Vitaly Bordug | b0c110b | 2006-09-21 22:18:53 +0400 | [diff] [blame] | 1 | /* |
| 2 | * General Purpose functions for the global management of the |
| 3 | * 8260 Communication Processor Module. |
| 4 | * Copyright (c) 1999-2001 Dan Malek <dan@embeddedalley.com> |
| 5 | * Copyright (c) 2000 MontaVista Software, Inc (source@mvista.com) |
| 6 | * 2.3.99 Updates |
| 7 | * |
| 8 | * 2006 (c) MontaVista Software, Inc. |
| 9 | * Vitaly Bordug <vbordug@ru.mvista.com> |
| 10 | * Merged to arch/powerpc from arch/ppc/syslib/cpm2_common.c |
| 11 | * |
| 12 | * This file is licensed under the terms of the GNU General Public License |
| 13 | * version 2. This program is licensed "as is" without any warranty of any |
| 14 | * kind, whether express or implied. |
| 15 | */ |
| 16 | |
| 17 | /* |
| 18 | * |
| 19 | * In addition to the individual control of the communication |
| 20 | * channels, there are a few functions that globally affect the |
| 21 | * communication processor. |
| 22 | * |
| 23 | * Buffer descriptors must be allocated from the dual ported memory |
| 24 | * space. The allocator for that is here. When the communication |
| 25 | * process is reset, we reclaim the memory available. There is |
| 26 | * currently no deallocator for this memory. |
| 27 | */ |
| 28 | #include <linux/errno.h> |
| 29 | #include <linux/sched.h> |
| 30 | #include <linux/kernel.h> |
| 31 | #include <linux/param.h> |
| 32 | #include <linux/string.h> |
| 33 | #include <linux/mm.h> |
| 34 | #include <linux/interrupt.h> |
| 35 | #include <linux/module.h> |
| 36 | #include <asm/io.h> |
| 37 | #include <asm/irq.h> |
| 38 | #include <asm/mpc8260.h> |
| 39 | #include <asm/page.h> |
| 40 | #include <asm/pgtable.h> |
| 41 | #include <asm/cpm2.h> |
| 42 | #include <asm/rheap.h> |
| 43 | #include <asm/fs_pd.h> |
| 44 | |
| 45 | #include <sysdev/fsl_soc.h> |
| 46 | |
| 47 | static void cpm2_dpinit(void); |
| 48 | cpm_cpm2_t *cpmp; /* Pointer to comm processor space */ |
| 49 | |
| 50 | /* We allocate this here because it is used almost exclusively for |
| 51 | * the communication processor devices. |
| 52 | */ |
| 53 | cpm2_map_t *cpm2_immr; |
Vitaly Bordug | fc8e50e | 2006-09-21 22:37:58 +0400 | [diff] [blame] | 54 | intctl_cpm2_t *cpm2_intctl; |
Vitaly Bordug | b0c110b | 2006-09-21 22:18:53 +0400 | [diff] [blame] | 55 | |
| 56 | #define CPM_MAP_SIZE (0x40000) /* 256k - the PQ3 reserve this amount |
| 57 | of space for CPM as it is larger |
| 58 | than on PQ2 */ |
| 59 | |
| 60 | void |
| 61 | cpm2_reset(void) |
| 62 | { |
| 63 | cpm2_immr = (cpm2_map_t *)ioremap(CPM_MAP_ADDR, CPM_MAP_SIZE); |
Vitaly Bordug | fc8e50e | 2006-09-21 22:37:58 +0400 | [diff] [blame] | 64 | cpm2_intctl = cpm2_map(im_intctl); |
Vitaly Bordug | b0c110b | 2006-09-21 22:18:53 +0400 | [diff] [blame] | 65 | |
| 66 | /* Reclaim the DP memory for our use. |
| 67 | */ |
| 68 | cpm2_dpinit(); |
| 69 | |
| 70 | /* Tell everyone where the comm processor resides. |
| 71 | */ |
| 72 | cpmp = &cpm2_immr->im_cpm; |
| 73 | } |
| 74 | |
| 75 | /* Set a baud rate generator. This needs lots of work. There are |
| 76 | * eight BRGs, which can be connected to the CPM channels or output |
| 77 | * as clocks. The BRGs are in two different block of internal |
| 78 | * memory mapped space. |
| 79 | * The baud rate clock is the system clock divided by something. |
| 80 | * It was set up long ago during the initial boot phase and is |
| 81 | * is given to us. |
| 82 | * Baud rate clocks are zero-based in the driver code (as that maps |
| 83 | * to port numbers). Documentation uses 1-based numbering. |
| 84 | */ |
| 85 | #define BRG_INT_CLK (get_brgfreq()) |
| 86 | #define BRG_UART_CLK (BRG_INT_CLK/16) |
| 87 | |
| 88 | /* This function is used by UARTS, or anything else that uses a 16x |
| 89 | * oversampled clock. |
| 90 | */ |
| 91 | void |
| 92 | cpm_setbrg(uint brg, uint rate) |
| 93 | { |
| 94 | volatile uint *bp; |
| 95 | |
| 96 | /* This is good enough to get SMCs running..... |
| 97 | */ |
| 98 | if (brg < 4) { |
Vitaly Bordug | fc8e50e | 2006-09-21 22:37:58 +0400 | [diff] [blame] | 99 | bp = cpm2_map_size(im_brgc1, 16); |
Vitaly Bordug | b0c110b | 2006-09-21 22:18:53 +0400 | [diff] [blame] | 100 | } else { |
Vitaly Bordug | fc8e50e | 2006-09-21 22:37:58 +0400 | [diff] [blame] | 101 | bp = cpm2_map_size(im_brgc5, 16); |
Vitaly Bordug | b0c110b | 2006-09-21 22:18:53 +0400 | [diff] [blame] | 102 | brg -= 4; |
| 103 | } |
| 104 | bp += brg; |
| 105 | *bp = ((BRG_UART_CLK / rate) << 1) | CPM_BRG_EN; |
Vitaly Bordug | fc8e50e | 2006-09-21 22:37:58 +0400 | [diff] [blame] | 106 | |
| 107 | cpm2_unmap(bp); |
Vitaly Bordug | b0c110b | 2006-09-21 22:18:53 +0400 | [diff] [blame] | 108 | } |
| 109 | |
| 110 | /* This function is used to set high speed synchronous baud rate |
| 111 | * clocks. |
| 112 | */ |
| 113 | void |
| 114 | cpm2_fastbrg(uint brg, uint rate, int div16) |
| 115 | { |
| 116 | volatile uint *bp; |
| 117 | |
| 118 | if (brg < 4) { |
Vitaly Bordug | fc8e50e | 2006-09-21 22:37:58 +0400 | [diff] [blame] | 119 | bp = cpm2_map_size(im_brgc1, 16); |
Vitaly Bordug | b0c110b | 2006-09-21 22:18:53 +0400 | [diff] [blame] | 120 | } |
| 121 | else { |
Vitaly Bordug | fc8e50e | 2006-09-21 22:37:58 +0400 | [diff] [blame] | 122 | bp = cpm2_map_size(im_brgc5, 16); |
Vitaly Bordug | b0c110b | 2006-09-21 22:18:53 +0400 | [diff] [blame] | 123 | brg -= 4; |
| 124 | } |
| 125 | bp += brg; |
| 126 | *bp = ((BRG_INT_CLK / rate) << 1) | CPM_BRG_EN; |
| 127 | if (div16) |
| 128 | *bp |= CPM_BRG_DIV16; |
Vitaly Bordug | fc8e50e | 2006-09-21 22:37:58 +0400 | [diff] [blame] | 129 | |
| 130 | cpm2_unmap(bp); |
Vitaly Bordug | b0c110b | 2006-09-21 22:18:53 +0400 | [diff] [blame] | 131 | } |
| 132 | |
Vitaly Bordug | d3465c9 | 2006-09-21 22:38:05 +0400 | [diff] [blame^] | 133 | int cpm2_clk_setup(enum cpm_clk_target target, int clock, int mode) |
| 134 | { |
| 135 | int ret = 0; |
| 136 | int shift; |
| 137 | int i, bits = 0; |
| 138 | cpmux_t *im_cpmux; |
| 139 | u32 *reg; |
| 140 | u32 mask = 7; |
| 141 | u8 clk_map [24][3] = { |
| 142 | {CPM_CLK_FCC1, CPM_BRG5, 0}, |
| 143 | {CPM_CLK_FCC1, CPM_BRG6, 1}, |
| 144 | {CPM_CLK_FCC1, CPM_BRG7, 2}, |
| 145 | {CPM_CLK_FCC1, CPM_BRG8, 3}, |
| 146 | {CPM_CLK_FCC1, CPM_CLK9, 4}, |
| 147 | {CPM_CLK_FCC1, CPM_CLK10, 5}, |
| 148 | {CPM_CLK_FCC1, CPM_CLK11, 6}, |
| 149 | {CPM_CLK_FCC1, CPM_CLK12, 7}, |
| 150 | {CPM_CLK_FCC2, CPM_BRG5, 0}, |
| 151 | {CPM_CLK_FCC2, CPM_BRG6, 1}, |
| 152 | {CPM_CLK_FCC2, CPM_BRG7, 2}, |
| 153 | {CPM_CLK_FCC2, CPM_BRG8, 3}, |
| 154 | {CPM_CLK_FCC2, CPM_CLK13, 4}, |
| 155 | {CPM_CLK_FCC2, CPM_CLK14, 5}, |
| 156 | {CPM_CLK_FCC2, CPM_CLK15, 6}, |
| 157 | {CPM_CLK_FCC2, CPM_CLK16, 7}, |
| 158 | {CPM_CLK_FCC3, CPM_BRG5, 0}, |
| 159 | {CPM_CLK_FCC3, CPM_BRG6, 1}, |
| 160 | {CPM_CLK_FCC3, CPM_BRG7, 2}, |
| 161 | {CPM_CLK_FCC3, CPM_BRG8, 3}, |
| 162 | {CPM_CLK_FCC3, CPM_CLK13, 4}, |
| 163 | {CPM_CLK_FCC3, CPM_CLK14, 5}, |
| 164 | {CPM_CLK_FCC3, CPM_CLK15, 6}, |
| 165 | {CPM_CLK_FCC3, CPM_CLK16, 7} |
| 166 | }; |
| 167 | |
| 168 | im_cpmux = cpm2_map(im_cpmux); |
| 169 | |
| 170 | switch (target) { |
| 171 | case CPM_CLK_SCC1: |
| 172 | reg = &im_cpmux->cmx_scr; |
| 173 | shift = 24; |
| 174 | case CPM_CLK_SCC2: |
| 175 | reg = &im_cpmux->cmx_scr; |
| 176 | shift = 16; |
| 177 | break; |
| 178 | case CPM_CLK_SCC3: |
| 179 | reg = &im_cpmux->cmx_scr; |
| 180 | shift = 8; |
| 181 | break; |
| 182 | case CPM_CLK_SCC4: |
| 183 | reg = &im_cpmux->cmx_scr; |
| 184 | shift = 0; |
| 185 | break; |
| 186 | case CPM_CLK_FCC1: |
| 187 | reg = &im_cpmux->cmx_fcr; |
| 188 | shift = 24; |
| 189 | break; |
| 190 | case CPM_CLK_FCC2: |
| 191 | reg = &im_cpmux->cmx_fcr; |
| 192 | shift = 16; |
| 193 | break; |
| 194 | case CPM_CLK_FCC3: |
| 195 | reg = &im_cpmux->cmx_fcr; |
| 196 | shift = 8; |
| 197 | break; |
| 198 | default: |
| 199 | printk(KERN_ERR "cpm2_clock_setup: invalid clock target\n"); |
| 200 | return -EINVAL; |
| 201 | } |
| 202 | |
| 203 | if (mode == CPM_CLK_RX) |
| 204 | shift +=3; |
| 205 | |
| 206 | for (i=0; i<24; i++) { |
| 207 | if (clk_map[i][0] == target && clk_map[i][1] == clock) { |
| 208 | bits = clk_map[i][2]; |
| 209 | break; |
| 210 | } |
| 211 | } |
| 212 | if (i == sizeof(clk_map)/3) |
| 213 | ret = -EINVAL; |
| 214 | |
| 215 | bits <<= shift; |
| 216 | mask <<= shift; |
| 217 | out_be32(reg, (in_be32(reg) & ~mask) | bits); |
| 218 | |
| 219 | cpm2_unmap(im_cpmux); |
| 220 | return ret; |
| 221 | } |
| 222 | |
Vitaly Bordug | b0c110b | 2006-09-21 22:18:53 +0400 | [diff] [blame] | 223 | /* |
| 224 | * dpalloc / dpfree bits. |
| 225 | */ |
| 226 | static spinlock_t cpm_dpmem_lock; |
| 227 | /* 16 blocks should be enough to satisfy all requests |
| 228 | * until the memory subsystem goes up... */ |
| 229 | static rh_block_t cpm_boot_dpmem_rh_block[16]; |
| 230 | static rh_info_t cpm_dpmem_info; |
Vitaly Bordug | fc8e50e | 2006-09-21 22:37:58 +0400 | [diff] [blame] | 231 | static u8* im_dprambase; |
Vitaly Bordug | b0c110b | 2006-09-21 22:18:53 +0400 | [diff] [blame] | 232 | |
| 233 | static void cpm2_dpinit(void) |
| 234 | { |
| 235 | spin_lock_init(&cpm_dpmem_lock); |
| 236 | |
Vitaly Bordug | fc8e50e | 2006-09-21 22:37:58 +0400 | [diff] [blame] | 237 | im_dprambase = ioremap(CPM_MAP_ADDR, CPM_DATAONLY_BASE + CPM_DATAONLY_SIZE); |
| 238 | |
Vitaly Bordug | b0c110b | 2006-09-21 22:18:53 +0400 | [diff] [blame] | 239 | /* initialize the info header */ |
| 240 | rh_init(&cpm_dpmem_info, 1, |
| 241 | sizeof(cpm_boot_dpmem_rh_block) / |
| 242 | sizeof(cpm_boot_dpmem_rh_block[0]), |
| 243 | cpm_boot_dpmem_rh_block); |
| 244 | |
| 245 | /* Attach the usable dpmem area */ |
| 246 | /* XXX: This is actually crap. CPM_DATAONLY_BASE and |
| 247 | * CPM_DATAONLY_SIZE is only a subset of the available dpram. It |
| 248 | * varies with the processor and the microcode patches activated. |
| 249 | * But the following should be at least safe. |
| 250 | */ |
| 251 | rh_attach_region(&cpm_dpmem_info, (void *)CPM_DATAONLY_BASE, |
| 252 | CPM_DATAONLY_SIZE); |
| 253 | } |
| 254 | |
| 255 | /* This function returns an index into the DPRAM area. |
| 256 | */ |
| 257 | uint cpm_dpalloc(uint size, uint align) |
| 258 | { |
| 259 | void *start; |
| 260 | unsigned long flags; |
| 261 | |
| 262 | spin_lock_irqsave(&cpm_dpmem_lock, flags); |
| 263 | cpm_dpmem_info.alignment = align; |
| 264 | start = rh_alloc(&cpm_dpmem_info, size, "commproc"); |
| 265 | spin_unlock_irqrestore(&cpm_dpmem_lock, flags); |
| 266 | |
| 267 | return (uint)start; |
| 268 | } |
| 269 | EXPORT_SYMBOL(cpm_dpalloc); |
| 270 | |
| 271 | int cpm_dpfree(uint offset) |
| 272 | { |
| 273 | int ret; |
| 274 | unsigned long flags; |
| 275 | |
| 276 | spin_lock_irqsave(&cpm_dpmem_lock, flags); |
| 277 | ret = rh_free(&cpm_dpmem_info, (void *)offset); |
| 278 | spin_unlock_irqrestore(&cpm_dpmem_lock, flags); |
| 279 | |
| 280 | return ret; |
| 281 | } |
| 282 | EXPORT_SYMBOL(cpm_dpfree); |
| 283 | |
| 284 | /* not sure if this is ever needed */ |
| 285 | uint cpm_dpalloc_fixed(uint offset, uint size, uint align) |
| 286 | { |
| 287 | void *start; |
| 288 | unsigned long flags; |
| 289 | |
| 290 | spin_lock_irqsave(&cpm_dpmem_lock, flags); |
| 291 | cpm_dpmem_info.alignment = align; |
| 292 | start = rh_alloc_fixed(&cpm_dpmem_info, (void *)offset, size, "commproc"); |
| 293 | spin_unlock_irqrestore(&cpm_dpmem_lock, flags); |
| 294 | |
| 295 | return (uint)start; |
| 296 | } |
| 297 | EXPORT_SYMBOL(cpm_dpalloc_fixed); |
| 298 | |
| 299 | void cpm_dpdump(void) |
| 300 | { |
| 301 | rh_dump(&cpm_dpmem_info); |
| 302 | } |
| 303 | EXPORT_SYMBOL(cpm_dpdump); |
| 304 | |
| 305 | void *cpm_dpram_addr(uint offset) |
| 306 | { |
Vitaly Bordug | fc8e50e | 2006-09-21 22:37:58 +0400 | [diff] [blame] | 307 | return (void *)(im_dprambase + offset); |
Vitaly Bordug | b0c110b | 2006-09-21 22:18:53 +0400 | [diff] [blame] | 308 | } |
| 309 | EXPORT_SYMBOL(cpm_dpram_addr); |