigned long flags; |
| 397 | int dma_max = AES_HW_DMA_BUFFER_SIZE_BYTES; |
| 398 | int ret = 0, nblocks, total; |
| 399 | int count = 0; |
| 400 | dma_addr_t addr_in, addr_out; |
| 401 | struct scatterlist *in_sg, *out_sg; |
| 402 | |
| 403 | if (!dd) |
| 404 | return -EINVAL; |
| 405 | |
| 406 | spin_lock_irqsave(&dd->lock, flags); |
| 407 | backlog = crypto_get_backlog(&dd->queue); |
| 408 | async_req = crypto_dequeue_request(&dd->queue); |
| 409 | if (!async_req) |
| 410 | clear_bit(FLAGS_BUSY, &dd->flags); |
| 411 | spin_unlock_irqrestore(&dd->lock, flags); |
| 412 | |
| 413 | if (!async_req) |
| 414 | return -ENODATA; |
| 415 | |
| 416 | if (backlog) |
| 417 | backlog->complete(backlog, -EINPROGRESS); |
| 418 | |
| 419 | req = ablkcipher_request_cast(async_req); |
| 420 | |
| 421 | dev_dbg(dd->dev, "%s: get new req\n", __func__); |
| 422 | |
| 423 | if (!req->src || !req->dst) |
| 424 | return -EINVAL; |
| 425 | |
| 426 | /* take mutex to access the aes hw */ |
| 427 | mutex_lock(&aes_lock); |
| 428 | |
| 429 | /* assign new request to device */ |
| 430 | dd->req = req; |
| 431 | dd->total = req->nbytes; |
| 432 | dd->in_offset = 0; |
| 433 | dd->in_sg = req->src; |
| 434 | dd->out_offset = 0; |
| 435 | dd->out_sg = req->dst; |
| 436 | |
| 437 | in_sg = dd->in_sg; |
| 438 | out_sg = dd->out_sg; |
| 439 | |
| 440 | total = dd->total; |
| 441 | |
| 442 | tfm = crypto_ablkcipher_reqtfm(req); |
| 443 | rctx = ablkcipher_request_ctx(req); |
| 444 | ctx = crypto_ablkcipher_ctx(tfm); |
| 445 | rctx->mode &= FLAGS_MODE_MASK; |
| 446 | dd->flags = (dd->flags & ~FLAGS_MODE_MASK) | rctx->mode; |
| 447 | |
| 448 | dd->iv = (u8 *)req->info; |
| 449 | dd->ivlen = crypto_ablkcipher_ivsize(tfm); |
| 450 | |
| 451 | /* assign new context to device */ |
| 452 | ctx->dd = dd; |
| 453 | dd->ctx = ctx; |
| 454 | |
| 455 | if (ctx->flags & FLAGS_NEW_KEY) { |
| 456 | /* copy the key */ |
| 457 | memcpy(dd->ivkey_base, ctx->key, ctx->keylen); |
| 458 | memset(dd->ivkey_base + ctx->keylen, 0, AES_HW_KEY_TABLE_LENGTH_BYTES - ctx->keylen); |
| 459 | aes_set_key(dd); |
| 460 | ctx->flags &= ~FLAGS_NEW_KEY; |
| 461 | } |
| 462 | |
| 463 | if (((dd->flags & FLAGS_CBC) || (dd->flags & FLAGS_OFB)) && dd->iv) { |
| 464 | /* set iv to the aes hw slot |
| 465 | * Hw generates updated iv only after iv is set in slot. |
| 466 | * So key and iv is passed asynchronously. |
| 467 | */ |
| 468 | memcpy(dd->buf_in, dd->iv, dd->ivlen); |
| 469 | |
| 470 | ret = aes_start_crypt(dd, (u32)dd->dma_buf_in, |
| 471 | dd->dma_buf_out, 1, FLAGS_CBC, false); |
| 472 | if (ret < 0) { |
| 473 | dev_err(dd->dev, "aes_start_crypt fail(%d)\n", ret); |
| 474 | goto out; |
| 475 | } |
| 476 | } |
| 477 | |
| 478 | while (total) { |
| 479 | dev_dbg(dd->dev, "remain: %d\n", total); |
| 480 | ret = dma_map_sg(dd->dev, in_sg, 1, DMA_TO_DEVICE); |
| 481 | if (!ret) { |
| 482 | dev_err(dd->dev, "dma_map_sg() error\n"); |
| 483 | goto out; |
| 484 | } |
| 485 | |
| 486 | ret = dma_map_sg(dd->dev, out_sg, 1, DMA_FROM_DEVICE); |
| 487 | if (!ret) { |
| 488 | dev_err(dd->dev, "dma_map_sg() error\n"); |
| 489 | dma_unmap_sg(dd->dev, dd->in_sg, |
| 490 | 1, DMA_TO_DEVICE); |
| 491 | goto out; |
| 492 | } |
| 493 | |
| 494 | addr_in = sg_dma_address(in_sg); |
| 495 | addr_out = sg_dma_address(out_sg); |
| 496 | dd->flags |= FLAGS_FAST; |
| 497 | count = min_t(int, sg_dma_len(in_sg), dma_max); |
| 498 | WARN_ON(sg_dma_len(in_sg) != sg_dma_len(out_sg)); |
| 499 | nblocks = DIV_ROUND_UP(count, AES_BLOCK_SIZE); |
| 500 | |
| 501 | ret = aes_start_crypt(dd, addr_in, addr_out, nblocks, |
| 502 | dd->flags, true); |
| 503 | |
| 504 | dma_unmap_sg(dd->dev, out_sg, 1, DMA_FROM_DEVICE); |
| 505 | dma_unmap_sg(dd->dev, in_sg, 1, DMA_TO_DEVICE); |
| 506 | |
| 507 | if (ret < 0) { |
| 508 | dev_err(dd->dev, "aes_start_crypt fail(%d)\n", ret); |
| 509 | goto out; |
| 510 | } |
| 511 | dd->flags &= ~FLAGS_FAST; |
| 512 | |
| 513 | dev_dbg(dd->dev, "out: copied %d\n", count); |
| 514 | total -= count; |
| 515 | in_sg = sg_next(in_sg); |
| 516 | out_sg = sg_next(out_sg); |
| 517 | WARN_ON(((total != 0) && (!in_sg || !out_sg))); |
| 518 | } |
| 519 | |
| 520 | out: |
| 521 | mutex_unlock(&aes_lock); |
| 522 | |
| 523 | dd->total = total; |
| 524 | |
| 525 | if (dd->req->base.complete) |
| 526 | dd->req->base.complete(&dd->req->base, ret); |
| 527 | |
| 528 | dev_dbg(dd->dev, "%s: exit\n", __func__); |
| 529 | return ret; |
| 530 | } |
| 531 | |
| 532 | static int tegra_aes_setkey(struct crypto_ablkcipher *tfm, const u8 *key, |
| 533 | unsigned int keylen) |
| 534 | { |
| 535 | struct tegra_aes_ctx *ctx = crypto_ablkcipher_ctx(tfm); |
| 536 | struct tegra_aes_dev *dd = aes_dev; |
| 537 | struct tegra_aes_slot *key_slot; |
| 538 | |
| 539 | if ((keylen != AES_KEYSIZE_128) && (keylen != AES_KEYSIZE_192) && |
| 540 | (keylen != AES_KEYSIZE_256)) { |
| 541 | dev_err(dd->dev, "unsupported key size\n"); |
| 542 | crypto_ablkcipher_set_flags(tfm, CRYPTO_TFM_RES_BAD_KEY_LEN); |
| 543 | return -EINVAL; |
| 544 | } |
| 545 | |
| 546 | dev_dbg(dd->dev, "keylen: %d\n", keylen); |
| 547 | |
| 548 | ctx->dd = dd; |
| 549 | |
| 550 | if (key) { |
| 551 | if (!ctx->slot) { |
| 552 | key_slot = aes_find_key_slot(); |
| 553 | if (!key_slot) { |
| 554 | dev_err(dd->dev, "no empty slot\n"); |
| 555 | return -ENOMEM; |
| 556 | } |
| 557 | |
| 558 | ctx->slot = key_slot; |
| 559 | } |
| 560 | |
| 561 | memcpy(ctx->key, key, keylen); |
| 562 | ctx->keylen = keylen; |
| 563 | } |
| 564 | |
| 565 | ctx->flags |= FLAGS_NEW_KEY; |
| 566 | dev_dbg(dd->dev, "done\n"); |
| 567 | return 0; |
| 568 | } |
| 569 | |
| 570 | static void aes_workqueue_handler(struct work_struct *work) |
| 571 | { |
| 572 | struct tegra_aes_dev *dd = aes_dev; |
| 573 | int ret; |
| 574 | |
| 575 | ret = clk_enable(dd->aes_clk); |
| 576 | if (ret) |
| 577 | BUG_ON("clock enable failed"); |
| 578 | |
| 579 | /* empty the crypto queue and then return */ |
| 580 | do { |
| 581 | ret = tegra_aes_handle_req(dd); |
| 582 | } while (!ret); |
| 583 | |
| 584 | clk_disable(dd->aes_clk); |
| 585 | } |
| 586 | |
| 587 | static irqreturn_t aes_irq(int irq, void *dev_id) |
| 588 | { |
| 589 | struct tegra_aes_dev *dd = (struct tegra_aes_dev *)dev_id; |
| 590 | u32 value = aes_readl(dd, TEGRA_AES_INTR_STATUS); |
| 591 | int busy = test_bit(FLAGS_BUSY, &dd->flags); |
| 592 | |
| 593 | if (!busy) { |
| 594 | dev_dbg(dd->dev, "spurious interrupt\n"); |
| 595 | return IRQ_NONE; |
| 596 | } |
| 597 | |
| 598 | dev_dbg(dd->dev, "irq_stat: 0x%x\n", value); |
| 599 | if (value & TEGRA_AES_INT_ERROR_MASK) |
| 600 | aes_writel(dd, TEGRA_AES_INT_ERROR_MASK, TEGRA_AES_INTR_STATUS); |
| 601 | |
| 602 | if (!(value & TEGRA_AES_ENGINE_BUSY_FIELD)) |
| 603 | complete(&dd->op_complete); |
| 604 | else |
| 605 | return IRQ_NONE; |
| 606 | |
| 607 | return IRQ_HANDLED; |
| 608 | } |
| 609 | |
| 610 | static int tegra_aes_crypt(struct ablkcipher_request *req, unsigned long mode) |
| 611 | { |
| 612 | struct tegra_aes_reqctx *rctx = ablkcipher_request_ctx(req); |
| 613 | struct tegra_aes_dev *dd = aes_dev; |
| 614 | unsigned long flags; |
| 615 | int err = 0; |
| 616 | int busy; |
| 617 | |
| 618 | dev_dbg(dd->dev, "nbytes: %d, enc: %d, cbc: %d, ofb: %d\n", |
| 619 | req->nbytes, !!(mode & FLAGS_ENCRYPT), |
| 620 | !!(mode & FLAGS_CBC), !!(mode & FLAGS_OFB)); |
| 621 | |
| 622 | rctx->mode = mode; |
| 623 | |
| 624 | spin_lock_irqsave(&dd->lock, flags); |
| 625 | err = ablkcipher_enqueue_request(&dd->queue, req); |
| 626 | busy = test_and_set_bit(FLAGS_BUSY, &dd->flags); |
| 627 | spin_unlock_irqrestore(&dd->lock, flags); |
| 628 | |
| 629 | if (!busy) |
| 630 | queue_work(aes_wq, &aes_work); |
| 631 | |
| 632 | return err; |
| 633 | } |
| 634 | |
| 635 | static int tegra_aes_ecb_encrypt(struct ablkcipher_request *req) |
| 636 | { |
| 637 | return tegra_aes_crypt(req, FLAGS_ENCRYPT); |
| 638 | } |
| 639 | |
| 640 | static int tegra_aes_ecb_decrypt(struct ablkcipher_request *req) |
| 641 | { |
| 642 | return tegra_aes_crypt(req, 0); |
| 643 | } |
| 644 | |
| 645 | static int tegra_aes_cbc_encrypt(struct ablkcipher_request *req) |
| 646 | { |
| 647 | return tegra_aes_crypt(req, FLAGS_ENCRYPT | FLAGS_CBC); |
| 648 | } |
| 649 | |
| 650 | static int tegra_aes_cbc_decrypt(struct ablkcipher_request *req) |
| 651 | { |
| 652 | return tegra_aes_crypt(req, FLAGS_CBC); |
| 653 | } |
| 654 | |
| 655 | static int tegra_aes_ofb_encrypt(struct ablkcipher_request *req) |
| 656 | { |
| 657 | return tegra_aes_crypt(req, FLAGS_ENCRYPT | FLAGS_OFB); |
| 658 | } |
| 659 | |
| 660 | static int tegra_aes_ofb_decrypt(struct ablkcipher_request *req) |
| 661 | { |
| 662 | return tegra_aes_crypt(req, FLAGS_OFB); |
| 663 | } |
| 664 | |
| 665 | static int tegra_aes_get_random(struct crypto_rng *tfm, u8 *rdata, |
| 666 | unsigned int dlen) |
| 667 | { |
| 668 | struct tegra_aes_dev *dd = aes_dev; |
| 669 | struct tegra_aes_ctx *ctx = &rng_ctx; |
| 670 | int ret, i; |
| 671 | u8 *dest = rdata, *dt = dd->dt; |
| 672 | |
| 673 | /* take mutex to access the aes hw */ |
| 674 | mutex_lock(&aes_lock); |
| 675 | |
| 676 | ret = clk_enable(dd->aes_clk); |
| 677 | if (ret) |
| 678 | return ret; |
| 679 | |
| 680 | ctx->dd = dd; |
| 681 | dd->ctx = ctx; |
| 682 | dd->flags = FLAGS_ENCRYPT | FLAGS_RNG; |
| 683 | |
| 684 | memcpy(dd->buf_in, dt, DEFAULT_RNG_BLK_SZ); |
| 685 | |
| 686 | ret = aes_start_crypt(dd, (u32)dd->dma_buf_in, |
| 687 | (u32)dd->dma_buf_out, 1, dd->flags, true); |
| 688 | if (ret < 0) { |
| 689 | dev_err(dd->dev, "aes_start_crypt fail(%d)\n", ret); |
| 690 | dlen = ret; |
| 691 | goto out; |
| 692 | } |
| 693 | memcpy(dest, dd->buf_out, dlen); |
| 694 | |
| 695 | /* update the DT */ |
| 696 | for (i = DEFAULT_RNG_BLK_SZ - 1; i >= 0; i--) { |
| 697 | dt[i] += 1; |
| 698 | if (dt[i] != 0) |
| 699 | break; |
| 700 | } |
| 701 | |
| 702 | out: |
| 703 | clk_disable(dd->aes_clk); |
| 704 | mutex_unlock(&aes_lock); |
| 705 | |
| 706 | dev_dbg(dd->dev, "%s: done\n", __func__); |
| 707 | return dlen; |
| 708 | } |
| 709 | |
| 710 | static int tegra_aes_rng_reset(struct crypto_rng *tfm, u8 *seed, |
| 711 | unsigned int slen) |
| 712 | { |
| 713 | struct tegra_aes_dev *dd = aes_dev; |
| 714 | struct tegra_aes_ctx *ctx = &rng_ctx; |
| 715 | struct tegra_aes_slot *key_slot; |
| 716 | struct timespec ts; |
| 717 | int ret = 0; |
| 718 | u64 nsec, tmp[2]; |
| 719 | u8 *dt; |
| 720 | |
| 721 | if (!ctx || !dd) { |
| 722 | dev_err(dd->dev, "ctx=0x%x, dd=0x%x\n", |
| 723 | (unsigned int)ctx, (unsigned int)dd); |
| 724 | return -EINVAL; |
| 725 | } |
| 726 | |
| 727 | if (slen < (DEFAULT_RNG_BLK_SZ + AES_KEYSIZE_128)) { |
| 728 | dev_err(dd->dev, "seed size invalid"); |
| 729 | return -ENOMEM; |
| 730 | } |
| 731 | |
| 732 | /* take mutex to access the aes hw */ |
| 733 | mutex_lock(&aes_lock); |
| 734 | |
| 735 | if (!ctx->slot) { |
| 736 | key_slot = aes_find_key_slot(); |
| 737 | if (!key_slot) { |
| 738 | dev_err(dd->dev, "no empty slot\n"); |
| 739 | mutex_unlock(&aes_lock); |
| 740 | return -ENOMEM; |
| 741 | } |
| 742 | ctx->slot = key_slot; |
| 743 | } |
| 744 | |
| 745 | ctx->dd = dd; |
| 746 | dd->ctx = ctx; |
| 747 | dd->ctr = 0; |
| 748 | |
| 749 | ctx->keylen = AES_KEYSIZE_128; |
| 750 | ctx->flags |= FLAGS_NEW_KEY; |
| 751 | |
| 752 | /* copy the key to the key slot */ |
| 753 | memcpy(dd->ivkey_base, seed + DEFAULT_RNG_BLK_SZ, AES_KEYSIZE_128); |
| 754 | memset(dd->ivkey_base + AES_KEYSIZE_128, 0, AES_HW_KEY_TABLE_LENGTH_BYTES - AES_KEYSIZE_128); |
| 755 | |
| 756 | dd->iv = seed; |
| 757 | dd->ivlen = slen; |
| 758 | |
| 759 | dd->flags = FLAGS_ENCRYPT | FLAGS_RNG; |
| 760 | |
| 761 | ret = clk_enable(dd->aes_clk); |
| 762 | if (ret) |
| 763 | return ret; |
| 764 | |
| 765 | aes_set_key(dd); |
| 766 | |
| 767 | /* set seed to the aes hw slot */ |
| 768 | memcpy(dd->buf_in, dd->iv, DEFAULT_RNG_BLK_SZ); |
| 769 | ret = aes_start_crypt(dd, (u32)dd->dma_buf_in, |
| 770 | dd->dma_buf_out, 1, FLAGS_CBC, false); |
| 771 | if (ret < 0) { |
| 772 | dev_err(dd->dev, "aes_start_crypt fail(%d)\n", ret); |
| 773 | goto out; |
| 774 | } |
| 775 | |
| 776 | if (dd->ivlen >= (2 * DEFAULT_RNG_BLK_SZ + AES_KEYSIZE_128)) { |
| 777 | dt = dd->iv + DEFAULT_RNG_BLK_SZ + AES_KEYSIZE_128; |
| 778 | } else { |
| 779 | getnstimeofday(&ts); |
| 780 | nsec = timespec_to_ns(&ts); |
| 781 | do_div(nsec, 1000); |
| 782 | nsec ^= dd->ctr << 56; |
| 783 | dd->ctr++; |
| 784 | tmp[0] = nsec; |
| 785 | tmp[1] = tegra_chip_uid(); |
| 786 | dt = (u8 *)tmp; |
| 787 | } |
| 788 | memcpy(dd->dt, dt, DEFAULT_RNG_BLK_SZ); |
| 789 | |
| 790 | out: |
| 791 | clk_disable(dd->aes_clk); |
| 792 | mutex_unlock(&aes_lock); |
| 793 | |
| 794 | dev_dbg(dd->dev, "%s: done\n", __func__); |
| 795 | return ret; |
| 796 | } |
| 797 | |
| 798 | static int tegra_aes_cra_init(struct crypto_tfm *tfm) |
| 799 | { |
| 800 | tfm->crt_ablkcipher.reqsize = sizeof(struct tegra_aes_reqctx); |
| 801 | |
| 802 | return 0; |
| 803 | } |
| 804 | |
| 805 | void tegra_aes_cra_exit(struct crypto_tfm *tfm) |
| 806 | { |
| 807 | struct tegra_aes_ctx *ctx = |
| 808 | crypto_ablkcipher_ctx((struct crypto_ablkcipher *)tfm); |
| 809 | |
| 810 | if (ctx && ctx->slot) |
| 811 | aes_release_key_slot(ctx->slot); |
| 812 | } |
| 813 | |
| 814 | static struct crypto_alg algs[] = { |
| 815 | { |
| 816 | .cra_name = "ecb(aes)", |
| 817 | .cra_driver_name = "ecb-aes-tegra", |
| 818 | .cra_priority = 300, |
| 819 | .cra_flags = CRYPTO_ALG_TYPE_ABLKCIPHER | CRYPTO_ALG_ASYNC, |
| 820 | .cra_blocksize = AES_BLOCK_SIZE, |
| 821 | .cra_alignmask = 3, |
| 822 | .cra_type = &crypto_ablkcipher_type, |
| 823 | .cra_u.ablkcipher = { |
| 824 | .min_keysize = AES_MIN_KEY_SIZE, |
| 825 | .max_keysize = AES_MAX_KEY_SIZE, |
| 826 | .setkey = tegra_aes_setkey, |
| 827 | .encrypt = tegra_aes_ecb_encrypt, |
| 828 | .decrypt = tegra_aes_ecb_decrypt, |
| 829 | }, |
| 830 | }, { |
| 831 | .cra_name = "cbc(aes)", |
| 832 | .cra_driver_name = "cbc-aes-tegra", |
| 833 | .cra_priority = 300, |
| 834 | .cra_flags = CRYPTO_ALG_TYPE_ABLKCIPHER | CRYPTO_ALG_ASYNC, |
| 835 | .cra_blocksize = AES_BLOCK_SIZE, |
| 836 | .cra_alignmask = 3, |
| 837 | .cra_type = &crypto_ablkcipher_type, |
| 838 | .cra_u.ablkcipher = { |
| 839 | .min_keysize = AES_MIN_KEY_SIZE, |
| 840 | .max_keysize = AES_MAX_KEY_SIZE, |
| 841 | .ivsize = AES_MIN_KEY_SIZE, |
| 842 | .setkey = tegra_aes_setkey, |
| 843 | .encrypt = tegra_aes_cbc_encrypt, |
| 844 | .decrypt = tegra_aes_cbc_decrypt, |
| 845 | } |
| 846 | }, { |
| 847 | .cra_name = "ofb(aes)", |
| 848 | .cra_driver_name = "ofb-aes-tegra", |
| 849 | .cra_priority = 300, |
| 850 | .cra_flags = CRYPTO_ALG_TYPE_ABLKCIPHER | CRYPTO_ALG_ASYNC, |
| 851 | .cra_blocksize = AES_BLOCK_SIZE, |
| 852 | .cra_alignmask = 3, |
| 853 | .cra_type = &crypto_ablkcipher_type, |
| 854 | .cra_u.ablkcipher = { |
| 855 | .min_keysize = AES_MIN_KEY_SIZE, |
| 856 | .max_keysize = AES_MAX_KEY_SIZE, |
| 857 | .ivsize = AES_MIN_KEY_SIZE, |
| 858 | .setkey = tegra_aes_setkey, |
| 859 | .encrypt = tegra_aes_ofb_encrypt, |
| 860 | .decrypt = tegra_aes_ofb_decrypt, |
| 861 | } |
| 862 | }, { |
| 863 | .cra_name = "ansi_cprng", |
| 864 | .cra_driver_name = "rng-aes-tegra", |
| 865 | .cra_flags = CRYPTO_ALG_TYPE_RNG, |
| 866 | .cra_ctxsize = sizeof(struct tegra_aes_ctx), |
| 867 | .cra_type = &crypto_rng_type, |
| 868 | .cra_u.rng = { |
| 869 | .rng_make_random = tegra_aes_get_random, |
| 870 | .rng_reset = tegra_aes_rng_reset, |
| 871 | .seedsize = AES_KEYSIZE_128 + (2 * DEFAULT_RNG_BLK_SZ), |
| 872 | } |
| 873 | } |
| 874 | }; |
| 875 | |
| 876 | static int tegra_aes_probe(struct platform_device *pdev) |
| 877 | { |
| 878 | struct device *dev = &pdev->dev; |
| 879 | struct tegra_aes_dev *dd; |
| 880 | struct resource *res; |
| 881 | int err = -ENOMEM, i = 0, j; |
| 882 | |
| 883 | dd = devm_kzalloc(dev, sizeof(struct tegra_aes_dev), GFP_KERNEL); |
| 884 | if (dd == NULL) { |
| 885 | dev_err(dev, "unable to alloc data struct.\n"); |
| 886 | return err; |
| 887 | } |
| 888 | |
| 889 | dd->dev = dev; |
| 890 | platform_set_drvdata(pdev, dd); |
| 891 | |
| 892 | dd->slots = devm_kzalloc(dev, sizeof(struct tegra_aes_slot) * |
| 893 | AES_NR_KEYSLOTS, GFP_KERNEL); |
| 894 | if (dd->slots == NULL) { |
| 895 | dev_err(dev, "unable to alloc slot struct.\n"); |
| 896 | goto out; |
| 897 | } |
| 898 | |
| 899 | spin_lock_init(&dd->lock); |
| 900 | crypto_init_queue(&dd->queue, TEGRA_AES_QUEUE_LENGTH); |
| 901 | |
| 902 | /* Get the module base address */ |
| 903 | res = platform_get_resource(pdev, IORESOURCE_MEM, 0); |
| 904 | if (!res) { |
| 905 | dev_err(dev, "invalid resource type: base\n"); |
| 906 | err = -ENODEV; |
| 907 | goto out; |
| 908 | } |
| 909 | |
| 910 | if (!devm_request_mem_region(&pdev->dev, res->start, |
| 911 | resource_size(res), |
| 912 | dev_name(&pdev->dev))) { |
| 913 | dev_err(&pdev->dev, "Couldn't request MEM resource\n"); |
| 914 | return -ENODEV; |
| 915 | } |
| 916 | |
| 917 | dd->io_base = devm_ioremap(dev, res->start, resource_size(res)); |
| 918 | if (!dd->io_base) { |
| 919 | dev_err(dev, "can't ioremap register space\n"); |
| 920 | err = -ENOMEM; |
| 921 | goto out; |
| 922 | } |
| 923 | |
| 924 | /* Initialize the vde clock */ |
| 925 | dd->aes_clk = clk_get(dev, "vde"); |
| 926 | if (IS_ERR(dd->aes_clk)) { |
| 927 | dev_err(dev, "iclock intialization failed.\n"); |
| 928 | err = -ENODEV; |
| 929 | goto out; |
| 930 | } |
| 931 | |
| 932 | err = clk_set_rate(dd->aes_clk, ULONG_MAX); |
| 933 | if (err) { |
| 934 | dev_err(dd->dev, "iclk set_rate fail(%d)\n", err); |
| 935 | goto out; |
| 936 | } |
| 937 | |
| 938 | /* |
| 939 | * the foll contiguous memory is allocated as follows - |
| 940 | * - hardware key table |
| 941 | * - key schedule |
| 942 | */ |
| 943 | dd->ivkey_base = dma_alloc_coherent(dev, AES_HW_KEY_TABLE_LENGTH_BYTES, |
| 944 | &dd->ivkey_phys_base, |
| 945 | GFP_KERNEL); |
| 946 | if (!dd->ivkey_base) { |
| 947 | dev_err(dev, "can not allocate iv/key buffer\n"); |
| 948 | err = -ENOMEM; |
| 949 | goto out; |
| 950 | } |
| 951 | |
| 952 | dd->buf_in = dma_alloc_coherent(dev, AES_HW_DMA_BUFFER_SIZE_BYTES, |
| 953 | &dd->dma_buf_in, GFP_KERNEL); |
| 954 | if (!dd->buf_in) { |
| 955 | dev_err(dev, "can not allocate dma-in buffer\n"); |
| 956 | err = -ENOMEM; |
| 957 | goto out; |
| 958 | } |
| 959 | |
| 960 | dd->buf_out = dma_alloc_coherent(dev, AES_HW_DMA_BUFFER_SIZE_BYTES, |
| 961 | &dd->dma_buf_out, GFP_KERNEL); |
| 962 | if (!dd->buf_out) { |
| 963 | dev_err(dev, "can not allocate dma-out buffer\n"); |
| 964 | err = -ENOMEM; |
| 965 | goto out; |
| 966 | } |
| 967 | |
| 968 | init_completion(&dd->op_complete); |
| 969 | aes_wq = alloc_workqueue("tegra_aes_wq", WQ_HIGHPRI | WQ_UNBOUND, 1); |
| 970 | if (!aes_wq) { |
| 971 | dev_err(dev, "alloc_workqueue failed\n"); |
| 972 | goto out; |
| 973 | } |
| 974 | |
| 975 | /* get the irq */ |
| 976 | res = platform_get_resource(pdev, IORESOURCE_IRQ, 0); |
| 977 | if (!res) { |
| 978 | dev_err(dev, "invalid resource type: base\n"); |
| 979 | err = -ENODEV; |
| 980 | goto out; |
| 981 | } |
| 982 | dd->irq = res->start; |
| 983 | |
| 984 | err = devm_request_irq(dev, dd->irq, aes_irq, IRQF_TRIGGER_HIGH | |
| 985 | IRQF_SHARED, "tegra-aes", dd); |
| 986 | if (err) { |
| 987 | dev_err(dev, "request_irq failed\n"); |
| 988 | goto out; |
| 989 | } |
| 990 | |
| 991 | mutex_init(&aes_lock); |
| 992 | INIT_LIST_HEAD(&dev_list); |
| 993 | |
| 994 | spin_lock_init(&list_lock); |
| 995 | spin_lock(&list_lock); |
| 996 | for (i = 0; i < AES_NR_KEYSLOTS; i++) { |
| 997 | if (i == SSK_SLOT_NUM) |
| 998 | continue; |
| 999 | dd->slots[i].slot_num = i; |
| 1000 | INIT_LIST_HEAD(&dd->slots[i].node); |
| 1001 | list_add_tail(&dd->slots[i].node, &dev_list); |
| 1002 | } |
| 1003 | spin_unlock(&list_lock); |
| 1004 | |
| 1005 | aes_dev = dd; |
| 1006 | for (i = 0; i < ARRAY_SIZE(algs); i++) { |
| 1007 | INIT_LIST_HEAD(&algs[i].cra_list); |
| 1008 | |
| 1009 | algs[i].cra_priority = 300; |
| 1010 | algs[i].cra_ctxsize = sizeof(struct tegra_aes_ctx); |
| 1011 | algs[i].cra_module = THIS_MODULE; |
| 1012 | algs[i].cra_init = tegra_aes_cra_init; |
| 1013 | algs[i].cra_exit = tegra_aes_cra_exit; |
| 1014 | |
| 1015 | err = crypto_register_alg(&algs[i]); |
| 1016 | if (err) |
| 1017 | goto out; |
| 1018 | } |
| 1019 | |
| 1020 | dev_info(dev, "registered"); |
| 1021 | return 0; |
| 1022 | |
| 1023 | out: |
| 1024 | for (j = 0; j < i; j++) |
| 1025 | crypto_unregister_alg(&algs[j]); |
| 1026 | if (dd->ivkey_base) |
| 1027 | dma_free_coherent(dev, AES_HW_KEY_TABLE_LENGTH_BYTES, |
| 1028 | dd->ivkey_base, dd->ivkey_phys_base); |
| 1029 | if (dd->buf_in) |
| 1030 | dma_free_coherent(dev, AES_HW_DMA_BUFFER_SIZE_BYTES, |
| 1031 | dd->buf_in, dd->dma_buf_in); |
| 1032 | if (dd->buf_out) |
| 1033 | dma_free_coherent(dev, AES_HW_DMA_BUFFER_SIZE_BYTES, |
| 1034 | dd->buf_out, dd->dma_buf_out); |
| 1035 | if (IS_ERR(dd->aes_clk)) |
| 1036 | clk_put(dd->aes_clk); |
| 1037 | if (aes_wq) |
| 1038 | destroy_workqueue(aes_wq); |
| 1039 | spin_lock(&list_lock); |
| 1040 | list_del(&dev_list); |
| 1041 | spin_unlock(&list_lock); |
| 1042 | |
| 1043 | aes_dev = NULL; |
| 1044 | |
| 1045 | dev_err(dev, "%s: initialization failed.\n", __func__); |
| 1046 | return err; |
| 1047 | } |
| 1048 | |
| 1049 | static int __devexit tegra_aes_remove(struct platform_device *pdev) |
| 1050 | { |
| 1051 | struct device *dev = &pdev->dev; |
| 1052 | struct tegra_aes_dev *dd = platform_get_drvdata(pdev); |
| 1053 | int i; |
| 1054 | |
| 1055 | for (i = 0; i < ARRAY_SIZE(algs); i++) |
| 1056 | crypto_unregister_alg(&algs[i]); |
| 1057 | |
| 1058 | cancel_work_sync(&aes_work); |
| 1059 | destroy_workqueue(aes_wq); |
| 1060 | spin_lock(&list_lock); |
| 1061 | list_del(&dev_list); |
| 1062 | spin_unlock(&list_lock); |
| 1063 | |
| 1064 | dma_free_coherent(dev, AES_HW_KEY_TABLE_LENGTH_BYTES, |
| 1065 | dd->ivkey_base, dd->ivkey_phys_base); |
| 1066 | dma_free_coherent(dev, AES_HW_DMA_BUFFER_SIZE_BYTES, |
| 1067 | dd->buf_in, dd->dma_buf_in); |
| 1068 | dma_free_coherent(dev, AES_HW_DMA_BUFFER_SIZE_BYTES, |
| 1069 | dd->buf_out, dd->dma_buf_out); |
| 1070 | clk_put(dd->aes_clk); |
| 1071 | aes_dev = NULL; |
| 1072 | |
| 1073 | return 0; |
| 1074 | } |
| 1075 | |
| 1076 | static struct of_device_id tegra_aes_of_match[] __devinitdata = { |
| 1077 | { .compatible = "nvidia,tegra20-aes", }, |
| 1078 | { .compatible = "nvidia,tegra30-aes", }, |
| 1079 | { }, |
| 1080 | }; |
| 1081 | |
| 1082 | static struct platform_driver tegra_aes_driver = { |
| 1083 | .probe = tegra_aes_probe, |
| 1084 | .remove = __devexit_p(tegra_aes_remove), |
| 1085 | .driver = { |
| 1086 | .name = "tegra-aes", |
| 1087 | .owner = THIS_MODULE, |
| 1088 | .of_match_table = tegra_aes_of_match, |
| 1089 | }, |
| 1090 | }; |
| 1091 | |
| 1092 | module_platform_driver(tegra_aes_driver); |
| 1093 | |
| 1094 | MODULE_DESCRIPTION("Tegra AES/OFB/CPRNG hw acceleration support."); |
| 1095 | MODULE_AUTHOR("NVIDIA Corporation"); |
| 1096 | MODULE_LICENSE("GPL v2"); |