Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 1 | /* |
| 2 | |
| 3 | fp_arith.c: floating-point math routines for the Linux-m68k |
| 4 | floating point emulator. |
| 5 | |
| 6 | Copyright (c) 1998-1999 David Huggins-Daines. |
| 7 | |
| 8 | Somewhat based on the AlphaLinux floating point emulator, by David |
| 9 | Mosberger-Tang. |
| 10 | |
| 11 | You may copy, modify, and redistribute this file under the terms of |
| 12 | the GNU General Public License, version 2, or any later version, at |
| 13 | your convenience. |
| 14 | */ |
| 15 | |
| 16 | #include "fp_emu.h" |
| 17 | #include "multi_arith.h" |
| 18 | #include "fp_arith.h" |
| 19 | |
| 20 | const struct fp_ext fp_QNaN = |
| 21 | { |
| 22 | .exp = 0x7fff, |
| 23 | .mant = { .m64 = ~0 } |
| 24 | }; |
| 25 | |
| 26 | const struct fp_ext fp_Inf = |
| 27 | { |
| 28 | .exp = 0x7fff, |
| 29 | }; |
| 30 | |
| 31 | /* let's start with the easy ones */ |
| 32 | |
| 33 | struct fp_ext * |
| 34 | fp_fabs(struct fp_ext *dest, struct fp_ext *src) |
| 35 | { |
| 36 | dprint(PINSTR, "fabs\n"); |
| 37 | |
| 38 | fp_monadic_check(dest, src); |
| 39 | |
| 40 | dest->sign = 0; |
| 41 | |
| 42 | return dest; |
| 43 | } |
| 44 | |
| 45 | struct fp_ext * |
| 46 | fp_fneg(struct fp_ext *dest, struct fp_ext *src) |
| 47 | { |
| 48 | dprint(PINSTR, "fneg\n"); |
| 49 | |
| 50 | fp_monadic_check(dest, src); |
| 51 | |
| 52 | dest->sign = !dest->sign; |
| 53 | |
| 54 | return dest; |
| 55 | } |
| 56 | |
| 57 | /* Now, the slightly harder ones */ |
| 58 | |
| 59 | /* fp_fadd: Implements the kernel of the FADD, FSADD, FDADD, FSUB, |
| 60 | FDSUB, and FCMP instructions. */ |
| 61 | |
| 62 | struct fp_ext * |
| 63 | fp_fadd(struct fp_ext *dest, struct fp_ext *src) |
| 64 | { |
| 65 | int diff; |
| 66 | |
| 67 | dprint(PINSTR, "fadd\n"); |
| 68 | |
| 69 | fp_dyadic_check(dest, src); |
| 70 | |
| 71 | if (IS_INF(dest)) { |
| 72 | /* infinity - infinity == NaN */ |
| 73 | if (IS_INF(src) && (src->sign != dest->sign)) |
| 74 | fp_set_nan(dest); |
| 75 | return dest; |
| 76 | } |
| 77 | if (IS_INF(src)) { |
| 78 | fp_copy_ext(dest, src); |
| 79 | return dest; |
| 80 | } |
| 81 | |
| 82 | if (IS_ZERO(dest)) { |
| 83 | if (IS_ZERO(src)) { |
| 84 | if (src->sign != dest->sign) { |
| 85 | if (FPDATA->rnd == FPCR_ROUND_RM) |
| 86 | dest->sign = 1; |
| 87 | else |
| 88 | dest->sign = 0; |
| 89 | } |
| 90 | } else |
| 91 | fp_copy_ext(dest, src); |
| 92 | return dest; |
| 93 | } |
| 94 | |
| 95 | dest->lowmant = src->lowmant = 0; |
| 96 | |
| 97 | if ((diff = dest->exp - src->exp) > 0) |
| 98 | fp_denormalize(src, diff); |
| 99 | else if ((diff = -diff) > 0) |
| 100 | fp_denormalize(dest, diff); |
| 101 | |
| 102 | if (dest->sign == src->sign) { |
| 103 | if (fp_addmant(dest, src)) |
| 104 | if (!fp_addcarry(dest)) |
| 105 | return dest; |
| 106 | } else { |
| 107 | if (dest->mant.m64 < src->mant.m64) { |
| 108 | fp_submant(dest, src, dest); |
| 109 | dest->sign = !dest->sign; |
| 110 | } else |
| 111 | fp_submant(dest, dest, src); |
| 112 | } |
| 113 | |
| 114 | return dest; |
| 115 | } |
| 116 | |
| 117 | /* fp_fsub: Implements the kernel of the FSUB, FSSUB, and FDSUB |
| 118 | instructions. |
| 119 | |
| 120 | Remember that the arguments are in assembler-syntax order! */ |
| 121 | |
| 122 | struct fp_ext * |
| 123 | fp_fsub(struct fp_ext *dest, struct fp_ext *src) |
| 124 | { |
| 125 | dprint(PINSTR, "fsub "); |
| 126 | |
| 127 | src->sign = !src->sign; |
| 128 | return fp_fadd(dest, src); |
| 129 | } |
| 130 | |
| 131 | |
| 132 | struct fp_ext * |
| 133 | fp_fcmp(struct fp_ext *dest, struct fp_ext *src) |
| 134 | { |
| 135 | dprint(PINSTR, "fcmp "); |
| 136 | |
| 137 | FPDATA->temp[1] = *dest; |
| 138 | src->sign = !src->sign; |
| 139 | return fp_fadd(&FPDATA->temp[1], src); |
| 140 | } |
| 141 | |
| 142 | struct fp_ext * |
| 143 | fp_ftst(struct fp_ext *dest, struct fp_ext *src) |
| 144 | { |
| 145 | dprint(PINSTR, "ftst\n"); |
| 146 | |
| 147 | (void)dest; |
| 148 | |
| 149 | return src; |
| 150 | } |
| 151 | |
| 152 | struct fp_ext * |
| 153 | fp_fmul(struct fp_ext *dest, struct fp_ext *src) |
| 154 | { |
| 155 | union fp_mant128 temp; |
| 156 | int exp; |
| 157 | |
| 158 | dprint(PINSTR, "fmul\n"); |
| 159 | |
| 160 | fp_dyadic_check(dest, src); |
| 161 | |
| 162 | /* calculate the correct sign now, as it's necessary for infinities */ |
| 163 | dest->sign = src->sign ^ dest->sign; |
| 164 | |
| 165 | /* Handle infinities */ |
| 166 | if (IS_INF(dest)) { |
| 167 | if (IS_ZERO(src)) |
| 168 | fp_set_nan(dest); |
| 169 | return dest; |
| 170 | } |
| 171 | if (IS_INF(src)) { |
| 172 | if (IS_ZERO(dest)) |
| 173 | fp_set_nan(dest); |
| 174 | else |
| 175 | fp_copy_ext(dest, src); |
| 176 | return dest; |
| 177 | } |
| 178 | |
| 179 | /* Of course, as we all know, zero * anything = zero. You may |
| 180 | not have known that it might be a positive or negative |
| 181 | zero... */ |
| 182 | if (IS_ZERO(dest) || IS_ZERO(src)) { |
| 183 | dest->exp = 0; |
| 184 | dest->mant.m64 = 0; |
| 185 | dest->lowmant = 0; |
| 186 | |
| 187 | return dest; |
| 188 | } |
| 189 | |
| 190 | exp = dest->exp + src->exp - 0x3ffe; |
| 191 | |
| 192 | /* shift up the mantissa for denormalized numbers, |
| 193 | so that the highest bit is set, this makes the |
| 194 | shift of the result below easier */ |
| 195 | if ((long)dest->mant.m32[0] >= 0) |
| 196 | exp -= fp_overnormalize(dest); |
| 197 | if ((long)src->mant.m32[0] >= 0) |
| 198 | exp -= fp_overnormalize(src); |
| 199 | |
| 200 | /* now, do a 64-bit multiply with expansion */ |
| 201 | fp_multiplymant(&temp, dest, src); |
| 202 | |
| 203 | /* normalize it back to 64 bits and stuff it back into the |
| 204 | destination struct */ |
| 205 | if ((long)temp.m32[0] > 0) { |
| 206 | exp--; |
| 207 | fp_putmant128(dest, &temp, 1); |
| 208 | } else |
| 209 | fp_putmant128(dest, &temp, 0); |
| 210 | |
| 211 | if (exp >= 0x7fff) { |
| 212 | fp_set_ovrflw(dest); |
| 213 | return dest; |
| 214 | } |
| 215 | dest->exp = exp; |
| 216 | if (exp < 0) { |
| 217 | fp_set_sr(FPSR_EXC_UNFL); |
| 218 | fp_denormalize(dest, -exp); |
| 219 | } |
| 220 | |
| 221 | return dest; |
| 222 | } |
| 223 | |
| 224 | /* fp_fdiv: Implements the "kernel" of the FDIV, FSDIV, FDDIV and |
| 225 | FSGLDIV instructions. |
| 226 | |
| 227 | Note that the order of the operands is counter-intuitive: instead |
| 228 | of src / dest, the result is actually dest / src. */ |
| 229 | |
| 230 | struct fp_ext * |
| 231 | fp_fdiv(struct fp_ext *dest, struct fp_ext *src) |
| 232 | { |
| 233 | union fp_mant128 temp; |
| 234 | int exp; |
| 235 | |
| 236 | dprint(PINSTR, "fdiv\n"); |
| 237 | |
| 238 | fp_dyadic_check(dest, src); |
| 239 | |
| 240 | /* calculate the correct sign now, as it's necessary for infinities */ |
| 241 | dest->sign = src->sign ^ dest->sign; |
| 242 | |
| 243 | /* Handle infinities */ |
| 244 | if (IS_INF(dest)) { |
| 245 | /* infinity / infinity = NaN (quiet, as always) */ |
| 246 | if (IS_INF(src)) |
| 247 | fp_set_nan(dest); |
| 248 | /* infinity / anything else = infinity (with approprate sign) */ |
| 249 | return dest; |
| 250 | } |
| 251 | if (IS_INF(src)) { |
| 252 | /* anything / infinity = zero (with appropriate sign) */ |
| 253 | dest->exp = 0; |
| 254 | dest->mant.m64 = 0; |
| 255 | dest->lowmant = 0; |
| 256 | |
| 257 | return dest; |
| 258 | } |
| 259 | |
| 260 | /* zeroes */ |
| 261 | if (IS_ZERO(dest)) { |
| 262 | /* zero / zero = NaN */ |
| 263 | if (IS_ZERO(src)) |
| 264 | fp_set_nan(dest); |
| 265 | /* zero / anything else = zero */ |
| 266 | return dest; |
| 267 | } |
| 268 | if (IS_ZERO(src)) { |
| 269 | /* anything / zero = infinity (with appropriate sign) */ |
| 270 | fp_set_sr(FPSR_EXC_DZ); |
| 271 | dest->exp = 0x7fff; |
| 272 | dest->mant.m64 = 0; |
| 273 | |
| 274 | return dest; |
| 275 | } |
| 276 | |
| 277 | exp = dest->exp - src->exp + 0x3fff; |
| 278 | |
| 279 | /* shift up the mantissa for denormalized numbers, |
| 280 | so that the highest bit is set, this makes lots |
| 281 | of things below easier */ |
| 282 | if ((long)dest->mant.m32[0] >= 0) |
| 283 | exp -= fp_overnormalize(dest); |
| 284 | if ((long)src->mant.m32[0] >= 0) |
| 285 | exp -= fp_overnormalize(src); |
| 286 | |
| 287 | /* now, do the 64-bit divide */ |
| 288 | fp_dividemant(&temp, dest, src); |
| 289 | |
| 290 | /* normalize it back to 64 bits and stuff it back into the |
| 291 | destination struct */ |
| 292 | if (!temp.m32[0]) { |
| 293 | exp--; |
| 294 | fp_putmant128(dest, &temp, 32); |
| 295 | } else |
| 296 | fp_putmant128(dest, &temp, 31); |
| 297 | |
| 298 | if (exp >= 0x7fff) { |
| 299 | fp_set_ovrflw(dest); |
| 300 | return dest; |
| 301 | } |
| 302 | dest->exp = exp; |
| 303 | if (exp < 0) { |
| 304 | fp_set_sr(FPSR_EXC_UNFL); |
| 305 | fp_denormalize(dest, -exp); |
| 306 | } |
| 307 | |
| 308 | return dest; |
| 309 | } |
| 310 | |
| 311 | struct fp_ext * |
| 312 | fp_fsglmul(struct fp_ext *dest, struct fp_ext *src) |
| 313 | { |
| 314 | int exp; |
| 315 | |
| 316 | dprint(PINSTR, "fsglmul\n"); |
| 317 | |
| 318 | fp_dyadic_check(dest, src); |
| 319 | |
| 320 | /* calculate the correct sign now, as it's necessary for infinities */ |
| 321 | dest->sign = src->sign ^ dest->sign; |
| 322 | |
| 323 | /* Handle infinities */ |
| 324 | if (IS_INF(dest)) { |
| 325 | if (IS_ZERO(src)) |
| 326 | fp_set_nan(dest); |
| 327 | return dest; |
| 328 | } |
| 329 | if (IS_INF(src)) { |
| 330 | if (IS_ZERO(dest)) |
| 331 | fp_set_nan(dest); |
| 332 | else |
| 333 | fp_copy_ext(dest, src); |
| 334 | return dest; |
| 335 | } |
| 336 | |
| 337 | /* Of course, as we all know, zero * anything = zero. You may |
| 338 | not have known that it might be a positive or negative |
| 339 | zero... */ |
| 340 | if (IS_ZERO(dest) || IS_ZERO(src)) { |
| 341 | dest->exp = 0; |
| 342 | dest->mant.m64 = 0; |
| 343 | dest->lowmant = 0; |
| 344 | |
| 345 | return dest; |
| 346 | } |
| 347 | |
| 348 | exp = dest->exp + src->exp - 0x3ffe; |
| 349 | |
| 350 | /* do a 32-bit multiply */ |
| 351 | fp_mul64(dest->mant.m32[0], dest->mant.m32[1], |
| 352 | dest->mant.m32[0] & 0xffffff00, |
| 353 | src->mant.m32[0] & 0xffffff00); |
| 354 | |
| 355 | if (exp >= 0x7fff) { |
| 356 | fp_set_ovrflw(dest); |
| 357 | return dest; |
| 358 | } |
| 359 | dest->exp = exp; |
| 360 | if (exp < 0) { |
| 361 | fp_set_sr(FPSR_EXC_UNFL); |
| 362 | fp_denormalize(dest, -exp); |
| 363 | } |
| 364 | |
| 365 | return dest; |
| 366 | } |
| 367 | |
| 368 | struct fp_ext * |
| 369 | fp_fsgldiv(struct fp_ext *dest, struct fp_ext *src) |
| 370 | { |
| 371 | int exp; |
| 372 | unsigned long quot, rem; |
| 373 | |
| 374 | dprint(PINSTR, "fsgldiv\n"); |
| 375 | |
| 376 | fp_dyadic_check(dest, src); |
| 377 | |
| 378 | /* calculate the correct sign now, as it's necessary for infinities */ |
| 379 | dest->sign = src->sign ^ dest->sign; |
| 380 | |
| 381 | /* Handle infinities */ |
| 382 | if (IS_INF(dest)) { |
| 383 | /* infinity / infinity = NaN (quiet, as always) */ |
| 384 | if (IS_INF(src)) |
| 385 | fp_set_nan(dest); |
| 386 | /* infinity / anything else = infinity (with approprate sign) */ |
| 387 | return dest; |
| 388 | } |
| 389 | if (IS_INF(src)) { |
| 390 | /* anything / infinity = zero (with appropriate sign) */ |
| 391 | dest->exp = 0; |
| 392 | dest->mant.m64 = 0; |
| 393 | dest->lowmant = 0; |
| 394 | |
| 395 | return dest; |
| 396 | } |
| 397 | |
| 398 | /* zeroes */ |
| 399 | if (IS_ZERO(dest)) { |
| 400 | /* zero / zero = NaN */ |
| 401 | if (IS_ZERO(src)) |
| 402 | fp_set_nan(dest); |
| 403 | /* zero / anything else = zero */ |
| 404 | return dest; |
| 405 | } |
| 406 | if (IS_ZERO(src)) { |
| 407 | /* anything / zero = infinity (with appropriate sign) */ |
| 408 | fp_set_sr(FPSR_EXC_DZ); |
| 409 | dest->exp = 0x7fff; |
| 410 | dest->mant.m64 = 0; |
| 411 | |
| 412 | return dest; |
| 413 | } |
| 414 | |
| 415 | exp = dest->exp - src->exp + 0x3fff; |
| 416 | |
| 417 | dest->mant.m32[0] &= 0xffffff00; |
| 418 | src->mant.m32[0] &= 0xffffff00; |
| 419 | |
| 420 | /* do the 32-bit divide */ |
| 421 | if (dest->mant.m32[0] >= src->mant.m32[0]) { |
| 422 | fp_sub64(dest->mant, src->mant); |
| 423 | fp_div64(quot, rem, dest->mant.m32[0], 0, src->mant.m32[0]); |
| 424 | dest->mant.m32[0] = 0x80000000 | (quot >> 1); |
| 425 | dest->mant.m32[1] = (quot & 1) | rem; /* only for rounding */ |
| 426 | } else { |
| 427 | fp_div64(quot, rem, dest->mant.m32[0], 0, src->mant.m32[0]); |
| 428 | dest->mant.m32[0] = quot; |
| 429 | dest->mant.m32[1] = rem; /* only for rounding */ |
| 430 | exp--; |
| 431 | } |
| 432 | |
| 433 | if (exp >= 0x7fff) { |
| 434 | fp_set_ovrflw(dest); |
| 435 | return dest; |
| 436 | } |
| 437 | dest->exp = exp; |
| 438 | if (exp < 0) { |
| 439 | fp_set_sr(FPSR_EXC_UNFL); |
| 440 | fp_denormalize(dest, -exp); |
| 441 | } |
| 442 | |
| 443 | return dest; |
| 444 | } |
| 445 | |
| 446 | /* fp_roundint: Internal rounding function for use by several of these |
| 447 | emulated instructions. |
| 448 | |
| 449 | This one rounds off the fractional part using the rounding mode |
| 450 | specified. */ |
| 451 | |
| 452 | static void fp_roundint(struct fp_ext *dest, int mode) |
| 453 | { |
| 454 | union fp_mant64 oldmant; |
| 455 | unsigned long mask; |
| 456 | |
| 457 | if (!fp_normalize_ext(dest)) |
| 458 | return; |
| 459 | |
| 460 | /* infinities and zeroes */ |
| 461 | if (IS_INF(dest) || IS_ZERO(dest)) |
| 462 | return; |
| 463 | |
| 464 | /* first truncate the lower bits */ |
| 465 | oldmant = dest->mant; |
| 466 | switch (dest->exp) { |
| 467 | case 0 ... 0x3ffe: |
| 468 | dest->mant.m64 = 0; |
| 469 | break; |
| 470 | case 0x3fff ... 0x401e: |
| 471 | dest->mant.m32[0] &= 0xffffffffU << (0x401e - dest->exp); |
| 472 | dest->mant.m32[1] = 0; |
| 473 | if (oldmant.m64 == dest->mant.m64) |
| 474 | return; |
| 475 | break; |
| 476 | case 0x401f ... 0x403e: |
| 477 | dest->mant.m32[1] &= 0xffffffffU << (0x403e - dest->exp); |
| 478 | if (oldmant.m32[1] == dest->mant.m32[1]) |
| 479 | return; |
| 480 | break; |
| 481 | default: |
| 482 | return; |
| 483 | } |
| 484 | fp_set_sr(FPSR_EXC_INEX2); |
| 485 | |
| 486 | /* We might want to normalize upwards here... however, since |
| 487 | we know that this is only called on the output of fp_fdiv, |
| 488 | or with the input to fp_fint or fp_fintrz, and the inputs |
| 489 | to all these functions are either normal or denormalized |
| 490 | (no subnormals allowed!), there's really no need. |
| 491 | |
| 492 | In the case of fp_fdiv, observe that 0x80000000 / 0xffff = |
| 493 | 0xffff8000, and the same holds for 128-bit / 64-bit. (i.e. the |
| 494 | smallest possible normal dividend and the largest possible normal |
| 495 | divisor will still produce a normal quotient, therefore, (normal |
| 496 | << 64) / normal is normal in all cases) */ |
| 497 | |
| 498 | switch (mode) { |
| 499 | case FPCR_ROUND_RN: |
| 500 | switch (dest->exp) { |
| 501 | case 0 ... 0x3ffd: |
| 502 | return; |
| 503 | case 0x3ffe: |
| 504 | /* As noted above, the input is always normal, so the |
| 505 | guard bit (bit 63) is always set. therefore, the |
| 506 | only case in which we will NOT round to 1.0 is when |
| 507 | the input is exactly 0.5. */ |
| 508 | if (oldmant.m64 == (1ULL << 63)) |
| 509 | return; |
| 510 | break; |
| 511 | case 0x3fff ... 0x401d: |
| 512 | mask = 1 << (0x401d - dest->exp); |
| 513 | if (!(oldmant.m32[0] & mask)) |
| 514 | return; |
| 515 | if (oldmant.m32[0] & (mask << 1)) |
| 516 | break; |
| 517 | if (!(oldmant.m32[0] << (dest->exp - 0x3ffd)) && |
| 518 | !oldmant.m32[1]) |
| 519 | return; |
| 520 | break; |
| 521 | case 0x401e: |
| 522 | if (!(oldmant.m32[1] >= 0)) |
| 523 | return; |
| 524 | if (oldmant.m32[0] & 1) |
| 525 | break; |
| 526 | if (!(oldmant.m32[1] << 1)) |
| 527 | return; |
| 528 | break; |
| 529 | case 0x401f ... 0x403d: |
| 530 | mask = 1 << (0x403d - dest->exp); |
| 531 | if (!(oldmant.m32[1] & mask)) |
| 532 | return; |
| 533 | if (oldmant.m32[1] & (mask << 1)) |
| 534 | break; |
| 535 | if (!(oldmant.m32[1] << (dest->exp - 0x401d))) |
| 536 | return; |
| 537 | break; |
| 538 | default: |
| 539 | return; |
| 540 | } |
| 541 | break; |
| 542 | case FPCR_ROUND_RZ: |
| 543 | return; |
| 544 | default: |
| 545 | if (dest->sign ^ (mode - FPCR_ROUND_RM)) |
| 546 | break; |
| 547 | return; |
| 548 | } |
| 549 | |
| 550 | switch (dest->exp) { |
| 551 | case 0 ... 0x3ffe: |
| 552 | dest->exp = 0x3fff; |
| 553 | dest->mant.m64 = 1ULL << 63; |
| 554 | break; |
| 555 | case 0x3fff ... 0x401e: |
| 556 | mask = 1 << (0x401e - dest->exp); |
| 557 | if (dest->mant.m32[0] += mask) |
| 558 | break; |
| 559 | dest->mant.m32[0] = 0x80000000; |
| 560 | dest->exp++; |
| 561 | break; |
| 562 | case 0x401f ... 0x403e: |
| 563 | mask = 1 << (0x403e - dest->exp); |
| 564 | if (dest->mant.m32[1] += mask) |
| 565 | break; |
| 566 | if (dest->mant.m32[0] += 1) |
| 567 | break; |
| 568 | dest->mant.m32[0] = 0x80000000; |
| 569 | dest->exp++; |
| 570 | break; |
| 571 | } |
| 572 | } |
| 573 | |
| 574 | /* modrem_kernel: Implementation of the FREM and FMOD instructions |
| 575 | (which are exactly the same, except for the rounding used on the |
| 576 | intermediate value) */ |
| 577 | |
| 578 | static struct fp_ext * |
| 579 | modrem_kernel(struct fp_ext *dest, struct fp_ext *src, int mode) |
| 580 | { |
| 581 | struct fp_ext tmp; |
| 582 | |
| 583 | fp_dyadic_check(dest, src); |
| 584 | |
| 585 | /* Infinities and zeros */ |
| 586 | if (IS_INF(dest) || IS_ZERO(src)) { |
| 587 | fp_set_nan(dest); |
| 588 | return dest; |
| 589 | } |
| 590 | if (IS_ZERO(dest) || IS_INF(src)) |
| 591 | return dest; |
| 592 | |
| 593 | /* FIXME: there is almost certainly a smarter way to do this */ |
| 594 | fp_copy_ext(&tmp, dest); |
| 595 | fp_fdiv(&tmp, src); /* NOTE: src might be modified */ |
| 596 | fp_roundint(&tmp, mode); |
| 597 | fp_fmul(&tmp, src); |
| 598 | fp_fsub(dest, &tmp); |
| 599 | |
| 600 | /* set the quotient byte */ |
| 601 | fp_set_quotient((dest->mant.m64 & 0x7f) | (dest->sign << 7)); |
| 602 | return dest; |
| 603 | } |
| 604 | |
| 605 | /* fp_fmod: Implements the kernel of the FMOD instruction. |
| 606 | |
| 607 | Again, the argument order is backwards. The result, as defined in |
| 608 | the Motorola manuals, is: |
| 609 | |
| 610 | fmod(src,dest) = (dest - (src * floor(dest / src))) */ |
| 611 | |
| 612 | struct fp_ext * |
| 613 | fp_fmod(struct fp_ext *dest, struct fp_ext *src) |
| 614 | { |
| 615 | dprint(PINSTR, "fmod\n"); |
| 616 | return modrem_kernel(dest, src, FPCR_ROUND_RZ); |
| 617 | } |
| 618 | |
| 619 | /* fp_frem: Implements the kernel of the FREM instruction. |
| 620 | |
| 621 | frem(src,dest) = (dest - (src * round(dest / src))) |
| 622 | */ |
| 623 | |
| 624 | struct fp_ext * |
| 625 | fp_frem(struct fp_ext *dest, struct fp_ext *src) |
| 626 | { |
| 627 | dprint(PINSTR, "frem\n"); |
| 628 | return modrem_kernel(dest, src, FPCR_ROUND_RN); |
| 629 | } |
| 630 | |
| 631 | struct fp_ext * |
| 632 | fp_fint(struct fp_ext *dest, struct fp_ext *src) |
| 633 | { |
| 634 | dprint(PINSTR, "fint\n"); |
| 635 | |
| 636 | fp_copy_ext(dest, src); |
| 637 | |
| 638 | fp_roundint(dest, FPDATA->rnd); |
| 639 | |
| 640 | return dest; |
| 641 | } |
| 642 | |
| 643 | struct fp_ext * |
| 644 | fp_fintrz(struct fp_ext *dest, struct fp_ext *src) |
| 645 | { |
| 646 | dprint(PINSTR, "fintrz\n"); |
| 647 | |
| 648 | fp_copy_ext(dest, src); |
| 649 | |
| 650 | fp_roundint(dest, FPCR_ROUND_RZ); |
| 651 | |
| 652 | return dest; |
| 653 | } |
| 654 | |
| 655 | struct fp_ext * |
| 656 | fp_fscale(struct fp_ext *dest, struct fp_ext *src) |
| 657 | { |
| 658 | int scale, oldround; |
| 659 | |
| 660 | dprint(PINSTR, "fscale\n"); |
| 661 | |
| 662 | fp_dyadic_check(dest, src); |
| 663 | |
| 664 | /* Infinities */ |
| 665 | if (IS_INF(src)) { |
| 666 | fp_set_nan(dest); |
| 667 | return dest; |
| 668 | } |
| 669 | if (IS_INF(dest)) |
| 670 | return dest; |
| 671 | |
| 672 | /* zeroes */ |
| 673 | if (IS_ZERO(src) || IS_ZERO(dest)) |
| 674 | return dest; |
| 675 | |
| 676 | /* Source exponent out of range */ |
| 677 | if (src->exp >= 0x400c) { |
| 678 | fp_set_ovrflw(dest); |
| 679 | return dest; |
| 680 | } |
| 681 | |
| 682 | /* src must be rounded with round to zero. */ |
| 683 | oldround = FPDATA->rnd; |
| 684 | FPDATA->rnd = FPCR_ROUND_RZ; |
| 685 | scale = fp_conv_ext2long(src); |
| 686 | FPDATA->rnd = oldround; |
| 687 | |
| 688 | /* new exponent */ |
| 689 | scale += dest->exp; |
| 690 | |
| 691 | if (scale >= 0x7fff) { |
| 692 | fp_set_ovrflw(dest); |
| 693 | } else if (scale <= 0) { |
| 694 | fp_set_sr(FPSR_EXC_UNFL); |
| 695 | fp_denormalize(dest, -scale); |
| 696 | } else |
| 697 | dest->exp = scale; |
| 698 | |
| 699 | return dest; |
| 700 | } |
| 701 | |