Alexey Korolev | c682647 | 2008-12-16 18:20:03 +0000 | [diff] [blame] | 1 | /* |
| 2 | * LPDDR flash memory device operations. This module provides read, write, |
| 3 | * erase, lock/unlock support for LPDDR flash memories |
| 4 | * (C) 2008 Korolev Alexey <akorolev@infradead.org> |
| 5 | * (C) 2008 Vasiliy Leonenko <vasiliy.leonenko@gmail.com> |
| 6 | * Many thanks to Roman Borisov for intial enabling |
| 7 | * |
| 8 | * This program is free software; you can redistribute it and/or |
| 9 | * modify it under the terms of the GNU General Public License |
| 10 | * as published by the Free Software Foundation; either version 2 |
| 11 | * of the License, or (at your option) any later version. |
| 12 | * |
| 13 | * This program is distributed in the hope that it will be useful, |
| 14 | * but WITHOUT ANY WARRANTY; without even the implied warranty of |
| 15 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
| 16 | * GNU General Public License for more details. |
| 17 | * |
| 18 | * You should have received a copy of the GNU General Public License |
| 19 | * along with this program; if not, write to the Free Software |
| 20 | * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA |
| 21 | * 02110-1301, USA. |
| 22 | * TODO: |
| 23 | * Implement VPP management |
| 24 | * Implement XIP support |
| 25 | * Implement OTP support |
| 26 | */ |
| 27 | #include <linux/mtd/pfow.h> |
| 28 | #include <linux/mtd/qinfo.h> |
| 29 | |
| 30 | static int lpddr_read(struct mtd_info *mtd, loff_t adr, size_t len, |
| 31 | size_t *retlen, u_char *buf); |
| 32 | static int lpddr_write_buffers(struct mtd_info *mtd, loff_t to, |
| 33 | size_t len, size_t *retlen, const u_char *buf); |
| 34 | static int lpddr_writev(struct mtd_info *mtd, const struct kvec *vecs, |
| 35 | unsigned long count, loff_t to, size_t *retlen); |
| 36 | static int lpddr_erase(struct mtd_info *mtd, struct erase_info *instr); |
| 37 | static int lpddr_lock(struct mtd_info *mtd, loff_t ofs, uint64_t len); |
| 38 | static int lpddr_unlock(struct mtd_info *mtd, loff_t ofs, uint64_t len); |
| 39 | static int lpddr_point(struct mtd_info *mtd, loff_t adr, size_t len, |
| 40 | size_t *retlen, void **mtdbuf, resource_size_t *phys); |
| 41 | static void lpddr_unpoint(struct mtd_info *mtd, loff_t adr, size_t len); |
| 42 | static int get_chip(struct map_info *map, struct flchip *chip, int mode); |
| 43 | static int chip_ready(struct map_info *map, struct flchip *chip, int mode); |
| 44 | static void put_chip(struct map_info *map, struct flchip *chip); |
| 45 | |
| 46 | struct mtd_info *lpddr_cmdset(struct map_info *map) |
| 47 | { |
| 48 | struct lpddr_private *lpddr = map->fldrv_priv; |
| 49 | struct flchip_shared *shared; |
| 50 | struct flchip *chip; |
| 51 | struct mtd_info *mtd; |
| 52 | int numchips; |
| 53 | int i, j; |
| 54 | |
| 55 | mtd = kzalloc(sizeof(*mtd), GFP_KERNEL); |
| 56 | if (!mtd) { |
| 57 | printk(KERN_ERR "Failed to allocate memory for MTD device\n"); |
| 58 | return NULL; |
| 59 | } |
| 60 | mtd->priv = map; |
| 61 | mtd->type = MTD_NORFLASH; |
| 62 | |
| 63 | /* Fill in the default mtd operations */ |
| 64 | mtd->read = lpddr_read; |
| 65 | mtd->type = MTD_NORFLASH; |
| 66 | mtd->flags = MTD_CAP_NORFLASH; |
| 67 | mtd->flags &= ~MTD_BIT_WRITEABLE; |
| 68 | mtd->erase = lpddr_erase; |
| 69 | mtd->write = lpddr_write_buffers; |
| 70 | mtd->writev = lpddr_writev; |
| 71 | mtd->read_oob = NULL; |
| 72 | mtd->write_oob = NULL; |
| 73 | mtd->sync = NULL; |
| 74 | mtd->lock = lpddr_lock; |
| 75 | mtd->unlock = lpddr_unlock; |
| 76 | mtd->suspend = NULL; |
| 77 | mtd->resume = NULL; |
| 78 | if (map_is_linear(map)) { |
| 79 | mtd->point = lpddr_point; |
| 80 | mtd->unpoint = lpddr_unpoint; |
| 81 | } |
| 82 | mtd->block_isbad = NULL; |
| 83 | mtd->block_markbad = NULL; |
| 84 | mtd->size = 1 << lpddr->qinfo->DevSizeShift; |
| 85 | mtd->erasesize = 1 << lpddr->qinfo->UniformBlockSizeShift; |
| 86 | mtd->writesize = 1 << lpddr->qinfo->BufSizeShift; |
| 87 | |
| 88 | shared = kmalloc(sizeof(struct flchip_shared) * lpddr->numchips, |
| 89 | GFP_KERNEL); |
| 90 | if (!shared) { |
| 91 | kfree(lpddr); |
| 92 | kfree(mtd); |
| 93 | return NULL; |
| 94 | } |
| 95 | |
| 96 | chip = &lpddr->chips[0]; |
| 97 | numchips = lpddr->numchips / lpddr->qinfo->HWPartsNum; |
| 98 | for (i = 0; i < numchips; i++) { |
| 99 | shared[i].writing = shared[i].erasing = NULL; |
| 100 | spin_lock_init(&shared[i].lock); |
| 101 | for (j = 0; j < lpddr->qinfo->HWPartsNum; j++) { |
| 102 | *chip = lpddr->chips[i]; |
| 103 | chip->start += j << lpddr->chipshift; |
| 104 | chip->oldstate = chip->state = FL_READY; |
| 105 | chip->priv = &shared[i]; |
| 106 | /* those should be reset too since |
| 107 | they create memory references. */ |
| 108 | init_waitqueue_head(&chip->wq); |
| 109 | spin_lock_init(&chip->_spinlock); |
| 110 | chip->mutex = &chip->_spinlock; |
| 111 | chip++; |
| 112 | } |
| 113 | } |
| 114 | |
| 115 | return mtd; |
| 116 | } |
| 117 | EXPORT_SYMBOL(lpddr_cmdset); |
| 118 | |
| 119 | static int wait_for_ready(struct map_info *map, struct flchip *chip, |
| 120 | unsigned int chip_op_time) |
| 121 | { |
| 122 | unsigned int timeo, reset_timeo, sleep_time; |
| 123 | unsigned int dsr; |
| 124 | flstate_t chip_state = chip->state; |
| 125 | int ret = 0; |
| 126 | |
| 127 | /* set our timeout to 8 times the expected delay */ |
| 128 | timeo = chip_op_time * 8; |
| 129 | if (!timeo) |
| 130 | timeo = 500000; |
| 131 | reset_timeo = timeo; |
| 132 | sleep_time = chip_op_time / 2; |
| 133 | |
| 134 | for (;;) { |
| 135 | dsr = CMDVAL(map_read(map, map->pfow_base + PFOW_DSR)); |
| 136 | if (dsr & DSR_READY_STATUS) |
| 137 | break; |
| 138 | if (!timeo) { |
| 139 | printk(KERN_ERR "%s: Flash timeout error state %d \n", |
| 140 | map->name, chip_state); |
| 141 | ret = -ETIME; |
| 142 | break; |
| 143 | } |
| 144 | |
| 145 | /* OK Still waiting. Drop the lock, wait a while and retry. */ |
| 146 | spin_unlock(chip->mutex); |
| 147 | if (sleep_time >= 1000000/HZ) { |
| 148 | /* |
| 149 | * Half of the normal delay still remaining |
| 150 | * can be performed with a sleeping delay instead |
| 151 | * of busy waiting. |
| 152 | */ |
| 153 | msleep(sleep_time/1000); |
| 154 | timeo -= sleep_time; |
| 155 | sleep_time = 1000000/HZ; |
| 156 | } else { |
| 157 | udelay(1); |
| 158 | cond_resched(); |
| 159 | timeo--; |
| 160 | } |
| 161 | spin_lock(chip->mutex); |
| 162 | |
| 163 | while (chip->state != chip_state) { |
| 164 | /* Someone's suspended the operation: sleep */ |
| 165 | DECLARE_WAITQUEUE(wait, current); |
| 166 | set_current_state(TASK_UNINTERRUPTIBLE); |
| 167 | add_wait_queue(&chip->wq, &wait); |
| 168 | spin_unlock(chip->mutex); |
| 169 | schedule(); |
| 170 | remove_wait_queue(&chip->wq, &wait); |
| 171 | spin_lock(chip->mutex); |
| 172 | } |
| 173 | if (chip->erase_suspended || chip->write_suspended) { |
| 174 | /* Suspend has occured while sleep: reset timeout */ |
| 175 | timeo = reset_timeo; |
| 176 | chip->erase_suspended = chip->write_suspended = 0; |
| 177 | } |
| 178 | } |
| 179 | /* check status for errors */ |
| 180 | if (dsr & DSR_ERR) { |
| 181 | /* Clear DSR*/ |
| 182 | map_write(map, CMD(~(DSR_ERR)), map->pfow_base + PFOW_DSR); |
| 183 | printk(KERN_WARNING"%s: Bad status on wait: 0x%x \n", |
| 184 | map->name, dsr); |
| 185 | print_drs_error(dsr); |
| 186 | ret = -EIO; |
| 187 | } |
| 188 | chip->state = FL_READY; |
| 189 | return ret; |
| 190 | } |
| 191 | |
| 192 | static int get_chip(struct map_info *map, struct flchip *chip, int mode) |
| 193 | { |
| 194 | int ret; |
| 195 | DECLARE_WAITQUEUE(wait, current); |
| 196 | |
| 197 | retry: |
| 198 | if (chip->priv && (mode == FL_WRITING || mode == FL_ERASING) |
| 199 | && chip->state != FL_SYNCING) { |
| 200 | /* |
| 201 | * OK. We have possibility for contension on the write/erase |
| 202 | * operations which are global to the real chip and not per |
| 203 | * partition. So let's fight it over in the partition which |
| 204 | * currently has authority on the operation. |
| 205 | * |
| 206 | * The rules are as follows: |
| 207 | * |
| 208 | * - any write operation must own shared->writing. |
| 209 | * |
| 210 | * - any erase operation must own _both_ shared->writing and |
| 211 | * shared->erasing. |
| 212 | * |
| 213 | * - contension arbitration is handled in the owner's context. |
| 214 | * |
| 215 | * The 'shared' struct can be read and/or written only when |
| 216 | * its lock is taken. |
| 217 | */ |
| 218 | struct flchip_shared *shared = chip->priv; |
| 219 | struct flchip *contender; |
| 220 | spin_lock(&shared->lock); |
| 221 | contender = shared->writing; |
| 222 | if (contender && contender != chip) { |
| 223 | /* |
| 224 | * The engine to perform desired operation on this |
| 225 | * partition is already in use by someone else. |
| 226 | * Let's fight over it in the context of the chip |
| 227 | * currently using it. If it is possible to suspend, |
| 228 | * that other partition will do just that, otherwise |
| 229 | * it'll happily send us to sleep. In any case, when |
| 230 | * get_chip returns success we're clear to go ahead. |
| 231 | */ |
| 232 | ret = spin_trylock(contender->mutex); |
| 233 | spin_unlock(&shared->lock); |
| 234 | if (!ret) |
| 235 | goto retry; |
| 236 | spin_unlock(chip->mutex); |
| 237 | ret = chip_ready(map, contender, mode); |
| 238 | spin_lock(chip->mutex); |
| 239 | |
| 240 | if (ret == -EAGAIN) { |
| 241 | spin_unlock(contender->mutex); |
| 242 | goto retry; |
| 243 | } |
| 244 | if (ret) { |
| 245 | spin_unlock(contender->mutex); |
| 246 | return ret; |
| 247 | } |
| 248 | spin_lock(&shared->lock); |
| 249 | |
| 250 | /* We should not own chip if it is already in FL_SYNCING |
| 251 | * state. Put contender and retry. */ |
| 252 | if (chip->state == FL_SYNCING) { |
| 253 | put_chip(map, contender); |
| 254 | spin_unlock(contender->mutex); |
| 255 | goto retry; |
| 256 | } |
| 257 | spin_unlock(contender->mutex); |
| 258 | } |
| 259 | |
| 260 | /* Check if we have suspended erase on this chip. |
| 261 | Must sleep in such a case. */ |
| 262 | if (mode == FL_ERASING && shared->erasing |
| 263 | && shared->erasing->oldstate == FL_ERASING) { |
| 264 | spin_unlock(&shared->lock); |
| 265 | set_current_state(TASK_UNINTERRUPTIBLE); |
| 266 | add_wait_queue(&chip->wq, &wait); |
| 267 | spin_unlock(chip->mutex); |
| 268 | schedule(); |
| 269 | remove_wait_queue(&chip->wq, &wait); |
| 270 | spin_lock(chip->mutex); |
| 271 | goto retry; |
| 272 | } |
| 273 | |
| 274 | /* We now own it */ |
| 275 | shared->writing = chip; |
| 276 | if (mode == FL_ERASING) |
| 277 | shared->erasing = chip; |
| 278 | spin_unlock(&shared->lock); |
| 279 | } |
| 280 | |
| 281 | ret = chip_ready(map, chip, mode); |
| 282 | if (ret == -EAGAIN) |
| 283 | goto retry; |
| 284 | |
| 285 | return ret; |
| 286 | } |
| 287 | |
| 288 | static int chip_ready(struct map_info *map, struct flchip *chip, int mode) |
| 289 | { |
| 290 | struct lpddr_private *lpddr = map->fldrv_priv; |
| 291 | int ret = 0; |
| 292 | DECLARE_WAITQUEUE(wait, current); |
| 293 | |
| 294 | /* Prevent setting state FL_SYNCING for chip in suspended state. */ |
| 295 | if (FL_SYNCING == mode && FL_READY != chip->oldstate) |
| 296 | goto sleep; |
| 297 | |
| 298 | switch (chip->state) { |
| 299 | case FL_READY: |
| 300 | case FL_JEDEC_QUERY: |
| 301 | return 0; |
| 302 | |
| 303 | case FL_ERASING: |
| 304 | if (!lpddr->qinfo->SuspEraseSupp || |
| 305 | !(mode == FL_READY || mode == FL_POINT)) |
| 306 | goto sleep; |
| 307 | |
| 308 | map_write(map, CMD(LPDDR_SUSPEND), |
| 309 | map->pfow_base + PFOW_PROGRAM_ERASE_SUSPEND); |
| 310 | chip->oldstate = FL_ERASING; |
| 311 | chip->state = FL_ERASE_SUSPENDING; |
| 312 | ret = wait_for_ready(map, chip, 0); |
| 313 | if (ret) { |
| 314 | /* Oops. something got wrong. */ |
| 315 | /* Resume and pretend we weren't here. */ |
| 316 | map_write(map, CMD(LPDDR_RESUME), |
| 317 | map->pfow_base + PFOW_COMMAND_CODE); |
| 318 | map_write(map, CMD(LPDDR_START_EXECUTION), |
| 319 | map->pfow_base + PFOW_COMMAND_EXECUTE); |
| 320 | chip->state = FL_ERASING; |
| 321 | chip->oldstate = FL_READY; |
| 322 | printk(KERN_ERR "%s: suspend operation failed." |
| 323 | "State may be wrong \n", map->name); |
| 324 | return -EIO; |
| 325 | } |
| 326 | chip->erase_suspended = 1; |
| 327 | chip->state = FL_READY; |
| 328 | return 0; |
| 329 | /* Erase suspend */ |
| 330 | case FL_POINT: |
| 331 | /* Only if there's no operation suspended... */ |
| 332 | if (mode == FL_READY && chip->oldstate == FL_READY) |
| 333 | return 0; |
| 334 | |
| 335 | default: |
| 336 | sleep: |
| 337 | set_current_state(TASK_UNINTERRUPTIBLE); |
| 338 | add_wait_queue(&chip->wq, &wait); |
| 339 | spin_unlock(chip->mutex); |
| 340 | schedule(); |
| 341 | remove_wait_queue(&chip->wq, &wait); |
| 342 | spin_lock(chip->mutex); |
| 343 | return -EAGAIN; |
| 344 | } |
| 345 | } |
| 346 | |
| 347 | static void put_chip(struct map_info *map, struct flchip *chip) |
| 348 | { |
| 349 | if (chip->priv) { |
| 350 | struct flchip_shared *shared = chip->priv; |
| 351 | spin_lock(&shared->lock); |
| 352 | if (shared->writing == chip && chip->oldstate == FL_READY) { |
| 353 | /* We own the ability to write, but we're done */ |
| 354 | shared->writing = shared->erasing; |
| 355 | if (shared->writing && shared->writing != chip) { |
| 356 | /* give back the ownership */ |
| 357 | struct flchip *loaner = shared->writing; |
| 358 | spin_lock(loaner->mutex); |
| 359 | spin_unlock(&shared->lock); |
| 360 | spin_unlock(chip->mutex); |
| 361 | put_chip(map, loaner); |
| 362 | spin_lock(chip->mutex); |
| 363 | spin_unlock(loaner->mutex); |
| 364 | wake_up(&chip->wq); |
| 365 | return; |
| 366 | } |
| 367 | shared->erasing = NULL; |
| 368 | shared->writing = NULL; |
| 369 | } else if (shared->erasing == chip && shared->writing != chip) { |
| 370 | /* |
| 371 | * We own the ability to erase without the ability |
| 372 | * to write, which means the erase was suspended |
| 373 | * and some other partition is currently writing. |
| 374 | * Don't let the switch below mess things up since |
| 375 | * we don't have ownership to resume anything. |
| 376 | */ |
| 377 | spin_unlock(&shared->lock); |
| 378 | wake_up(&chip->wq); |
| 379 | return; |
| 380 | } |
| 381 | spin_unlock(&shared->lock); |
| 382 | } |
| 383 | |
| 384 | switch (chip->oldstate) { |
| 385 | case FL_ERASING: |
| 386 | chip->state = chip->oldstate; |
| 387 | map_write(map, CMD(LPDDR_RESUME), |
| 388 | map->pfow_base + PFOW_COMMAND_CODE); |
| 389 | map_write(map, CMD(LPDDR_START_EXECUTION), |
| 390 | map->pfow_base + PFOW_COMMAND_EXECUTE); |
| 391 | chip->oldstate = FL_READY; |
| 392 | chip->state = FL_ERASING; |
| 393 | break; |
| 394 | case FL_READY: |
| 395 | break; |
| 396 | default: |
| 397 | printk(KERN_ERR "%s: put_chip() called with oldstate %d!\n", |
| 398 | map->name, chip->oldstate); |
| 399 | } |
| 400 | wake_up(&chip->wq); |
| 401 | } |
| 402 | |
| 403 | int do_write_buffer(struct map_info *map, struct flchip *chip, |
| 404 | unsigned long adr, const struct kvec **pvec, |
| 405 | unsigned long *pvec_seek, int len) |
| 406 | { |
| 407 | struct lpddr_private *lpddr = map->fldrv_priv; |
| 408 | map_word datum; |
| 409 | int ret, wbufsize, word_gap, words; |
| 410 | const struct kvec *vec; |
| 411 | unsigned long vec_seek; |
| 412 | unsigned long prog_buf_ofs; |
| 413 | |
| 414 | wbufsize = 1 << lpddr->qinfo->BufSizeShift; |
| 415 | |
| 416 | spin_lock(chip->mutex); |
| 417 | ret = get_chip(map, chip, FL_WRITING); |
| 418 | if (ret) { |
| 419 | spin_unlock(chip->mutex); |
| 420 | return ret; |
| 421 | } |
| 422 | /* Figure out the number of words to write */ |
| 423 | word_gap = (-adr & (map_bankwidth(map)-1)); |
| 424 | words = (len - word_gap + map_bankwidth(map) - 1) / map_bankwidth(map); |
| 425 | if (!word_gap) { |
| 426 | words--; |
| 427 | } else { |
| 428 | word_gap = map_bankwidth(map) - word_gap; |
| 429 | adr -= word_gap; |
| 430 | datum = map_word_ff(map); |
| 431 | } |
| 432 | /* Write data */ |
| 433 | /* Get the program buffer offset from PFOW register data first*/ |
| 434 | prog_buf_ofs = map->pfow_base + CMDVAL(map_read(map, |
| 435 | map->pfow_base + PFOW_PROGRAM_BUFFER_OFFSET)); |
| 436 | vec = *pvec; |
| 437 | vec_seek = *pvec_seek; |
| 438 | do { |
| 439 | int n = map_bankwidth(map) - word_gap; |
| 440 | |
| 441 | if (n > vec->iov_len - vec_seek) |
| 442 | n = vec->iov_len - vec_seek; |
| 443 | if (n > len) |
| 444 | n = len; |
| 445 | |
| 446 | if (!word_gap && (len < map_bankwidth(map))) |
| 447 | datum = map_word_ff(map); |
| 448 | |
| 449 | datum = map_word_load_partial(map, datum, |
| 450 | vec->iov_base + vec_seek, word_gap, n); |
| 451 | |
| 452 | len -= n; |
| 453 | word_gap += n; |
| 454 | if (!len || word_gap == map_bankwidth(map)) { |
| 455 | map_write(map, datum, prog_buf_ofs); |
| 456 | prog_buf_ofs += map_bankwidth(map); |
| 457 | word_gap = 0; |
| 458 | } |
| 459 | |
| 460 | vec_seek += n; |
| 461 | if (vec_seek == vec->iov_len) { |
| 462 | vec++; |
| 463 | vec_seek = 0; |
| 464 | } |
| 465 | } while (len); |
| 466 | *pvec = vec; |
| 467 | *pvec_seek = vec_seek; |
| 468 | |
| 469 | /* GO GO GO */ |
| 470 | send_pfow_command(map, LPDDR_BUFF_PROGRAM, adr, wbufsize, NULL); |
| 471 | chip->state = FL_WRITING; |
| 472 | ret = wait_for_ready(map, chip, (1<<lpddr->qinfo->ProgBufferTime)); |
| 473 | if (ret) { |
| 474 | printk(KERN_WARNING"%s Buffer program error: %d at %lx; \n", |
| 475 | map->name, ret, adr); |
| 476 | goto out; |
| 477 | } |
| 478 | |
| 479 | out: put_chip(map, chip); |
| 480 | spin_unlock(chip->mutex); |
| 481 | return ret; |
| 482 | } |
| 483 | |
| 484 | int do_erase_oneblock(struct mtd_info *mtd, loff_t adr) |
| 485 | { |
| 486 | struct map_info *map = mtd->priv; |
| 487 | struct lpddr_private *lpddr = map->fldrv_priv; |
| 488 | int chipnum = adr >> lpddr->chipshift; |
| 489 | struct flchip *chip = &lpddr->chips[chipnum]; |
| 490 | int ret; |
| 491 | |
| 492 | spin_lock(chip->mutex); |
| 493 | ret = get_chip(map, chip, FL_ERASING); |
| 494 | if (ret) { |
| 495 | spin_unlock(chip->mutex); |
| 496 | return ret; |
| 497 | } |
| 498 | send_pfow_command(map, LPDDR_BLOCK_ERASE, adr, 0, NULL); |
| 499 | chip->state = FL_ERASING; |
| 500 | ret = wait_for_ready(map, chip, (1<<lpddr->qinfo->BlockEraseTime)*1000); |
| 501 | if (ret) { |
| 502 | printk(KERN_WARNING"%s Erase block error %d at : %llx\n", |
| 503 | map->name, ret, adr); |
| 504 | goto out; |
| 505 | } |
| 506 | out: put_chip(map, chip); |
| 507 | spin_unlock(chip->mutex); |
| 508 | return ret; |
| 509 | } |
| 510 | |
| 511 | static int lpddr_read(struct mtd_info *mtd, loff_t adr, size_t len, |
| 512 | size_t *retlen, u_char *buf) |
| 513 | { |
| 514 | struct map_info *map = mtd->priv; |
| 515 | struct lpddr_private *lpddr = map->fldrv_priv; |
| 516 | int chipnum = adr >> lpddr->chipshift; |
| 517 | struct flchip *chip = &lpddr->chips[chipnum]; |
| 518 | int ret = 0; |
| 519 | |
| 520 | spin_lock(chip->mutex); |
| 521 | ret = get_chip(map, chip, FL_READY); |
| 522 | if (ret) { |
| 523 | spin_unlock(chip->mutex); |
| 524 | return ret; |
| 525 | } |
| 526 | |
| 527 | map_copy_from(map, buf, adr, len); |
| 528 | *retlen = len; |
| 529 | |
| 530 | put_chip(map, chip); |
| 531 | spin_unlock(chip->mutex); |
| 532 | return ret; |
| 533 | } |
| 534 | |
| 535 | static int lpddr_point(struct mtd_info *mtd, loff_t adr, size_t len, |
| 536 | size_t *retlen, void **mtdbuf, resource_size_t *phys) |
| 537 | { |
| 538 | struct map_info *map = mtd->priv; |
| 539 | struct lpddr_private *lpddr = map->fldrv_priv; |
| 540 | int chipnum = adr >> lpddr->chipshift; |
| 541 | unsigned long ofs, last_end = 0; |
| 542 | struct flchip *chip = &lpddr->chips[chipnum]; |
| 543 | int ret = 0; |
| 544 | |
| 545 | if (!map->virt || (adr + len > mtd->size)) |
| 546 | return -EINVAL; |
| 547 | |
| 548 | /* ofs: offset within the first chip that the first read should start */ |
| 549 | ofs = adr - (chipnum << lpddr->chipshift); |
| 550 | |
| 551 | *mtdbuf = (void *)map->virt + chip->start + ofs; |
| 552 | *retlen = 0; |
| 553 | |
| 554 | while (len) { |
| 555 | unsigned long thislen; |
| 556 | |
| 557 | if (chipnum >= lpddr->numchips) |
| 558 | break; |
| 559 | |
| 560 | /* We cannot point across chips that are virtually disjoint */ |
| 561 | if (!last_end) |
| 562 | last_end = chip->start; |
| 563 | else if (chip->start != last_end) |
| 564 | break; |
| 565 | |
| 566 | if ((len + ofs - 1) >> lpddr->chipshift) |
| 567 | thislen = (1<<lpddr->chipshift) - ofs; |
| 568 | else |
| 569 | thislen = len; |
| 570 | /* get the chip */ |
| 571 | spin_lock(chip->mutex); |
| 572 | ret = get_chip(map, chip, FL_POINT); |
| 573 | spin_unlock(chip->mutex); |
| 574 | if (ret) |
| 575 | break; |
| 576 | |
| 577 | chip->state = FL_POINT; |
| 578 | chip->ref_point_counter++; |
| 579 | *retlen += thislen; |
| 580 | len -= thislen; |
| 581 | |
| 582 | ofs = 0; |
| 583 | last_end += 1 << lpddr->chipshift; |
| 584 | chipnum++; |
| 585 | chip = &lpddr->chips[chipnum]; |
| 586 | } |
| 587 | return 0; |
| 588 | } |
| 589 | |
| 590 | static void lpddr_unpoint (struct mtd_info *mtd, loff_t adr, size_t len) |
| 591 | { |
| 592 | struct map_info *map = mtd->priv; |
| 593 | struct lpddr_private *lpddr = map->fldrv_priv; |
| 594 | int chipnum = adr >> lpddr->chipshift; |
| 595 | unsigned long ofs; |
| 596 | |
| 597 | /* ofs: offset within the first chip that the first read should start */ |
| 598 | ofs = adr - (chipnum << lpddr->chipshift); |
| 599 | |
| 600 | while (len) { |
| 601 | unsigned long thislen; |
| 602 | struct flchip *chip; |
| 603 | |
| 604 | chip = &lpddr->chips[chipnum]; |
| 605 | if (chipnum >= lpddr->numchips) |
| 606 | break; |
| 607 | |
| 608 | if ((len + ofs - 1) >> lpddr->chipshift) |
| 609 | thislen = (1<<lpddr->chipshift) - ofs; |
| 610 | else |
| 611 | thislen = len; |
| 612 | |
| 613 | spin_lock(chip->mutex); |
| 614 | if (chip->state == FL_POINT) { |
| 615 | chip->ref_point_counter--; |
| 616 | if (chip->ref_point_counter == 0) |
| 617 | chip->state = FL_READY; |
| 618 | } else |
| 619 | printk(KERN_WARNING "%s: Warning: unpoint called on non" |
| 620 | "pointed region\n", map->name); |
| 621 | |
| 622 | put_chip(map, chip); |
| 623 | spin_unlock(chip->mutex); |
| 624 | |
| 625 | len -= thislen; |
| 626 | ofs = 0; |
| 627 | chipnum++; |
| 628 | } |
| 629 | } |
| 630 | |
| 631 | static int lpddr_write_buffers(struct mtd_info *mtd, loff_t to, size_t len, |
| 632 | size_t *retlen, const u_char *buf) |
| 633 | { |
| 634 | struct kvec vec; |
| 635 | |
| 636 | vec.iov_base = (void *) buf; |
| 637 | vec.iov_len = len; |
| 638 | |
| 639 | return lpddr_writev(mtd, &vec, 1, to, retlen); |
| 640 | } |
| 641 | |
| 642 | |
| 643 | static int lpddr_writev(struct mtd_info *mtd, const struct kvec *vecs, |
| 644 | unsigned long count, loff_t to, size_t *retlen) |
| 645 | { |
| 646 | struct map_info *map = mtd->priv; |
| 647 | struct lpddr_private *lpddr = map->fldrv_priv; |
| 648 | int ret = 0; |
| 649 | int chipnum; |
| 650 | unsigned long ofs, vec_seek, i; |
| 651 | int wbufsize = 1 << lpddr->qinfo->BufSizeShift; |
| 652 | |
| 653 | size_t len = 0; |
| 654 | |
| 655 | for (i = 0; i < count; i++) |
| 656 | len += vecs[i].iov_len; |
| 657 | |
| 658 | *retlen = 0; |
| 659 | if (!len) |
| 660 | return 0; |
| 661 | |
| 662 | chipnum = to >> lpddr->chipshift; |
| 663 | |
| 664 | ofs = to; |
| 665 | vec_seek = 0; |
| 666 | |
| 667 | do { |
| 668 | /* We must not cross write block boundaries */ |
| 669 | int size = wbufsize - (ofs & (wbufsize-1)); |
| 670 | |
| 671 | if (size > len) |
| 672 | size = len; |
| 673 | |
| 674 | ret = do_write_buffer(map, &lpddr->chips[chipnum], |
| 675 | ofs, &vecs, &vec_seek, size); |
| 676 | if (ret) |
| 677 | return ret; |
| 678 | |
| 679 | ofs += size; |
| 680 | (*retlen) += size; |
| 681 | len -= size; |
| 682 | |
| 683 | /* Be nice and reschedule with the chip in a usable |
| 684 | * state for other processes */ |
| 685 | cond_resched(); |
| 686 | |
| 687 | } while (len); |
| 688 | |
| 689 | return 0; |
| 690 | } |
| 691 | |
| 692 | static int lpddr_erase(struct mtd_info *mtd, struct erase_info *instr) |
| 693 | { |
| 694 | unsigned long ofs, len; |
| 695 | int ret; |
| 696 | struct map_info *map = mtd->priv; |
| 697 | struct lpddr_private *lpddr = map->fldrv_priv; |
| 698 | int size = 1 << lpddr->qinfo->UniformBlockSizeShift; |
| 699 | |
| 700 | ofs = instr->addr; |
| 701 | len = instr->len; |
| 702 | |
| 703 | if (ofs > mtd->size || (len + ofs) > mtd->size) |
| 704 | return -EINVAL; |
| 705 | |
| 706 | while (len > 0) { |
| 707 | ret = do_erase_oneblock(mtd, ofs); |
| 708 | if (ret) |
| 709 | return ret; |
| 710 | ofs += size; |
| 711 | len -= size; |
| 712 | } |
| 713 | instr->state = MTD_ERASE_DONE; |
| 714 | mtd_erase_callback(instr); |
| 715 | |
| 716 | return 0; |
| 717 | } |
| 718 | |
| 719 | #define DO_XXLOCK_LOCK 1 |
| 720 | #define DO_XXLOCK_UNLOCK 2 |
| 721 | int do_xxlock(struct mtd_info *mtd, loff_t adr, uint32_t len, int thunk) |
| 722 | { |
| 723 | int ret = 0; |
| 724 | struct map_info *map = mtd->priv; |
| 725 | struct lpddr_private *lpddr = map->fldrv_priv; |
| 726 | int chipnum = adr >> lpddr->chipshift; |
| 727 | struct flchip *chip = &lpddr->chips[chipnum]; |
| 728 | |
| 729 | spin_lock(chip->mutex); |
| 730 | ret = get_chip(map, chip, FL_LOCKING); |
| 731 | if (ret) { |
| 732 | spin_unlock(chip->mutex); |
| 733 | return ret; |
| 734 | } |
| 735 | |
| 736 | if (thunk == DO_XXLOCK_LOCK) { |
| 737 | send_pfow_command(map, LPDDR_LOCK_BLOCK, adr, adr + len, NULL); |
| 738 | chip->state = FL_LOCKING; |
| 739 | } else if (thunk == DO_XXLOCK_UNLOCK) { |
| 740 | send_pfow_command(map, LPDDR_UNLOCK_BLOCK, adr, adr + len, NULL); |
| 741 | chip->state = FL_UNLOCKING; |
| 742 | } else |
| 743 | BUG(); |
| 744 | |
| 745 | ret = wait_for_ready(map, chip, 1); |
| 746 | if (ret) { |
| 747 | printk(KERN_ERR "%s: block unlock error status %d \n", |
| 748 | map->name, ret); |
| 749 | goto out; |
| 750 | } |
| 751 | out: put_chip(map, chip); |
| 752 | spin_unlock(chip->mutex); |
| 753 | return ret; |
| 754 | } |
| 755 | |
| 756 | static int lpddr_lock(struct mtd_info *mtd, loff_t ofs, uint64_t len) |
| 757 | { |
| 758 | return do_xxlock(mtd, ofs, len, DO_XXLOCK_LOCK); |
| 759 | } |
| 760 | |
| 761 | static int lpddr_unlock(struct mtd_info *mtd, loff_t ofs, uint64_t len) |
| 762 | { |
| 763 | return do_xxlock(mtd, ofs, len, DO_XXLOCK_UNLOCK); |
| 764 | } |
| 765 | |
| 766 | int word_program(struct map_info *map, loff_t adr, uint32_t curval) |
| 767 | { |
| 768 | int ret; |
| 769 | struct lpddr_private *lpddr = map->fldrv_priv; |
| 770 | int chipnum = adr >> lpddr->chipshift; |
| 771 | struct flchip *chip = &lpddr->chips[chipnum]; |
| 772 | |
| 773 | spin_lock(chip->mutex); |
| 774 | ret = get_chip(map, chip, FL_WRITING); |
| 775 | if (ret) { |
| 776 | spin_unlock(chip->mutex); |
| 777 | return ret; |
| 778 | } |
| 779 | |
| 780 | send_pfow_command(map, LPDDR_WORD_PROGRAM, adr, 0x00, (map_word *)&curval); |
| 781 | |
| 782 | ret = wait_for_ready(map, chip, (1<<lpddr->qinfo->SingleWordProgTime)); |
| 783 | if (ret) { |
| 784 | printk(KERN_WARNING"%s word_program error at: %llx; val: %x\n", |
| 785 | map->name, adr, curval); |
| 786 | goto out; |
| 787 | } |
| 788 | |
| 789 | out: put_chip(map, chip); |
| 790 | spin_unlock(chip->mutex); |
| 791 | return ret; |
| 792 | } |
| 793 | |
| 794 | MODULE_LICENSE("GPL"); |
| 795 | MODULE_AUTHOR("Alexey Korolev <akorolev@infradead.org>"); |
| 796 | MODULE_DESCRIPTION("MTD driver for LPDDR flash chips"); |