Ramkrishna Vepa | 1132413 | 2009-04-01 18:14:58 +0000 | [diff] [blame] | 1 | /****************************************************************************** |
| 2 | * This software may be used and distributed according to the terms of |
| 3 | * the GNU General Public License (GPL), incorporated herein by reference. |
| 4 | * Drivers based on or derived from this code fall under the GPL and must |
| 5 | * retain the authorship, copyright and license notice. This file is not |
| 6 | * a complete program and may only be used when the entire operating |
| 7 | * system is licensed under the GPL. |
| 8 | * See the file COPYING in this distribution for more information. |
| 9 | * |
| 10 | * vxge-traffic.c: Driver for Neterion Inc's X3100 Series 10GbE PCIe I/O |
| 11 | * Virtualized Server Adapter. |
| 12 | * Copyright(c) 2002-2009 Neterion Inc. |
| 13 | ******************************************************************************/ |
| 14 | #include <linux/etherdevice.h> |
| 15 | |
| 16 | #include "vxge-traffic.h" |
| 17 | #include "vxge-config.h" |
| 18 | #include "vxge-main.h" |
| 19 | |
| 20 | /* |
| 21 | * vxge_hw_vpath_intr_enable - Enable vpath interrupts. |
| 22 | * @vp: Virtual Path handle. |
| 23 | * |
| 24 | * Enable vpath interrupts. The function is to be executed the last in |
| 25 | * vpath initialization sequence. |
| 26 | * |
| 27 | * See also: vxge_hw_vpath_intr_disable() |
| 28 | */ |
| 29 | enum vxge_hw_status vxge_hw_vpath_intr_enable(struct __vxge_hw_vpath_handle *vp) |
| 30 | { |
| 31 | u64 val64; |
| 32 | |
| 33 | struct __vxge_hw_virtualpath *vpath; |
| 34 | struct vxge_hw_vpath_reg __iomem *vp_reg; |
| 35 | enum vxge_hw_status status = VXGE_HW_OK; |
| 36 | if (vp == NULL) { |
| 37 | status = VXGE_HW_ERR_INVALID_HANDLE; |
| 38 | goto exit; |
| 39 | } |
| 40 | |
| 41 | vpath = vp->vpath; |
| 42 | |
| 43 | if (vpath->vp_open == VXGE_HW_VP_NOT_OPEN) { |
| 44 | status = VXGE_HW_ERR_VPATH_NOT_OPEN; |
| 45 | goto exit; |
| 46 | } |
| 47 | |
| 48 | vp_reg = vpath->vp_reg; |
| 49 | |
| 50 | writeq(VXGE_HW_INTR_MASK_ALL, &vp_reg->kdfcctl_errors_reg); |
| 51 | |
| 52 | __vxge_hw_pio_mem_write32_upper((u32)VXGE_HW_INTR_MASK_ALL, |
| 53 | &vp_reg->general_errors_reg); |
| 54 | |
| 55 | __vxge_hw_pio_mem_write32_upper((u32)VXGE_HW_INTR_MASK_ALL, |
| 56 | &vp_reg->pci_config_errors_reg); |
| 57 | |
| 58 | __vxge_hw_pio_mem_write32_upper((u32)VXGE_HW_INTR_MASK_ALL, |
| 59 | &vp_reg->mrpcim_to_vpath_alarm_reg); |
| 60 | |
| 61 | __vxge_hw_pio_mem_write32_upper((u32)VXGE_HW_INTR_MASK_ALL, |
| 62 | &vp_reg->srpcim_to_vpath_alarm_reg); |
| 63 | |
| 64 | __vxge_hw_pio_mem_write32_upper((u32)VXGE_HW_INTR_MASK_ALL, |
| 65 | &vp_reg->vpath_ppif_int_status); |
| 66 | |
| 67 | __vxge_hw_pio_mem_write32_upper((u32)VXGE_HW_INTR_MASK_ALL, |
| 68 | &vp_reg->srpcim_msg_to_vpath_reg); |
| 69 | |
| 70 | __vxge_hw_pio_mem_write32_upper((u32)VXGE_HW_INTR_MASK_ALL, |
| 71 | &vp_reg->vpath_pcipif_int_status); |
| 72 | |
| 73 | __vxge_hw_pio_mem_write32_upper((u32)VXGE_HW_INTR_MASK_ALL, |
| 74 | &vp_reg->prc_alarm_reg); |
| 75 | |
| 76 | __vxge_hw_pio_mem_write32_upper((u32)VXGE_HW_INTR_MASK_ALL, |
| 77 | &vp_reg->wrdma_alarm_status); |
| 78 | |
| 79 | __vxge_hw_pio_mem_write32_upper((u32)VXGE_HW_INTR_MASK_ALL, |
| 80 | &vp_reg->asic_ntwk_vp_err_reg); |
| 81 | |
| 82 | __vxge_hw_pio_mem_write32_upper((u32)VXGE_HW_INTR_MASK_ALL, |
| 83 | &vp_reg->xgmac_vp_int_status); |
| 84 | |
| 85 | val64 = readq(&vp_reg->vpath_general_int_status); |
| 86 | |
| 87 | /* Mask unwanted interrupts */ |
| 88 | |
| 89 | __vxge_hw_pio_mem_write32_upper((u32)VXGE_HW_INTR_MASK_ALL, |
| 90 | &vp_reg->vpath_pcipif_int_mask); |
| 91 | |
| 92 | __vxge_hw_pio_mem_write32_upper((u32)VXGE_HW_INTR_MASK_ALL, |
| 93 | &vp_reg->srpcim_msg_to_vpath_mask); |
| 94 | |
| 95 | __vxge_hw_pio_mem_write32_upper((u32)VXGE_HW_INTR_MASK_ALL, |
| 96 | &vp_reg->srpcim_to_vpath_alarm_mask); |
| 97 | |
| 98 | __vxge_hw_pio_mem_write32_upper((u32)VXGE_HW_INTR_MASK_ALL, |
| 99 | &vp_reg->mrpcim_to_vpath_alarm_mask); |
| 100 | |
| 101 | __vxge_hw_pio_mem_write32_upper((u32)VXGE_HW_INTR_MASK_ALL, |
| 102 | &vp_reg->pci_config_errors_mask); |
| 103 | |
| 104 | /* Unmask the individual interrupts */ |
| 105 | |
| 106 | writeq((u32)vxge_bVALn((VXGE_HW_GENERAL_ERRORS_REG_DBLGEN_FIFO1_OVRFLOW| |
| 107 | VXGE_HW_GENERAL_ERRORS_REG_DBLGEN_FIFO2_OVRFLOW| |
| 108 | VXGE_HW_GENERAL_ERRORS_REG_STATSB_DROP_TIMEOUT_REQ| |
| 109 | VXGE_HW_GENERAL_ERRORS_REG_STATSB_PIF_CHAIN_ERR), 0, 32), |
| 110 | &vp_reg->general_errors_mask); |
| 111 | |
| 112 | __vxge_hw_pio_mem_write32_upper( |
| 113 | (u32)vxge_bVALn((VXGE_HW_KDFCCTL_ERRORS_REG_KDFCCTL_FIFO1_OVRWR| |
| 114 | VXGE_HW_KDFCCTL_ERRORS_REG_KDFCCTL_FIFO2_OVRWR| |
| 115 | VXGE_HW_KDFCCTL_ERRORS_REG_KDFCCTL_FIFO1_POISON| |
| 116 | VXGE_HW_KDFCCTL_ERRORS_REG_KDFCCTL_FIFO2_POISON| |
| 117 | VXGE_HW_KDFCCTL_ERRORS_REG_KDFCCTL_FIFO1_DMA_ERR| |
roel kluin | d77dd8d | 2009-05-15 10:19:51 +0000 | [diff] [blame^] | 118 | VXGE_HW_KDFCCTL_ERRORS_REG_KDFCCTL_FIFO2_DMA_ERR), 0, 32), |
Ramkrishna Vepa | 1132413 | 2009-04-01 18:14:58 +0000 | [diff] [blame] | 119 | &vp_reg->kdfcctl_errors_mask); |
| 120 | |
| 121 | __vxge_hw_pio_mem_write32_upper(0, &vp_reg->vpath_ppif_int_mask); |
| 122 | |
| 123 | __vxge_hw_pio_mem_write32_upper( |
| 124 | (u32)vxge_bVALn(VXGE_HW_PRC_ALARM_REG_PRC_RING_BUMP, 0, 32), |
| 125 | &vp_reg->prc_alarm_mask); |
| 126 | |
| 127 | __vxge_hw_pio_mem_write32_upper(0, &vp_reg->wrdma_alarm_mask); |
| 128 | __vxge_hw_pio_mem_write32_upper(0, &vp_reg->xgmac_vp_int_mask); |
| 129 | |
| 130 | if (vpath->hldev->first_vp_id != vpath->vp_id) |
| 131 | __vxge_hw_pio_mem_write32_upper((u32)VXGE_HW_INTR_MASK_ALL, |
| 132 | &vp_reg->asic_ntwk_vp_err_mask); |
| 133 | else |
| 134 | __vxge_hw_pio_mem_write32_upper((u32)vxge_bVALn(( |
| 135 | VXGE_HW_ASIC_NTWK_VP_ERR_REG_XMACJ_NTWK_REAFFIRMED_FAULT | |
| 136 | VXGE_HW_ASIC_NTWK_VP_ERR_REG_XMACJ_NTWK_REAFFIRMED_OK), 0, 32), |
| 137 | &vp_reg->asic_ntwk_vp_err_mask); |
| 138 | |
| 139 | __vxge_hw_pio_mem_write32_upper(0, |
| 140 | &vp_reg->vpath_general_int_mask); |
| 141 | exit: |
| 142 | return status; |
| 143 | |
| 144 | } |
| 145 | |
| 146 | /* |
| 147 | * vxge_hw_vpath_intr_disable - Disable vpath interrupts. |
| 148 | * @vp: Virtual Path handle. |
| 149 | * |
| 150 | * Disable vpath interrupts. The function is to be executed the last in |
| 151 | * vpath initialization sequence. |
| 152 | * |
| 153 | * See also: vxge_hw_vpath_intr_enable() |
| 154 | */ |
| 155 | enum vxge_hw_status vxge_hw_vpath_intr_disable( |
| 156 | struct __vxge_hw_vpath_handle *vp) |
| 157 | { |
| 158 | u64 val64; |
| 159 | |
| 160 | struct __vxge_hw_virtualpath *vpath; |
| 161 | enum vxge_hw_status status = VXGE_HW_OK; |
| 162 | struct vxge_hw_vpath_reg __iomem *vp_reg; |
| 163 | if (vp == NULL) { |
| 164 | status = VXGE_HW_ERR_INVALID_HANDLE; |
| 165 | goto exit; |
| 166 | } |
| 167 | |
| 168 | vpath = vp->vpath; |
| 169 | |
| 170 | if (vpath->vp_open == VXGE_HW_VP_NOT_OPEN) { |
| 171 | status = VXGE_HW_ERR_VPATH_NOT_OPEN; |
| 172 | goto exit; |
| 173 | } |
| 174 | vp_reg = vpath->vp_reg; |
| 175 | |
| 176 | __vxge_hw_pio_mem_write32_upper( |
| 177 | (u32)VXGE_HW_INTR_MASK_ALL, |
| 178 | &vp_reg->vpath_general_int_mask); |
| 179 | |
| 180 | val64 = VXGE_HW_TIM_CLR_INT_EN_VP(1 << (16 - vpath->vp_id)); |
| 181 | |
| 182 | writeq(VXGE_HW_INTR_MASK_ALL, &vp_reg->kdfcctl_errors_mask); |
| 183 | |
| 184 | __vxge_hw_pio_mem_write32_upper((u32)VXGE_HW_INTR_MASK_ALL, |
| 185 | &vp_reg->general_errors_mask); |
| 186 | |
| 187 | __vxge_hw_pio_mem_write32_upper((u32)VXGE_HW_INTR_MASK_ALL, |
| 188 | &vp_reg->pci_config_errors_mask); |
| 189 | |
| 190 | __vxge_hw_pio_mem_write32_upper((u32)VXGE_HW_INTR_MASK_ALL, |
| 191 | &vp_reg->mrpcim_to_vpath_alarm_mask); |
| 192 | |
| 193 | __vxge_hw_pio_mem_write32_upper((u32)VXGE_HW_INTR_MASK_ALL, |
| 194 | &vp_reg->srpcim_to_vpath_alarm_mask); |
| 195 | |
| 196 | __vxge_hw_pio_mem_write32_upper((u32)VXGE_HW_INTR_MASK_ALL, |
| 197 | &vp_reg->vpath_ppif_int_mask); |
| 198 | |
| 199 | __vxge_hw_pio_mem_write32_upper((u32)VXGE_HW_INTR_MASK_ALL, |
| 200 | &vp_reg->srpcim_msg_to_vpath_mask); |
| 201 | |
| 202 | __vxge_hw_pio_mem_write32_upper((u32)VXGE_HW_INTR_MASK_ALL, |
| 203 | &vp_reg->vpath_pcipif_int_mask); |
| 204 | |
| 205 | __vxge_hw_pio_mem_write32_upper((u32)VXGE_HW_INTR_MASK_ALL, |
| 206 | &vp_reg->wrdma_alarm_mask); |
| 207 | |
| 208 | __vxge_hw_pio_mem_write32_upper((u32)VXGE_HW_INTR_MASK_ALL, |
| 209 | &vp_reg->prc_alarm_mask); |
| 210 | |
| 211 | __vxge_hw_pio_mem_write32_upper((u32)VXGE_HW_INTR_MASK_ALL, |
| 212 | &vp_reg->xgmac_vp_int_mask); |
| 213 | |
| 214 | __vxge_hw_pio_mem_write32_upper((u32)VXGE_HW_INTR_MASK_ALL, |
| 215 | &vp_reg->asic_ntwk_vp_err_mask); |
| 216 | |
| 217 | exit: |
| 218 | return status; |
| 219 | } |
| 220 | |
| 221 | /** |
| 222 | * vxge_hw_channel_msix_mask - Mask MSIX Vector. |
| 223 | * @channeh: Channel for rx or tx handle |
| 224 | * @msix_id: MSIX ID |
| 225 | * |
| 226 | * The function masks the msix interrupt for the given msix_id |
| 227 | * |
| 228 | * Returns: 0 |
| 229 | */ |
| 230 | void vxge_hw_channel_msix_mask(struct __vxge_hw_channel *channel, int msix_id) |
| 231 | { |
| 232 | |
| 233 | __vxge_hw_pio_mem_write32_upper( |
| 234 | (u32)vxge_bVALn(vxge_mBIT(channel->first_vp_id+(msix_id/4)), |
| 235 | 0, 32), |
| 236 | &channel->common_reg->set_msix_mask_vect[msix_id%4]); |
| 237 | |
| 238 | return; |
| 239 | } |
| 240 | |
| 241 | /** |
| 242 | * vxge_hw_channel_msix_unmask - Unmask the MSIX Vector. |
| 243 | * @channeh: Channel for rx or tx handle |
| 244 | * @msix_id: MSI ID |
| 245 | * |
| 246 | * The function unmasks the msix interrupt for the given msix_id |
| 247 | * |
| 248 | * Returns: 0 |
| 249 | */ |
| 250 | void |
| 251 | vxge_hw_channel_msix_unmask(struct __vxge_hw_channel *channel, int msix_id) |
| 252 | { |
| 253 | |
| 254 | __vxge_hw_pio_mem_write32_upper( |
| 255 | (u32)vxge_bVALn(vxge_mBIT(channel->first_vp_id+(msix_id/4)), |
| 256 | 0, 32), |
| 257 | &channel->common_reg->clear_msix_mask_vect[msix_id%4]); |
| 258 | |
| 259 | return; |
| 260 | } |
| 261 | |
| 262 | /** |
| 263 | * vxge_hw_device_set_intr_type - Updates the configuration |
| 264 | * with new interrupt type. |
| 265 | * @hldev: HW device handle. |
| 266 | * @intr_mode: New interrupt type |
| 267 | */ |
| 268 | u32 vxge_hw_device_set_intr_type(struct __vxge_hw_device *hldev, u32 intr_mode) |
| 269 | { |
| 270 | |
| 271 | if ((intr_mode != VXGE_HW_INTR_MODE_IRQLINE) && |
| 272 | (intr_mode != VXGE_HW_INTR_MODE_MSIX) && |
| 273 | (intr_mode != VXGE_HW_INTR_MODE_MSIX_ONE_SHOT) && |
| 274 | (intr_mode != VXGE_HW_INTR_MODE_DEF)) |
| 275 | intr_mode = VXGE_HW_INTR_MODE_IRQLINE; |
| 276 | |
| 277 | hldev->config.intr_mode = intr_mode; |
| 278 | return intr_mode; |
| 279 | } |
| 280 | |
| 281 | /** |
| 282 | * vxge_hw_device_intr_enable - Enable interrupts. |
| 283 | * @hldev: HW device handle. |
| 284 | * @op: One of the enum vxge_hw_device_intr enumerated values specifying |
| 285 | * the type(s) of interrupts to enable. |
| 286 | * |
| 287 | * Enable Titan interrupts. The function is to be executed the last in |
| 288 | * Titan initialization sequence. |
| 289 | * |
| 290 | * See also: vxge_hw_device_intr_disable() |
| 291 | */ |
| 292 | void vxge_hw_device_intr_enable(struct __vxge_hw_device *hldev) |
| 293 | { |
| 294 | u32 i; |
| 295 | u64 val64; |
| 296 | u32 val32; |
| 297 | |
| 298 | for (i = 0; i < VXGE_HW_MAX_VIRTUAL_PATHS; i++) { |
| 299 | |
| 300 | if (!(hldev->vpaths_deployed & vxge_mBIT(i))) |
| 301 | continue; |
| 302 | |
| 303 | vxge_hw_vpath_intr_enable( |
| 304 | VXGE_HW_VIRTUAL_PATH_HANDLE(&hldev->virtual_paths[i])); |
| 305 | } |
| 306 | |
| 307 | if (hldev->config.intr_mode == VXGE_HW_INTR_MODE_IRQLINE) { |
| 308 | val64 = hldev->tim_int_mask0[VXGE_HW_VPATH_INTR_TX] | |
| 309 | hldev->tim_int_mask0[VXGE_HW_VPATH_INTR_RX]; |
| 310 | |
| 311 | if (val64 != 0) { |
| 312 | writeq(val64, &hldev->common_reg->tim_int_status0); |
| 313 | |
| 314 | writeq(~val64, &hldev->common_reg->tim_int_mask0); |
| 315 | } |
| 316 | |
| 317 | val32 = hldev->tim_int_mask1[VXGE_HW_VPATH_INTR_TX] | |
| 318 | hldev->tim_int_mask1[VXGE_HW_VPATH_INTR_RX]; |
| 319 | |
| 320 | if (val32 != 0) { |
| 321 | __vxge_hw_pio_mem_write32_upper(val32, |
| 322 | &hldev->common_reg->tim_int_status1); |
| 323 | |
| 324 | __vxge_hw_pio_mem_write32_upper(~val32, |
| 325 | &hldev->common_reg->tim_int_mask1); |
| 326 | } |
| 327 | } |
| 328 | |
| 329 | val64 = readq(&hldev->common_reg->titan_general_int_status); |
| 330 | |
| 331 | vxge_hw_device_unmask_all(hldev); |
| 332 | |
| 333 | return; |
| 334 | } |
| 335 | |
| 336 | /** |
| 337 | * vxge_hw_device_intr_disable - Disable Titan interrupts. |
| 338 | * @hldev: HW device handle. |
| 339 | * @op: One of the enum vxge_hw_device_intr enumerated values specifying |
| 340 | * the type(s) of interrupts to disable. |
| 341 | * |
| 342 | * Disable Titan interrupts. |
| 343 | * |
| 344 | * See also: vxge_hw_device_intr_enable() |
| 345 | */ |
| 346 | void vxge_hw_device_intr_disable(struct __vxge_hw_device *hldev) |
| 347 | { |
| 348 | u32 i; |
| 349 | |
| 350 | vxge_hw_device_mask_all(hldev); |
| 351 | |
| 352 | /* mask all the tim interrupts */ |
| 353 | writeq(VXGE_HW_INTR_MASK_ALL, &hldev->common_reg->tim_int_mask0); |
| 354 | __vxge_hw_pio_mem_write32_upper(VXGE_HW_DEFAULT_32, |
| 355 | &hldev->common_reg->tim_int_mask1); |
| 356 | |
| 357 | for (i = 0; i < VXGE_HW_MAX_VIRTUAL_PATHS; i++) { |
| 358 | |
| 359 | if (!(hldev->vpaths_deployed & vxge_mBIT(i))) |
| 360 | continue; |
| 361 | |
| 362 | vxge_hw_vpath_intr_disable( |
| 363 | VXGE_HW_VIRTUAL_PATH_HANDLE(&hldev->virtual_paths[i])); |
| 364 | } |
| 365 | |
| 366 | return; |
| 367 | } |
| 368 | |
| 369 | /** |
| 370 | * vxge_hw_device_mask_all - Mask all device interrupts. |
| 371 | * @hldev: HW device handle. |
| 372 | * |
| 373 | * Mask all device interrupts. |
| 374 | * |
| 375 | * See also: vxge_hw_device_unmask_all() |
| 376 | */ |
| 377 | void vxge_hw_device_mask_all(struct __vxge_hw_device *hldev) |
| 378 | { |
| 379 | u64 val64; |
| 380 | |
| 381 | val64 = VXGE_HW_TITAN_MASK_ALL_INT_ALARM | |
| 382 | VXGE_HW_TITAN_MASK_ALL_INT_TRAFFIC; |
| 383 | |
| 384 | __vxge_hw_pio_mem_write32_upper((u32)vxge_bVALn(val64, 0, 32), |
| 385 | &hldev->common_reg->titan_mask_all_int); |
| 386 | |
| 387 | return; |
| 388 | } |
| 389 | |
| 390 | /** |
| 391 | * vxge_hw_device_unmask_all - Unmask all device interrupts. |
| 392 | * @hldev: HW device handle. |
| 393 | * |
| 394 | * Unmask all device interrupts. |
| 395 | * |
| 396 | * See also: vxge_hw_device_mask_all() |
| 397 | */ |
| 398 | void vxge_hw_device_unmask_all(struct __vxge_hw_device *hldev) |
| 399 | { |
| 400 | u64 val64 = 0; |
| 401 | |
| 402 | if (hldev->config.intr_mode == VXGE_HW_INTR_MODE_IRQLINE) |
| 403 | val64 = VXGE_HW_TITAN_MASK_ALL_INT_TRAFFIC; |
| 404 | |
| 405 | __vxge_hw_pio_mem_write32_upper((u32)vxge_bVALn(val64, 0, 32), |
| 406 | &hldev->common_reg->titan_mask_all_int); |
| 407 | |
| 408 | return; |
| 409 | } |
| 410 | |
| 411 | /** |
| 412 | * vxge_hw_device_flush_io - Flush io writes. |
| 413 | * @hldev: HW device handle. |
| 414 | * |
| 415 | * The function performs a read operation to flush io writes. |
| 416 | * |
| 417 | * Returns: void |
| 418 | */ |
| 419 | void vxge_hw_device_flush_io(struct __vxge_hw_device *hldev) |
| 420 | { |
| 421 | u32 val32; |
| 422 | |
| 423 | val32 = readl(&hldev->common_reg->titan_general_int_status); |
| 424 | } |
| 425 | |
| 426 | /** |
| 427 | * vxge_hw_device_begin_irq - Begin IRQ processing. |
| 428 | * @hldev: HW device handle. |
| 429 | * @skip_alarms: Do not clear the alarms |
| 430 | * @reason: "Reason" for the interrupt, the value of Titan's |
| 431 | * general_int_status register. |
| 432 | * |
| 433 | * The function performs two actions, It first checks whether (shared IRQ) the |
| 434 | * interrupt was raised by the device. Next, it masks the device interrupts. |
| 435 | * |
| 436 | * Note: |
| 437 | * vxge_hw_device_begin_irq() does not flush MMIO writes through the |
| 438 | * bridge. Therefore, two back-to-back interrupts are potentially possible. |
| 439 | * |
| 440 | * Returns: 0, if the interrupt is not "ours" (note that in this case the |
| 441 | * device remain enabled). |
| 442 | * Otherwise, vxge_hw_device_begin_irq() returns 64bit general adapter |
| 443 | * status. |
| 444 | */ |
| 445 | enum vxge_hw_status vxge_hw_device_begin_irq(struct __vxge_hw_device *hldev, |
| 446 | u32 skip_alarms, u64 *reason) |
| 447 | { |
| 448 | u32 i; |
| 449 | u64 val64; |
| 450 | u64 adapter_status; |
| 451 | u64 vpath_mask; |
| 452 | enum vxge_hw_status ret = VXGE_HW_OK; |
| 453 | |
| 454 | val64 = readq(&hldev->common_reg->titan_general_int_status); |
| 455 | |
| 456 | if (unlikely(!val64)) { |
| 457 | /* not Titan interrupt */ |
| 458 | *reason = 0; |
| 459 | ret = VXGE_HW_ERR_WRONG_IRQ; |
| 460 | goto exit; |
| 461 | } |
| 462 | |
| 463 | if (unlikely(val64 == VXGE_HW_ALL_FOXES)) { |
| 464 | |
| 465 | adapter_status = readq(&hldev->common_reg->adapter_status); |
| 466 | |
| 467 | if (adapter_status == VXGE_HW_ALL_FOXES) { |
| 468 | |
| 469 | __vxge_hw_device_handle_error(hldev, |
| 470 | NULL_VPID, VXGE_HW_EVENT_SLOT_FREEZE); |
| 471 | *reason = 0; |
| 472 | ret = VXGE_HW_ERR_SLOT_FREEZE; |
| 473 | goto exit; |
| 474 | } |
| 475 | } |
| 476 | |
| 477 | hldev->stats.sw_dev_info_stats.total_intr_cnt++; |
| 478 | |
| 479 | *reason = val64; |
| 480 | |
| 481 | vpath_mask = hldev->vpaths_deployed >> |
| 482 | (64 - VXGE_HW_MAX_VIRTUAL_PATHS); |
| 483 | |
| 484 | if (val64 & |
| 485 | VXGE_HW_TITAN_GENERAL_INT_STATUS_VPATH_TRAFFIC_INT(vpath_mask)) { |
| 486 | hldev->stats.sw_dev_info_stats.traffic_intr_cnt++; |
| 487 | |
| 488 | return VXGE_HW_OK; |
| 489 | } |
| 490 | |
| 491 | hldev->stats.sw_dev_info_stats.not_traffic_intr_cnt++; |
| 492 | |
| 493 | if (unlikely(val64 & |
| 494 | VXGE_HW_TITAN_GENERAL_INT_STATUS_VPATH_ALARM_INT)) { |
| 495 | |
| 496 | enum vxge_hw_status error_level = VXGE_HW_OK; |
| 497 | |
| 498 | hldev->stats.sw_dev_err_stats.vpath_alarms++; |
| 499 | |
| 500 | for (i = 0; i < VXGE_HW_MAX_VIRTUAL_PATHS; i++) { |
| 501 | |
| 502 | if (!(hldev->vpaths_deployed & vxge_mBIT(i))) |
| 503 | continue; |
| 504 | |
| 505 | ret = __vxge_hw_vpath_alarm_process( |
| 506 | &hldev->virtual_paths[i], skip_alarms); |
| 507 | |
| 508 | error_level = VXGE_HW_SET_LEVEL(ret, error_level); |
| 509 | |
| 510 | if (unlikely((ret == VXGE_HW_ERR_CRITICAL) || |
| 511 | (ret == VXGE_HW_ERR_SLOT_FREEZE))) |
| 512 | break; |
| 513 | } |
| 514 | |
| 515 | ret = error_level; |
| 516 | } |
| 517 | exit: |
| 518 | return ret; |
| 519 | } |
| 520 | |
| 521 | /* |
| 522 | * __vxge_hw_device_handle_link_up_ind |
| 523 | * @hldev: HW device handle. |
| 524 | * |
| 525 | * Link up indication handler. The function is invoked by HW when |
| 526 | * Titan indicates that the link is up for programmable amount of time. |
| 527 | */ |
| 528 | enum vxge_hw_status |
| 529 | __vxge_hw_device_handle_link_up_ind(struct __vxge_hw_device *hldev) |
| 530 | { |
| 531 | /* |
| 532 | * If the previous link state is not down, return. |
| 533 | */ |
| 534 | if (hldev->link_state == VXGE_HW_LINK_UP) |
| 535 | goto exit; |
| 536 | |
| 537 | hldev->link_state = VXGE_HW_LINK_UP; |
| 538 | |
| 539 | /* notify driver */ |
| 540 | if (hldev->uld_callbacks.link_up) |
| 541 | hldev->uld_callbacks.link_up(hldev); |
| 542 | exit: |
| 543 | return VXGE_HW_OK; |
| 544 | } |
| 545 | |
| 546 | /* |
| 547 | * __vxge_hw_device_handle_link_down_ind |
| 548 | * @hldev: HW device handle. |
| 549 | * |
| 550 | * Link down indication handler. The function is invoked by HW when |
| 551 | * Titan indicates that the link is down. |
| 552 | */ |
| 553 | enum vxge_hw_status |
| 554 | __vxge_hw_device_handle_link_down_ind(struct __vxge_hw_device *hldev) |
| 555 | { |
| 556 | /* |
| 557 | * If the previous link state is not down, return. |
| 558 | */ |
| 559 | if (hldev->link_state == VXGE_HW_LINK_DOWN) |
| 560 | goto exit; |
| 561 | |
| 562 | hldev->link_state = VXGE_HW_LINK_DOWN; |
| 563 | |
| 564 | /* notify driver */ |
| 565 | if (hldev->uld_callbacks.link_down) |
| 566 | hldev->uld_callbacks.link_down(hldev); |
| 567 | exit: |
| 568 | return VXGE_HW_OK; |
| 569 | } |
| 570 | |
| 571 | /** |
| 572 | * __vxge_hw_device_handle_error - Handle error |
| 573 | * @hldev: HW device |
| 574 | * @vp_id: Vpath Id |
| 575 | * @type: Error type. Please see enum vxge_hw_event{} |
| 576 | * |
| 577 | * Handle error. |
| 578 | */ |
| 579 | enum vxge_hw_status |
| 580 | __vxge_hw_device_handle_error( |
| 581 | struct __vxge_hw_device *hldev, |
| 582 | u32 vp_id, |
| 583 | enum vxge_hw_event type) |
| 584 | { |
| 585 | switch (type) { |
| 586 | case VXGE_HW_EVENT_UNKNOWN: |
| 587 | break; |
| 588 | case VXGE_HW_EVENT_RESET_START: |
| 589 | case VXGE_HW_EVENT_RESET_COMPLETE: |
| 590 | case VXGE_HW_EVENT_LINK_DOWN: |
| 591 | case VXGE_HW_EVENT_LINK_UP: |
| 592 | goto out; |
| 593 | case VXGE_HW_EVENT_ALARM_CLEARED: |
| 594 | goto out; |
| 595 | case VXGE_HW_EVENT_ECCERR: |
| 596 | case VXGE_HW_EVENT_MRPCIM_ECCERR: |
| 597 | goto out; |
| 598 | case VXGE_HW_EVENT_FIFO_ERR: |
| 599 | case VXGE_HW_EVENT_VPATH_ERR: |
| 600 | case VXGE_HW_EVENT_CRITICAL_ERR: |
| 601 | case VXGE_HW_EVENT_SERR: |
| 602 | break; |
| 603 | case VXGE_HW_EVENT_SRPCIM_SERR: |
| 604 | case VXGE_HW_EVENT_MRPCIM_SERR: |
| 605 | goto out; |
| 606 | case VXGE_HW_EVENT_SLOT_FREEZE: |
| 607 | break; |
| 608 | default: |
| 609 | vxge_assert(0); |
| 610 | goto out; |
| 611 | } |
| 612 | |
| 613 | /* notify driver */ |
| 614 | if (hldev->uld_callbacks.crit_err) |
| 615 | hldev->uld_callbacks.crit_err( |
| 616 | (struct __vxge_hw_device *)hldev, |
| 617 | type, vp_id); |
| 618 | out: |
| 619 | |
| 620 | return VXGE_HW_OK; |
| 621 | } |
| 622 | |
| 623 | /** |
| 624 | * vxge_hw_device_clear_tx_rx - Acknowledge (that is, clear) the |
| 625 | * condition that has caused the Tx and RX interrupt. |
| 626 | * @hldev: HW device. |
| 627 | * |
| 628 | * Acknowledge (that is, clear) the condition that has caused |
| 629 | * the Tx and Rx interrupt. |
| 630 | * See also: vxge_hw_device_begin_irq(), |
| 631 | * vxge_hw_device_mask_tx_rx(), vxge_hw_device_unmask_tx_rx(). |
| 632 | */ |
| 633 | void vxge_hw_device_clear_tx_rx(struct __vxge_hw_device *hldev) |
| 634 | { |
| 635 | |
| 636 | if ((hldev->tim_int_mask0[VXGE_HW_VPATH_INTR_TX] != 0) || |
| 637 | (hldev->tim_int_mask0[VXGE_HW_VPATH_INTR_RX] != 0)) { |
| 638 | writeq((hldev->tim_int_mask0[VXGE_HW_VPATH_INTR_TX] | |
| 639 | hldev->tim_int_mask0[VXGE_HW_VPATH_INTR_RX]), |
| 640 | &hldev->common_reg->tim_int_status0); |
| 641 | } |
| 642 | |
| 643 | if ((hldev->tim_int_mask1[VXGE_HW_VPATH_INTR_TX] != 0) || |
| 644 | (hldev->tim_int_mask1[VXGE_HW_VPATH_INTR_RX] != 0)) { |
| 645 | __vxge_hw_pio_mem_write32_upper( |
| 646 | (hldev->tim_int_mask1[VXGE_HW_VPATH_INTR_TX] | |
| 647 | hldev->tim_int_mask1[VXGE_HW_VPATH_INTR_RX]), |
| 648 | &hldev->common_reg->tim_int_status1); |
| 649 | } |
| 650 | |
| 651 | return; |
| 652 | } |
| 653 | |
| 654 | /* |
| 655 | * vxge_hw_channel_dtr_alloc - Allocate a dtr from the channel |
| 656 | * @channel: Channel |
| 657 | * @dtrh: Buffer to return the DTR pointer |
| 658 | * |
| 659 | * Allocates a dtr from the reserve array. If the reserve array is empty, |
| 660 | * it swaps the reserve and free arrays. |
| 661 | * |
| 662 | */ |
| 663 | enum vxge_hw_status |
| 664 | vxge_hw_channel_dtr_alloc(struct __vxge_hw_channel *channel, void **dtrh) |
| 665 | { |
| 666 | void **tmp_arr; |
| 667 | |
| 668 | if (channel->reserve_ptr - channel->reserve_top > 0) { |
| 669 | _alloc_after_swap: |
| 670 | *dtrh = channel->reserve_arr[--channel->reserve_ptr]; |
| 671 | |
| 672 | return VXGE_HW_OK; |
| 673 | } |
| 674 | |
| 675 | /* switch between empty and full arrays */ |
| 676 | |
| 677 | /* the idea behind such a design is that by having free and reserved |
| 678 | * arrays separated we basically separated irq and non-irq parts. |
| 679 | * i.e. no additional lock need to be done when we free a resource */ |
| 680 | |
| 681 | if (channel->length - channel->free_ptr > 0) { |
| 682 | |
| 683 | tmp_arr = channel->reserve_arr; |
| 684 | channel->reserve_arr = channel->free_arr; |
| 685 | channel->free_arr = tmp_arr; |
| 686 | channel->reserve_ptr = channel->length; |
| 687 | channel->reserve_top = channel->free_ptr; |
| 688 | channel->free_ptr = channel->length; |
| 689 | |
| 690 | channel->stats->reserve_free_swaps_cnt++; |
| 691 | |
| 692 | goto _alloc_after_swap; |
| 693 | } |
| 694 | |
| 695 | channel->stats->full_cnt++; |
| 696 | |
| 697 | *dtrh = NULL; |
| 698 | return VXGE_HW_INF_OUT_OF_DESCRIPTORS; |
| 699 | } |
| 700 | |
| 701 | /* |
| 702 | * vxge_hw_channel_dtr_post - Post a dtr to the channel |
| 703 | * @channelh: Channel |
| 704 | * @dtrh: DTR pointer |
| 705 | * |
| 706 | * Posts a dtr to work array. |
| 707 | * |
| 708 | */ |
| 709 | void vxge_hw_channel_dtr_post(struct __vxge_hw_channel *channel, void *dtrh) |
| 710 | { |
| 711 | vxge_assert(channel->work_arr[channel->post_index] == NULL); |
| 712 | |
| 713 | channel->work_arr[channel->post_index++] = dtrh; |
| 714 | |
| 715 | /* wrap-around */ |
| 716 | if (channel->post_index == channel->length) |
| 717 | channel->post_index = 0; |
| 718 | } |
| 719 | |
| 720 | /* |
| 721 | * vxge_hw_channel_dtr_try_complete - Returns next completed dtr |
| 722 | * @channel: Channel |
| 723 | * @dtr: Buffer to return the next completed DTR pointer |
| 724 | * |
| 725 | * Returns the next completed dtr with out removing it from work array |
| 726 | * |
| 727 | */ |
| 728 | void |
| 729 | vxge_hw_channel_dtr_try_complete(struct __vxge_hw_channel *channel, void **dtrh) |
| 730 | { |
| 731 | vxge_assert(channel->compl_index < channel->length); |
| 732 | |
| 733 | *dtrh = channel->work_arr[channel->compl_index]; |
| 734 | } |
| 735 | |
| 736 | /* |
| 737 | * vxge_hw_channel_dtr_complete - Removes next completed dtr from the work array |
| 738 | * @channel: Channel handle |
| 739 | * |
| 740 | * Removes the next completed dtr from work array |
| 741 | * |
| 742 | */ |
| 743 | void vxge_hw_channel_dtr_complete(struct __vxge_hw_channel *channel) |
| 744 | { |
| 745 | channel->work_arr[channel->compl_index] = NULL; |
| 746 | |
| 747 | /* wrap-around */ |
| 748 | if (++channel->compl_index == channel->length) |
| 749 | channel->compl_index = 0; |
| 750 | |
| 751 | channel->stats->total_compl_cnt++; |
| 752 | } |
| 753 | |
| 754 | /* |
| 755 | * vxge_hw_channel_dtr_free - Frees a dtr |
| 756 | * @channel: Channel handle |
| 757 | * @dtr: DTR pointer |
| 758 | * |
| 759 | * Returns the dtr to free array |
| 760 | * |
| 761 | */ |
| 762 | void vxge_hw_channel_dtr_free(struct __vxge_hw_channel *channel, void *dtrh) |
| 763 | { |
| 764 | channel->free_arr[--channel->free_ptr] = dtrh; |
| 765 | } |
| 766 | |
| 767 | /* |
| 768 | * vxge_hw_channel_dtr_count |
| 769 | * @channel: Channel handle. Obtained via vxge_hw_channel_open(). |
| 770 | * |
| 771 | * Retreive number of DTRs available. This function can not be called |
| 772 | * from data path. ring_initial_replenishi() is the only user. |
| 773 | */ |
| 774 | int vxge_hw_channel_dtr_count(struct __vxge_hw_channel *channel) |
| 775 | { |
| 776 | return (channel->reserve_ptr - channel->reserve_top) + |
| 777 | (channel->length - channel->free_ptr); |
| 778 | } |
| 779 | |
| 780 | /** |
| 781 | * vxge_hw_ring_rxd_reserve - Reserve ring descriptor. |
| 782 | * @ring: Handle to the ring object used for receive |
| 783 | * @rxdh: Reserved descriptor. On success HW fills this "out" parameter |
| 784 | * with a valid handle. |
| 785 | * |
| 786 | * Reserve Rx descriptor for the subsequent filling-in driver |
| 787 | * and posting on the corresponding channel (@channelh) |
| 788 | * via vxge_hw_ring_rxd_post(). |
| 789 | * |
| 790 | * Returns: VXGE_HW_OK - success. |
| 791 | * VXGE_HW_INF_OUT_OF_DESCRIPTORS - Currently no descriptors available. |
| 792 | * |
| 793 | */ |
| 794 | enum vxge_hw_status vxge_hw_ring_rxd_reserve(struct __vxge_hw_ring *ring, |
| 795 | void **rxdh) |
| 796 | { |
| 797 | enum vxge_hw_status status; |
| 798 | struct __vxge_hw_channel *channel; |
| 799 | |
| 800 | channel = &ring->channel; |
| 801 | |
| 802 | status = vxge_hw_channel_dtr_alloc(channel, rxdh); |
| 803 | |
| 804 | if (status == VXGE_HW_OK) { |
| 805 | struct vxge_hw_ring_rxd_1 *rxdp = |
| 806 | (struct vxge_hw_ring_rxd_1 *)*rxdh; |
| 807 | |
| 808 | rxdp->control_0 = rxdp->control_1 = 0; |
| 809 | } |
| 810 | |
| 811 | return status; |
| 812 | } |
| 813 | |
| 814 | /** |
| 815 | * vxge_hw_ring_rxd_free - Free descriptor. |
| 816 | * @ring: Handle to the ring object used for receive |
| 817 | * @rxdh: Descriptor handle. |
| 818 | * |
| 819 | * Free the reserved descriptor. This operation is "symmetrical" to |
| 820 | * vxge_hw_ring_rxd_reserve. The "free-ing" completes the descriptor's |
| 821 | * lifecycle. |
| 822 | * |
| 823 | * After free-ing (see vxge_hw_ring_rxd_free()) the descriptor again can |
| 824 | * be: |
| 825 | * |
| 826 | * - reserved (vxge_hw_ring_rxd_reserve); |
| 827 | * |
| 828 | * - posted (vxge_hw_ring_rxd_post); |
| 829 | * |
| 830 | * - completed (vxge_hw_ring_rxd_next_completed); |
| 831 | * |
| 832 | * - and recycled again (vxge_hw_ring_rxd_free). |
| 833 | * |
| 834 | * For alternative state transitions and more details please refer to |
| 835 | * the design doc. |
| 836 | * |
| 837 | */ |
| 838 | void vxge_hw_ring_rxd_free(struct __vxge_hw_ring *ring, void *rxdh) |
| 839 | { |
| 840 | struct __vxge_hw_channel *channel; |
| 841 | |
| 842 | channel = &ring->channel; |
| 843 | |
| 844 | vxge_hw_channel_dtr_free(channel, rxdh); |
| 845 | |
| 846 | } |
| 847 | |
| 848 | /** |
| 849 | * vxge_hw_ring_rxd_pre_post - Prepare rxd and post |
| 850 | * @ring: Handle to the ring object used for receive |
| 851 | * @rxdh: Descriptor handle. |
| 852 | * |
| 853 | * This routine prepares a rxd and posts |
| 854 | */ |
| 855 | void vxge_hw_ring_rxd_pre_post(struct __vxge_hw_ring *ring, void *rxdh) |
| 856 | { |
| 857 | struct __vxge_hw_channel *channel; |
| 858 | |
| 859 | channel = &ring->channel; |
| 860 | |
| 861 | vxge_hw_channel_dtr_post(channel, rxdh); |
| 862 | } |
| 863 | |
| 864 | /** |
| 865 | * vxge_hw_ring_rxd_post_post - Process rxd after post. |
| 866 | * @ring: Handle to the ring object used for receive |
| 867 | * @rxdh: Descriptor handle. |
| 868 | * |
| 869 | * Processes rxd after post |
| 870 | */ |
| 871 | void vxge_hw_ring_rxd_post_post(struct __vxge_hw_ring *ring, void *rxdh) |
| 872 | { |
| 873 | struct vxge_hw_ring_rxd_1 *rxdp = (struct vxge_hw_ring_rxd_1 *)rxdh; |
| 874 | struct __vxge_hw_channel *channel; |
| 875 | |
| 876 | channel = &ring->channel; |
| 877 | |
| 878 | rxdp->control_0 |= VXGE_HW_RING_RXD_LIST_OWN_ADAPTER; |
| 879 | |
| 880 | if (ring->stats->common_stats.usage_cnt > 0) |
| 881 | ring->stats->common_stats.usage_cnt--; |
| 882 | } |
| 883 | |
| 884 | /** |
| 885 | * vxge_hw_ring_rxd_post - Post descriptor on the ring. |
| 886 | * @ring: Handle to the ring object used for receive |
| 887 | * @rxdh: Descriptor obtained via vxge_hw_ring_rxd_reserve(). |
| 888 | * |
| 889 | * Post descriptor on the ring. |
| 890 | * Prior to posting the descriptor should be filled in accordance with |
| 891 | * Host/Titan interface specification for a given service (LL, etc.). |
| 892 | * |
| 893 | */ |
| 894 | void vxge_hw_ring_rxd_post(struct __vxge_hw_ring *ring, void *rxdh) |
| 895 | { |
| 896 | struct vxge_hw_ring_rxd_1 *rxdp = (struct vxge_hw_ring_rxd_1 *)rxdh; |
| 897 | struct __vxge_hw_channel *channel; |
| 898 | |
| 899 | channel = &ring->channel; |
| 900 | |
| 901 | wmb(); |
| 902 | rxdp->control_0 |= VXGE_HW_RING_RXD_LIST_OWN_ADAPTER; |
| 903 | |
| 904 | vxge_hw_channel_dtr_post(channel, rxdh); |
| 905 | |
| 906 | if (ring->stats->common_stats.usage_cnt > 0) |
| 907 | ring->stats->common_stats.usage_cnt--; |
| 908 | } |
| 909 | |
| 910 | /** |
| 911 | * vxge_hw_ring_rxd_post_post_wmb - Process rxd after post with memory barrier. |
| 912 | * @ring: Handle to the ring object used for receive |
| 913 | * @rxdh: Descriptor handle. |
| 914 | * |
| 915 | * Processes rxd after post with memory barrier. |
| 916 | */ |
| 917 | void vxge_hw_ring_rxd_post_post_wmb(struct __vxge_hw_ring *ring, void *rxdh) |
| 918 | { |
| 919 | struct __vxge_hw_channel *channel; |
| 920 | |
| 921 | channel = &ring->channel; |
| 922 | |
| 923 | wmb(); |
| 924 | vxge_hw_ring_rxd_post_post(ring, rxdh); |
| 925 | } |
| 926 | |
| 927 | /** |
| 928 | * vxge_hw_ring_rxd_next_completed - Get the _next_ completed descriptor. |
| 929 | * @ring: Handle to the ring object used for receive |
| 930 | * @rxdh: Descriptor handle. Returned by HW. |
| 931 | * @t_code: Transfer code, as per Titan User Guide, |
| 932 | * Receive Descriptor Format. Returned by HW. |
| 933 | * |
| 934 | * Retrieve the _next_ completed descriptor. |
| 935 | * HW uses ring callback (*vxge_hw_ring_callback_f) to notifiy |
| 936 | * driver of new completed descriptors. After that |
| 937 | * the driver can use vxge_hw_ring_rxd_next_completed to retrieve the rest |
| 938 | * completions (the very first completion is passed by HW via |
| 939 | * vxge_hw_ring_callback_f). |
| 940 | * |
| 941 | * Implementation-wise, the driver is free to call |
| 942 | * vxge_hw_ring_rxd_next_completed either immediately from inside the |
| 943 | * ring callback, or in a deferred fashion and separate (from HW) |
| 944 | * context. |
| 945 | * |
| 946 | * Non-zero @t_code means failure to fill-in receive buffer(s) |
| 947 | * of the descriptor. |
| 948 | * For instance, parity error detected during the data transfer. |
| 949 | * In this case Titan will complete the descriptor and indicate |
| 950 | * for the host that the received data is not to be used. |
| 951 | * For details please refer to Titan User Guide. |
| 952 | * |
| 953 | * Returns: VXGE_HW_OK - success. |
| 954 | * VXGE_HW_INF_NO_MORE_COMPLETED_DESCRIPTORS - No completed descriptors |
| 955 | * are currently available for processing. |
| 956 | * |
| 957 | * See also: vxge_hw_ring_callback_f{}, |
| 958 | * vxge_hw_fifo_rxd_next_completed(), enum vxge_hw_status{}. |
| 959 | */ |
| 960 | enum vxge_hw_status vxge_hw_ring_rxd_next_completed( |
| 961 | struct __vxge_hw_ring *ring, void **rxdh, u8 *t_code) |
| 962 | { |
| 963 | struct __vxge_hw_channel *channel; |
| 964 | struct vxge_hw_ring_rxd_1 *rxdp; |
| 965 | enum vxge_hw_status status = VXGE_HW_OK; |
| 966 | |
| 967 | channel = &ring->channel; |
| 968 | |
| 969 | vxge_hw_channel_dtr_try_complete(channel, rxdh); |
| 970 | |
| 971 | rxdp = (struct vxge_hw_ring_rxd_1 *)*rxdh; |
| 972 | if (rxdp == NULL) { |
| 973 | status = VXGE_HW_INF_NO_MORE_COMPLETED_DESCRIPTORS; |
| 974 | goto exit; |
| 975 | } |
| 976 | |
| 977 | /* check whether it is not the end */ |
| 978 | if (!(rxdp->control_0 & VXGE_HW_RING_RXD_LIST_OWN_ADAPTER)) { |
| 979 | |
| 980 | vxge_assert(((struct vxge_hw_ring_rxd_1 *)rxdp)->host_control != |
| 981 | 0); |
| 982 | |
| 983 | ++ring->cmpl_cnt; |
| 984 | vxge_hw_channel_dtr_complete(channel); |
| 985 | |
| 986 | *t_code = (u8)VXGE_HW_RING_RXD_T_CODE_GET(rxdp->control_0); |
| 987 | |
| 988 | vxge_assert(*t_code != VXGE_HW_RING_RXD_T_CODE_UNUSED); |
| 989 | |
| 990 | ring->stats->common_stats.usage_cnt++; |
| 991 | if (ring->stats->common_stats.usage_max < |
| 992 | ring->stats->common_stats.usage_cnt) |
| 993 | ring->stats->common_stats.usage_max = |
| 994 | ring->stats->common_stats.usage_cnt; |
| 995 | |
| 996 | status = VXGE_HW_OK; |
| 997 | goto exit; |
| 998 | } |
| 999 | |
| 1000 | /* reset it. since we don't want to return |
| 1001 | * garbage to the driver */ |
| 1002 | *rxdh = NULL; |
| 1003 | status = VXGE_HW_INF_NO_MORE_COMPLETED_DESCRIPTORS; |
| 1004 | exit: |
| 1005 | return status; |
| 1006 | } |
| 1007 | |
| 1008 | /** |
| 1009 | * vxge_hw_ring_handle_tcode - Handle transfer code. |
| 1010 | * @ring: Handle to the ring object used for receive |
| 1011 | * @rxdh: Descriptor handle. |
| 1012 | * @t_code: One of the enumerated (and documented in the Titan user guide) |
| 1013 | * "transfer codes". |
| 1014 | * |
| 1015 | * Handle descriptor's transfer code. The latter comes with each completed |
| 1016 | * descriptor. |
| 1017 | * |
| 1018 | * Returns: one of the enum vxge_hw_status{} enumerated types. |
| 1019 | * VXGE_HW_OK - for success. |
| 1020 | * VXGE_HW_ERR_CRITICAL - when encounters critical error. |
| 1021 | */ |
| 1022 | enum vxge_hw_status vxge_hw_ring_handle_tcode( |
| 1023 | struct __vxge_hw_ring *ring, void *rxdh, u8 t_code) |
| 1024 | { |
| 1025 | struct __vxge_hw_channel *channel; |
| 1026 | enum vxge_hw_status status = VXGE_HW_OK; |
| 1027 | |
| 1028 | channel = &ring->channel; |
| 1029 | |
| 1030 | /* If the t_code is not supported and if the |
| 1031 | * t_code is other than 0x5 (unparseable packet |
| 1032 | * such as unknown UPV6 header), Drop it !!! |
| 1033 | */ |
| 1034 | |
| 1035 | if (t_code == 0 || t_code == 5) { |
| 1036 | status = VXGE_HW_OK; |
| 1037 | goto exit; |
| 1038 | } |
| 1039 | |
| 1040 | if (t_code > 0xF) { |
| 1041 | status = VXGE_HW_ERR_INVALID_TCODE; |
| 1042 | goto exit; |
| 1043 | } |
| 1044 | |
| 1045 | ring->stats->rxd_t_code_err_cnt[t_code]++; |
| 1046 | exit: |
| 1047 | return status; |
| 1048 | } |
| 1049 | |
| 1050 | /** |
| 1051 | * __vxge_hw_non_offload_db_post - Post non offload doorbell |
| 1052 | * |
| 1053 | * @fifo: fifohandle |
| 1054 | * @txdl_ptr: The starting location of the TxDL in host memory |
| 1055 | * @num_txds: The highest TxD in this TxDL (0 to 255 means 1 to 256) |
| 1056 | * @no_snoop: No snoop flags |
| 1057 | * |
| 1058 | * This function posts a non-offload doorbell to doorbell FIFO |
| 1059 | * |
| 1060 | */ |
| 1061 | static void __vxge_hw_non_offload_db_post(struct __vxge_hw_fifo *fifo, |
| 1062 | u64 txdl_ptr, u32 num_txds, u32 no_snoop) |
| 1063 | { |
| 1064 | struct __vxge_hw_channel *channel; |
| 1065 | |
| 1066 | channel = &fifo->channel; |
| 1067 | |
| 1068 | writeq(VXGE_HW_NODBW_TYPE(VXGE_HW_NODBW_TYPE_NODBW) | |
| 1069 | VXGE_HW_NODBW_LAST_TXD_NUMBER(num_txds) | |
| 1070 | VXGE_HW_NODBW_GET_NO_SNOOP(no_snoop), |
| 1071 | &fifo->nofl_db->control_0); |
| 1072 | |
| 1073 | wmb(); |
| 1074 | |
| 1075 | writeq(txdl_ptr, &fifo->nofl_db->txdl_ptr); |
| 1076 | wmb(); |
| 1077 | |
| 1078 | } |
| 1079 | |
| 1080 | /** |
| 1081 | * vxge_hw_fifo_free_txdl_count_get - returns the number of txdls available in |
| 1082 | * the fifo |
| 1083 | * @fifoh: Handle to the fifo object used for non offload send |
| 1084 | */ |
| 1085 | u32 vxge_hw_fifo_free_txdl_count_get(struct __vxge_hw_fifo *fifoh) |
| 1086 | { |
| 1087 | return vxge_hw_channel_dtr_count(&fifoh->channel); |
| 1088 | } |
| 1089 | |
| 1090 | /** |
| 1091 | * vxge_hw_fifo_txdl_reserve - Reserve fifo descriptor. |
| 1092 | * @fifoh: Handle to the fifo object used for non offload send |
| 1093 | * @txdlh: Reserved descriptor. On success HW fills this "out" parameter |
| 1094 | * with a valid handle. |
| 1095 | * @txdl_priv: Buffer to return the pointer to per txdl space |
| 1096 | * |
| 1097 | * Reserve a single TxDL (that is, fifo descriptor) |
| 1098 | * for the subsequent filling-in by driver) |
| 1099 | * and posting on the corresponding channel (@channelh) |
| 1100 | * via vxge_hw_fifo_txdl_post(). |
| 1101 | * |
| 1102 | * Note: it is the responsibility of driver to reserve multiple descriptors |
| 1103 | * for lengthy (e.g., LSO) transmit operation. A single fifo descriptor |
| 1104 | * carries up to configured number (fifo.max_frags) of contiguous buffers. |
| 1105 | * |
| 1106 | * Returns: VXGE_HW_OK - success; |
| 1107 | * VXGE_HW_INF_OUT_OF_DESCRIPTORS - Currently no descriptors available |
| 1108 | * |
| 1109 | */ |
| 1110 | enum vxge_hw_status vxge_hw_fifo_txdl_reserve( |
| 1111 | struct __vxge_hw_fifo *fifo, |
| 1112 | void **txdlh, void **txdl_priv) |
| 1113 | { |
| 1114 | struct __vxge_hw_channel *channel; |
| 1115 | enum vxge_hw_status status; |
| 1116 | int i; |
| 1117 | |
| 1118 | channel = &fifo->channel; |
| 1119 | |
| 1120 | status = vxge_hw_channel_dtr_alloc(channel, txdlh); |
| 1121 | |
| 1122 | if (status == VXGE_HW_OK) { |
| 1123 | struct vxge_hw_fifo_txd *txdp = |
| 1124 | (struct vxge_hw_fifo_txd *)*txdlh; |
| 1125 | struct __vxge_hw_fifo_txdl_priv *priv; |
| 1126 | |
| 1127 | priv = __vxge_hw_fifo_txdl_priv(fifo, txdp); |
| 1128 | |
| 1129 | /* reset the TxDL's private */ |
| 1130 | priv->align_dma_offset = 0; |
| 1131 | priv->align_vaddr_start = priv->align_vaddr; |
| 1132 | priv->align_used_frags = 0; |
| 1133 | priv->frags = 0; |
| 1134 | priv->alloc_frags = fifo->config->max_frags; |
| 1135 | priv->next_txdl_priv = NULL; |
| 1136 | |
| 1137 | *txdl_priv = (void *)(size_t)txdp->host_control; |
| 1138 | |
| 1139 | for (i = 0; i < fifo->config->max_frags; i++) { |
| 1140 | txdp = ((struct vxge_hw_fifo_txd *)*txdlh) + i; |
| 1141 | txdp->control_0 = txdp->control_1 = 0; |
| 1142 | } |
| 1143 | } |
| 1144 | |
| 1145 | return status; |
| 1146 | } |
| 1147 | |
| 1148 | /** |
| 1149 | * vxge_hw_fifo_txdl_buffer_set - Set transmit buffer pointer in the |
| 1150 | * descriptor. |
| 1151 | * @fifo: Handle to the fifo object used for non offload send |
| 1152 | * @txdlh: Descriptor handle. |
| 1153 | * @frag_idx: Index of the data buffer in the caller's scatter-gather list |
| 1154 | * (of buffers). |
| 1155 | * @dma_pointer: DMA address of the data buffer referenced by @frag_idx. |
| 1156 | * @size: Size of the data buffer (in bytes). |
| 1157 | * |
| 1158 | * This API is part of the preparation of the transmit descriptor for posting |
| 1159 | * (via vxge_hw_fifo_txdl_post()). The related "preparation" APIs include |
| 1160 | * vxge_hw_fifo_txdl_mss_set() and vxge_hw_fifo_txdl_cksum_set_bits(). |
| 1161 | * All three APIs fill in the fields of the fifo descriptor, |
| 1162 | * in accordance with the Titan specification. |
| 1163 | * |
| 1164 | */ |
| 1165 | void vxge_hw_fifo_txdl_buffer_set(struct __vxge_hw_fifo *fifo, |
| 1166 | void *txdlh, u32 frag_idx, |
| 1167 | dma_addr_t dma_pointer, u32 size) |
| 1168 | { |
| 1169 | struct __vxge_hw_fifo_txdl_priv *txdl_priv; |
| 1170 | struct vxge_hw_fifo_txd *txdp, *txdp_last; |
| 1171 | struct __vxge_hw_channel *channel; |
| 1172 | |
| 1173 | channel = &fifo->channel; |
| 1174 | |
| 1175 | txdl_priv = __vxge_hw_fifo_txdl_priv(fifo, txdlh); |
| 1176 | txdp = (struct vxge_hw_fifo_txd *)txdlh + txdl_priv->frags; |
| 1177 | |
| 1178 | if (frag_idx != 0) |
| 1179 | txdp->control_0 = txdp->control_1 = 0; |
| 1180 | else { |
| 1181 | txdp->control_0 |= VXGE_HW_FIFO_TXD_GATHER_CODE( |
| 1182 | VXGE_HW_FIFO_TXD_GATHER_CODE_FIRST); |
| 1183 | txdp->control_1 |= fifo->interrupt_type; |
| 1184 | txdp->control_1 |= VXGE_HW_FIFO_TXD_INT_NUMBER( |
| 1185 | fifo->tx_intr_num); |
| 1186 | if (txdl_priv->frags) { |
| 1187 | txdp_last = (struct vxge_hw_fifo_txd *)txdlh + |
| 1188 | (txdl_priv->frags - 1); |
| 1189 | txdp_last->control_0 |= VXGE_HW_FIFO_TXD_GATHER_CODE( |
| 1190 | VXGE_HW_FIFO_TXD_GATHER_CODE_LAST); |
| 1191 | } |
| 1192 | } |
| 1193 | |
| 1194 | vxge_assert(frag_idx < txdl_priv->alloc_frags); |
| 1195 | |
| 1196 | txdp->buffer_pointer = (u64)dma_pointer; |
| 1197 | txdp->control_0 |= VXGE_HW_FIFO_TXD_BUFFER_SIZE(size); |
| 1198 | fifo->stats->total_buffers++; |
| 1199 | txdl_priv->frags++; |
| 1200 | } |
| 1201 | |
| 1202 | /** |
| 1203 | * vxge_hw_fifo_txdl_post - Post descriptor on the fifo channel. |
| 1204 | * @fifo: Handle to the fifo object used for non offload send |
| 1205 | * @txdlh: Descriptor obtained via vxge_hw_fifo_txdl_reserve() |
| 1206 | * @frags: Number of contiguous buffers that are part of a single |
| 1207 | * transmit operation. |
| 1208 | * |
| 1209 | * Post descriptor on the 'fifo' type channel for transmission. |
| 1210 | * Prior to posting the descriptor should be filled in accordance with |
| 1211 | * Host/Titan interface specification for a given service (LL, etc.). |
| 1212 | * |
| 1213 | */ |
| 1214 | void vxge_hw_fifo_txdl_post(struct __vxge_hw_fifo *fifo, void *txdlh) |
| 1215 | { |
| 1216 | struct __vxge_hw_fifo_txdl_priv *txdl_priv; |
| 1217 | struct vxge_hw_fifo_txd *txdp_last; |
| 1218 | struct vxge_hw_fifo_txd *txdp_first; |
| 1219 | struct __vxge_hw_channel *channel; |
| 1220 | |
| 1221 | channel = &fifo->channel; |
| 1222 | |
| 1223 | txdl_priv = __vxge_hw_fifo_txdl_priv(fifo, txdlh); |
| 1224 | txdp_first = (struct vxge_hw_fifo_txd *)txdlh; |
| 1225 | |
| 1226 | txdp_last = (struct vxge_hw_fifo_txd *)txdlh + (txdl_priv->frags - 1); |
| 1227 | txdp_last->control_0 |= |
| 1228 | VXGE_HW_FIFO_TXD_GATHER_CODE(VXGE_HW_FIFO_TXD_GATHER_CODE_LAST); |
| 1229 | txdp_first->control_0 |= VXGE_HW_FIFO_TXD_LIST_OWN_ADAPTER; |
| 1230 | |
| 1231 | vxge_hw_channel_dtr_post(&fifo->channel, txdlh); |
| 1232 | |
| 1233 | __vxge_hw_non_offload_db_post(fifo, |
| 1234 | (u64)(size_t)txdl_priv->dma_addr, |
| 1235 | txdl_priv->frags - 1, |
| 1236 | fifo->no_snoop_bits); |
| 1237 | |
| 1238 | fifo->stats->total_posts++; |
| 1239 | fifo->stats->common_stats.usage_cnt++; |
| 1240 | if (fifo->stats->common_stats.usage_max < |
| 1241 | fifo->stats->common_stats.usage_cnt) |
| 1242 | fifo->stats->common_stats.usage_max = |
| 1243 | fifo->stats->common_stats.usage_cnt; |
| 1244 | } |
| 1245 | |
| 1246 | /** |
| 1247 | * vxge_hw_fifo_txdl_next_completed - Retrieve next completed descriptor. |
| 1248 | * @fifo: Handle to the fifo object used for non offload send |
| 1249 | * @txdlh: Descriptor handle. Returned by HW. |
| 1250 | * @t_code: Transfer code, as per Titan User Guide, |
| 1251 | * Transmit Descriptor Format. |
| 1252 | * Returned by HW. |
| 1253 | * |
| 1254 | * Retrieve the _next_ completed descriptor. |
| 1255 | * HW uses channel callback (*vxge_hw_channel_callback_f) to notifiy |
| 1256 | * driver of new completed descriptors. After that |
| 1257 | * the driver can use vxge_hw_fifo_txdl_next_completed to retrieve the rest |
| 1258 | * completions (the very first completion is passed by HW via |
| 1259 | * vxge_hw_channel_callback_f). |
| 1260 | * |
| 1261 | * Implementation-wise, the driver is free to call |
| 1262 | * vxge_hw_fifo_txdl_next_completed either immediately from inside the |
| 1263 | * channel callback, or in a deferred fashion and separate (from HW) |
| 1264 | * context. |
| 1265 | * |
| 1266 | * Non-zero @t_code means failure to process the descriptor. |
| 1267 | * The failure could happen, for instance, when the link is |
| 1268 | * down, in which case Titan completes the descriptor because it |
| 1269 | * is not able to send the data out. |
| 1270 | * |
| 1271 | * For details please refer to Titan User Guide. |
| 1272 | * |
| 1273 | * Returns: VXGE_HW_OK - success. |
| 1274 | * VXGE_HW_INF_NO_MORE_COMPLETED_DESCRIPTORS - No completed descriptors |
| 1275 | * are currently available for processing. |
| 1276 | * |
| 1277 | */ |
| 1278 | enum vxge_hw_status vxge_hw_fifo_txdl_next_completed( |
| 1279 | struct __vxge_hw_fifo *fifo, void **txdlh, |
| 1280 | enum vxge_hw_fifo_tcode *t_code) |
| 1281 | { |
| 1282 | struct __vxge_hw_channel *channel; |
| 1283 | struct vxge_hw_fifo_txd *txdp; |
| 1284 | enum vxge_hw_status status = VXGE_HW_OK; |
| 1285 | |
| 1286 | channel = &fifo->channel; |
| 1287 | |
| 1288 | vxge_hw_channel_dtr_try_complete(channel, txdlh); |
| 1289 | |
| 1290 | txdp = (struct vxge_hw_fifo_txd *)*txdlh; |
| 1291 | if (txdp == NULL) { |
| 1292 | status = VXGE_HW_INF_NO_MORE_COMPLETED_DESCRIPTORS; |
| 1293 | goto exit; |
| 1294 | } |
| 1295 | |
| 1296 | /* check whether host owns it */ |
| 1297 | if (!(txdp->control_0 & VXGE_HW_FIFO_TXD_LIST_OWN_ADAPTER)) { |
| 1298 | |
| 1299 | vxge_assert(txdp->host_control != 0); |
| 1300 | |
| 1301 | vxge_hw_channel_dtr_complete(channel); |
| 1302 | |
| 1303 | *t_code = (u8)VXGE_HW_FIFO_TXD_T_CODE_GET(txdp->control_0); |
| 1304 | |
| 1305 | if (fifo->stats->common_stats.usage_cnt > 0) |
| 1306 | fifo->stats->common_stats.usage_cnt--; |
| 1307 | |
| 1308 | status = VXGE_HW_OK; |
| 1309 | goto exit; |
| 1310 | } |
| 1311 | |
| 1312 | /* no more completions */ |
| 1313 | *txdlh = NULL; |
| 1314 | status = VXGE_HW_INF_NO_MORE_COMPLETED_DESCRIPTORS; |
| 1315 | exit: |
| 1316 | return status; |
| 1317 | } |
| 1318 | |
| 1319 | /** |
| 1320 | * vxge_hw_fifo_handle_tcode - Handle transfer code. |
| 1321 | * @fifo: Handle to the fifo object used for non offload send |
| 1322 | * @txdlh: Descriptor handle. |
| 1323 | * @t_code: One of the enumerated (and documented in the Titan user guide) |
| 1324 | * "transfer codes". |
| 1325 | * |
| 1326 | * Handle descriptor's transfer code. The latter comes with each completed |
| 1327 | * descriptor. |
| 1328 | * |
| 1329 | * Returns: one of the enum vxge_hw_status{} enumerated types. |
| 1330 | * VXGE_HW_OK - for success. |
| 1331 | * VXGE_HW_ERR_CRITICAL - when encounters critical error. |
| 1332 | */ |
| 1333 | enum vxge_hw_status vxge_hw_fifo_handle_tcode(struct __vxge_hw_fifo *fifo, |
| 1334 | void *txdlh, |
| 1335 | enum vxge_hw_fifo_tcode t_code) |
| 1336 | { |
| 1337 | struct __vxge_hw_channel *channel; |
| 1338 | |
| 1339 | enum vxge_hw_status status = VXGE_HW_OK; |
| 1340 | channel = &fifo->channel; |
| 1341 | |
| 1342 | if (((t_code & 0x7) < 0) || ((t_code & 0x7) > 0x4)) { |
| 1343 | status = VXGE_HW_ERR_INVALID_TCODE; |
| 1344 | goto exit; |
| 1345 | } |
| 1346 | |
| 1347 | fifo->stats->txd_t_code_err_cnt[t_code]++; |
| 1348 | exit: |
| 1349 | return status; |
| 1350 | } |
| 1351 | |
| 1352 | /** |
| 1353 | * vxge_hw_fifo_txdl_free - Free descriptor. |
| 1354 | * @fifo: Handle to the fifo object used for non offload send |
| 1355 | * @txdlh: Descriptor handle. |
| 1356 | * |
| 1357 | * Free the reserved descriptor. This operation is "symmetrical" to |
| 1358 | * vxge_hw_fifo_txdl_reserve. The "free-ing" completes the descriptor's |
| 1359 | * lifecycle. |
| 1360 | * |
| 1361 | * After free-ing (see vxge_hw_fifo_txdl_free()) the descriptor again can |
| 1362 | * be: |
| 1363 | * |
| 1364 | * - reserved (vxge_hw_fifo_txdl_reserve); |
| 1365 | * |
| 1366 | * - posted (vxge_hw_fifo_txdl_post); |
| 1367 | * |
| 1368 | * - completed (vxge_hw_fifo_txdl_next_completed); |
| 1369 | * |
| 1370 | * - and recycled again (vxge_hw_fifo_txdl_free). |
| 1371 | * |
| 1372 | * For alternative state transitions and more details please refer to |
| 1373 | * the design doc. |
| 1374 | * |
| 1375 | */ |
| 1376 | void vxge_hw_fifo_txdl_free(struct __vxge_hw_fifo *fifo, void *txdlh) |
| 1377 | { |
| 1378 | struct __vxge_hw_fifo_txdl_priv *txdl_priv; |
| 1379 | u32 max_frags; |
| 1380 | struct __vxge_hw_channel *channel; |
| 1381 | |
| 1382 | channel = &fifo->channel; |
| 1383 | |
| 1384 | txdl_priv = __vxge_hw_fifo_txdl_priv(fifo, |
| 1385 | (struct vxge_hw_fifo_txd *)txdlh); |
| 1386 | |
| 1387 | max_frags = fifo->config->max_frags; |
| 1388 | |
| 1389 | vxge_hw_channel_dtr_free(channel, txdlh); |
| 1390 | } |
| 1391 | |
| 1392 | /** |
| 1393 | * vxge_hw_vpath_mac_addr_add - Add the mac address entry for this vpath |
| 1394 | * to MAC address table. |
| 1395 | * @vp: Vpath handle. |
| 1396 | * @macaddr: MAC address to be added for this vpath into the list |
| 1397 | * @macaddr_mask: MAC address mask for macaddr |
| 1398 | * @duplicate_mode: Duplicate MAC address add mode. Please see |
| 1399 | * enum vxge_hw_vpath_mac_addr_add_mode{} |
| 1400 | * |
| 1401 | * Adds the given mac address and mac address mask into the list for this |
| 1402 | * vpath. |
| 1403 | * see also: vxge_hw_vpath_mac_addr_delete, vxge_hw_vpath_mac_addr_get and |
| 1404 | * vxge_hw_vpath_mac_addr_get_next |
| 1405 | * |
| 1406 | */ |
| 1407 | enum vxge_hw_status |
| 1408 | vxge_hw_vpath_mac_addr_add( |
| 1409 | struct __vxge_hw_vpath_handle *vp, |
| 1410 | u8 (macaddr)[ETH_ALEN], |
| 1411 | u8 (macaddr_mask)[ETH_ALEN], |
| 1412 | enum vxge_hw_vpath_mac_addr_add_mode duplicate_mode) |
| 1413 | { |
| 1414 | u32 i; |
| 1415 | u64 data1 = 0ULL; |
| 1416 | u64 data2 = 0ULL; |
| 1417 | enum vxge_hw_status status = VXGE_HW_OK; |
| 1418 | |
| 1419 | if (vp == NULL) { |
| 1420 | status = VXGE_HW_ERR_INVALID_HANDLE; |
| 1421 | goto exit; |
| 1422 | } |
| 1423 | |
| 1424 | for (i = 0; i < ETH_ALEN; i++) { |
| 1425 | data1 <<= 8; |
| 1426 | data1 |= (u8)macaddr[i]; |
| 1427 | |
| 1428 | data2 <<= 8; |
| 1429 | data2 |= (u8)macaddr_mask[i]; |
| 1430 | } |
| 1431 | |
| 1432 | switch (duplicate_mode) { |
| 1433 | case VXGE_HW_VPATH_MAC_ADDR_ADD_DUPLICATE: |
| 1434 | i = 0; |
| 1435 | break; |
| 1436 | case VXGE_HW_VPATH_MAC_ADDR_DISCARD_DUPLICATE: |
| 1437 | i = 1; |
| 1438 | break; |
| 1439 | case VXGE_HW_VPATH_MAC_ADDR_REPLACE_DUPLICATE: |
| 1440 | i = 2; |
| 1441 | break; |
| 1442 | default: |
| 1443 | i = 0; |
| 1444 | break; |
| 1445 | } |
| 1446 | |
| 1447 | status = __vxge_hw_vpath_rts_table_set(vp, |
| 1448 | VXGE_HW_RTS_ACCESS_STEER_CTRL_ACTION_ADD_ENTRY, |
| 1449 | VXGE_HW_RTS_ACCESS_STEER_CTRL_DATA_STRUCT_SEL_DA, |
| 1450 | 0, |
| 1451 | VXGE_HW_RTS_ACCESS_STEER_DATA0_DA_MAC_ADDR(data1), |
| 1452 | VXGE_HW_RTS_ACCESS_STEER_DATA1_DA_MAC_ADDR_MASK(data2)| |
| 1453 | VXGE_HW_RTS_ACCESS_STEER_DATA1_DA_MAC_ADDR_MODE(i)); |
| 1454 | exit: |
| 1455 | return status; |
| 1456 | } |
| 1457 | |
| 1458 | /** |
| 1459 | * vxge_hw_vpath_mac_addr_get - Get the first mac address entry for this vpath |
| 1460 | * from MAC address table. |
| 1461 | * @vp: Vpath handle. |
| 1462 | * @macaddr: First MAC address entry for this vpath in the list |
| 1463 | * @macaddr_mask: MAC address mask for macaddr |
| 1464 | * |
| 1465 | * Returns the first mac address and mac address mask in the list for this |
| 1466 | * vpath. |
| 1467 | * see also: vxge_hw_vpath_mac_addr_get_next |
| 1468 | * |
| 1469 | */ |
| 1470 | enum vxge_hw_status |
| 1471 | vxge_hw_vpath_mac_addr_get( |
| 1472 | struct __vxge_hw_vpath_handle *vp, |
| 1473 | u8 (macaddr)[ETH_ALEN], |
| 1474 | u8 (macaddr_mask)[ETH_ALEN]) |
| 1475 | { |
| 1476 | u32 i; |
| 1477 | u64 data1 = 0ULL; |
| 1478 | u64 data2 = 0ULL; |
| 1479 | enum vxge_hw_status status = VXGE_HW_OK; |
| 1480 | |
| 1481 | if (vp == NULL) { |
| 1482 | status = VXGE_HW_ERR_INVALID_HANDLE; |
| 1483 | goto exit; |
| 1484 | } |
| 1485 | |
| 1486 | status = __vxge_hw_vpath_rts_table_get(vp, |
| 1487 | VXGE_HW_RTS_ACCESS_STEER_CTRL_ACTION_LIST_FIRST_ENTRY, |
| 1488 | VXGE_HW_RTS_ACCESS_STEER_CTRL_DATA_STRUCT_SEL_DA, |
| 1489 | 0, &data1, &data2); |
| 1490 | |
| 1491 | if (status != VXGE_HW_OK) |
| 1492 | goto exit; |
| 1493 | |
| 1494 | data1 = VXGE_HW_RTS_ACCESS_STEER_DATA0_GET_DA_MAC_ADDR(data1); |
| 1495 | |
| 1496 | data2 = VXGE_HW_RTS_ACCESS_STEER_DATA1_GET_DA_MAC_ADDR_MASK(data2); |
| 1497 | |
| 1498 | for (i = ETH_ALEN; i > 0; i--) { |
| 1499 | macaddr[i-1] = (u8)(data1 & 0xFF); |
| 1500 | data1 >>= 8; |
| 1501 | |
| 1502 | macaddr_mask[i-1] = (u8)(data2 & 0xFF); |
| 1503 | data2 >>= 8; |
| 1504 | } |
| 1505 | exit: |
| 1506 | return status; |
| 1507 | } |
| 1508 | |
| 1509 | /** |
| 1510 | * vxge_hw_vpath_mac_addr_get_next - Get the next mac address entry for this |
| 1511 | * vpath |
| 1512 | * from MAC address table. |
| 1513 | * @vp: Vpath handle. |
| 1514 | * @macaddr: Next MAC address entry for this vpath in the list |
| 1515 | * @macaddr_mask: MAC address mask for macaddr |
| 1516 | * |
| 1517 | * Returns the next mac address and mac address mask in the list for this |
| 1518 | * vpath. |
| 1519 | * see also: vxge_hw_vpath_mac_addr_get |
| 1520 | * |
| 1521 | */ |
| 1522 | enum vxge_hw_status |
| 1523 | vxge_hw_vpath_mac_addr_get_next( |
| 1524 | struct __vxge_hw_vpath_handle *vp, |
| 1525 | u8 (macaddr)[ETH_ALEN], |
| 1526 | u8 (macaddr_mask)[ETH_ALEN]) |
| 1527 | { |
| 1528 | u32 i; |
| 1529 | u64 data1 = 0ULL; |
| 1530 | u64 data2 = 0ULL; |
| 1531 | enum vxge_hw_status status = VXGE_HW_OK; |
| 1532 | |
| 1533 | if (vp == NULL) { |
| 1534 | status = VXGE_HW_ERR_INVALID_HANDLE; |
| 1535 | goto exit; |
| 1536 | } |
| 1537 | |
| 1538 | status = __vxge_hw_vpath_rts_table_get(vp, |
| 1539 | VXGE_HW_RTS_ACCESS_STEER_CTRL_ACTION_LIST_NEXT_ENTRY, |
| 1540 | VXGE_HW_RTS_ACCESS_STEER_CTRL_DATA_STRUCT_SEL_DA, |
| 1541 | 0, &data1, &data2); |
| 1542 | |
| 1543 | if (status != VXGE_HW_OK) |
| 1544 | goto exit; |
| 1545 | |
| 1546 | data1 = VXGE_HW_RTS_ACCESS_STEER_DATA0_GET_DA_MAC_ADDR(data1); |
| 1547 | |
| 1548 | data2 = VXGE_HW_RTS_ACCESS_STEER_DATA1_GET_DA_MAC_ADDR_MASK(data2); |
| 1549 | |
| 1550 | for (i = ETH_ALEN; i > 0; i--) { |
| 1551 | macaddr[i-1] = (u8)(data1 & 0xFF); |
| 1552 | data1 >>= 8; |
| 1553 | |
| 1554 | macaddr_mask[i-1] = (u8)(data2 & 0xFF); |
| 1555 | data2 >>= 8; |
| 1556 | } |
| 1557 | |
| 1558 | exit: |
| 1559 | return status; |
| 1560 | } |
| 1561 | |
| 1562 | /** |
| 1563 | * vxge_hw_vpath_mac_addr_delete - Delete the mac address entry for this vpath |
| 1564 | * to MAC address table. |
| 1565 | * @vp: Vpath handle. |
| 1566 | * @macaddr: MAC address to be added for this vpath into the list |
| 1567 | * @macaddr_mask: MAC address mask for macaddr |
| 1568 | * |
| 1569 | * Delete the given mac address and mac address mask into the list for this |
| 1570 | * vpath. |
| 1571 | * see also: vxge_hw_vpath_mac_addr_add, vxge_hw_vpath_mac_addr_get and |
| 1572 | * vxge_hw_vpath_mac_addr_get_next |
| 1573 | * |
| 1574 | */ |
| 1575 | enum vxge_hw_status |
| 1576 | vxge_hw_vpath_mac_addr_delete( |
| 1577 | struct __vxge_hw_vpath_handle *vp, |
| 1578 | u8 (macaddr)[ETH_ALEN], |
| 1579 | u8 (macaddr_mask)[ETH_ALEN]) |
| 1580 | { |
| 1581 | u32 i; |
| 1582 | u64 data1 = 0ULL; |
| 1583 | u64 data2 = 0ULL; |
| 1584 | enum vxge_hw_status status = VXGE_HW_OK; |
| 1585 | |
| 1586 | if (vp == NULL) { |
| 1587 | status = VXGE_HW_ERR_INVALID_HANDLE; |
| 1588 | goto exit; |
| 1589 | } |
| 1590 | |
| 1591 | for (i = 0; i < ETH_ALEN; i++) { |
| 1592 | data1 <<= 8; |
| 1593 | data1 |= (u8)macaddr[i]; |
| 1594 | |
| 1595 | data2 <<= 8; |
| 1596 | data2 |= (u8)macaddr_mask[i]; |
| 1597 | } |
| 1598 | |
| 1599 | status = __vxge_hw_vpath_rts_table_set(vp, |
| 1600 | VXGE_HW_RTS_ACCESS_STEER_CTRL_ACTION_DELETE_ENTRY, |
| 1601 | VXGE_HW_RTS_ACCESS_STEER_CTRL_DATA_STRUCT_SEL_DA, |
| 1602 | 0, |
| 1603 | VXGE_HW_RTS_ACCESS_STEER_DATA0_DA_MAC_ADDR(data1), |
| 1604 | VXGE_HW_RTS_ACCESS_STEER_DATA1_DA_MAC_ADDR_MASK(data2)); |
| 1605 | exit: |
| 1606 | return status; |
| 1607 | } |
| 1608 | |
| 1609 | /** |
| 1610 | * vxge_hw_vpath_vid_add - Add the vlan id entry for this vpath |
| 1611 | * to vlan id table. |
| 1612 | * @vp: Vpath handle. |
| 1613 | * @vid: vlan id to be added for this vpath into the list |
| 1614 | * |
| 1615 | * Adds the given vlan id into the list for this vpath. |
| 1616 | * see also: vxge_hw_vpath_vid_delete, vxge_hw_vpath_vid_get and |
| 1617 | * vxge_hw_vpath_vid_get_next |
| 1618 | * |
| 1619 | */ |
| 1620 | enum vxge_hw_status |
| 1621 | vxge_hw_vpath_vid_add(struct __vxge_hw_vpath_handle *vp, u64 vid) |
| 1622 | { |
| 1623 | enum vxge_hw_status status = VXGE_HW_OK; |
| 1624 | |
| 1625 | if (vp == NULL) { |
| 1626 | status = VXGE_HW_ERR_INVALID_HANDLE; |
| 1627 | goto exit; |
| 1628 | } |
| 1629 | |
| 1630 | status = __vxge_hw_vpath_rts_table_set(vp, |
| 1631 | VXGE_HW_RTS_ACCESS_STEER_CTRL_ACTION_ADD_ENTRY, |
| 1632 | VXGE_HW_RTS_ACCESS_STEER_CTRL_DATA_STRUCT_SEL_VID, |
| 1633 | 0, VXGE_HW_RTS_ACCESS_STEER_DATA0_VLAN_ID(vid), 0); |
| 1634 | exit: |
| 1635 | return status; |
| 1636 | } |
| 1637 | |
| 1638 | /** |
| 1639 | * vxge_hw_vpath_vid_get - Get the first vid entry for this vpath |
| 1640 | * from vlan id table. |
| 1641 | * @vp: Vpath handle. |
| 1642 | * @vid: Buffer to return vlan id |
| 1643 | * |
| 1644 | * Returns the first vlan id in the list for this vpath. |
| 1645 | * see also: vxge_hw_vpath_vid_get_next |
| 1646 | * |
| 1647 | */ |
| 1648 | enum vxge_hw_status |
| 1649 | vxge_hw_vpath_vid_get(struct __vxge_hw_vpath_handle *vp, u64 *vid) |
| 1650 | { |
| 1651 | u64 data; |
| 1652 | enum vxge_hw_status status = VXGE_HW_OK; |
| 1653 | |
| 1654 | if (vp == NULL) { |
| 1655 | status = VXGE_HW_ERR_INVALID_HANDLE; |
| 1656 | goto exit; |
| 1657 | } |
| 1658 | |
| 1659 | status = __vxge_hw_vpath_rts_table_get(vp, |
| 1660 | VXGE_HW_RTS_ACCESS_STEER_CTRL_ACTION_LIST_FIRST_ENTRY, |
| 1661 | VXGE_HW_RTS_ACCESS_STEER_CTRL_DATA_STRUCT_SEL_VID, |
| 1662 | 0, vid, &data); |
| 1663 | |
| 1664 | *vid = VXGE_HW_RTS_ACCESS_STEER_DATA0_GET_VLAN_ID(*vid); |
| 1665 | exit: |
| 1666 | return status; |
| 1667 | } |
| 1668 | |
| 1669 | /** |
| 1670 | * vxge_hw_vpath_vid_get_next - Get the next vid entry for this vpath |
| 1671 | * from vlan id table. |
| 1672 | * @vp: Vpath handle. |
| 1673 | * @vid: Buffer to return vlan id |
| 1674 | * |
| 1675 | * Returns the next vlan id in the list for this vpath. |
| 1676 | * see also: vxge_hw_vpath_vid_get |
| 1677 | * |
| 1678 | */ |
| 1679 | enum vxge_hw_status |
| 1680 | vxge_hw_vpath_vid_get_next(struct __vxge_hw_vpath_handle *vp, u64 *vid) |
| 1681 | { |
| 1682 | u64 data; |
| 1683 | enum vxge_hw_status status = VXGE_HW_OK; |
| 1684 | |
| 1685 | if (vp == NULL) { |
| 1686 | status = VXGE_HW_ERR_INVALID_HANDLE; |
| 1687 | goto exit; |
| 1688 | } |
| 1689 | |
| 1690 | status = __vxge_hw_vpath_rts_table_get(vp, |
| 1691 | VXGE_HW_RTS_ACCESS_STEER_CTRL_ACTION_LIST_NEXT_ENTRY, |
| 1692 | VXGE_HW_RTS_ACCESS_STEER_CTRL_DATA_STRUCT_SEL_VID, |
| 1693 | 0, vid, &data); |
| 1694 | |
| 1695 | *vid = VXGE_HW_RTS_ACCESS_STEER_DATA0_GET_VLAN_ID(*vid); |
| 1696 | exit: |
| 1697 | return status; |
| 1698 | } |
| 1699 | |
| 1700 | /** |
| 1701 | * vxge_hw_vpath_vid_delete - Delete the vlan id entry for this vpath |
| 1702 | * to vlan id table. |
| 1703 | * @vp: Vpath handle. |
| 1704 | * @vid: vlan id to be added for this vpath into the list |
| 1705 | * |
| 1706 | * Adds the given vlan id into the list for this vpath. |
| 1707 | * see also: vxge_hw_vpath_vid_add, vxge_hw_vpath_vid_get and |
| 1708 | * vxge_hw_vpath_vid_get_next |
| 1709 | * |
| 1710 | */ |
| 1711 | enum vxge_hw_status |
| 1712 | vxge_hw_vpath_vid_delete(struct __vxge_hw_vpath_handle *vp, u64 vid) |
| 1713 | { |
| 1714 | enum vxge_hw_status status = VXGE_HW_OK; |
| 1715 | |
| 1716 | if (vp == NULL) { |
| 1717 | status = VXGE_HW_ERR_INVALID_HANDLE; |
| 1718 | goto exit; |
| 1719 | } |
| 1720 | |
| 1721 | status = __vxge_hw_vpath_rts_table_set(vp, |
| 1722 | VXGE_HW_RTS_ACCESS_STEER_CTRL_ACTION_DELETE_ENTRY, |
| 1723 | VXGE_HW_RTS_ACCESS_STEER_CTRL_DATA_STRUCT_SEL_VID, |
| 1724 | 0, VXGE_HW_RTS_ACCESS_STEER_DATA0_VLAN_ID(vid), 0); |
| 1725 | exit: |
| 1726 | return status; |
| 1727 | } |
| 1728 | |
| 1729 | /** |
| 1730 | * vxge_hw_vpath_promisc_enable - Enable promiscuous mode. |
| 1731 | * @vp: Vpath handle. |
| 1732 | * |
| 1733 | * Enable promiscuous mode of Titan-e operation. |
| 1734 | * |
| 1735 | * See also: vxge_hw_vpath_promisc_disable(). |
| 1736 | */ |
| 1737 | enum vxge_hw_status vxge_hw_vpath_promisc_enable( |
| 1738 | struct __vxge_hw_vpath_handle *vp) |
| 1739 | { |
| 1740 | u64 val64; |
| 1741 | struct __vxge_hw_virtualpath *vpath; |
| 1742 | enum vxge_hw_status status = VXGE_HW_OK; |
| 1743 | |
| 1744 | if ((vp == NULL) || (vp->vpath->ringh == NULL)) { |
| 1745 | status = VXGE_HW_ERR_INVALID_HANDLE; |
| 1746 | goto exit; |
| 1747 | } |
| 1748 | |
| 1749 | vpath = vp->vpath; |
| 1750 | |
| 1751 | /* Enable promiscous mode for function 0 only */ |
| 1752 | if (!(vpath->hldev->access_rights & |
| 1753 | VXGE_HW_DEVICE_ACCESS_RIGHT_MRPCIM)) |
| 1754 | return VXGE_HW_OK; |
| 1755 | |
| 1756 | val64 = readq(&vpath->vp_reg->rxmac_vcfg0); |
| 1757 | |
| 1758 | if (!(val64 & VXGE_HW_RXMAC_VCFG0_UCAST_ALL_ADDR_EN)) { |
| 1759 | |
| 1760 | val64 |= VXGE_HW_RXMAC_VCFG0_UCAST_ALL_ADDR_EN | |
| 1761 | VXGE_HW_RXMAC_VCFG0_MCAST_ALL_ADDR_EN | |
| 1762 | VXGE_HW_RXMAC_VCFG0_BCAST_EN | |
| 1763 | VXGE_HW_RXMAC_VCFG0_ALL_VID_EN; |
| 1764 | |
| 1765 | writeq(val64, &vpath->vp_reg->rxmac_vcfg0); |
| 1766 | } |
| 1767 | exit: |
| 1768 | return status; |
| 1769 | } |
| 1770 | |
| 1771 | /** |
| 1772 | * vxge_hw_vpath_promisc_disable - Disable promiscuous mode. |
| 1773 | * @vp: Vpath handle. |
| 1774 | * |
| 1775 | * Disable promiscuous mode of Titan-e operation. |
| 1776 | * |
| 1777 | * See also: vxge_hw_vpath_promisc_enable(). |
| 1778 | */ |
| 1779 | enum vxge_hw_status vxge_hw_vpath_promisc_disable( |
| 1780 | struct __vxge_hw_vpath_handle *vp) |
| 1781 | { |
| 1782 | u64 val64; |
| 1783 | struct __vxge_hw_virtualpath *vpath; |
| 1784 | enum vxge_hw_status status = VXGE_HW_OK; |
| 1785 | |
| 1786 | if ((vp == NULL) || (vp->vpath->ringh == NULL)) { |
| 1787 | status = VXGE_HW_ERR_INVALID_HANDLE; |
| 1788 | goto exit; |
| 1789 | } |
| 1790 | |
| 1791 | vpath = vp->vpath; |
| 1792 | |
| 1793 | val64 = readq(&vpath->vp_reg->rxmac_vcfg0); |
| 1794 | |
| 1795 | if (val64 & VXGE_HW_RXMAC_VCFG0_UCAST_ALL_ADDR_EN) { |
| 1796 | |
| 1797 | val64 &= ~(VXGE_HW_RXMAC_VCFG0_UCAST_ALL_ADDR_EN | |
| 1798 | VXGE_HW_RXMAC_VCFG0_MCAST_ALL_ADDR_EN | |
| 1799 | VXGE_HW_RXMAC_VCFG0_ALL_VID_EN); |
| 1800 | |
| 1801 | writeq(val64, &vpath->vp_reg->rxmac_vcfg0); |
| 1802 | } |
| 1803 | exit: |
| 1804 | return status; |
| 1805 | } |
| 1806 | |
| 1807 | /* |
| 1808 | * vxge_hw_vpath_bcast_enable - Enable broadcast |
| 1809 | * @vp: Vpath handle. |
| 1810 | * |
| 1811 | * Enable receiving broadcasts. |
| 1812 | */ |
| 1813 | enum vxge_hw_status vxge_hw_vpath_bcast_enable( |
| 1814 | struct __vxge_hw_vpath_handle *vp) |
| 1815 | { |
| 1816 | u64 val64; |
| 1817 | struct __vxge_hw_virtualpath *vpath; |
| 1818 | enum vxge_hw_status status = VXGE_HW_OK; |
| 1819 | |
| 1820 | if ((vp == NULL) || (vp->vpath->ringh == NULL)) { |
| 1821 | status = VXGE_HW_ERR_INVALID_HANDLE; |
| 1822 | goto exit; |
| 1823 | } |
| 1824 | |
| 1825 | vpath = vp->vpath; |
| 1826 | |
| 1827 | val64 = readq(&vpath->vp_reg->rxmac_vcfg0); |
| 1828 | |
| 1829 | if (!(val64 & VXGE_HW_RXMAC_VCFG0_BCAST_EN)) { |
| 1830 | val64 |= VXGE_HW_RXMAC_VCFG0_BCAST_EN; |
| 1831 | writeq(val64, &vpath->vp_reg->rxmac_vcfg0); |
| 1832 | } |
| 1833 | exit: |
| 1834 | return status; |
| 1835 | } |
| 1836 | |
| 1837 | /** |
| 1838 | * vxge_hw_vpath_mcast_enable - Enable multicast addresses. |
| 1839 | * @vp: Vpath handle. |
| 1840 | * |
| 1841 | * Enable Titan-e multicast addresses. |
| 1842 | * Returns: VXGE_HW_OK on success. |
| 1843 | * |
| 1844 | */ |
| 1845 | enum vxge_hw_status vxge_hw_vpath_mcast_enable( |
| 1846 | struct __vxge_hw_vpath_handle *vp) |
| 1847 | { |
| 1848 | u64 val64; |
| 1849 | struct __vxge_hw_virtualpath *vpath; |
| 1850 | enum vxge_hw_status status = VXGE_HW_OK; |
| 1851 | |
| 1852 | if ((vp == NULL) || (vp->vpath->ringh == NULL)) { |
| 1853 | status = VXGE_HW_ERR_INVALID_HANDLE; |
| 1854 | goto exit; |
| 1855 | } |
| 1856 | |
| 1857 | vpath = vp->vpath; |
| 1858 | |
| 1859 | val64 = readq(&vpath->vp_reg->rxmac_vcfg0); |
| 1860 | |
| 1861 | if (!(val64 & VXGE_HW_RXMAC_VCFG0_MCAST_ALL_ADDR_EN)) { |
| 1862 | val64 |= VXGE_HW_RXMAC_VCFG0_MCAST_ALL_ADDR_EN; |
| 1863 | writeq(val64, &vpath->vp_reg->rxmac_vcfg0); |
| 1864 | } |
| 1865 | exit: |
| 1866 | return status; |
| 1867 | } |
| 1868 | |
| 1869 | /** |
| 1870 | * vxge_hw_vpath_mcast_disable - Disable multicast addresses. |
| 1871 | * @vp: Vpath handle. |
| 1872 | * |
| 1873 | * Disable Titan-e multicast addresses. |
| 1874 | * Returns: VXGE_HW_OK - success. |
| 1875 | * VXGE_HW_ERR_INVALID_HANDLE - Invalid handle |
| 1876 | * |
| 1877 | */ |
| 1878 | enum vxge_hw_status |
| 1879 | vxge_hw_vpath_mcast_disable(struct __vxge_hw_vpath_handle *vp) |
| 1880 | { |
| 1881 | u64 val64; |
| 1882 | struct __vxge_hw_virtualpath *vpath; |
| 1883 | enum vxge_hw_status status = VXGE_HW_OK; |
| 1884 | |
| 1885 | if ((vp == NULL) || (vp->vpath->ringh == NULL)) { |
| 1886 | status = VXGE_HW_ERR_INVALID_HANDLE; |
| 1887 | goto exit; |
| 1888 | } |
| 1889 | |
| 1890 | vpath = vp->vpath; |
| 1891 | |
| 1892 | val64 = readq(&vpath->vp_reg->rxmac_vcfg0); |
| 1893 | |
| 1894 | if (val64 & VXGE_HW_RXMAC_VCFG0_MCAST_ALL_ADDR_EN) { |
| 1895 | val64 &= ~VXGE_HW_RXMAC_VCFG0_MCAST_ALL_ADDR_EN; |
| 1896 | writeq(val64, &vpath->vp_reg->rxmac_vcfg0); |
| 1897 | } |
| 1898 | exit: |
| 1899 | return status; |
| 1900 | } |
| 1901 | |
| 1902 | /* |
| 1903 | * __vxge_hw_vpath_alarm_process - Process Alarms. |
| 1904 | * @vpath: Virtual Path. |
| 1905 | * @skip_alarms: Do not clear the alarms |
| 1906 | * |
| 1907 | * Process vpath alarms. |
| 1908 | * |
| 1909 | */ |
| 1910 | enum vxge_hw_status __vxge_hw_vpath_alarm_process( |
| 1911 | struct __vxge_hw_virtualpath *vpath, |
| 1912 | u32 skip_alarms) |
| 1913 | { |
| 1914 | u64 val64; |
| 1915 | u64 alarm_status; |
| 1916 | u64 pic_status; |
| 1917 | struct __vxge_hw_device *hldev = NULL; |
| 1918 | enum vxge_hw_event alarm_event = VXGE_HW_EVENT_UNKNOWN; |
| 1919 | u64 mask64; |
| 1920 | struct vxge_hw_vpath_stats_sw_info *sw_stats; |
| 1921 | struct vxge_hw_vpath_reg __iomem *vp_reg; |
| 1922 | |
| 1923 | if (vpath == NULL) { |
| 1924 | alarm_event = VXGE_HW_SET_LEVEL(VXGE_HW_EVENT_UNKNOWN, |
| 1925 | alarm_event); |
| 1926 | goto out; |
| 1927 | } |
| 1928 | |
| 1929 | hldev = vpath->hldev; |
| 1930 | vp_reg = vpath->vp_reg; |
| 1931 | alarm_status = readq(&vp_reg->vpath_general_int_status); |
| 1932 | |
| 1933 | if (alarm_status == VXGE_HW_ALL_FOXES) { |
| 1934 | alarm_event = VXGE_HW_SET_LEVEL(VXGE_HW_EVENT_SLOT_FREEZE, |
| 1935 | alarm_event); |
| 1936 | goto out; |
| 1937 | } |
| 1938 | |
| 1939 | sw_stats = vpath->sw_stats; |
| 1940 | |
| 1941 | if (alarm_status & ~( |
| 1942 | VXGE_HW_VPATH_GENERAL_INT_STATUS_PIC_INT | |
| 1943 | VXGE_HW_VPATH_GENERAL_INT_STATUS_PCI_INT | |
| 1944 | VXGE_HW_VPATH_GENERAL_INT_STATUS_WRDMA_INT | |
| 1945 | VXGE_HW_VPATH_GENERAL_INT_STATUS_XMAC_INT)) { |
| 1946 | sw_stats->error_stats.unknown_alarms++; |
| 1947 | |
| 1948 | alarm_event = VXGE_HW_SET_LEVEL(VXGE_HW_EVENT_UNKNOWN, |
| 1949 | alarm_event); |
| 1950 | goto out; |
| 1951 | } |
| 1952 | |
| 1953 | if (alarm_status & VXGE_HW_VPATH_GENERAL_INT_STATUS_XMAC_INT) { |
| 1954 | |
| 1955 | val64 = readq(&vp_reg->xgmac_vp_int_status); |
| 1956 | |
| 1957 | if (val64 & |
| 1958 | VXGE_HW_XGMAC_VP_INT_STATUS_ASIC_NTWK_VP_ERR_ASIC_NTWK_VP_INT) { |
| 1959 | |
| 1960 | val64 = readq(&vp_reg->asic_ntwk_vp_err_reg); |
| 1961 | |
| 1962 | if (((val64 & |
| 1963 | VXGE_HW_ASIC_NW_VP_ERR_REG_XMACJ_STN_FLT) && |
| 1964 | (!(val64 & |
| 1965 | VXGE_HW_ASIC_NW_VP_ERR_REG_XMACJ_STN_OK))) || |
| 1966 | ((val64 & |
| 1967 | VXGE_HW_ASIC_NW_VP_ERR_REG_XMACJ_STN_FLT_OCCURR) |
| 1968 | && (!(val64 & |
| 1969 | VXGE_HW_ASIC_NW_VP_ERR_REG_XMACJ_STN_OK_OCCURR) |
| 1970 | ))) { |
| 1971 | sw_stats->error_stats.network_sustained_fault++; |
| 1972 | |
| 1973 | writeq( |
| 1974 | VXGE_HW_ASIC_NW_VP_ERR_REG_XMACJ_STN_FLT, |
| 1975 | &vp_reg->asic_ntwk_vp_err_mask); |
| 1976 | |
| 1977 | __vxge_hw_device_handle_link_down_ind(hldev); |
| 1978 | alarm_event = VXGE_HW_SET_LEVEL( |
| 1979 | VXGE_HW_EVENT_LINK_DOWN, alarm_event); |
| 1980 | } |
| 1981 | |
| 1982 | if (((val64 & |
| 1983 | VXGE_HW_ASIC_NW_VP_ERR_REG_XMACJ_STN_OK) && |
| 1984 | (!(val64 & |
| 1985 | VXGE_HW_ASIC_NW_VP_ERR_REG_XMACJ_STN_FLT))) || |
| 1986 | ((val64 & |
| 1987 | VXGE_HW_ASIC_NW_VP_ERR_REG_XMACJ_STN_OK_OCCURR) |
| 1988 | && (!(val64 & |
| 1989 | VXGE_HW_ASIC_NW_VP_ERR_REG_XMACJ_STN_FLT_OCCURR) |
| 1990 | ))) { |
| 1991 | |
| 1992 | sw_stats->error_stats.network_sustained_ok++; |
| 1993 | |
| 1994 | writeq( |
| 1995 | VXGE_HW_ASIC_NW_VP_ERR_REG_XMACJ_STN_OK, |
| 1996 | &vp_reg->asic_ntwk_vp_err_mask); |
| 1997 | |
| 1998 | __vxge_hw_device_handle_link_up_ind(hldev); |
| 1999 | alarm_event = VXGE_HW_SET_LEVEL( |
| 2000 | VXGE_HW_EVENT_LINK_UP, alarm_event); |
| 2001 | } |
| 2002 | |
| 2003 | writeq(VXGE_HW_INTR_MASK_ALL, |
| 2004 | &vp_reg->asic_ntwk_vp_err_reg); |
| 2005 | |
| 2006 | alarm_event = VXGE_HW_SET_LEVEL( |
| 2007 | VXGE_HW_EVENT_ALARM_CLEARED, alarm_event); |
| 2008 | |
| 2009 | if (skip_alarms) |
| 2010 | return VXGE_HW_OK; |
| 2011 | } |
| 2012 | } |
| 2013 | |
| 2014 | if (alarm_status & VXGE_HW_VPATH_GENERAL_INT_STATUS_PIC_INT) { |
| 2015 | |
| 2016 | pic_status = readq(&vp_reg->vpath_ppif_int_status); |
| 2017 | |
| 2018 | if (pic_status & |
| 2019 | VXGE_HW_VPATH_PPIF_INT_STATUS_GENERAL_ERRORS_GENERAL_INT) { |
| 2020 | |
| 2021 | val64 = readq(&vp_reg->general_errors_reg); |
| 2022 | mask64 = readq(&vp_reg->general_errors_mask); |
| 2023 | |
| 2024 | if ((val64 & |
| 2025 | VXGE_HW_GENERAL_ERRORS_REG_INI_SERR_DET) & |
| 2026 | ~mask64) { |
| 2027 | sw_stats->error_stats.ini_serr_det++; |
| 2028 | |
| 2029 | alarm_event = VXGE_HW_SET_LEVEL( |
| 2030 | VXGE_HW_EVENT_SERR, alarm_event); |
| 2031 | } |
| 2032 | |
| 2033 | if ((val64 & |
| 2034 | VXGE_HW_GENERAL_ERRORS_REG_DBLGEN_FIFO0_OVRFLOW) & |
| 2035 | ~mask64) { |
| 2036 | sw_stats->error_stats.dblgen_fifo0_overflow++; |
| 2037 | |
| 2038 | alarm_event = VXGE_HW_SET_LEVEL( |
| 2039 | VXGE_HW_EVENT_FIFO_ERR, alarm_event); |
| 2040 | } |
| 2041 | |
| 2042 | if ((val64 & |
| 2043 | VXGE_HW_GENERAL_ERRORS_REG_STATSB_PIF_CHAIN_ERR) & |
| 2044 | ~mask64) |
| 2045 | sw_stats->error_stats.statsb_pif_chain_error++; |
| 2046 | |
| 2047 | if ((val64 & |
| 2048 | VXGE_HW_GENERAL_ERRORS_REG_STATSB_DROP_TIMEOUT_REQ) & |
| 2049 | ~mask64) |
| 2050 | sw_stats->error_stats.statsb_drop_timeout++; |
| 2051 | |
| 2052 | if ((val64 & |
| 2053 | VXGE_HW_GENERAL_ERRORS_REG_TGT_ILLEGAL_ACCESS) & |
| 2054 | ~mask64) |
| 2055 | sw_stats->error_stats.target_illegal_access++; |
| 2056 | |
| 2057 | if (!skip_alarms) { |
| 2058 | writeq(VXGE_HW_INTR_MASK_ALL, |
| 2059 | &vp_reg->general_errors_reg); |
| 2060 | alarm_event = VXGE_HW_SET_LEVEL( |
| 2061 | VXGE_HW_EVENT_ALARM_CLEARED, |
| 2062 | alarm_event); |
| 2063 | } |
| 2064 | } |
| 2065 | |
| 2066 | if (pic_status & |
| 2067 | VXGE_HW_VPATH_PPIF_INT_STATUS_KDFCCTL_ERRORS_KDFCCTL_INT) { |
| 2068 | |
| 2069 | val64 = readq(&vp_reg->kdfcctl_errors_reg); |
| 2070 | mask64 = readq(&vp_reg->kdfcctl_errors_mask); |
| 2071 | |
| 2072 | if ((val64 & |
| 2073 | VXGE_HW_KDFCCTL_ERRORS_REG_KDFCCTL_FIFO0_OVRWR) & |
| 2074 | ~mask64) { |
| 2075 | sw_stats->error_stats.kdfcctl_fifo0_overwrite++; |
| 2076 | |
| 2077 | alarm_event = VXGE_HW_SET_LEVEL( |
| 2078 | VXGE_HW_EVENT_FIFO_ERR, |
| 2079 | alarm_event); |
| 2080 | } |
| 2081 | |
| 2082 | if ((val64 & |
| 2083 | VXGE_HW_KDFCCTL_ERRORS_REG_KDFCCTL_FIFO0_POISON) & |
| 2084 | ~mask64) { |
| 2085 | sw_stats->error_stats.kdfcctl_fifo0_poison++; |
| 2086 | |
| 2087 | alarm_event = VXGE_HW_SET_LEVEL( |
| 2088 | VXGE_HW_EVENT_FIFO_ERR, |
| 2089 | alarm_event); |
| 2090 | } |
| 2091 | |
| 2092 | if ((val64 & |
| 2093 | VXGE_HW_KDFCCTL_ERRORS_REG_KDFCCTL_FIFO0_DMA_ERR) & |
| 2094 | ~mask64) { |
| 2095 | sw_stats->error_stats.kdfcctl_fifo0_dma_error++; |
| 2096 | |
| 2097 | alarm_event = VXGE_HW_SET_LEVEL( |
| 2098 | VXGE_HW_EVENT_FIFO_ERR, |
| 2099 | alarm_event); |
| 2100 | } |
| 2101 | |
| 2102 | if (!skip_alarms) { |
| 2103 | writeq(VXGE_HW_INTR_MASK_ALL, |
| 2104 | &vp_reg->kdfcctl_errors_reg); |
| 2105 | alarm_event = VXGE_HW_SET_LEVEL( |
| 2106 | VXGE_HW_EVENT_ALARM_CLEARED, |
| 2107 | alarm_event); |
| 2108 | } |
| 2109 | } |
| 2110 | |
| 2111 | } |
| 2112 | |
| 2113 | if (alarm_status & VXGE_HW_VPATH_GENERAL_INT_STATUS_WRDMA_INT) { |
| 2114 | |
| 2115 | val64 = readq(&vp_reg->wrdma_alarm_status); |
| 2116 | |
| 2117 | if (val64 & VXGE_HW_WRDMA_ALARM_STATUS_PRC_ALARM_PRC_INT) { |
| 2118 | |
| 2119 | val64 = readq(&vp_reg->prc_alarm_reg); |
| 2120 | mask64 = readq(&vp_reg->prc_alarm_mask); |
| 2121 | |
| 2122 | if ((val64 & VXGE_HW_PRC_ALARM_REG_PRC_RING_BUMP)& |
| 2123 | ~mask64) |
| 2124 | sw_stats->error_stats.prc_ring_bumps++; |
| 2125 | |
| 2126 | if ((val64 & VXGE_HW_PRC_ALARM_REG_PRC_RXDCM_SC_ERR) & |
| 2127 | ~mask64) { |
| 2128 | sw_stats->error_stats.prc_rxdcm_sc_err++; |
| 2129 | |
| 2130 | alarm_event = VXGE_HW_SET_LEVEL( |
| 2131 | VXGE_HW_EVENT_VPATH_ERR, |
| 2132 | alarm_event); |
| 2133 | } |
| 2134 | |
| 2135 | if ((val64 & VXGE_HW_PRC_ALARM_REG_PRC_RXDCM_SC_ABORT) |
| 2136 | & ~mask64) { |
| 2137 | sw_stats->error_stats.prc_rxdcm_sc_abort++; |
| 2138 | |
| 2139 | alarm_event = VXGE_HW_SET_LEVEL( |
| 2140 | VXGE_HW_EVENT_VPATH_ERR, |
| 2141 | alarm_event); |
| 2142 | } |
| 2143 | |
| 2144 | if ((val64 & VXGE_HW_PRC_ALARM_REG_PRC_QUANTA_SIZE_ERR) |
| 2145 | & ~mask64) { |
| 2146 | sw_stats->error_stats.prc_quanta_size_err++; |
| 2147 | |
| 2148 | alarm_event = VXGE_HW_SET_LEVEL( |
| 2149 | VXGE_HW_EVENT_VPATH_ERR, |
| 2150 | alarm_event); |
| 2151 | } |
| 2152 | |
| 2153 | if (!skip_alarms) { |
| 2154 | writeq(VXGE_HW_INTR_MASK_ALL, |
| 2155 | &vp_reg->prc_alarm_reg); |
| 2156 | alarm_event = VXGE_HW_SET_LEVEL( |
| 2157 | VXGE_HW_EVENT_ALARM_CLEARED, |
| 2158 | alarm_event); |
| 2159 | } |
| 2160 | } |
| 2161 | } |
| 2162 | out: |
| 2163 | hldev->stats.sw_dev_err_stats.vpath_alarms++; |
| 2164 | |
| 2165 | if ((alarm_event == VXGE_HW_EVENT_ALARM_CLEARED) || |
| 2166 | (alarm_event == VXGE_HW_EVENT_UNKNOWN)) |
| 2167 | return VXGE_HW_OK; |
| 2168 | |
| 2169 | __vxge_hw_device_handle_error(hldev, vpath->vp_id, alarm_event); |
| 2170 | |
| 2171 | if (alarm_event == VXGE_HW_EVENT_SERR) |
| 2172 | return VXGE_HW_ERR_CRITICAL; |
| 2173 | |
| 2174 | return (alarm_event == VXGE_HW_EVENT_SLOT_FREEZE) ? |
| 2175 | VXGE_HW_ERR_SLOT_FREEZE : |
| 2176 | (alarm_event == VXGE_HW_EVENT_FIFO_ERR) ? VXGE_HW_ERR_FIFO : |
| 2177 | VXGE_HW_ERR_VPATH; |
| 2178 | } |
| 2179 | |
| 2180 | /* |
| 2181 | * vxge_hw_vpath_alarm_process - Process Alarms. |
| 2182 | * @vpath: Virtual Path. |
| 2183 | * @skip_alarms: Do not clear the alarms |
| 2184 | * |
| 2185 | * Process vpath alarms. |
| 2186 | * |
| 2187 | */ |
| 2188 | enum vxge_hw_status vxge_hw_vpath_alarm_process( |
| 2189 | struct __vxge_hw_vpath_handle *vp, |
| 2190 | u32 skip_alarms) |
| 2191 | { |
| 2192 | enum vxge_hw_status status = VXGE_HW_OK; |
| 2193 | |
| 2194 | if (vp == NULL) { |
| 2195 | status = VXGE_HW_ERR_INVALID_HANDLE; |
| 2196 | goto exit; |
| 2197 | } |
| 2198 | |
| 2199 | status = __vxge_hw_vpath_alarm_process(vp->vpath, skip_alarms); |
| 2200 | exit: |
| 2201 | return status; |
| 2202 | } |
| 2203 | |
| 2204 | /** |
| 2205 | * vxge_hw_vpath_msix_set - Associate MSIX vectors with TIM interrupts and |
| 2206 | * alrms |
| 2207 | * @vp: Virtual Path handle. |
| 2208 | * @tim_msix_id: MSIX vectors associated with VXGE_HW_MAX_INTR_PER_VP number of |
| 2209 | * interrupts(Can be repeated). If fifo or ring are not enabled |
| 2210 | * the MSIX vector for that should be set to 0 |
| 2211 | * @alarm_msix_id: MSIX vector for alarm. |
| 2212 | * |
| 2213 | * This API will associate a given MSIX vector numbers with the four TIM |
| 2214 | * interrupts and alarm interrupt. |
| 2215 | */ |
| 2216 | enum vxge_hw_status |
| 2217 | vxge_hw_vpath_msix_set(struct __vxge_hw_vpath_handle *vp, int *tim_msix_id, |
| 2218 | int alarm_msix_id) |
| 2219 | { |
| 2220 | u64 val64; |
| 2221 | struct __vxge_hw_virtualpath *vpath = vp->vpath; |
| 2222 | struct vxge_hw_vpath_reg __iomem *vp_reg = vpath->vp_reg; |
| 2223 | u32 first_vp_id = vpath->hldev->first_vp_id; |
| 2224 | |
| 2225 | val64 = VXGE_HW_INTERRUPT_CFG0_GROUP0_MSIX_FOR_TXTI( |
| 2226 | (first_vp_id * 4) + tim_msix_id[0]) | |
| 2227 | VXGE_HW_INTERRUPT_CFG0_GROUP1_MSIX_FOR_TXTI( |
| 2228 | (first_vp_id * 4) + tim_msix_id[1]) | |
| 2229 | VXGE_HW_INTERRUPT_CFG0_GROUP2_MSIX_FOR_TXTI( |
| 2230 | (first_vp_id * 4) + tim_msix_id[2]); |
| 2231 | |
| 2232 | val64 |= VXGE_HW_INTERRUPT_CFG0_GROUP3_MSIX_FOR_TXTI( |
| 2233 | (first_vp_id * 4) + tim_msix_id[3]); |
| 2234 | |
| 2235 | writeq(val64, &vp_reg->interrupt_cfg0); |
| 2236 | |
| 2237 | writeq(VXGE_HW_INTERRUPT_CFG2_ALARM_MAP_TO_MSG( |
| 2238 | (first_vp_id * 4) + alarm_msix_id), |
| 2239 | &vp_reg->interrupt_cfg2); |
| 2240 | |
| 2241 | if (vpath->hldev->config.intr_mode == |
| 2242 | VXGE_HW_INTR_MODE_MSIX_ONE_SHOT) { |
| 2243 | __vxge_hw_pio_mem_write32_upper((u32)vxge_bVALn( |
| 2244 | VXGE_HW_ONE_SHOT_VECT1_EN_ONE_SHOT_VECT1_EN, |
| 2245 | 0, 32), &vp_reg->one_shot_vect1_en); |
| 2246 | } |
| 2247 | |
| 2248 | if (vpath->hldev->config.intr_mode == |
| 2249 | VXGE_HW_INTR_MODE_MSIX_ONE_SHOT) { |
| 2250 | __vxge_hw_pio_mem_write32_upper((u32)vxge_bVALn( |
| 2251 | VXGE_HW_ONE_SHOT_VECT2_EN_ONE_SHOT_VECT2_EN, |
| 2252 | 0, 32), &vp_reg->one_shot_vect2_en); |
| 2253 | |
| 2254 | __vxge_hw_pio_mem_write32_upper((u32)vxge_bVALn( |
| 2255 | VXGE_HW_ONE_SHOT_VECT3_EN_ONE_SHOT_VECT3_EN, |
| 2256 | 0, 32), &vp_reg->one_shot_vect3_en); |
| 2257 | } |
| 2258 | |
| 2259 | return VXGE_HW_OK; |
| 2260 | } |
| 2261 | |
| 2262 | /** |
| 2263 | * vxge_hw_vpath_msix_mask - Mask MSIX Vector. |
| 2264 | * @vp: Virtual Path handle. |
| 2265 | * @msix_id: MSIX ID |
| 2266 | * |
| 2267 | * The function masks the msix interrupt for the given msix_id |
| 2268 | * |
| 2269 | * Returns: 0, |
| 2270 | * Otherwise, VXGE_HW_ERR_WRONG_IRQ if the msix index is out of range |
| 2271 | * status. |
| 2272 | * See also: |
| 2273 | */ |
| 2274 | void |
| 2275 | vxge_hw_vpath_msix_mask(struct __vxge_hw_vpath_handle *vp, int msix_id) |
| 2276 | { |
| 2277 | struct __vxge_hw_device *hldev = vp->vpath->hldev; |
| 2278 | __vxge_hw_pio_mem_write32_upper( |
| 2279 | (u32) vxge_bVALn(vxge_mBIT(hldev->first_vp_id + |
| 2280 | (msix_id / 4)), 0, 32), |
| 2281 | &hldev->common_reg->set_msix_mask_vect[msix_id % 4]); |
| 2282 | |
| 2283 | return; |
| 2284 | } |
| 2285 | |
| 2286 | /** |
| 2287 | * vxge_hw_vpath_msix_clear - Clear MSIX Vector. |
| 2288 | * @vp: Virtual Path handle. |
| 2289 | * @msix_id: MSI ID |
| 2290 | * |
| 2291 | * The function clears the msix interrupt for the given msix_id |
| 2292 | * |
| 2293 | * Returns: 0, |
| 2294 | * Otherwise, VXGE_HW_ERR_WRONG_IRQ if the msix index is out of range |
| 2295 | * status. |
| 2296 | * See also: |
| 2297 | */ |
| 2298 | void |
| 2299 | vxge_hw_vpath_msix_clear(struct __vxge_hw_vpath_handle *vp, int msix_id) |
| 2300 | { |
| 2301 | struct __vxge_hw_device *hldev = vp->vpath->hldev; |
| 2302 | if (hldev->config.intr_mode == |
| 2303 | VXGE_HW_INTR_MODE_MSIX_ONE_SHOT) { |
| 2304 | __vxge_hw_pio_mem_write32_upper( |
| 2305 | (u32)vxge_bVALn(vxge_mBIT(hldev->first_vp_id + |
| 2306 | (msix_id/4)), 0, 32), |
| 2307 | &hldev->common_reg-> |
| 2308 | clr_msix_one_shot_vec[msix_id%4]); |
| 2309 | } else { |
| 2310 | __vxge_hw_pio_mem_write32_upper( |
| 2311 | (u32)vxge_bVALn(vxge_mBIT(hldev->first_vp_id + |
| 2312 | (msix_id/4)), 0, 32), |
| 2313 | &hldev->common_reg-> |
| 2314 | clear_msix_mask_vect[msix_id%4]); |
| 2315 | } |
| 2316 | |
| 2317 | return; |
| 2318 | } |
| 2319 | |
| 2320 | /** |
| 2321 | * vxge_hw_vpath_msix_unmask - Unmask the MSIX Vector. |
| 2322 | * @vp: Virtual Path handle. |
| 2323 | * @msix_id: MSI ID |
| 2324 | * |
| 2325 | * The function unmasks the msix interrupt for the given msix_id |
| 2326 | * |
| 2327 | * Returns: 0, |
| 2328 | * Otherwise, VXGE_HW_ERR_WRONG_IRQ if the msix index is out of range |
| 2329 | * status. |
| 2330 | * See also: |
| 2331 | */ |
| 2332 | void |
| 2333 | vxge_hw_vpath_msix_unmask(struct __vxge_hw_vpath_handle *vp, int msix_id) |
| 2334 | { |
| 2335 | struct __vxge_hw_device *hldev = vp->vpath->hldev; |
| 2336 | __vxge_hw_pio_mem_write32_upper( |
| 2337 | (u32)vxge_bVALn(vxge_mBIT(hldev->first_vp_id + |
| 2338 | (msix_id/4)), 0, 32), |
| 2339 | &hldev->common_reg->clear_msix_mask_vect[msix_id%4]); |
| 2340 | |
| 2341 | return; |
| 2342 | } |
| 2343 | |
| 2344 | /** |
| 2345 | * vxge_hw_vpath_msix_mask_all - Mask all MSIX vectors for the vpath. |
| 2346 | * @vp: Virtual Path handle. |
| 2347 | * |
| 2348 | * The function masks all msix interrupt for the given vpath |
| 2349 | * |
| 2350 | */ |
| 2351 | void |
| 2352 | vxge_hw_vpath_msix_mask_all(struct __vxge_hw_vpath_handle *vp) |
| 2353 | { |
| 2354 | |
| 2355 | __vxge_hw_pio_mem_write32_upper( |
| 2356 | (u32)vxge_bVALn(vxge_mBIT(vp->vpath->vp_id), 0, 32), |
| 2357 | &vp->vpath->hldev->common_reg->set_msix_mask_all_vect); |
| 2358 | |
| 2359 | return; |
| 2360 | } |
| 2361 | |
| 2362 | /** |
| 2363 | * vxge_hw_vpath_inta_mask_tx_rx - Mask Tx and Rx interrupts. |
| 2364 | * @vp: Virtual Path handle. |
| 2365 | * |
| 2366 | * Mask Tx and Rx vpath interrupts. |
| 2367 | * |
| 2368 | * See also: vxge_hw_vpath_inta_mask_tx_rx() |
| 2369 | */ |
| 2370 | void vxge_hw_vpath_inta_mask_tx_rx(struct __vxge_hw_vpath_handle *vp) |
| 2371 | { |
| 2372 | u64 tim_int_mask0[4] = {[0 ...3] = 0}; |
| 2373 | u32 tim_int_mask1[4] = {[0 ...3] = 0}; |
| 2374 | u64 val64; |
| 2375 | struct __vxge_hw_device *hldev = vp->vpath->hldev; |
| 2376 | |
| 2377 | VXGE_HW_DEVICE_TIM_INT_MASK_SET(tim_int_mask0, |
| 2378 | tim_int_mask1, vp->vpath->vp_id); |
| 2379 | |
| 2380 | val64 = readq(&hldev->common_reg->tim_int_mask0); |
| 2381 | |
| 2382 | if ((tim_int_mask0[VXGE_HW_VPATH_INTR_TX] != 0) || |
| 2383 | (tim_int_mask0[VXGE_HW_VPATH_INTR_RX] != 0)) { |
| 2384 | writeq((tim_int_mask0[VXGE_HW_VPATH_INTR_TX] | |
| 2385 | tim_int_mask0[VXGE_HW_VPATH_INTR_RX] | val64), |
| 2386 | &hldev->common_reg->tim_int_mask0); |
| 2387 | } |
| 2388 | |
| 2389 | val64 = readl(&hldev->common_reg->tim_int_mask1); |
| 2390 | |
| 2391 | if ((tim_int_mask1[VXGE_HW_VPATH_INTR_TX] != 0) || |
| 2392 | (tim_int_mask1[VXGE_HW_VPATH_INTR_RX] != 0)) { |
| 2393 | __vxge_hw_pio_mem_write32_upper( |
| 2394 | (tim_int_mask1[VXGE_HW_VPATH_INTR_TX] | |
| 2395 | tim_int_mask1[VXGE_HW_VPATH_INTR_RX] | val64), |
| 2396 | &hldev->common_reg->tim_int_mask1); |
| 2397 | } |
| 2398 | |
| 2399 | return; |
| 2400 | } |
| 2401 | |
| 2402 | /** |
| 2403 | * vxge_hw_vpath_inta_unmask_tx_rx - Unmask Tx and Rx interrupts. |
| 2404 | * @vp: Virtual Path handle. |
| 2405 | * |
| 2406 | * Unmask Tx and Rx vpath interrupts. |
| 2407 | * |
| 2408 | * See also: vxge_hw_vpath_inta_mask_tx_rx() |
| 2409 | */ |
| 2410 | void vxge_hw_vpath_inta_unmask_tx_rx(struct __vxge_hw_vpath_handle *vp) |
| 2411 | { |
| 2412 | u64 tim_int_mask0[4] = {[0 ...3] = 0}; |
| 2413 | u32 tim_int_mask1[4] = {[0 ...3] = 0}; |
| 2414 | u64 val64; |
| 2415 | struct __vxge_hw_device *hldev = vp->vpath->hldev; |
| 2416 | |
| 2417 | VXGE_HW_DEVICE_TIM_INT_MASK_SET(tim_int_mask0, |
| 2418 | tim_int_mask1, vp->vpath->vp_id); |
| 2419 | |
| 2420 | val64 = readq(&hldev->common_reg->tim_int_mask0); |
| 2421 | |
| 2422 | if ((tim_int_mask0[VXGE_HW_VPATH_INTR_TX] != 0) || |
| 2423 | (tim_int_mask0[VXGE_HW_VPATH_INTR_RX] != 0)) { |
| 2424 | writeq((~(tim_int_mask0[VXGE_HW_VPATH_INTR_TX] | |
| 2425 | tim_int_mask0[VXGE_HW_VPATH_INTR_RX])) & val64, |
| 2426 | &hldev->common_reg->tim_int_mask0); |
| 2427 | } |
| 2428 | |
| 2429 | if ((tim_int_mask1[VXGE_HW_VPATH_INTR_TX] != 0) || |
| 2430 | (tim_int_mask1[VXGE_HW_VPATH_INTR_RX] != 0)) { |
| 2431 | __vxge_hw_pio_mem_write32_upper( |
| 2432 | (~(tim_int_mask1[VXGE_HW_VPATH_INTR_TX] | |
| 2433 | tim_int_mask1[VXGE_HW_VPATH_INTR_RX])) & val64, |
| 2434 | &hldev->common_reg->tim_int_mask1); |
| 2435 | } |
| 2436 | |
| 2437 | return; |
| 2438 | } |
| 2439 | |
| 2440 | /** |
| 2441 | * vxge_hw_vpath_poll_rx - Poll Rx Virtual Path for completed |
| 2442 | * descriptors and process the same. |
| 2443 | * @ring: Handle to the ring object used for receive |
| 2444 | * |
| 2445 | * The function polls the Rx for the completed descriptors and calls |
| 2446 | * the driver via supplied completion callback. |
| 2447 | * |
| 2448 | * Returns: VXGE_HW_OK, if the polling is completed successful. |
| 2449 | * VXGE_HW_COMPLETIONS_REMAIN: There are still more completed |
| 2450 | * descriptors available which are yet to be processed. |
| 2451 | * |
| 2452 | * See also: vxge_hw_vpath_poll_rx() |
| 2453 | */ |
| 2454 | enum vxge_hw_status vxge_hw_vpath_poll_rx(struct __vxge_hw_ring *ring) |
| 2455 | { |
| 2456 | u8 t_code; |
| 2457 | enum vxge_hw_status status = VXGE_HW_OK; |
| 2458 | void *first_rxdh; |
| 2459 | u64 val64 = 0; |
| 2460 | int new_count = 0; |
| 2461 | |
| 2462 | ring->cmpl_cnt = 0; |
| 2463 | |
| 2464 | status = vxge_hw_ring_rxd_next_completed(ring, &first_rxdh, &t_code); |
| 2465 | if (status == VXGE_HW_OK) |
| 2466 | ring->callback(ring, first_rxdh, |
| 2467 | t_code, ring->channel.userdata); |
| 2468 | |
| 2469 | if (ring->cmpl_cnt != 0) { |
| 2470 | ring->doorbell_cnt += ring->cmpl_cnt; |
| 2471 | if (ring->doorbell_cnt >= ring->rxds_limit) { |
| 2472 | /* |
| 2473 | * Each RxD is of 4 qwords, update the number of |
| 2474 | * qwords replenished |
| 2475 | */ |
| 2476 | new_count = (ring->doorbell_cnt * 4); |
| 2477 | |
| 2478 | /* For each block add 4 more qwords */ |
| 2479 | ring->total_db_cnt += ring->doorbell_cnt; |
| 2480 | if (ring->total_db_cnt >= ring->rxds_per_block) { |
| 2481 | new_count += 4; |
| 2482 | /* Reset total count */ |
| 2483 | ring->total_db_cnt %= ring->rxds_per_block; |
| 2484 | } |
| 2485 | writeq(VXGE_HW_PRC_RXD_DOORBELL_NEW_QW_CNT(new_count), |
| 2486 | &ring->vp_reg->prc_rxd_doorbell); |
| 2487 | val64 = |
| 2488 | readl(&ring->common_reg->titan_general_int_status); |
| 2489 | ring->doorbell_cnt = 0; |
| 2490 | } |
| 2491 | } |
| 2492 | |
| 2493 | return status; |
| 2494 | } |
| 2495 | |
| 2496 | /** |
| 2497 | * vxge_hw_vpath_poll_tx - Poll Tx for completed descriptors and process |
| 2498 | * the same. |
| 2499 | * @fifo: Handle to the fifo object used for non offload send |
| 2500 | * |
| 2501 | * The function polls the Tx for the completed descriptors and calls |
| 2502 | * the driver via supplied completion callback. |
| 2503 | * |
| 2504 | * Returns: VXGE_HW_OK, if the polling is completed successful. |
| 2505 | * VXGE_HW_COMPLETIONS_REMAIN: There are still more completed |
| 2506 | * descriptors available which are yet to be processed. |
| 2507 | * |
| 2508 | * See also: vxge_hw_vpath_poll_tx(). |
| 2509 | */ |
| 2510 | enum vxge_hw_status vxge_hw_vpath_poll_tx(struct __vxge_hw_fifo *fifo, |
| 2511 | void **skb_ptr) |
| 2512 | { |
| 2513 | enum vxge_hw_fifo_tcode t_code; |
| 2514 | void *first_txdlh; |
| 2515 | enum vxge_hw_status status = VXGE_HW_OK; |
| 2516 | struct __vxge_hw_channel *channel; |
| 2517 | |
| 2518 | channel = &fifo->channel; |
| 2519 | |
| 2520 | status = vxge_hw_fifo_txdl_next_completed(fifo, |
| 2521 | &first_txdlh, &t_code); |
| 2522 | if (status == VXGE_HW_OK) |
| 2523 | if (fifo->callback(fifo, first_txdlh, |
| 2524 | t_code, channel->userdata, skb_ptr) != VXGE_HW_OK) |
| 2525 | status = VXGE_HW_COMPLETIONS_REMAIN; |
| 2526 | |
| 2527 | return status; |
| 2528 | } |