blob: ed43b4edaf6dbddd8778cff6471acab0558191c3 [file] [log] [blame]
Bryan Huntsman3f2bc4d2011-08-16 17:27:22 -07001/*
2 * Copyright (c) 2011, Code Aurora Forum. All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or modify
5 * it under the terms of the GNU General Public License version 2 and
6 * only version 2 as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
11 * GNU General Public License for more details.
12 */
13
14#define pr_fmt(fmt) "%s: " fmt, __func__
15
16#include <linux/module.h>
17#include <linux/err.h>
18#include <linux/kernel.h>
19#include <linux/init.h>
20#include <linux/slab.h>
21#include <linux/spinlock.h>
22#include <linux/platform_device.h>
23#include <linux/regulator/driver.h>
24#include <mach/rpm.h>
25#include <mach/rpm-regulator.h>
26
27#include "rpm_resources.h"
28
29/* Debug Definitions */
30
31enum {
32 MSM_RPM_VREG_DEBUG_REQUEST = BIT(0),
33 MSM_RPM_VREG_DEBUG_VOTE = BIT(1),
34 MSM_RPM_VREG_DEBUG_DUPLICATE = BIT(2),
35 MSM_RPM_VREG_DEBUG_IGNORE_VDD_MEM_DIG = BIT(3),
36};
37
38static int msm_rpm_vreg_debug_mask;
39module_param_named(
40 debug_mask, msm_rpm_vreg_debug_mask, int, S_IRUSR | S_IWUSR
41);
42
43#define REGULATOR_TYPE_LDO 0
44#define REGULATOR_TYPE_SMPS 1
45#define REGULATOR_TYPE_VS 2
46#define REGULATOR_TYPE_NCP 3
47
48#define MICRO_TO_MILLI(uV) ((uV) / 1000)
49#define MILLI_TO_MICRO(mV) ((mV) * 1000)
50
51#define SET_PART(_vreg, _part, _val) \
52 _vreg->req[_vreg->part->_part.word].value \
53 = (_vreg->req[_vreg->part->_part.word].value \
54 & ~vreg->part->_part.mask) \
55 | (((_val) << vreg->part->_part.shift) & vreg->part->_part.mask)
56
57#define GET_PART(_vreg, _part) \
58 ((_vreg->req[_vreg->part->_part.word].value & vreg->part->_part.mask) \
59 >> vreg->part->_part.shift)
60
61struct request_member {
62 int word;
63 unsigned int mask;
64 int shift;
65};
66
67struct rpm_vreg_parts {
68 struct request_member mV; /* voltage: used if voltage is in mV */
69 struct request_member uV; /* voltage: used if voltage is in uV */
70 struct request_member ip; /* peak current in mA */
71 struct request_member pd; /* pull down enable */
72 struct request_member ia; /* average current in mA */
73 struct request_member fm; /* force mode */
74 struct request_member pm; /* power mode */
75 struct request_member pc; /* pin control */
76 struct request_member pf; /* pin function */
77 struct request_member enable_state; /* NCP and switch */
78 struct request_member comp_mode; /* NCP */
79 struct request_member freq; /* frequency: NCP and SMPS */
80 struct request_member freq_clk_src; /* clock source: SMPS */
81 struct request_member hpm; /* switch: control OCP ans SS */
82 int request_len;
83};
84
85#define REQUEST_MEMBER(_word, _mask, _shift) \
86 { \
87 .word = _word, \
88 .mask = _mask, \
89 .shift = _shift, \
90 }
91
92struct rpm_vreg_parts ldo_parts = {
93 .request_len = 2,
94 .uV = REQUEST_MEMBER(0, 0x007FFFFF, 0),
95 .pd = REQUEST_MEMBER(0, 0x00800000, 23),
David Collinsd0903892011-07-14 16:08:30 -070096 .pc = REQUEST_MEMBER(0, 0x0F000000, 24),
97 .pf = REQUEST_MEMBER(0, 0xF0000000, 28),
Bryan Huntsman3f2bc4d2011-08-16 17:27:22 -070098 .ip = REQUEST_MEMBER(1, 0x000003FF, 0),
David Collinsd0903892011-07-14 16:08:30 -070099 .ia = REQUEST_MEMBER(1, 0x000FFC00, 10),
100 .fm = REQUEST_MEMBER(1, 0x00700000, 20),
Bryan Huntsman3f2bc4d2011-08-16 17:27:22 -0700101};
102
103struct rpm_vreg_parts smps_parts = {
104 .request_len = 2,
105 .uV = REQUEST_MEMBER(0, 0x007FFFFF, 0),
106 .pd = REQUEST_MEMBER(0, 0x00800000, 23),
David Collinsd0903892011-07-14 16:08:30 -0700107 .pc = REQUEST_MEMBER(0, 0x0F000000, 24),
108 .pf = REQUEST_MEMBER(0, 0xF0000000, 28),
Bryan Huntsman3f2bc4d2011-08-16 17:27:22 -0700109 .ip = REQUEST_MEMBER(1, 0x000003FF, 0),
David Collinsd0903892011-07-14 16:08:30 -0700110 .ia = REQUEST_MEMBER(1, 0x000FFC00, 10),
111 .fm = REQUEST_MEMBER(1, 0x00700000, 20),
112 .pm = REQUEST_MEMBER(1, 0x00800000, 23),
Bryan Huntsman3f2bc4d2011-08-16 17:27:22 -0700113 .freq = REQUEST_MEMBER(1, 0x1F000000, 24),
114 .freq_clk_src = REQUEST_MEMBER(1, 0x60000000, 29),
Bryan Huntsman3f2bc4d2011-08-16 17:27:22 -0700115};
116
117struct rpm_vreg_parts switch_parts = {
118 .request_len = 1,
119 .enable_state = REQUEST_MEMBER(0, 0x00000001, 0),
120 .pd = REQUEST_MEMBER(0, 0x00000002, 1),
121 .pc = REQUEST_MEMBER(0, 0x0000003C, 2),
122 .pf = REQUEST_MEMBER(0, 0x000003C0, 6),
123 .hpm = REQUEST_MEMBER(0, 0x00000C00, 10),
124};
125
126struct rpm_vreg_parts ncp_parts = {
127 .request_len = 1,
128 .uV = REQUEST_MEMBER(0, 0x007FFFFF, 0),
129 .enable_state = REQUEST_MEMBER(0, 0x00800000, 23),
130 .comp_mode = REQUEST_MEMBER(0, 0x01000000, 24),
131 .freq = REQUEST_MEMBER(0, 0x3E000000, 25),
132};
133
134struct vreg_range {
135 int min_uV;
136 int max_uV;
137 int step_uV;
138 unsigned n_voltages;
139};
140
141struct vreg_set_points {
142 struct vreg_range *range;
143 int count;
144 unsigned n_voltages;
145};
146
147#define VOLTAGE_RANGE(_min_uV, _max_uV, _step_uV) \
148 { \
149 .min_uV = _min_uV, \
150 .max_uV = _max_uV, \
151 .step_uV = _step_uV, \
152 }
153
154static struct vreg_range pldo_ranges[] = {
155 VOLTAGE_RANGE( 750000, 1487500, 12500),
156 VOLTAGE_RANGE(1500000, 3075000, 25000),
157 VOLTAGE_RANGE(3100000, 4900000, 50000),
158};
159
160static struct vreg_range nldo_ranges[] = {
161 VOLTAGE_RANGE( 750000, 1537500, 12500),
162};
163
164static struct vreg_range nldo1200_ranges[] = {
165 VOLTAGE_RANGE( 375000, 743750, 6250),
166 VOLTAGE_RANGE( 750000, 1537500, 12500),
167};
168
169static struct vreg_range smps_ranges[] = {
170 VOLTAGE_RANGE( 375000, 737500, 12500),
171 VOLTAGE_RANGE( 750000, 1487500, 12500),
172 VOLTAGE_RANGE(1500000, 3075000, 25000),
173};
174
175static struct vreg_range ftsmps_ranges[] = {
176 VOLTAGE_RANGE( 350000, 650000, 50000),
177 VOLTAGE_RANGE( 700000, 1400000, 12500),
178 VOLTAGE_RANGE(1500000, 3300000, 50000),
179};
180
181static struct vreg_range ncp_ranges[] = {
182 VOLTAGE_RANGE(1500000, 3050000, 50000),
183};
184
185#define SET_POINTS(_ranges) \
186{ \
187 .range = _ranges, \
188 .count = ARRAY_SIZE(_ranges), \
189};
190
191static struct vreg_set_points pldo_set_points = SET_POINTS(pldo_ranges);
192static struct vreg_set_points nldo_set_points = SET_POINTS(nldo_ranges);
193static struct vreg_set_points nldo1200_set_points = SET_POINTS(nldo1200_ranges);
194static struct vreg_set_points smps_set_points = SET_POINTS(smps_ranges);
195static struct vreg_set_points ftsmps_set_points = SET_POINTS(ftsmps_ranges);
196static struct vreg_set_points ncp_set_points = SET_POINTS(ncp_ranges);
197
198/*
199 * This is used when voting for LPM or HPM by subtracting or adding to the
200 * hpm_min_load of a regulator. It has units of uA.
201 */
202#define LOAD_THRESHOLD_STEP 1000
203
204/* This is the maximum uA load that can be passed to the RPM. */
205#define MAX_POSSIBLE_LOAD (MILLI_TO_MICRO(0xFFF))
206
207struct vreg {
208 struct msm_rpm_iv_pair req[2];
209 struct msm_rpm_iv_pair prev_active_req[2];
210 struct msm_rpm_iv_pair prev_sleep_req[2];
211 struct rpm_regulator_init_data pdata;
212 struct regulator_dev *rdev;
213 struct regulator_dev *rdev_pc;
214 const char *name;
215 struct vreg_set_points *set_points;
216 struct rpm_vreg_parts *part;
217 int type;
218 enum rpm_vreg_id id;
219 struct mutex pc_lock;
220 int save_uV;
221 int mode;
222 bool is_enabled;
223 bool is_enabled_pc;
224 const int hpm_min_load;
225 int active_min_uV_vote[RPM_VREG_VOTER_COUNT];
226 int sleep_min_uV_vote[RPM_VREG_VOTER_COUNT];
227
228};
229
230#define LDO(_id, _ranges, _hpm_min_load) \
231 [RPM_VREG_ID_PM8921_##_id] = { \
232 .req = { \
233 [0] = { .id = MSM_RPM_ID_PM8921_##_id##_0, }, \
234 [1] = { .id = MSM_RPM_ID_PM8921_##_id##_1, }, \
235 }, \
236 .hpm_min_load = RPM_VREG_##_hpm_min_load##_HPM_MIN_LOAD, \
237 .type = REGULATOR_TYPE_LDO, \
238 .set_points = &_ranges##_set_points, \
239 .part = &ldo_parts, \
240 .id = RPM_VREG_ID_PM8921_##_id, \
241 }
242
243#define SMPS(_id, _ranges, _hpm_min_load) \
244 [RPM_VREG_ID_PM8921_##_id] = { \
245 .req = { \
246 [0] = { .id = MSM_RPM_ID_PM8921_##_id##_0, }, \
247 [1] = { .id = MSM_RPM_ID_PM8921_##_id##_1, }, \
248 }, \
249 .hpm_min_load = RPM_VREG_##_hpm_min_load##_HPM_MIN_LOAD, \
250 .type = REGULATOR_TYPE_SMPS, \
251 .set_points = &_ranges##_set_points, \
252 .part = &smps_parts, \
253 .id = RPM_VREG_ID_PM8921_##_id, \
254 }
255
256#define LVS(_id) \
257 [RPM_VREG_ID_PM8921_##_id] = { \
258 .req = { \
259 [0] = { .id = MSM_RPM_ID_PM8921_##_id, }, \
260 [1] = { .id = -1, }, \
261 }, \
262 .type = REGULATOR_TYPE_VS, \
263 .part = &switch_parts, \
264 .id = RPM_VREG_ID_PM8921_##_id, \
265 }
266
267#define MVS(_vreg_id, _rpm_id) \
268 [RPM_VREG_ID_PM8921_##_vreg_id] = { \
269 .req = { \
270 [0] = { .id = MSM_RPM_ID_##_rpm_id, }, \
271 [1] = { .id = -1, }, \
272 }, \
273 .type = REGULATOR_TYPE_VS, \
274 .part = &switch_parts, \
275 .id = RPM_VREG_ID_PM8921_##_vreg_id, \
276 }
277
278#define NCP(_id) \
279 [RPM_VREG_ID_PM8921_##_id] = { \
280 .req = { \
281 [0] = { .id = MSM_RPM_ID_##_id##_0, }, \
282 [1] = { .id = MSM_RPM_ID_##_id##_1, }, \
283 }, \
284 .type = REGULATOR_TYPE_NCP, \
285 .set_points = &ncp_set_points, \
286 .part = &ncp_parts, \
287 .id = RPM_VREG_ID_PM8921_##_id, \
288 }
289
290static struct vreg vregs[] = {
291 LDO(L1, nldo, LDO_150),
292 LDO(L2, nldo, LDO_150),
293 LDO(L3 , pldo, LDO_150),
294 LDO(L4, pldo, LDO_50),
295 LDO(L5, pldo, LDO_300),
296 LDO(L6, pldo, LDO_600),
297 LDO(L7, pldo, LDO_150),
298 LDO(L8, pldo, LDO_300),
299 LDO(L9, pldo, LDO_300),
300 LDO(L10, pldo, LDO_600),
301 LDO(L11, pldo, LDO_150),
302 LDO(L12, nldo, LDO_150),
303 LDO(L14, pldo, LDO_50),
304 LDO(L15, pldo, LDO_150),
305 LDO(L16, pldo, LDO_300),
306 LDO(L17, pldo, LDO_150),
307 LDO(L18, nldo, LDO_150),
308 LDO(L21, pldo, LDO_150),
309 LDO(L22, pldo, LDO_150),
310 LDO(L23, pldo, LDO_150),
311 LDO(L24, nldo1200, LDO_1200),
312 LDO(L25, nldo1200, LDO_1200),
313 LDO(L26, nldo1200, LDO_1200),
314 LDO(L27, nldo1200, LDO_1200),
315 LDO(L28, nldo1200, LDO_1200),
316 LDO(L29, pldo, LDO_150),
317
318 SMPS(S1, smps, SMPS_1500),
319 SMPS(S2, smps, SMPS_1500),
320 SMPS(S3, smps, SMPS_1500),
321 SMPS(S4, smps, SMPS_1500),
322 SMPS(S5, ftsmps, SMPS_2000),
323 SMPS(S6, ftsmps, SMPS_2000),
324 SMPS(S7, smps, SMPS_1500),
325 SMPS(S8, smps, SMPS_1500),
326
327 LVS(LVS1),
328 LVS(LVS2),
329 LVS(LVS3),
330 LVS(LVS4),
331 LVS(LVS5),
332 LVS(LVS6),
333 LVS(LVS7),
334 MVS(USB_OTG, USB_OTG_SWITCH),
335 MVS(HDMI_MVS, HDMI_SWITCH),
336
337 NCP(NCP),
338};
339
340#define vreg_err(vreg, fmt, ...) \
341 pr_err("%s: " fmt, vreg->name, ##__VA_ARGS__)
342
343#define VREG_ID_IS_VDD_MEM_OR_DIG(id) \
344 ((id == RPM_VREG_ID_PM8921_L24) || (id == RPM_VREG_ID_PM8921_S3))
345
346const char *pin_func_label[] = {
347 [RPM_VREG_PIN_FN_DONT_CARE] = "don't care",
348 [RPM_VREG_PIN_FN_ENABLE] = "on/off",
349 [RPM_VREG_PIN_FN_MODE] = "HPM/LPM",
350 [RPM_VREG_PIN_FN_SLEEP_B] = "sleep_b",
351 [RPM_VREG_PIN_FN_NONE] = "none",
352};
353
354const char *force_mode_label[] = {
355 [RPM_VREG_FORCE_MODE_NONE] = "none",
356 [RPM_VREG_FORCE_MODE_LPM] = "LPM",
357 [RPM_VREG_FORCE_MODE_AUTO] = "auto",
358 [RPM_VREG_FORCE_MODE_HPM] = "HPM",
359 [RPM_VREG_FORCE_MODE_BYPASS] = "BYP",
360};
361
362const char *power_mode_label[] = {
363 [RPM_VREG_POWER_MODE_HYSTERETIC] = "HYS",
364 [RPM_VREG_POWER_MODE_PWM] = "PWM",
365};
366
367static void rpm_regulator_req(struct vreg *vreg, int set)
368{
369 int uV, ip, fm, pm, pc, pf, pd, ia, freq, clk, state, hpm, comp_mode;
370 const char *pf_label = "", *fm_label = "", *pc_total = "";
371 const char *pc_en0 = "", *pc_en1 = "", *pc_en2 = "", *pc_en3 = "";
372 const char *pm_label = "";
373
374 /* Suppress VDD_MEM and VDD_DIG printing. */
375 if ((msm_rpm_vreg_debug_mask & MSM_RPM_VREG_DEBUG_IGNORE_VDD_MEM_DIG)
376 && VREG_ID_IS_VDD_MEM_OR_DIG(vreg->id))
377 return;
378
379 if (vreg->part->uV.mask)
380 uV = GET_PART(vreg, uV);
381 else
382 uV = MILLI_TO_MICRO(GET_PART(vreg, mV));
383
384 ip = GET_PART(vreg, ip);
385 fm = GET_PART(vreg, fm);
386 pm = GET_PART(vreg, pm);
387 pc = GET_PART(vreg, pc);
388 pf = GET_PART(vreg, pf);
389 pd = GET_PART(vreg, pd);
390 ia = GET_PART(vreg, ia);
391 freq = GET_PART(vreg, freq);
392 clk = GET_PART(vreg, freq_clk_src);
393 state = GET_PART(vreg, enable_state);
394 hpm = GET_PART(vreg, hpm);
395 comp_mode = GET_PART(vreg, comp_mode);
396
397 if (pf >= 0 && pf < ARRAY_SIZE(pin_func_label))
398 pf_label = pin_func_label[pf];
399
400 if (fm >= 0 && fm < ARRAY_SIZE(force_mode_label))
401 fm_label = force_mode_label[fm];
402
403 if (pm >= 0 && pm < ARRAY_SIZE(power_mode_label))
404 pm_label = power_mode_label[pm];
405
406 if (pc & RPM_VREG_PIN_CTRL_EN0)
407 pc_en0 = " D1";
408 if (pc & RPM_VREG_PIN_CTRL_EN1)
409 pc_en1 = " A0";
410 if (pc & RPM_VREG_PIN_CTRL_EN2)
411 pc_en2 = " A1";
412 if (pc & RPM_VREG_PIN_CTRL_EN3)
413 pc_en3 = " A2";
414 if (pc == RPM_VREG_PIN_CTRL_NONE)
415 pc_total = " none";
416
417 switch (vreg->type) {
418 case REGULATOR_TYPE_LDO:
419 pr_info("%s %-9s: s=%c, v=%7d uV, ip=%4d mA, fm=%s (%d), "
420 "pc=%s%s%s%s%s (%d), pf=%s (%d), pd=%s (%d), "
421 "ia=%4d mA; req[0]={%d, 0x%08X}, req[1]={%d, 0x%08X}\n",
422 (set == MSM_RPM_CTX_SET_0 ? "sending " : "buffered"),
423 vreg->name,
424 (set == MSM_RPM_CTX_SET_0 ? 'A' : 'S'), uV, ip,
425 fm_label, fm, pc_en0, pc_en1, pc_en2, pc_en3, pc_total,
426 pc, pf_label, pf, (pd == 1 ? "Y" : "N"), pd, ia,
427 vreg->req[0].id, vreg->req[0].value,
428 vreg->req[1].id, vreg->req[1].value);
429 break;
430 case REGULATOR_TYPE_SMPS:
431 pr_info("%s %-9s: s=%c, v=%7d uV, ip=%4d mA, fm=%s (%d), "
432 "pc=%s%s%s%s%s (%d), pf=%s (%d), pd=%s (%d), "
433 "ia=%4d mA, freq=%2d, pm=%s (%d), clk_src=%d; "
434 "req[0]={%d, 0x%08X}, req[1]={%d, 0x%08X}\n",
435 (set == MSM_RPM_CTX_SET_0 ? "sending " : "buffered"),
436 vreg->name,
437 (set == MSM_RPM_CTX_SET_0 ? 'A' : 'S'), uV, ip,
438 fm_label, fm, pc_en0, pc_en1, pc_en2, pc_en3, pc_total,
439 pc, pf_label, pf, (pd == 1 ? "Y" : "N"), pd, ia, freq,
440 pm_label, pm, clk, vreg->req[0].id, vreg->req[0].value,
441 vreg->req[1].id, vreg->req[1].value);
442 break;
443 case REGULATOR_TYPE_VS:
444 pr_info("%s %-9s: s=%c, state=%s (%d), pd=%s (%d), "
445 "pc =%s%s%s%s%s (%d), pf=%s (%d), hpm=%d; "
446 "req[0]={%d, 0x%08X}\n",
447 (set == MSM_RPM_CTX_SET_0 ? "sending " : "buffered"),
448 vreg->name, (set == MSM_RPM_CTX_SET_0 ? 'A' : 'S'),
449 (state == 1 ? "on" : "off"), state,
450 (pd == 1 ? "Y" : "N"), pd, pc_en0, pc_en1, pc_en2,
451 pc_en3, pc_total, pc, pf_label, pf, hpm,
452 vreg->req[0].id, vreg->req[0].value);
453 break;
454 case REGULATOR_TYPE_NCP:
455 pr_info("%s %-9s: s=%c, v=-%7d uV, state=%s (%d), freq=%2d, "
456 "comp=%d; req[0]={%d, 0x%08X}\n",
457 (set == MSM_RPM_CTX_SET_0 ? "sending " : "buffered"),
458 vreg->name, (set == MSM_RPM_CTX_SET_0 ? 'A' : 'S'),
459 uV, (state == 1 ? "on" : "off"), state, freq, comp_mode,
460 vreg->req[0].id, vreg->req[0].value);
461 break;
462 }
463}
464
465static void rpm_regulator_vote(struct vreg *vreg, enum rpm_vreg_voter voter,
466 int set, int voter_uV, int aggregate_uV)
467{
468 /* Suppress VDD_MEM and VDD_DIG printing. */
469 if ((msm_rpm_vreg_debug_mask & MSM_RPM_VREG_DEBUG_IGNORE_VDD_MEM_DIG)
470 && VREG_ID_IS_VDD_MEM_OR_DIG(vreg->id))
471 return;
472
473 pr_info("vote received %-9s: voter=%d, set=%c, v_voter=%7d uV, "
474 "v_aggregate=%7d uV\n", vreg->name, voter,
475 (set == 0 ? 'A' : 'S'), voter_uV, aggregate_uV);
476}
477
478static void rpm_regulator_duplicate(struct vreg *vreg, int set, int cnt)
479{
480 /* Suppress VDD_MEM and VDD_DIG printing. */
481 if ((msm_rpm_vreg_debug_mask & MSM_RPM_VREG_DEBUG_IGNORE_VDD_MEM_DIG)
482 && VREG_ID_IS_VDD_MEM_OR_DIG(vreg->id))
483 return;
484
485 if (cnt == 2)
486 pr_info("ignored request %-9s: set=%c; req[0]={%d, 0x%08X}, "
487 "req[1]={%d, 0x%08X}\n", vreg->name,
488 (set == 0 ? 'A' : 'S'),
489 vreg->req[0].id, vreg->req[0].value,
490 vreg->req[1].id, vreg->req[1].value);
491 else if (cnt == 1)
492 pr_info("ignored request %-9s: set=%c; req[0]={%d, 0x%08X}\n",
493 vreg->name, (set == 0 ? 'A' : 'S'),
494 vreg->req[0].id, vreg->req[0].value);
495}
496
497/* Spin lock needed for sleep-selectable regulators. */
498static DEFINE_SPINLOCK(pm8921_noirq_lock);
499
500static int voltage_from_req(struct vreg *vreg)
501{
502 int uV = 0;
503
504 if (vreg->part->uV.mask)
505 uV = GET_PART(vreg, uV);
506 else
507 uV = MILLI_TO_MICRO(GET_PART(vreg, mV));
508
509 return uV;
510}
511
512static void voltage_to_req(int uV, struct vreg *vreg)
513{
514 if (vreg->part->uV.mask)
515 SET_PART(vreg, uV, uV);
516 else
517 SET_PART(vreg, mV, MICRO_TO_MILLI(uV));
518}
519
520static int vreg_send_request(struct vreg *vreg, enum rpm_vreg_voter voter,
521 int set, unsigned mask0, unsigned val0,
522 unsigned mask1, unsigned val1, unsigned cnt,
523 int update_voltage)
524{
525 struct msm_rpm_iv_pair *prev_req;
526 int rc = 0, max_uV_vote = 0;
527 unsigned prev0, prev1;
528 int *min_uV_vote;
529 int i;
530
531 if (set == MSM_RPM_CTX_SET_0) {
532 min_uV_vote = vreg->active_min_uV_vote;
533 prev_req = vreg->prev_active_req;
534 } else {
535 min_uV_vote = vreg->sleep_min_uV_vote;
536 prev_req = vreg->prev_sleep_req;
537 }
538
539 prev0 = vreg->req[0].value;
540 vreg->req[0].value &= ~mask0;
541 vreg->req[0].value |= val0 & mask0;
542
543 prev1 = vreg->req[1].value;
544 vreg->req[1].value &= ~mask1;
545 vreg->req[1].value |= val1 & mask1;
546
547 if (update_voltage)
548 min_uV_vote[voter] = voltage_from_req(vreg);
549
550 /* Find the highest voltage voted for and use it. */
551 for (i = 0; i < RPM_VREG_VOTER_COUNT; i++)
552 max_uV_vote = max(max_uV_vote, min_uV_vote[i]);
553 voltage_to_req(max_uV_vote, vreg);
554
555 if (msm_rpm_vreg_debug_mask & MSM_RPM_VREG_DEBUG_VOTE)
556 rpm_regulator_vote(vreg, voter, set, min_uV_vote[voter],
557 max_uV_vote);
558
559 /* Ignore duplicate requests */
560 if (vreg->req[0].value != prev_req[0].value ||
561 vreg->req[1].value != prev_req[1].value) {
562 rc = msm_rpmrs_set_noirq(set, vreg->req, cnt);
563 if (rc) {
564 vreg->req[0].value = prev0;
565 vreg->req[1].value = prev1;
566
567 vreg_err(vreg, "msm_rpmrs_set_noirq failed - "
568 "set=%s, id=%d, rc=%d\n",
569 (set == MSM_RPM_CTX_SET_0 ? "active" : "sleep"),
570 vreg->req[0].id, rc);
571 } else {
572 /* Only save if nonzero and active set. */
573 if (max_uV_vote && (set == MSM_RPM_CTX_SET_0))
574 vreg->save_uV = max_uV_vote;
575 if (msm_rpm_vreg_debug_mask
576 & MSM_RPM_VREG_DEBUG_REQUEST)
577 rpm_regulator_req(vreg, set);
578 prev_req[0].value = vreg->req[0].value;
579 prev_req[1].value = vreg->req[1].value;
580 }
581 } else if (msm_rpm_vreg_debug_mask & MSM_RPM_VREG_DEBUG_DUPLICATE) {
582 rpm_regulator_duplicate(vreg, set, cnt);
583 }
584
585 return rc;
586}
587
588static int vreg_set_noirq(struct vreg *vreg, enum rpm_vreg_voter voter,
589 int sleep, unsigned mask0, unsigned val0,
590 unsigned mask1, unsigned val1, unsigned cnt,
591 int update_voltage)
592{
593 unsigned int s_mask[2] = {mask0, mask1}, s_val[2] = {val0, val1};
594 unsigned long flags;
595 int rc;
596
597 if (voter < 0 || voter >= RPM_VREG_VOTER_COUNT)
598 return -EINVAL;
599
600 spin_lock_irqsave(&pm8921_noirq_lock, flags);
601
602 /*
603 * Send sleep set request first so that subsequent set_mode, etc calls
604 * use the voltage from the active set.
605 */
606 if (sleep)
607 rc = vreg_send_request(vreg, voter, MSM_RPM_CTX_SET_SLEEP,
608 mask0, val0, mask1, val1, cnt, update_voltage);
609 else {
610 /*
611 * Vote for 0 V in the sleep set when active set-only is
612 * specified. This ensures that a disable vote will be issued
613 * at some point for the sleep set of the regulator.
614 */
615 if (vreg->part->uV.mask) {
616 s_val[vreg->part->uV.word] = 0 << vreg->part->uV.shift;
617 s_mask[vreg->part->uV.word] = vreg->part->uV.mask;
618 } else {
619 s_val[vreg->part->mV.word] = 0 << vreg->part->mV.shift;
620 s_mask[vreg->part->mV.word] = vreg->part->mV.mask;
621 }
622
623 rc = vreg_send_request(vreg, voter, MSM_RPM_CTX_SET_SLEEP,
624 s_mask[0], s_val[0], s_mask[1], s_val[1],
625 cnt, update_voltage);
626 }
627
628 rc = vreg_send_request(vreg, voter, MSM_RPM_CTX_SET_0, mask0, val0,
629 mask1, val1, cnt, update_voltage);
630
631 spin_unlock_irqrestore(&pm8921_noirq_lock, flags);
632
633 return rc;
634}
635
636/**
637 * rpm_vreg_set_voltage - vote for a min_uV value of specified regualtor
638 * @vreg: ID for regulator
639 * @voter: ID for the voter
640 * @min_uV: minimum acceptable voltage (in uV) that is voted for
641 * @max_uV: maximum acceptable voltage (in uV) that is voted for
642 * @sleep_also: 0 for active set only, non-0 for active set and sleep set
643 *
644 * Returns 0 on success or errno.
645 *
646 * This function is used to vote for the voltage of a regulator without
647 * using the regulator framework. It is needed by consumers which hold spin
648 * locks or have interrupts disabled because the regulator framework can sleep.
649 * It is also needed by consumers which wish to only vote for active set
650 * regulator voltage.
651 *
652 * If sleep_also == 0, then a sleep-set value of 0V will be voted for.
653 *
654 * This function may only be called for regulators which have the sleep flag
655 * specified in their private data.
656 */
657int rpm_vreg_set_voltage(enum rpm_vreg_id vreg_id, enum rpm_vreg_voter voter,
658 int min_uV, int max_uV, int sleep_also)
659{
660 unsigned int mask[2] = {0}, val[2] = {0};
661 struct vreg_range *range;
662 struct vreg *vreg;
663 int uV = min_uV;
664 int lim_min_uV, lim_max_uV, i, rc;
665
666 /*
667 * TODO: make this function a no-op so that it can be called by
668 * consumers before RPM capabilities are present. (needed for
669 * acpuclock driver)
670 */
671 return 0;
672
673 if (vreg_id < 0 || vreg_id > RPM_VREG_ID_PM8921_MAX_REAL) {
674 pr_err("invalid regulator id=%d\n", vreg_id);
675 return -EINVAL;
676 }
677 vreg = &vregs[vreg_id];
678 range = &vreg->set_points->range[0];
679
680 if (!vreg->pdata.sleep_selectable) {
681 vreg_err(vreg, "regulator is not marked sleep selectable\n");
682 return -EINVAL;
683 }
684
685 /*
686 * Check if request voltage is outside of allowed range. The regulator
687 * core has already checked that constraint range is inside of the
688 * physically allowed range.
689 */
690 lim_min_uV = vreg->pdata.init_data.constraints.min_uV;
691 lim_max_uV = vreg->pdata.init_data.constraints.max_uV;
692
693 if (uV < lim_min_uV && max_uV >= lim_min_uV)
694 uV = lim_min_uV;
695
696 if (uV < lim_min_uV || uV > lim_max_uV) {
697 vreg_err(vreg,
698 "request v=[%d, %d] is outside allowed v=[%d, %d]\n",
699 min_uV, max_uV, lim_min_uV, lim_max_uV);
700 return -EINVAL;
701 }
702
703 /* Find the range which uV is inside of. */
704 for (i = vreg->set_points->count - 1; i > 0; i++) {
705 if (uV > vreg->set_points->range[i - 1].max_uV) {
706 range = &vreg->set_points->range[i];
707 break;
708 }
709 }
710
711 /*
712 * Force uV to be an allowed set point and apply a ceiling function
713 * to non-set point values.
714 */
715 uV = (uV - range->min_uV + range->step_uV - 1) / range->step_uV;
716 uV = uV * range->step_uV + range->min_uV;
717
718 if (vreg->part->uV.mask) {
719 val[vreg->part->uV.word] = uV << vreg->part->uV.shift;
720 mask[vreg->part->uV.word] = vreg->part->uV.mask;
721 } else {
722 val[vreg->part->mV.word]
723 = MICRO_TO_MILLI(uV) << vreg->part->mV.shift;
724 mask[vreg->part->mV.word] = vreg->part->mV.mask;
725 }
726
727 rc = vreg_set_noirq(vreg, voter, sleep_also, mask[0], val[0], mask[1],
728 val[1], vreg->part->request_len, 1);
729 if (rc)
730 vreg_err(vreg, "vreg_set_noirq failed, rc=%d\n", rc);
731
732 return rc;
733}
734EXPORT_SYMBOL_GPL(rpm_vreg_set_voltage);
735
736/**
737 * rpm_vreg_set_frequency - sets the frequency of a switching regulator
738 * @vreg: ID for regulator
739 * @freq: enum corresponding to desired frequency
740 *
741 * Returns 0 on success or errno.
742 */
743int rpm_vreg_set_frequency(enum rpm_vreg_id vreg_id, enum rpm_vreg_freq freq)
744{
745 unsigned int mask[2] = {0}, val[2] = {0};
746 struct vreg *vreg;
747 int rc;
748
749 /*
750 * TODO: make this function a no-op so that it can be called by
751 * consumers before RPM capabilities are present. (needed for
752 * acpuclock driver)
753 */
754 return 0;
755
756 if (vreg_id < 0 || vreg_id > RPM_VREG_ID_PM8921_MAX_REAL) {
757 pr_err("invalid regulator id=%d\n", vreg_id);
758 return -EINVAL;
759 }
760 vreg = &vregs[vreg_id];
761
762 if (freq < 0 || freq > RPM_VREG_FREQ_1p20) {
763 vreg_err(vreg, "invalid frequency=%d\n", freq);
764 return -EINVAL;
765 }
766 if (!vreg->pdata.sleep_selectable) {
767 vreg_err(vreg, "regulator is not marked sleep selectable\n");
768 return -EINVAL;
769 }
770 if (!vreg->part->freq.mask) {
771 vreg_err(vreg, "frequency not supported\n");
772 return -EINVAL;
773 }
774
775 val[vreg->part->freq.word] = freq << vreg->part->freq.shift;
776 mask[vreg->part->freq.word] = vreg->part->freq.mask;
777
778 rc = vreg_set_noirq(vreg, RPM_VREG_VOTER_REG_FRAMEWORK, 1, mask[0],
779 val[0], mask[1], val[1], vreg->part->request_len, 0);
780 if (rc)
781 vreg_err(vreg, "vreg_set failed, rc=%d\n", rc);
782
783 return rc;
784}
785EXPORT_SYMBOL_GPL(rpm_vreg_set_frequency);
786
787static inline int vreg_hpm_min_uA(struct vreg *vreg)
788{
789 return vreg->hpm_min_load;
790}
791
792static inline int vreg_lpm_max_uA(struct vreg *vreg)
793{
794 return vreg->hpm_min_load - LOAD_THRESHOLD_STEP;
795}
796
797static inline unsigned saturate_peak_load(struct vreg *vreg, unsigned load_uA)
798{
799 unsigned load_max
800 = MILLI_TO_MICRO(vreg->part->ip.mask >> vreg->part->ip.shift);
801
802 return (load_uA > load_max ? load_max : load_uA);
803}
804
805static inline unsigned saturate_avg_load(struct vreg *vreg, unsigned load_uA)
806{
807 unsigned load_max
808 = MILLI_TO_MICRO(vreg->part->ia.mask >> vreg->part->ia.shift);
809 return (load_uA > load_max ? load_max : load_uA);
810}
811
812/* Change vreg->req, but do not send it to the RPM. */
813static int vreg_store(struct vreg *vreg, unsigned mask0, unsigned val0,
814 unsigned mask1, unsigned val1)
815{
816 unsigned long flags = 0;
817
818 if (vreg->pdata.sleep_selectable)
819 spin_lock_irqsave(&pm8921_noirq_lock, flags);
820
821 vreg->req[0].value &= ~mask0;
822 vreg->req[0].value |= val0 & mask0;
823
824 vreg->req[1].value &= ~mask1;
825 vreg->req[1].value |= val1 & mask1;
826
827 if (vreg->pdata.sleep_selectable)
828 spin_unlock_irqrestore(&pm8921_noirq_lock, flags);
829
830 return 0;
831}
832
833static int vreg_set(struct vreg *vreg, unsigned mask0, unsigned val0,
834 unsigned mask1, unsigned val1, unsigned cnt)
835{
836 unsigned prev0 = 0, prev1 = 0;
837 int rc;
838
839 /*
840 * Bypass the normal route for regulators that can be called to change
841 * just the active set values.
842 */
843 if (vreg->pdata.sleep_selectable)
844 return vreg_set_noirq(vreg, RPM_VREG_VOTER_REG_FRAMEWORK, 1,
845 mask0, val0, mask1, val1, cnt, 1);
846
847 prev0 = vreg->req[0].value;
848 vreg->req[0].value &= ~mask0;
849 vreg->req[0].value |= val0 & mask0;
850
851 prev1 = vreg->req[1].value;
852 vreg->req[1].value &= ~mask1;
853 vreg->req[1].value |= val1 & mask1;
854
855 /* Ignore duplicate requests */
856 if (vreg->req[0].value == vreg->prev_active_req[0].value &&
857 vreg->req[1].value == vreg->prev_active_req[1].value) {
858 if (msm_rpm_vreg_debug_mask & MSM_RPM_VREG_DEBUG_DUPLICATE)
859 rpm_regulator_duplicate(vreg, MSM_RPM_CTX_SET_0, cnt);
860 return 0;
861 }
862
863 rc = msm_rpm_set(MSM_RPM_CTX_SET_0, vreg->req, cnt);
864 if (rc) {
865 vreg->req[0].value = prev0;
866 vreg->req[1].value = prev1;
867
868 vreg_err(vreg, "msm_rpm_set failed, set=active, id=%d, rc=%d\n",
869 vreg->req[0].id, rc);
870 } else {
871 if (msm_rpm_vreg_debug_mask & MSM_RPM_VREG_DEBUG_REQUEST)
872 rpm_regulator_req(vreg, MSM_RPM_CTX_SET_0);
873 vreg->prev_active_req[0].value = vreg->req[0].value;
874 vreg->prev_active_req[1].value = vreg->req[1].value;
875 }
876
877 return rc;
878}
879
880static int vreg_is_enabled(struct regulator_dev *rdev)
881{
882 struct vreg *vreg = rdev_get_drvdata(rdev);
883 int enabled;
884
885 mutex_lock(&vreg->pc_lock);
886 enabled = vreg->is_enabled;
887 mutex_unlock(&vreg->pc_lock);
888
889 return enabled;
890}
891
892static void set_enable(struct vreg *vreg, unsigned int *mask, unsigned int *val)
893{
894 switch (vreg->type) {
895 case REGULATOR_TYPE_LDO:
896 case REGULATOR_TYPE_SMPS:
897 /* Enable by setting a voltage. */
898 if (vreg->part->uV.mask) {
899 val[vreg->part->uV.word]
900 |= vreg->save_uV << vreg->part->uV.shift;
901 mask[vreg->part->uV.word] |= vreg->part->uV.mask;
902 } else {
903 val[vreg->part->mV.word]
904 |= MICRO_TO_MILLI(vreg->save_uV)
905 << vreg->part->mV.shift;
906 mask[vreg->part->mV.word] |= vreg->part->mV.mask;
907 }
908 break;
909 case REGULATOR_TYPE_VS:
910 case REGULATOR_TYPE_NCP:
911 /* Enable by setting enable_state. */
912 val[vreg->part->enable_state.word]
913 |= RPM_VREG_STATE_ON << vreg->part->enable_state.shift;
914 mask[vreg->part->enable_state.word]
915 |= vreg->part->enable_state.mask;
916 }
917}
918
919static int vreg_enable(struct regulator_dev *rdev)
920{
921 struct vreg *vreg = rdev_get_drvdata(rdev);
922 unsigned int mask[2] = {0}, val[2] = {0};
923 int rc = 0;
924
925 set_enable(vreg, mask, val);
926
927 mutex_lock(&vreg->pc_lock);
928
929 rc = vreg_set(vreg, mask[0], val[0], mask[1], val[1],
930 vreg->part->request_len);
931 if (!rc)
932 vreg->is_enabled = true;
933
934 mutex_unlock(&vreg->pc_lock);
935
936 if (rc)
937 vreg_err(vreg, "vreg_set failed, rc=%d\n", rc);
938
939 return rc;
940}
941
942static void set_disable(struct vreg *vreg, unsigned int *mask,
943 unsigned int *val)
944{
945 switch (vreg->type) {
946 case REGULATOR_TYPE_LDO:
947 case REGULATOR_TYPE_SMPS:
948 /* Disable by setting a voltage of 0 uV. */
949 if (vreg->part->uV.mask) {
950 val[vreg->part->uV.word] |= 0 << vreg->part->uV.shift;
951 mask[vreg->part->uV.word] |= vreg->part->uV.mask;
952 } else {
953 val[vreg->part->mV.word] |= 0 << vreg->part->mV.shift;
954 mask[vreg->part->mV.word] |= vreg->part->mV.mask;
955 }
956 break;
957 case REGULATOR_TYPE_VS:
958 case REGULATOR_TYPE_NCP:
959 /* Disable by setting enable_state. */
960 val[vreg->part->enable_state.word]
961 |= RPM_VREG_STATE_OFF << vreg->part->enable_state.shift;
962 mask[vreg->part->enable_state.word]
963 |= vreg->part->enable_state.mask;
964 }
965}
966
967static int vreg_disable(struct regulator_dev *rdev)
968{
969 struct vreg *vreg = rdev_get_drvdata(rdev);
970 unsigned int mask[2] = {0}, val[2] = {0};
971 int rc = 0;
972
973 set_disable(vreg, mask, val);
974
975 mutex_lock(&vreg->pc_lock);
976
977 /* Only disable if pin control is not in use. */
978 if (!vreg->is_enabled_pc)
979 rc = vreg_set(vreg, mask[0], val[0], mask[1], val[1],
980 vreg->part->request_len);
981
982 if (!rc)
983 vreg->is_enabled = false;
984
985 mutex_unlock(&vreg->pc_lock);
986
987 if (rc)
988 vreg_err(vreg, "vreg_set failed, rc=%d\n", rc);
989
990 return rc;
991}
992
993static int vreg_set_voltage(struct regulator_dev *rdev, int min_uV, int max_uV,
994 unsigned *selector)
995{
996 struct vreg *vreg = rdev_get_drvdata(rdev);
997 struct vreg_range *range = &vreg->set_points->range[0];
998 unsigned int mask[2] = {0}, val[2] = {0};
999 int rc = 0, uV = min_uV;
1000 int lim_min_uV, lim_max_uV, i;
1001
1002 /* Check if request voltage is outside of physically settable range. */
1003 lim_min_uV = vreg->set_points->range[0].min_uV;
1004 lim_max_uV =
1005 vreg->set_points->range[vreg->set_points->count - 1].max_uV;
1006
1007 if (uV < lim_min_uV && max_uV >= lim_min_uV)
1008 uV = lim_min_uV;
1009
1010 if (uV < lim_min_uV || uV > lim_max_uV) {
1011 vreg_err(vreg,
1012 "request v=[%d, %d] is outside possible v=[%d, %d]\n",
1013 min_uV, max_uV, lim_min_uV, lim_max_uV);
1014 return -EINVAL;
1015 }
1016
1017 /* Find the range which uV is inside of. */
1018 for (i = vreg->set_points->count - 1; i > 0; i++) {
1019 if (uV > vreg->set_points->range[i - 1].max_uV) {
1020 range = &vreg->set_points->range[i];
1021 break;
1022 }
1023 }
1024
1025 /*
1026 * Force uV to be an allowed set point and apply a ceiling function
1027 * to non-set point values.
1028 */
1029 uV = (uV - range->min_uV + range->step_uV - 1) / range->step_uV;
1030 uV = uV * range->step_uV + range->min_uV;
1031
1032 if (vreg->part->uV.mask) {
1033 val[vreg->part->uV.word] = uV << vreg->part->uV.shift;
1034 mask[vreg->part->uV.word] = vreg->part->uV.mask;
1035 } else {
1036 val[vreg->part->mV.word]
1037 = MICRO_TO_MILLI(uV) << vreg->part->mV.shift;
1038 mask[vreg->part->mV.word] = vreg->part->mV.mask;
1039 }
1040
1041 mutex_lock(&vreg->pc_lock);
1042
1043 /*
1044 * Only send a request for a new voltage if the regulator is currently
1045 * enabled. This will ensure that LDO and SMPS regulators are not
1046 * inadvertently turned on because voltage > 0 is equivalent to
1047 * enabling. For NCP, this just removes unnecessary RPM requests.
1048 */
1049 if (vreg->is_enabled) {
1050 rc = vreg_set(vreg, mask[0], val[0], mask[1], val[1],
1051 vreg->part->request_len);
1052 if (rc)
1053 vreg_err(vreg, "vreg_set failed, rc=%d\n", rc);
1054 } else if (vreg->type == REGULATOR_TYPE_NCP) {
1055 /* Regulator is disabled; store but don't send new request. */
1056 rc = vreg_store(vreg, mask[0], val[0], mask[1], val[1]);
1057 }
1058
1059 if (!rc && (!vreg->pdata.sleep_selectable || !vreg->is_enabled))
1060 vreg->save_uV = uV;
1061
1062 mutex_unlock(&vreg->pc_lock);
1063
1064 return rc;
1065}
1066
1067static int vreg_get_voltage(struct regulator_dev *rdev)
1068{
1069 struct vreg *vreg = rdev_get_drvdata(rdev);
1070
1071 return vreg->save_uV;
1072}
1073
1074static int vreg_list_voltage(struct regulator_dev *rdev, unsigned selector)
1075{
1076 struct vreg *vreg = rdev_get_drvdata(rdev);
1077 int uV = 0;
1078 int i;
1079
1080 if (!vreg->set_points) {
1081 vreg_err(vreg, "no voltages available\n");
1082 return -EINVAL;
1083 }
1084
1085 if (selector >= vreg->set_points->n_voltages)
1086 return 0;
1087
1088 for (i = 0; i < vreg->set_points->count; i++) {
1089 if (selector < vreg->set_points->range[i].n_voltages) {
1090 uV = selector * vreg->set_points->range[i].step_uV
1091 + vreg->set_points->range[i].min_uV;
1092 break;
1093 } else {
1094 selector -= vreg->set_points->range[i].n_voltages;
1095 }
1096 }
1097
1098 return uV;
1099}
1100
1101static int vreg_set_mode(struct regulator_dev *rdev, unsigned int mode)
1102{
1103 struct vreg *vreg = rdev_get_drvdata(rdev);
1104 unsigned int mask[2] = {0}, val[2] = {0};
1105 int rc = 0;
1106 int peak_uA;
1107
1108 mutex_lock(&vreg->pc_lock);
1109
1110 peak_uA = MILLI_TO_MICRO((vreg->req[vreg->part->ip.word].value
1111 & vreg->part->ip.mask) >> vreg->part->ip.shift);
1112
1113 switch (mode) {
1114 case REGULATOR_MODE_NORMAL:
1115 /* Make sure that request currents are in HPM range. */
1116 if (peak_uA < vreg_hpm_min_uA(vreg)) {
1117 val[vreg->part->ip.word]
1118 = MICRO_TO_MILLI(vreg_hpm_min_uA(vreg))
1119 << vreg->part->ip.shift;
1120 mask[vreg->part->ip.word] = vreg->part->ip.mask;
1121 }
1122 break;
1123 case REGULATOR_MODE_IDLE:
1124 /* Make sure that request currents are in LPM range. */
1125 if (peak_uA > vreg_lpm_max_uA(vreg)) {
1126 val[vreg->part->ip.word]
1127 = MICRO_TO_MILLI(vreg_lpm_max_uA(vreg))
1128 << vreg->part->ip.shift;
1129 mask[vreg->part->ip.word] = vreg->part->ip.mask;
1130 }
1131 break;
1132 default:
1133 vreg_err(vreg, "invalid mode: %u\n", mode);
1134 mutex_unlock(&vreg->pc_lock);
1135 return -EINVAL;
1136 }
1137
1138 if (vreg->is_enabled) {
1139 rc = vreg_set(vreg, mask[0], val[0], mask[1], val[1],
1140 vreg->part->request_len);
1141 } else {
1142 /* Regulator is disabled; store but don't send new request. */
1143 rc = vreg_store(vreg, mask[0], val[0], mask[1], val[1]);
1144 }
1145
1146 if (rc)
1147 vreg_err(vreg, "vreg_set failed, rc=%d\n", rc);
1148 else
1149 vreg->mode = mode;
1150
1151 mutex_unlock(&vreg->pc_lock);
1152
1153 return rc;
1154}
1155
1156static unsigned int vreg_get_mode(struct regulator_dev *rdev)
1157{
1158 struct vreg *vreg = rdev_get_drvdata(rdev);
1159
1160 return vreg->mode;
1161}
1162
1163static unsigned int vreg_get_optimum_mode(struct regulator_dev *rdev,
1164 int input_uV, int output_uV, int load_uA)
1165{
1166 struct vreg *vreg = rdev_get_drvdata(rdev);
1167 unsigned int mode;
1168
1169 load_uA += vreg->pdata.system_uA;
1170
1171 mutex_lock(&vreg->pc_lock);
1172 SET_PART(vreg, ip, MICRO_TO_MILLI(saturate_peak_load(vreg, load_uA)));
1173 mutex_unlock(&vreg->pc_lock);
1174
1175 if (load_uA >= vreg->hpm_min_load)
1176 mode = REGULATOR_MODE_NORMAL;
1177 else
1178 mode = REGULATOR_MODE_IDLE;
1179
1180 return mode;
1181}
1182
1183/*
1184 * Returns the logical pin control enable state because the pin control options
1185 * present in the hardware out of restart could be different from those desired
1186 * by the consumer.
1187 */
1188static int vreg_pin_control_is_enabled(struct regulator_dev *rdev)
1189{
1190 struct vreg *vreg = rdev_get_drvdata(rdev);
1191
1192 return vreg->is_enabled_pc;
1193}
1194
1195static int vreg_pin_control_enable(struct regulator_dev *rdev)
1196{
1197 struct vreg *vreg = rdev_get_drvdata(rdev);
1198 unsigned int mask[2] = {0}, val[2] = {0};
1199 int rc;
1200
1201 mutex_lock(&vreg->pc_lock);
1202
1203 val[vreg->part->pc.word]
1204 |= vreg->pdata.pin_ctrl << vreg->part->pc.shift;
1205 mask[vreg->part->pc.word] |= vreg->part->pc.mask;
1206
1207 val[vreg->part->pf.word] |= vreg->pdata.pin_fn << vreg->part->pf.shift;
1208 mask[vreg->part->pf.word] |= vreg->part->pf.mask;
1209
1210 if (!vreg->is_enabled)
1211 set_enable(vreg, mask, val);
1212
1213 rc = vreg_set(vreg, mask[0], val[0], mask[1], val[1],
1214 vreg->part->request_len);
1215
1216 if (!rc)
1217 vreg->is_enabled_pc = true;
1218
1219 mutex_unlock(&vreg->pc_lock);
1220
1221 if (rc)
1222 vreg_err(vreg, "vreg_set failed, rc=%d\n", rc);
1223
1224 return rc;
1225}
1226
1227static int vreg_pin_control_disable(struct regulator_dev *rdev)
1228{
1229 struct vreg *vreg = rdev_get_drvdata(rdev);
1230 unsigned int mask[2] = {0}, val[2] = {0};
1231 enum rpm_vreg_pin_fn pin_fn;
1232 int rc;
1233
1234 mutex_lock(&vreg->pc_lock);
1235
1236 val[vreg->part->pc.word]
1237 |= RPM_VREG_PIN_CTRL_NONE << vreg->part->pc.shift;
1238 mask[vreg->part->pc.word] |= vreg->part->pc.mask;
1239
1240 pin_fn = RPM_VREG_PIN_FN_NONE;
1241 if (vreg->pdata.pin_fn == RPM_VREG_PIN_FN_SLEEP_B)
1242 pin_fn = RPM_VREG_PIN_FN_SLEEP_B;
1243 val[vreg->part->pf.word] |= pin_fn << vreg->part->pf.shift;
1244 mask[vreg->part->pf.word] |= vreg->part->pf.mask;
1245
1246 if (!vreg->is_enabled)
1247 set_disable(vreg, mask, val);
1248
1249 rc = vreg_set(vreg, mask[0], val[0], mask[1], val[1],
1250 vreg->part->request_len);
1251
1252 if (!rc)
1253 vreg->is_enabled_pc = false;
1254
1255 mutex_unlock(&vreg->pc_lock);
1256
1257 if (rc)
1258 vreg_err(vreg, "vreg_set failed, rc=%d\n", rc);
1259
1260 return rc;
1261}
1262
1263/* Real regulator operations. */
1264static struct regulator_ops ldo_ops = {
1265 .enable = vreg_enable,
1266 .disable = vreg_disable,
1267 .is_enabled = vreg_is_enabled,
1268 .set_voltage = vreg_set_voltage,
1269 .get_voltage = vreg_get_voltage,
1270 .list_voltage = vreg_list_voltage,
1271 .set_mode = vreg_set_mode,
1272 .get_mode = vreg_get_mode,
1273 .get_optimum_mode = vreg_get_optimum_mode,
1274};
1275
1276static struct regulator_ops smps_ops = {
1277 .enable = vreg_enable,
1278 .disable = vreg_disable,
1279 .is_enabled = vreg_is_enabled,
1280 .set_voltage = vreg_set_voltage,
1281 .get_voltage = vreg_get_voltage,
1282 .list_voltage = vreg_list_voltage,
1283 .set_mode = vreg_set_mode,
1284 .get_mode = vreg_get_mode,
1285 .get_optimum_mode = vreg_get_optimum_mode,
1286};
1287
1288static struct regulator_ops switch_ops = {
1289 .enable = vreg_enable,
1290 .disable = vreg_disable,
1291 .is_enabled = vreg_is_enabled,
1292};
1293
1294static struct regulator_ops ncp_ops = {
1295 .enable = vreg_enable,
1296 .disable = vreg_disable,
1297 .is_enabled = vreg_is_enabled,
1298 .set_voltage = vreg_set_voltage,
1299 .get_voltage = vreg_get_voltage,
1300 .list_voltage = vreg_list_voltage,
1301};
1302
1303/* Pin control regulator operations. */
1304static struct regulator_ops pin_control_ops = {
1305 .enable = vreg_pin_control_enable,
1306 .disable = vreg_pin_control_disable,
1307 .is_enabled = vreg_pin_control_is_enabled,
1308};
1309
1310#define VREG_DESC(_id, _name, _ops) \
1311 [RPM_VREG_ID_PM8921_##_id] = { \
1312 .id = RPM_VREG_ID_PM8921_##_id, \
1313 .name = _name, \
1314 .ops = _ops, \
1315 .type = REGULATOR_VOLTAGE, \
1316 .owner = THIS_MODULE, \
1317 }
1318
1319static struct regulator_desc vreg_description[] = {
1320 VREG_DESC(L1, "8921_l1", &ldo_ops),
1321 VREG_DESC(L2, "8921_l2", &ldo_ops),
1322 VREG_DESC(L3, "8921_l3", &ldo_ops),
1323 VREG_DESC(L4, "8921_l4", &ldo_ops),
1324 VREG_DESC(L5, "8921_l5", &ldo_ops),
1325 VREG_DESC(L6, "8921_l6", &ldo_ops),
1326 VREG_DESC(L7, "8921_l7", &ldo_ops),
1327 VREG_DESC(L8, "8921_l8", &ldo_ops),
1328 VREG_DESC(L9, "8921_l9", &ldo_ops),
1329 VREG_DESC(L10, "8921_l10", &ldo_ops),
1330 VREG_DESC(L11, "8921_l11", &ldo_ops),
1331 VREG_DESC(L12, "8921_l12", &ldo_ops),
1332 VREG_DESC(L14, "8921_l14", &ldo_ops),
1333 VREG_DESC(L15, "8921_l15", &ldo_ops),
1334 VREG_DESC(L16, "8921_l16", &ldo_ops),
1335 VREG_DESC(L17, "8921_l17", &ldo_ops),
1336 VREG_DESC(L18, "8921_l18", &ldo_ops),
1337 VREG_DESC(L21, "8921_l21", &ldo_ops),
1338 VREG_DESC(L22, "8921_l22", &ldo_ops),
1339 VREG_DESC(L23, "8921_l23", &ldo_ops),
1340 VREG_DESC(L24, "8921_l24", &ldo_ops),
1341 VREG_DESC(L25, "8921_l25", &ldo_ops),
1342 VREG_DESC(L26, "8921_l26", &ldo_ops),
1343 VREG_DESC(L27, "8921_l27", &ldo_ops),
1344 VREG_DESC(L28, "8921_l28", &ldo_ops),
1345 VREG_DESC(L29, "8921_l29", &ldo_ops),
1346
1347 VREG_DESC(S1, "8921_s1", &smps_ops),
1348 VREG_DESC(S2, "8921_s2", &smps_ops),
1349 VREG_DESC(S3, "8921_s3", &smps_ops),
1350 VREG_DESC(S4, "8921_s4", &smps_ops),
1351 VREG_DESC(S5, "8921_s5", &smps_ops),
1352 VREG_DESC(S6, "8921_s6", &smps_ops),
1353 VREG_DESC(S7, "8921_s7", &smps_ops),
1354 VREG_DESC(S8, "8921_s8", &smps_ops),
1355
1356 VREG_DESC(LVS1, "8921_lvs1", &switch_ops),
1357 VREG_DESC(LVS2, "8921_lvs2", &switch_ops),
1358 VREG_DESC(LVS3, "8921_lvs3", &switch_ops),
1359 VREG_DESC(LVS4, "8921_lvs4", &switch_ops),
1360 VREG_DESC(LVS5, "8921_lvs5", &switch_ops),
1361 VREG_DESC(LVS6, "8921_lvs6", &switch_ops),
1362 VREG_DESC(LVS7, "8921_lvs7", &switch_ops),
1363
1364 VREG_DESC(USB_OTG, "8921_usb_otg", &switch_ops),
1365 VREG_DESC(HDMI_MVS, "8921_hdmi_mvs", &switch_ops),
1366 VREG_DESC(NCP, "8921_ncp", &ncp_ops),
1367
1368 VREG_DESC(L1_PC, "8921_l1_pc", &pin_control_ops),
1369 VREG_DESC(L2_PC, "8921_l2_pc", &pin_control_ops),
1370 VREG_DESC(L3_PC, "8921_l3_pc", &pin_control_ops),
1371 VREG_DESC(L4_PC, "8921_l4_pc", &pin_control_ops),
1372 VREG_DESC(L5_PC, "8921_l5_pc", &pin_control_ops),
1373 VREG_DESC(L6_PC, "8921_l6_pc", &pin_control_ops),
1374 VREG_DESC(L7_PC, "8921_l7_pc", &pin_control_ops),
1375 VREG_DESC(L8_PC, "8921_l8_pc", &pin_control_ops),
1376 VREG_DESC(L9_PC, "8921_l9_pc", &pin_control_ops),
1377 VREG_DESC(L10_PC, "8921_l10_pc", &pin_control_ops),
1378 VREG_DESC(L11_PC, "8921_l11_pc", &pin_control_ops),
1379 VREG_DESC(L12_PC, "8921_l12_pc", &pin_control_ops),
1380 VREG_DESC(L14_PC, "8921_l14_pc", &pin_control_ops),
1381 VREG_DESC(L15_PC, "8921_l15_pc", &pin_control_ops),
1382 VREG_DESC(L16_PC, "8921_l16_pc", &pin_control_ops),
1383 VREG_DESC(L17_PC, "8921_l17_pc", &pin_control_ops),
1384 VREG_DESC(L18_PC, "8921_l18_pc", &pin_control_ops),
1385 VREG_DESC(L21_PC, "8921_l21_pc", &pin_control_ops),
1386 VREG_DESC(L22_PC, "8921_l22_pc", &pin_control_ops),
1387 VREG_DESC(L23_PC, "8921_l23_pc", &pin_control_ops),
1388 VREG_DESC(L29_PC, "8921_l29_pc", &pin_control_ops),
1389
1390 VREG_DESC(S1_PC, "8921_s1_pc", &pin_control_ops),
1391 VREG_DESC(S2_PC, "8921_s2_pc", &pin_control_ops),
1392 VREG_DESC(S3_PC, "8921_s3_pc", &pin_control_ops),
1393 VREG_DESC(S4_PC, "8921_s4_pc", &pin_control_ops),
1394 VREG_DESC(S7_PC, "8921_s7_pc", &pin_control_ops),
1395 VREG_DESC(S8_PC, "8921_s8_pc", &pin_control_ops),
1396
1397 VREG_DESC(LVS1_PC, "8921_lvs1_pc", &pin_control_ops),
1398 VREG_DESC(LVS3_PC, "8921_lvs3_pc", &pin_control_ops),
1399 VREG_DESC(LVS4_PC, "8921_lvs4_pc", &pin_control_ops),
1400 VREG_DESC(LVS5_PC, "8921_lvs5_pc", &pin_control_ops),
1401 VREG_DESC(LVS6_PC, "8921_lvs6_pc", &pin_control_ops),
1402 VREG_DESC(LVS7_PC, "8921_lvs7_pc", &pin_control_ops),
1403};
1404
1405static inline int is_real_regulator(int id)
1406{
1407 return (id >= 0) && (id <= RPM_VREG_ID_PM8921_MAX_REAL);
1408}
1409
1410static int pc_id_to_real_id(int id)
1411{
1412 int real_id;
1413
1414 if (id >= RPM_VREG_ID_PM8921_L1_PC && id <= RPM_VREG_ID_PM8921_L23_PC)
1415 real_id = id - RPM_VREG_ID_PM8921_L1_PC;
1416 else if (id >= RPM_VREG_ID_PM8921_L29_PC
1417 && id <= RPM_VREG_ID_PM8921_S4_PC)
1418 real_id = id - RPM_VREG_ID_PM8921_L29_PC
1419 + RPM_VREG_ID_PM8921_L29;
1420 else if (id >= RPM_VREG_ID_PM8921_S7_PC
1421 && id <= RPM_VREG_ID_PM8921_LVS1_PC)
1422 real_id = id - RPM_VREG_ID_PM8921_S7_PC + RPM_VREG_ID_PM8921_S7;
1423 else
1424 real_id = id - RPM_VREG_ID_PM8921_LVS3_PC
1425 + RPM_VREG_ID_PM8921_LVS3;
1426
1427 return real_id;
1428}
1429
1430static int __devinit
1431rpm_vreg_init_regulator(const struct rpm_regulator_init_data *pdata,
1432 struct device *dev)
1433{
1434 enum rpm_vreg_pin_fn pin_fn;
1435 struct regulator_desc *rdesc;
1436 struct regulator_dev *rdev;
1437 struct vreg *vreg;
1438 const char *reg_name = "";
1439 unsigned pin_ctrl;
1440 int rc = 0, id = pdata->id;
1441
1442 if (id < 0 || id > RPM_VREG_ID_PM8921_MAX) {
1443 pr_err("invalid regulator id: %d\n", id);
1444 return -ENODEV;
1445 }
1446
1447 rdesc = &vreg_description[pdata->id];
1448 if (!is_real_regulator(pdata->id))
1449 id = pc_id_to_real_id(pdata->id);
1450 vreg = &vregs[id];
1451 reg_name = vreg_description[pdata->id].name;
1452 if (!pdata) {
1453 pr_err("%s: requires platform data\n", reg_name);
1454 return -EINVAL;
1455 }
1456 if (vreg->set_points)
1457 rdesc->n_voltages = vreg->set_points->n_voltages;
1458 else
1459 rdesc->n_voltages = 0;
1460
1461 mutex_lock(&vreg->pc_lock);
1462
1463 if (is_real_regulator(pdata->id)) {
1464 /* Do not modify pin control and pin function values. */
1465 pin_ctrl = vreg->pdata.pin_ctrl;
1466 pin_fn = vreg->pdata.pin_fn;
1467 memcpy(&(vreg->pdata), pdata,
1468 sizeof(struct rpm_regulator_init_data));
1469 vreg->pdata.pin_ctrl = pin_ctrl;
1470 vreg->pdata.pin_fn = pin_fn;
1471 vreg->name = reg_name;
1472
1473 vreg->save_uV = vreg->pdata.default_uV;
1474 if (vreg->pdata.peak_uA >= vreg->hpm_min_load)
1475 vreg->mode = REGULATOR_MODE_NORMAL;
1476 else
1477 vreg->mode = REGULATOR_MODE_IDLE;
1478
1479 /* Initialize the RPM request. */
1480 SET_PART(vreg, ip,
1481 MICRO_TO_MILLI(saturate_peak_load(vreg, vreg->pdata.peak_uA)));
1482 SET_PART(vreg, fm, vreg->pdata.force_mode);
1483 SET_PART(vreg, pm, vreg->pdata.power_mode);
1484 SET_PART(vreg, pd, vreg->pdata.pull_down_enable);
1485 SET_PART(vreg, ia,
1486 MICRO_TO_MILLI(saturate_avg_load(vreg, vreg->pdata.avg_uA)));
1487 SET_PART(vreg, freq, vreg->pdata.freq);
1488 SET_PART(vreg, freq_clk_src, 0);
1489 SET_PART(vreg, comp_mode, 0);
1490 SET_PART(vreg, hpm, 0);
1491 if (!vreg->is_enabled_pc) {
1492 SET_PART(vreg, pf, RPM_VREG_PIN_FN_NONE);
1493 SET_PART(vreg, pc, RPM_VREG_PIN_CTRL_NONE);
1494 }
1495 } else {
1496 /* Pin control regulator */
1497 if ((pdata->pin_ctrl & RPM_VREG_PIN_CTRL_ALL)
1498 == RPM_VREG_PIN_CTRL_NONE
1499 && pdata->pin_fn != RPM_VREG_PIN_FN_SLEEP_B) {
1500 pr_err("%s: no pin control input specified\n",
1501 reg_name);
1502 mutex_unlock(&vreg->pc_lock);
1503 return -EINVAL;
1504 }
1505 vreg->pdata.pin_ctrl = pdata->pin_ctrl;
1506 vreg->pdata.pin_fn = pdata->pin_fn;
1507 if (!vreg->name)
1508 vreg->name = reg_name;
1509
1510 /* Initialize the RPM request. */
1511 pin_fn = RPM_VREG_PIN_FN_NONE;
1512 /* Allow pf=sleep_b to be specified by platform data. */
1513 if (vreg->pdata.pin_fn == RPM_VREG_PIN_FN_SLEEP_B)
1514 pin_fn = RPM_VREG_PIN_FN_SLEEP_B;
1515 SET_PART(vreg, pf, pin_fn);
1516 SET_PART(vreg, pc, RPM_VREG_PIN_CTRL_NONE);
1517 }
1518
1519 mutex_unlock(&vreg->pc_lock);
1520
1521 if (rc)
1522 goto bail;
1523
1524 rdev = regulator_register(rdesc, dev, &(pdata->init_data), vreg);
1525 if (IS_ERR(rdev)) {
1526 rc = PTR_ERR(rdev);
1527 pr_err("regulator_register failed: %s, rc=%d\n", reg_name, rc);
1528 return rc;
1529 } else {
1530 if (is_real_regulator(pdata->id))
1531 vreg->rdev = rdev;
1532 else
1533 vreg->rdev_pc = rdev;
1534 }
1535
1536bail:
1537 if (rc)
1538 pr_err("error for %s, rc=%d\n", reg_name, rc);
1539
1540 return rc;
1541}
1542
1543static int __devinit rpm_vreg_probe(struct platform_device *pdev)
1544{
1545 struct rpm_regulator_platform_data *platform_data;
1546 int rc = 0;
1547 int i;
1548
1549 platform_data = pdev->dev.platform_data;
1550 if (!platform_data) {
1551 pr_err("rpm-regulator requires platform data\n");
1552 return -EINVAL;
1553 }
1554
1555 /* Initialize all of the regulators listed in the platform data. */
1556 for (i = 0; i < platform_data->num_regulators; i++) {
1557 rc = rpm_vreg_init_regulator(&platform_data->init_data[i],
1558 &pdev->dev);
1559 if (rc) {
1560 pr_err("rpm_vreg_init_regulator failed, rc=%d\n", rc);
1561 goto remove_regulators;
1562 }
1563 }
1564
1565 platform_set_drvdata(pdev, platform_data);
1566
1567 return rc;
1568
1569remove_regulators:
1570 /* Unregister all regulators added before the erroring one. */
1571 for (; i >= 0; i--) {
1572 if (is_real_regulator(platform_data->init_data[i].id))
1573 regulator_unregister(vregs[i].rdev);
1574 else
1575 regulator_unregister(
1576 vregs[pc_id_to_real_id(i)].rdev_pc);
1577 }
1578
1579 return rc;
1580}
1581
1582static int __devexit rpm_vreg_remove(struct platform_device *pdev)
1583{
1584 struct rpm_regulator_platform_data *platform_data;
1585 int i, id;
1586
1587 platform_data = platform_get_drvdata(pdev);
1588 platform_set_drvdata(pdev, NULL);
1589
1590 if (platform_data) {
1591 for (i = 0; i < platform_data->num_regulators; i++) {
1592 id = platform_data->init_data[i].id;
1593 if (is_real_regulator(id)) {
1594 regulator_unregister(vregs[id].rdev);
1595 vregs[id].rdev = NULL;
1596 } else {
1597 regulator_unregister(
1598 vregs[pc_id_to_real_id(id)].rdev_pc);
1599 vregs[id].rdev_pc = NULL;
1600 }
1601 }
1602 }
1603
1604 return 0;
1605}
1606
1607static struct platform_driver rpm_vreg_driver = {
1608 .probe = rpm_vreg_probe,
1609 .remove = __devexit_p(rpm_vreg_remove),
1610 .driver = {
1611 .name = RPM_REGULATOR_DEV_NAME,
1612 .owner = THIS_MODULE,
1613 },
1614};
1615
1616static int __init rpm_vreg_init(void)
1617{
1618 struct vreg_set_points *set_points[] = {
1619 &pldo_set_points,
1620 &nldo_set_points,
1621 &nldo1200_set_points,
1622 &smps_set_points,
1623 &ftsmps_set_points,
1624 &ncp_set_points,
1625 };
1626 int i, j;
1627
1628 /* Calculate the number of set points available for each regualtor. */
1629 for (i = 0; i < ARRAY_SIZE(set_points); i++) {
1630 for (j = 0; j < set_points[i]->count; j++) {
1631 set_points[i]->range[j].n_voltages
1632 = (set_points[i]->range[j].max_uV
1633 - set_points[i]->range[j].min_uV)
1634 / set_points[i]->range[j].step_uV + 1;
1635 set_points[i]->n_voltages
1636 += set_points[i]->range[j].n_voltages;
1637 }
1638 }
1639
1640 /* Initialize pin control mutexes */
1641 for (i = 0; i < ARRAY_SIZE(vregs); i++)
1642 mutex_init(&vregs[i].pc_lock);
1643
1644 return platform_driver_register(&rpm_vreg_driver);
1645}
1646
1647static void __exit rpm_vreg_exit(void)
1648{
1649 int i;
1650
1651 platform_driver_unregister(&rpm_vreg_driver);
1652
1653 for (i = 0; i < ARRAY_SIZE(vregs); i++)
1654 mutex_destroy(&vregs[i].pc_lock);
1655}
1656
1657postcore_initcall(rpm_vreg_init);
1658module_exit(rpm_vreg_exit);
1659
1660MODULE_LICENSE("GPL v2");
1661MODULE_DESCRIPTION("MSM8960 rpm regulator driver");
1662MODULE_VERSION("1.0");
1663MODULE_ALIAS("platform:" RPM_REGULATOR_DEV_NAME);