Taniya Das | 6f0884b | 2011-09-06 16:24:21 +0530 | [diff] [blame] | 1 | /** |
| 2 | * Synaptics Register Mapped Interface (RMI4) - RMI Sensor Module. |
| 3 | * Copyright (C) 2007 - 2011, Synaptics Incorporated |
| 4 | * |
| 5 | */ |
| 6 | /* |
| 7 | * This file is licensed under the GPL2 license. |
| 8 | * |
| 9 | *############################################################################ |
| 10 | * GPL |
| 11 | * |
| 12 | * This program is free software; you can redistribute it and/or modify it |
| 13 | * under the terms of the GNU General Public License version 2 as published |
| 14 | * by the Free Software Foundation. |
| 15 | * |
| 16 | * This program is distributed in the hope that it will be useful, but |
| 17 | * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY |
| 18 | * or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License |
| 19 | * for more details. |
| 20 | * |
| 21 | *############################################################################ |
| 22 | */ |
| 23 | |
| 24 | static const char sensorname[] = "sensor"; |
| 25 | |
| 26 | #include <linux/kernel.h> |
| 27 | #include <linux/gpio.h> |
| 28 | #include <linux/list.h> |
| 29 | #include <linux/device.h> |
| 30 | #include <linux/hrtimer.h> |
| 31 | #include <linux/miscdevice.h> |
| 32 | #include <linux/fs.h> |
| 33 | #include <linux/delay.h> |
| 34 | #include <linux/uaccess.h> |
| 35 | #include <linux/slab.h> |
| 36 | #include <linux/kthread.h> |
| 37 | #include <linux/freezer.h> |
| 38 | #include <linux/input.h> |
| 39 | #include <linux/interrupt.h> |
Steve Muckle | f132c6c | 2012-06-06 18:30:57 -0700 | [diff] [blame] | 40 | #include <linux/module.h> |
Taniya Das | 6f0884b | 2011-09-06 16:24:21 +0530 | [diff] [blame] | 41 | |
| 42 | |
| 43 | #include "rmi_drvr.h" |
| 44 | #include "rmi_bus.h" |
| 45 | #include "rmi_function.h" |
| 46 | #include "rmi_sensor.h" |
| 47 | |
| 48 | long polltime = 25000000; /* Shared with rmi_function.c. */ |
| 49 | EXPORT_SYMBOL(polltime); |
| 50 | module_param(polltime, long, 0644); |
| 51 | MODULE_PARM_DESC(polltime, "How long to wait between polls (in nano seconds)."); |
| 52 | |
| 53 | |
| 54 | #define PDT_START_SCAN_LOCATION 0x00E9 |
| 55 | #define PDT_END_SCAN_LOCATION 0x0005 |
| 56 | #define PDT_ENTRY_SIZE 0x0006 |
| 57 | |
| 58 | static DEFINE_MUTEX(rfi_mutex); |
| 59 | |
| 60 | struct rmi_functions *rmi_find_function(int functionNum); |
| 61 | |
| 62 | int rmi_read(struct rmi_sensor_driver *sensor, unsigned short address, |
| 63 | char *dest) |
| 64 | { |
| 65 | struct rmi_phys_driver *rpd = sensor->rpd; |
| 66 | if (!rpd) |
| 67 | return -ENODEV; |
| 68 | return rpd->read(rpd, address, dest); |
| 69 | } |
| 70 | EXPORT_SYMBOL(rmi_read); |
| 71 | |
| 72 | int rmi_write(struct rmi_sensor_driver *sensor, unsigned short address, |
| 73 | unsigned char data) |
| 74 | { |
| 75 | struct rmi_phys_driver *rpd = sensor->rpd; |
| 76 | if (!rpd) |
| 77 | return -ENODEV; |
| 78 | return rpd->write(rpd, address, data); |
| 79 | } |
| 80 | EXPORT_SYMBOL(rmi_write); |
| 81 | |
| 82 | int rmi_read_multiple(struct rmi_sensor_driver *sensor, |
| 83 | unsigned short address, char *dest, int length) |
| 84 | { |
| 85 | struct rmi_phys_driver *rpd = sensor->rpd; |
| 86 | if (!rpd) |
| 87 | return -ENODEV; |
| 88 | return rpd->read_multiple(rpd, address, dest, length); |
| 89 | } |
| 90 | EXPORT_SYMBOL(rmi_read_multiple); |
| 91 | |
| 92 | int rmi_write_multiple(struct rmi_sensor_driver *sensor, |
| 93 | unsigned short address, unsigned char *data, int length) |
| 94 | { |
| 95 | struct rmi_phys_driver *rpd = sensor->rpd; |
| 96 | if (!rpd) |
| 97 | return -ENODEV; |
| 98 | return rpd->write_multiple(rpd, address, data, length); |
| 99 | } |
| 100 | EXPORT_SYMBOL(rmi_write_multiple); |
| 101 | |
| 102 | /* Utility routine to set bits in a register. */ |
| 103 | int rmi_set_bits(struct rmi_sensor_driver *sensor, unsigned short address, |
| 104 | unsigned char bits) |
| 105 | { |
| 106 | unsigned char reg_contents; |
| 107 | int retval; |
| 108 | |
| 109 | retval = rmi_read(sensor, address, ®_contents); |
| 110 | if (retval) |
| 111 | return retval; |
| 112 | reg_contents = reg_contents | bits; |
| 113 | retval = rmi_write(sensor, address, reg_contents); |
| 114 | if (retval == 1) |
| 115 | return 0; |
| 116 | else if (retval == 0) |
| 117 | return -EINVAL; /* TODO: What should this be? */ |
| 118 | else |
| 119 | return retval; |
| 120 | } |
| 121 | EXPORT_SYMBOL(rmi_set_bits); |
| 122 | |
| 123 | /* Utility routine to clear bits in a register. */ |
| 124 | int rmi_clear_bits(struct rmi_sensor_driver *sensor, |
| 125 | unsigned short address, unsigned char bits) |
| 126 | { |
| 127 | unsigned char reg_contents; |
| 128 | int retval; |
| 129 | |
| 130 | retval = rmi_read(sensor, address, ®_contents); |
| 131 | if (retval) |
| 132 | return retval; |
| 133 | reg_contents = reg_contents & ~bits; |
| 134 | retval = rmi_write(sensor, address, reg_contents); |
| 135 | if (retval == 1) |
| 136 | return 0; |
| 137 | else if (retval == 0) |
| 138 | return -EINVAL; /* TODO: What should this be? */ |
| 139 | else |
| 140 | return retval; |
| 141 | } |
| 142 | EXPORT_SYMBOL(rmi_clear_bits); |
| 143 | |
| 144 | /* Utility routine to set the value of a bit field in a register. */ |
| 145 | int rmi_set_bit_field(struct rmi_sensor_driver *sensor, |
| 146 | unsigned short address, unsigned char field_mask, unsigned char bits) |
| 147 | { |
| 148 | unsigned char reg_contents; |
| 149 | int retval; |
| 150 | |
| 151 | retval = rmi_read(sensor, address, ®_contents); |
| 152 | if (retval) |
| 153 | return retval; |
| 154 | reg_contents = (reg_contents & ~field_mask) | bits; |
| 155 | retval = rmi_write(sensor, address, reg_contents); |
| 156 | if (retval == 1) |
| 157 | return 0; |
| 158 | else if (retval == 0) |
| 159 | return -EINVAL; /* TODO: What should this be? */ |
| 160 | else |
| 161 | return retval; |
| 162 | } |
| 163 | EXPORT_SYMBOL(rmi_set_bit_field); |
| 164 | |
| 165 | bool rmi_polling_required(struct rmi_sensor_driver *sensor) |
| 166 | { |
| 167 | return sensor->polling_required; |
| 168 | } |
| 169 | EXPORT_SYMBOL(rmi_polling_required); |
| 170 | |
| 171 | /** Functions can call this in order to dispatch IRQs. */ |
| 172 | void dispatchIRQs(struct rmi_sensor_driver *sensor, unsigned int irqStatus) |
| 173 | { |
| 174 | struct rmi_function_info *functionInfo; |
| 175 | |
| 176 | list_for_each_entry(functionInfo, &sensor->functions, link) { |
| 177 | if ((functionInfo->interruptMask & irqStatus)) { |
| 178 | if (functionInfo->function_device-> |
| 179 | rmi_funcs->inthandler) { |
| 180 | /* Call the functions interrupt handler function. */ |
| 181 | functionInfo->function_device->rmi_funcs-> |
| 182 | inthandler(functionInfo, |
| 183 | (functionInfo->interruptMask & irqStatus)); |
| 184 | } |
| 185 | } |
| 186 | } |
| 187 | } |
| 188 | |
| 189 | /** |
| 190 | * This is the function we pass to the RMI4 subsystem so we can be notified |
| 191 | * when attention is required. It may be called in interrupt context. |
| 192 | */ |
| 193 | static void attention(struct rmi_phys_driver *physdrvr, int instance) |
| 194 | { |
| 195 | /* All we have to do is schedule work. */ |
| 196 | |
| 197 | /* TODO: It's possible that workIsReady is not really needed anymore. |
| 198 | * Investigate this to see if the race condition between setting up |
| 199 | * the work and enabling the interrupt still exists. |
| 200 | */ |
| 201 | if (physdrvr->sensor->workIsReady) { |
| 202 | schedule_work(&(physdrvr->sensor->work)); |
| 203 | } else { |
| 204 | /* Got an interrupt but we're not ready so enable the irq |
| 205 | * so it doesn't get hung up |
| 206 | */ |
| 207 | printk(KERN_DEBUG "%s: Work not initialized yet -" |
| 208 | "enabling irqs.\n", __func__); |
| 209 | enable_irq(physdrvr->irq); |
| 210 | } |
| 211 | } |
| 212 | |
| 213 | /** |
| 214 | * This notifies any interested functions that there |
| 215 | * is an Attention interrupt. The interested functions should take |
| 216 | * appropriate |
| 217 | * actions (such as reading the interrupt status register and dispatching any |
| 218 | * appropriate RMI4 interrupts). |
| 219 | */ |
| 220 | void attn_notify(struct rmi_sensor_driver *sensor) |
| 221 | { |
| 222 | struct rmi_function_info *functionInfo; |
| 223 | |
| 224 | /* check each function that has data sources and if the interrupt for |
| 225 | * that triggered then call that RMI4 functions report() function to |
| 226 | * gather data and report it to the input subsystem |
| 227 | */ |
| 228 | list_for_each_entry(functionInfo, &sensor->functions, link) { |
| 229 | if (functionInfo->function_device && |
| 230 | functionInfo->function_device->rmi_funcs->attention) |
| 231 | functionInfo->function_device-> |
| 232 | rmi_funcs->attention(functionInfo); |
| 233 | } |
| 234 | } |
| 235 | |
| 236 | /* This is the worker function - for now it simply has to call attn_notify. |
| 237 | * This work should be scheduled whenever an ATTN interrupt is asserted by |
| 238 | * the touch sensor. |
| 239 | * We then call attn_notify to dispatch notification of the ATTN interrupt |
| 240 | * to all |
| 241 | * interested functions. After all the attention handling functions |
| 242 | * have returned, it is presumed safe to re-enable the Attention interrupt. |
| 243 | */ |
| 244 | static void sensor_work_func(struct work_struct *work) |
| 245 | { |
| 246 | struct rmi_sensor_driver *sensor = container_of(work, |
| 247 | struct rmi_sensor_driver, work); |
| 248 | |
| 249 | attn_notify(sensor); |
| 250 | |
| 251 | /* we only need to enable the irq if doing interrupts */ |
| 252 | if (!rmi_polling_required(sensor)) |
| 253 | enable_irq(sensor->rpd->irq); |
| 254 | } |
| 255 | |
| 256 | /* This is the timer function for polling - it simply has to schedule work |
| 257 | * and restart the timer. */ |
| 258 | static enum hrtimer_restart sensor_poll_timer_func(struct hrtimer *timer) |
| 259 | { |
| 260 | struct rmi_sensor_driver *sensor = container_of(timer, |
| 261 | struct rmi_sensor_driver, timer); |
| 262 | |
| 263 | schedule_work(&sensor->work); |
| 264 | hrtimer_start(&sensor->timer, ktime_set(0, polltime), |
| 265 | HRTIMER_MODE_REL); |
| 266 | return HRTIMER_NORESTART; |
| 267 | } |
| 268 | |
| 269 | /* This is the probe function passed to the RMI4 subsystem that gives us a |
| 270 | * chance to recognize an RMI4 device. In this case, we're looking for |
| 271 | * Synaptics devices that have data sources - such as touch screens, buttons, |
| 272 | * etc. |
| 273 | * |
| 274 | * TODO: Well, it used to do this. I'm not sure it's required any more. |
| 275 | */ |
| 276 | static int probe(struct rmi_sensor_driver *sensor) |
| 277 | { |
| 278 | struct rmi_phys_driver *rpd; |
| 279 | |
| 280 | rpd = sensor->rpd; |
| 281 | |
| 282 | if (!rpd) { |
| 283 | printk(KERN_ERR "%s: Invalid rmi physical driver - null ptr:" |
| 284 | "%p\n", __func__, rpd); |
| 285 | return 0; |
| 286 | } |
| 287 | |
| 288 | return 1; |
| 289 | } |
| 290 | |
| 291 | static void config(struct rmi_sensor_driver *sensor) |
| 292 | { |
| 293 | /* For each data source we had detected print info and set up interrupts |
| 294 | or polling. */ |
| 295 | struct rmi_function_info *functionInfo; |
| 296 | struct rmi_phys_driver *rpd; |
| 297 | |
| 298 | rpd = sensor->rpd; /* get ptr to rmi_physical_driver from app */ |
| 299 | |
| 300 | list_for_each_entry(functionInfo, &sensor->functions, link) { |
| 301 | /* Get and print some info about the data sources... */ |
| 302 | struct rmi_functions *fn; |
| 303 | bool found = false; |
| 304 | /* check if function number matches - if so call that |
| 305 | config function */ |
| 306 | fn = rmi_find_function(functionInfo->functionNum); |
| 307 | if (fn) { |
| 308 | found = true; |
| 309 | |
| 310 | if (fn->config) { |
| 311 | fn->config(functionInfo); |
| 312 | } else { |
| 313 | /* the developer did not add in the |
| 314 | pointer to the config function into |
| 315 | rmi4_supported_data_src_functions */ |
| 316 | printk(KERN_ERR |
| 317 | "%s: no config function for " |
| 318 | "function 0x%x\n", |
| 319 | __func__, functionInfo->functionNum); |
| 320 | break; |
| 321 | } |
| 322 | } |
| 323 | |
| 324 | if (!found) { |
| 325 | /* if no support found for this RMI4 function |
| 326 | it means the developer did not add the |
| 327 | appropriate function pointer list into the |
| 328 | rmi4_supported_data_src_functions array and/or |
| 329 | did not bump up the number of supported RMI4 |
| 330 | functions in rmi.h as required */ |
| 331 | printk(KERN_ERR "%s: could not find support " |
| 332 | "for function 0x%x\n", |
| 333 | __func__, functionInfo->functionNum); |
| 334 | } |
| 335 | } |
| 336 | |
| 337 | /* This will handle interrupts on the ATTN line (interrupt driven) |
| 338 | * or will be called every poll interval (when we're not interrupt |
| 339 | * driven). |
| 340 | */ |
| 341 | INIT_WORK(&sensor->work, sensor_work_func); |
| 342 | sensor->workIsReady = true; |
| 343 | |
| 344 | if (rmi_polling_required(sensor)) { |
| 345 | /* We're polling driven, so set up the polling timer |
| 346 | and timer function. */ |
| 347 | hrtimer_init(&sensor->timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL); |
| 348 | sensor->timer.function = sensor_poll_timer_func; |
| 349 | hrtimer_start(&sensor->timer, ktime_set(1, 0), HRTIMER_MODE_REL); |
| 350 | } |
| 351 | } |
| 352 | |
| 353 | /** Just a stub for now. |
| 354 | */ |
| 355 | static int rmi_sensor_suspend(struct device *dev, pm_message_t state) |
| 356 | { |
| 357 | printk(KERN_INFO "%s: sensor suspend called.", __func__); |
| 358 | return 0; |
| 359 | } |
| 360 | |
| 361 | /** Just a stub for now. |
| 362 | */ |
| 363 | static int rmi_sensor_resume(struct device *dev) |
| 364 | { |
| 365 | printk(KERN_INFO "%s: sensor resume called.", __func__); |
| 366 | return 0; |
| 367 | } |
| 368 | |
| 369 | /* |
| 370 | * This method is called, whenever a new sensor device is added for the rmi |
| 371 | * bus. |
| 372 | * |
| 373 | * It will scan the devices PDT to determine the supported functions |
| 374 | * and create a new function device for each of these. It will read |
| 375 | * the query, control, command and data regsiters for the function |
| 376 | * to be used for each newly created function device. |
| 377 | * |
| 378 | * The sensor device is then bound to every function it supports. |
| 379 | * |
| 380 | */ |
| 381 | int rmi_sensor_register_functions(struct rmi_sensor_driver *sensor) |
| 382 | { |
| 383 | struct rmi_function_device *function; |
| 384 | unsigned int interruptRegisterCount; |
| 385 | struct rmi_phys_driver *rpd; |
| 386 | int i; |
| 387 | unsigned char interruptCount; |
| 388 | struct rmi_function_info *functionInfo; |
| 389 | struct rmi_function_descriptor rmi_fd; |
| 390 | struct rmi_functions *fn; |
| 391 | int retval; |
| 392 | |
| 393 | pr_debug("%s: Registering sensor functions\n", __func__); |
| 394 | |
| 395 | retval = 0; |
| 396 | |
| 397 | /* Scan device for functions that may be supported */ |
| 398 | { |
| 399 | pr_debug("%s: Scanning sensor for Functions:\n", __func__); |
| 400 | |
| 401 | interruptCount = 0; |
| 402 | rpd = sensor->rpd; |
| 403 | |
| 404 | /* Read the Page Descriptor Table to determine what functions |
| 405 | * are present */ |
| 406 | |
| 407 | printk(KERN_DEBUG "%s: Scanning page descriptors.", __func__); |
| 408 | for (i = PDT_START_SCAN_LOCATION; |
| 409 | i >= PDT_END_SCAN_LOCATION; |
| 410 | i -= PDT_ENTRY_SIZE) { |
| 411 | printk(KERN_DEBUG "%s: Reading page descriptor 0x%02x", __func__, i); |
| 412 | retval = rpd->read_multiple(rpd, i, (char *)&rmi_fd, |
| 413 | sizeof(rmi_fd)); |
| 414 | if (!retval) { |
| 415 | functionInfo = NULL; |
| 416 | |
| 417 | if (rmi_fd.functionNum != 0x00 && rmi_fd.functionNum != 0xff) { |
| 418 | printk(KERN_DEBUG "%s: F%02x - queries %02x commands %02x control %02x data %02x ints %02x", __func__, rmi_fd.functionNum, rmi_fd.queryBaseAddr, rmi_fd.commandBaseAddr, rmi_fd.controlBaseAddr, rmi_fd.dataBaseAddr, rmi_fd.interruptSrcCnt); |
| 419 | |
| 420 | if ((rmi_fd.functionNum & 0xff) == 0x01) |
| 421 | printk(KERN_DEBUG "%s: Fn $01 Found - RMI Device Control", __func__); |
| 422 | |
| 423 | /* determine if the function is supported and if so |
| 424 | * then bind this function device to the sensor */ |
| 425 | if (rmi_fd.interruptSrcCnt) { |
| 426 | functionInfo = kzalloc(sizeof(*functionInfo), GFP_KERNEL); |
| 427 | if (!functionInfo) { |
| 428 | printk(KERN_ERR "%s: could not allocate memory for function 0x%x.", |
| 429 | __func__, rmi_fd.functionNum); |
| 430 | retval = -ENOMEM; |
| 431 | goto exit_fail; |
| 432 | } |
| 433 | functionInfo->sensor = sensor; |
| 434 | functionInfo->functionNum = (rmi_fd.functionNum & 0xff); |
| 435 | INIT_LIST_HEAD(&functionInfo->link); |
| 436 | /* Get the ptr to the detect function based on |
| 437 | * the function number */ |
| 438 | printk(KERN_DEBUG "%s: Checking for RMI function F%02x.", __func__, rmi_fd.functionNum); |
| 439 | fn = rmi_find_function(rmi_fd.functionNum); |
| 440 | if (fn) { |
| 441 | retval = fn->detect(functionInfo, &rmi_fd, |
| 442 | interruptCount); |
| 443 | if (retval) |
| 444 | printk(KERN_ERR "%s: Function detect for F%02x failed with %d.", |
| 445 | __func__, rmi_fd.functionNum, retval); |
| 446 | |
| 447 | /* Create a function device and function driver for this Fn */ |
| 448 | function = kzalloc(sizeof(*function), GFP_KERNEL); |
| 449 | if (!function) { |
| 450 | printk(KERN_ERR "%s: Error allocating memory for rmi_function_device.", __func__); |
| 451 | return -ENOMEM; |
| 452 | } |
| 453 | |
| 454 | function->dev.parent = &sensor->sensor_device->dev; |
| 455 | function->dev.bus = sensor->sensor_device->dev.bus; |
| 456 | function->rmi_funcs = fn; |
| 457 | function->sensor = sensor; |
| 458 | function->rfi = functionInfo; |
| 459 | functionInfo->function_device = function; |
| 460 | |
| 461 | /* Check if we have an interrupt mask of 0 and a non-NULL interrupt |
| 462 | handler function and print a debug message since we should never |
| 463 | have this. |
| 464 | */ |
| 465 | if (functionInfo->interruptMask == 0 && fn->inthandler != NULL) { |
| 466 | printk(KERN_DEBUG "%s: Can't have a zero interrupt mask for function F%02x (which requires an interrupt handler).\n", |
| 467 | __func__, rmi_fd.functionNum); |
| 468 | } |
| 469 | |
| 470 | |
| 471 | /* Check if we have a non-zero interrupt mask and a NULL interrupt |
| 472 | handler function and print a debug message since we should never |
| 473 | have this. |
| 474 | */ |
| 475 | if (functionInfo->interruptMask != 0 && fn->inthandler == NULL) { |
| 476 | printk(KERN_DEBUG "%s: Can't have a non-zero interrupt mask %d for function F%02x with a NULL inthandler fn.\n", |
| 477 | __func__, functionInfo->interruptMask, rmi_fd.functionNum); |
| 478 | } |
| 479 | |
| 480 | /* Register the rmi function device */ |
| 481 | retval = rmi_function_register_device(function, rmi_fd.functionNum); |
| 482 | if (retval) { |
| 483 | printk(KERN_ERR "%s: Failed rmi_function_register_device.\n", |
| 484 | __func__); |
| 485 | return retval; |
| 486 | } |
| 487 | } else { |
| 488 | printk(KERN_ERR "%s: could not find support for function 0x%02X.\n", |
| 489 | __func__, rmi_fd.functionNum); |
| 490 | } |
| 491 | } else { |
| 492 | printk(KERN_DEBUG "%s: Found function F%02x - Ignored.\n", __func__, rmi_fd.functionNum & 0xff); |
| 493 | } |
| 494 | |
| 495 | /* bump interrupt count for next iteration */ |
| 496 | /* NOTE: The value 7 is reserved - for now, only bump up one for an interrupt count of 7 */ |
| 497 | if ((rmi_fd.interruptSrcCnt & 0x7) == 0x7) { |
| 498 | interruptCount += 1; |
| 499 | } else { |
| 500 | interruptCount += |
| 501 | (rmi_fd.interruptSrcCnt & 0x7); |
| 502 | } |
| 503 | |
| 504 | /* link this function info to the RMI module infos list |
| 505 | of functions */ |
| 506 | if (functionInfo == NULL) { |
| 507 | printk(KERN_DEBUG "%s: WTF? functionInfo is null here.", __func__); |
| 508 | } else { |
| 509 | printk(KERN_DEBUG "%s: Adding function F%02x with %d sources.\n", |
| 510 | __func__, functionInfo->functionNum, functionInfo->numSources); |
| 511 | |
| 512 | mutex_lock(&rfi_mutex); |
| 513 | list_add_tail(&functionInfo->link, |
| 514 | &sensor->functions); |
| 515 | mutex_unlock(&rfi_mutex); |
| 516 | } |
| 517 | |
| 518 | } else { |
| 519 | /* A zero or 0xff in the function number |
| 520 | signals the end of the PDT */ |
| 521 | printk(KERN_DEBUG "%s: Found End of PDT\n", |
| 522 | __func__); |
| 523 | break; |
| 524 | } |
| 525 | } else { |
| 526 | /* failed to read next PDT entry - end PDT |
| 527 | scan - this may result in an incomplete set |
| 528 | of recognized functions - should probably |
| 529 | return an error but the driver may still be |
| 530 | viable for diagnostics and debugging so let's |
| 531 | let it continue. */ |
| 532 | printk(KERN_ERR "%s: Read Error %d when reading next PDT entry - " |
| 533 | "ending PDT scan.\n", |
| 534 | __func__, retval); |
| 535 | break; |
| 536 | } |
| 537 | } |
| 538 | printk(KERN_DEBUG "%s: Done scanning.", __func__); |
| 539 | |
| 540 | /* calculate the interrupt register count - used in the |
| 541 | ISR to read the correct number of interrupt registers */ |
| 542 | interruptRegisterCount = (interruptCount + 7) / 8; |
| 543 | sensor->interruptRegisterCount = interruptRegisterCount; /* TODO: Is this needed by the sensor anymore? */ |
| 544 | } |
| 545 | |
| 546 | return 0; |
| 547 | |
| 548 | exit_fail: |
| 549 | return retval; |
| 550 | } |
| 551 | EXPORT_SYMBOL(rmi_sensor_register_functions); |
| 552 | |
| 553 | int rmi_sensor_register_device(struct rmi_sensor_device *dev, int index) |
| 554 | { |
| 555 | int status; |
| 556 | |
| 557 | printk(KERN_INFO "%s: Registering sensor device.\n", __func__); |
| 558 | |
| 559 | /* make name - sensor00, sensor01, etc. */ |
| 560 | dev_set_name(&dev->dev, "sensor%02d", index); |
| 561 | status = device_register(&dev->dev); |
| 562 | |
| 563 | return status; |
| 564 | } |
| 565 | EXPORT_SYMBOL(rmi_sensor_register_device); |
| 566 | |
| 567 | static void rmi_sensor_unregister_device(struct rmi_sensor_device *rmisensordev) |
| 568 | { |
| 569 | printk(KERN_INFO "%s: Unregistering sensor device.\n", __func__); |
| 570 | |
| 571 | device_unregister(&rmisensordev->dev); |
| 572 | } |
| 573 | EXPORT_SYMBOL(rmi_sensor_unregister_device); |
| 574 | |
| 575 | int rmi_sensor_register_driver(struct rmi_sensor_driver *driver) |
| 576 | { |
| 577 | static int index; |
| 578 | int ret; |
| 579 | char *drvrname; |
| 580 | |
| 581 | driver->workIsReady = false; |
| 582 | |
| 583 | printk(KERN_INFO "%s: Registering sensor driver.\n", __func__); |
| 584 | driver->dispatchIRQs = dispatchIRQs; |
| 585 | driver->attention = attention; |
| 586 | driver->config = config; |
| 587 | driver->probe = probe; |
| 588 | |
| 589 | /* assign the bus type for this driver to be rmi bus */ |
| 590 | driver->drv.bus = &rmi_bus_type; |
| 591 | driver->drv.suspend = rmi_sensor_suspend; |
| 592 | driver->drv.resume = rmi_sensor_resume; |
| 593 | /* Create a function device and function driver for this Fn */ |
| 594 | drvrname = kzalloc(sizeof(sensorname) + 4, GFP_KERNEL); |
| 595 | if (!drvrname) { |
| 596 | printk(KERN_ERR "%s: Error allocating memeory for rmi_sensor_driver name.\n", __func__); |
| 597 | return -ENOMEM; |
| 598 | } |
| 599 | sprintf(drvrname, "sensor%02d", index++); |
| 600 | |
| 601 | driver->drv.name = drvrname; |
| 602 | driver->module = driver->drv.owner; |
| 603 | |
| 604 | /* register the sensor driver */ |
| 605 | ret = driver_register(&driver->drv); |
| 606 | if (ret) { |
| 607 | printk(KERN_ERR "%s: Failed driver_register %d\n", |
| 608 | __func__, ret); |
| 609 | goto exit_fail; |
| 610 | } |
| 611 | |
| 612 | /* register the functions on the sensor */ |
| 613 | ret = rmi_sensor_register_functions(driver); |
| 614 | if (ret) { |
| 615 | printk(KERN_ERR "%s: Failed rmi_sensor_register_functions %d\n", |
| 616 | __func__, ret); |
| 617 | } |
| 618 | |
| 619 | /* configure the sensor - enable interrupts for each function, init work, set polling timer or adjust report rate, etc. */ |
| 620 | config(driver); |
| 621 | |
| 622 | printk(KERN_DEBUG "%s: sensor driver registration completed.", __func__); |
| 623 | |
| 624 | exit_fail: |
| 625 | return ret; |
| 626 | } |
| 627 | EXPORT_SYMBOL(rmi_sensor_register_driver); |
| 628 | |
| 629 | static void rmi_sensor_unregister_driver(struct rmi_sensor_driver *driver) |
| 630 | { |
| 631 | printk(KERN_DEBUG "%s: Unregistering sensor driver.\n", __func__); |
| 632 | |
| 633 | /* Stop the polling timer if doing polling */ |
| 634 | if (rmi_polling_required(driver)) |
| 635 | hrtimer_cancel(&driver->timer); |
| 636 | |
| 637 | flush_scheduled_work(); /* Make sure all scheduled work is stopped */ |
| 638 | |
| 639 | driver_unregister(&driver->drv); |
| 640 | } |
| 641 | EXPORT_SYMBOL(rmi_sensor_unregister_driver); |
| 642 | |
| 643 | |
| 644 | static int __init rmi_sensor_init(void) |
| 645 | { |
| 646 | printk(KERN_DEBUG "%s: RMI Sensor Init\n", __func__); |
| 647 | return 0; |
| 648 | } |
| 649 | |
| 650 | static void __exit rmi_sensor_exit(void) |
| 651 | { |
| 652 | printk(KERN_DEBUG "%s: RMI Sensor Driver Exit\n", __func__); |
| 653 | flush_scheduled_work(); /* Make sure all scheduled work is stopped */ |
| 654 | } |
| 655 | |
| 656 | |
| 657 | module_init(rmi_sensor_init); |
| 658 | module_exit(rmi_sensor_exit); |
| 659 | |
| 660 | MODULE_AUTHOR("Synaptics, Inc."); |
| 661 | MODULE_DESCRIPTION("RMI4 Sensor Driver"); |
| 662 | MODULE_LICENSE("GPL"); |