blob: f8553aaececbc64d76be7908e57b43869089558e [file] [log] [blame]
Linus Torvalds1da177e2005-04-16 15:20:36 -07001|
2| stan.sa 3.3 7/29/91
3|
4| The entry point stan computes the tangent of
5| an input argument;
6| stand does the same except for denormalized input.
7|
8| Input: Double-extended number X in location pointed to
9| by address register a0.
10|
11| Output: The value tan(X) returned in floating-point register Fp0.
12|
13| Accuracy and Monotonicity: The returned result is within 3 ulp in
14| 64 significant bit, i.e. within 0.5001 ulp to 53 bits if the
15| result is subsequently rounded to double precision. The
16| result is provably monotonic in double precision.
17|
18| Speed: The program sTAN takes approximately 170 cycles for
19| input argument X such that |X| < 15Pi, which is the usual
20| situation.
21|
22| Algorithm:
23|
24| 1. If |X| >= 15Pi or |X| < 2**(-40), go to 6.
25|
26| 2. Decompose X as X = N(Pi/2) + r where |r| <= Pi/4. Let
27| k = N mod 2, so in particular, k = 0 or 1.
28|
29| 3. If k is odd, go to 5.
30|
31| 4. (k is even) Tan(X) = tan(r) and tan(r) is approximated by a
32| rational function U/V where
33| U = r + r*s*(P1 + s*(P2 + s*P3)), and
34| V = 1 + s*(Q1 + s*(Q2 + s*(Q3 + s*Q4))), s = r*r.
35| Exit.
36|
37| 4. (k is odd) Tan(X) = -cot(r). Since tan(r) is approximated by a
38| rational function U/V where
39| U = r + r*s*(P1 + s*(P2 + s*P3)), and
40| V = 1 + s*(Q1 + s*(Q2 + s*(Q3 + s*Q4))), s = r*r,
41| -Cot(r) = -V/U. Exit.
42|
43| 6. If |X| > 1, go to 8.
44|
45| 7. (|X|<2**(-40)) Tan(X) = X. Exit.
46|
47| 8. Overwrite X by X := X rem 2Pi. Now that |X| <= Pi, go back to 2.
48|
49
50| Copyright (C) Motorola, Inc. 1990
51| All Rights Reserved
52|
Matt Waddele00d82d2006-02-11 17:55:48 -080053| For details on the license for this file, please see the
54| file, README, in this same directory.
Linus Torvalds1da177e2005-04-16 15:20:36 -070055
56|STAN idnt 2,1 | Motorola 040 Floating Point Software Package
57
58 |section 8
59
60#include "fpsp.h"
61
62BOUNDS1: .long 0x3FD78000,0x4004BC7E
63TWOBYPI: .long 0x3FE45F30,0x6DC9C883
64
65TANQ4: .long 0x3EA0B759,0xF50F8688
66TANP3: .long 0xBEF2BAA5,0xA8924F04
67
68TANQ3: .long 0xBF346F59,0xB39BA65F,0x00000000,0x00000000
69
70TANP2: .long 0x3FF60000,0xE073D3FC,0x199C4A00,0x00000000
71
72TANQ2: .long 0x3FF90000,0xD23CD684,0x15D95FA1,0x00000000
73
74TANP1: .long 0xBFFC0000,0x8895A6C5,0xFB423BCA,0x00000000
75
76TANQ1: .long 0xBFFD0000,0xEEF57E0D,0xA84BC8CE,0x00000000
77
78INVTWOPI: .long 0x3FFC0000,0xA2F9836E,0x4E44152A,0x00000000
79
80TWOPI1: .long 0x40010000,0xC90FDAA2,0x00000000,0x00000000
81TWOPI2: .long 0x3FDF0000,0x85A308D4,0x00000000,0x00000000
82
83|--N*PI/2, -32 <= N <= 32, IN A LEADING TERM IN EXT. AND TRAILING
84|--TERM IN SGL. NOTE THAT PI IS 64-BIT LONG, THUS N*PI/2 IS AT
85|--MOST 69 BITS LONG.
86 .global PITBL
87PITBL:
88 .long 0xC0040000,0xC90FDAA2,0x2168C235,0x21800000
89 .long 0xC0040000,0xC2C75BCD,0x105D7C23,0xA0D00000
90 .long 0xC0040000,0xBC7EDCF7,0xFF523611,0xA1E80000
91 .long 0xC0040000,0xB6365E22,0xEE46F000,0x21480000
92 .long 0xC0040000,0xAFEDDF4D,0xDD3BA9EE,0xA1200000
93 .long 0xC0040000,0xA9A56078,0xCC3063DD,0x21FC0000
94 .long 0xC0040000,0xA35CE1A3,0xBB251DCB,0x21100000
95 .long 0xC0040000,0x9D1462CE,0xAA19D7B9,0xA1580000
96 .long 0xC0040000,0x96CBE3F9,0x990E91A8,0x21E00000
97 .long 0xC0040000,0x90836524,0x88034B96,0x20B00000
98 .long 0xC0040000,0x8A3AE64F,0x76F80584,0xA1880000
99 .long 0xC0040000,0x83F2677A,0x65ECBF73,0x21C40000
100 .long 0xC0030000,0xFB53D14A,0xA9C2F2C2,0x20000000
101 .long 0xC0030000,0xEEC2D3A0,0x87AC669F,0x21380000
102 .long 0xC0030000,0xE231D5F6,0x6595DA7B,0xA1300000
103 .long 0xC0030000,0xD5A0D84C,0x437F4E58,0x9FC00000
104 .long 0xC0030000,0xC90FDAA2,0x2168C235,0x21000000
105 .long 0xC0030000,0xBC7EDCF7,0xFF523611,0xA1680000
106 .long 0xC0030000,0xAFEDDF4D,0xDD3BA9EE,0xA0A00000
107 .long 0xC0030000,0xA35CE1A3,0xBB251DCB,0x20900000
108 .long 0xC0030000,0x96CBE3F9,0x990E91A8,0x21600000
109 .long 0xC0030000,0x8A3AE64F,0x76F80584,0xA1080000
110 .long 0xC0020000,0xFB53D14A,0xA9C2F2C2,0x1F800000
111 .long 0xC0020000,0xE231D5F6,0x6595DA7B,0xA0B00000
112 .long 0xC0020000,0xC90FDAA2,0x2168C235,0x20800000
113 .long 0xC0020000,0xAFEDDF4D,0xDD3BA9EE,0xA0200000
114 .long 0xC0020000,0x96CBE3F9,0x990E91A8,0x20E00000
115 .long 0xC0010000,0xFB53D14A,0xA9C2F2C2,0x1F000000
116 .long 0xC0010000,0xC90FDAA2,0x2168C235,0x20000000
117 .long 0xC0010000,0x96CBE3F9,0x990E91A8,0x20600000
118 .long 0xC0000000,0xC90FDAA2,0x2168C235,0x1F800000
119 .long 0xBFFF0000,0xC90FDAA2,0x2168C235,0x1F000000
120 .long 0x00000000,0x00000000,0x00000000,0x00000000
121 .long 0x3FFF0000,0xC90FDAA2,0x2168C235,0x9F000000
122 .long 0x40000000,0xC90FDAA2,0x2168C235,0x9F800000
123 .long 0x40010000,0x96CBE3F9,0x990E91A8,0xA0600000
124 .long 0x40010000,0xC90FDAA2,0x2168C235,0xA0000000
125 .long 0x40010000,0xFB53D14A,0xA9C2F2C2,0x9F000000
126 .long 0x40020000,0x96CBE3F9,0x990E91A8,0xA0E00000
127 .long 0x40020000,0xAFEDDF4D,0xDD3BA9EE,0x20200000
128 .long 0x40020000,0xC90FDAA2,0x2168C235,0xA0800000
129 .long 0x40020000,0xE231D5F6,0x6595DA7B,0x20B00000
130 .long 0x40020000,0xFB53D14A,0xA9C2F2C2,0x9F800000
131 .long 0x40030000,0x8A3AE64F,0x76F80584,0x21080000
132 .long 0x40030000,0x96CBE3F9,0x990E91A8,0xA1600000
133 .long 0x40030000,0xA35CE1A3,0xBB251DCB,0xA0900000
134 .long 0x40030000,0xAFEDDF4D,0xDD3BA9EE,0x20A00000
135 .long 0x40030000,0xBC7EDCF7,0xFF523611,0x21680000
136 .long 0x40030000,0xC90FDAA2,0x2168C235,0xA1000000
137 .long 0x40030000,0xD5A0D84C,0x437F4E58,0x1FC00000
138 .long 0x40030000,0xE231D5F6,0x6595DA7B,0x21300000
139 .long 0x40030000,0xEEC2D3A0,0x87AC669F,0xA1380000
140 .long 0x40030000,0xFB53D14A,0xA9C2F2C2,0xA0000000
141 .long 0x40040000,0x83F2677A,0x65ECBF73,0xA1C40000
142 .long 0x40040000,0x8A3AE64F,0x76F80584,0x21880000
143 .long 0x40040000,0x90836524,0x88034B96,0xA0B00000
144 .long 0x40040000,0x96CBE3F9,0x990E91A8,0xA1E00000
145 .long 0x40040000,0x9D1462CE,0xAA19D7B9,0x21580000
146 .long 0x40040000,0xA35CE1A3,0xBB251DCB,0xA1100000
147 .long 0x40040000,0xA9A56078,0xCC3063DD,0xA1FC0000
148 .long 0x40040000,0xAFEDDF4D,0xDD3BA9EE,0x21200000
149 .long 0x40040000,0xB6365E22,0xEE46F000,0xA1480000
150 .long 0x40040000,0xBC7EDCF7,0xFF523611,0x21E80000
151 .long 0x40040000,0xC2C75BCD,0x105D7C23,0x20D00000
152 .long 0x40040000,0xC90FDAA2,0x2168C235,0xA1800000
153
154 .set INARG,FP_SCR4
155
156 .set TWOTO63,L_SCR1
157 .set ENDFLAG,L_SCR2
158 .set N,L_SCR3
159
160 | xref t_frcinx
161 |xref t_extdnrm
162
163 .global stand
164stand:
165|--TAN(X) = X FOR DENORMALIZED X
166
167 bra t_extdnrm
168
169 .global stan
170stan:
171 fmovex (%a0),%fp0 | ...LOAD INPUT
172
173 movel (%a0),%d0
174 movew 4(%a0),%d0
175 andil #0x7FFFFFFF,%d0
176
177 cmpil #0x3FD78000,%d0 | ...|X| >= 2**(-40)?
178 bges TANOK1
179 bra TANSM
180TANOK1:
181 cmpil #0x4004BC7E,%d0 | ...|X| < 15 PI?
182 blts TANMAIN
183 bra REDUCEX
184
185
186TANMAIN:
187|--THIS IS THE USUAL CASE, |X| <= 15 PI.
188|--THE ARGUMENT REDUCTION IS DONE BY TABLE LOOK UP.
189 fmovex %fp0,%fp1
190 fmuld TWOBYPI,%fp1 | ...X*2/PI
191
192|--HIDE THE NEXT TWO INSTRUCTIONS
193 leal PITBL+0x200,%a1 | ...TABLE OF N*PI/2, N = -32,...,32
194
195|--FP1 IS NOW READY
196 fmovel %fp1,%d0 | ...CONVERT TO INTEGER
197
198 asll #4,%d0
199 addal %d0,%a1 | ...ADDRESS N*PIBY2 IN Y1, Y2
200
201 fsubx (%a1)+,%fp0 | ...X-Y1
202|--HIDE THE NEXT ONE
203
204 fsubs (%a1),%fp0 | ...FP0 IS R = (X-Y1)-Y2
205
206 rorl #5,%d0
207 andil #0x80000000,%d0 | ...D0 WAS ODD IFF D0 < 0
208
209TANCONT:
210
211 cmpil #0,%d0
212 blt NODD
213
214 fmovex %fp0,%fp1
215 fmulx %fp1,%fp1 | ...S = R*R
216
217 fmoved TANQ4,%fp3
218 fmoved TANP3,%fp2
219
220 fmulx %fp1,%fp3 | ...SQ4
221 fmulx %fp1,%fp2 | ...SP3
222
223 faddd TANQ3,%fp3 | ...Q3+SQ4
224 faddx TANP2,%fp2 | ...P2+SP3
225
226 fmulx %fp1,%fp3 | ...S(Q3+SQ4)
227 fmulx %fp1,%fp2 | ...S(P2+SP3)
228
229 faddx TANQ2,%fp3 | ...Q2+S(Q3+SQ4)
230 faddx TANP1,%fp2 | ...P1+S(P2+SP3)
231
232 fmulx %fp1,%fp3 | ...S(Q2+S(Q3+SQ4))
233 fmulx %fp1,%fp2 | ...S(P1+S(P2+SP3))
234
235 faddx TANQ1,%fp3 | ...Q1+S(Q2+S(Q3+SQ4))
236 fmulx %fp0,%fp2 | ...RS(P1+S(P2+SP3))
237
238 fmulx %fp3,%fp1 | ...S(Q1+S(Q2+S(Q3+SQ4)))
239
240
241 faddx %fp2,%fp0 | ...R+RS(P1+S(P2+SP3))
242
243
244 fadds #0x3F800000,%fp1 | ...1+S(Q1+...)
245
246 fmovel %d1,%fpcr |restore users exceptions
247 fdivx %fp1,%fp0 |last inst - possible exception set
248
249 bra t_frcinx
250
251NODD:
252 fmovex %fp0,%fp1
253 fmulx %fp0,%fp0 | ...S = R*R
254
255 fmoved TANQ4,%fp3
256 fmoved TANP3,%fp2
257
258 fmulx %fp0,%fp3 | ...SQ4
259 fmulx %fp0,%fp2 | ...SP3
260
261 faddd TANQ3,%fp3 | ...Q3+SQ4
262 faddx TANP2,%fp2 | ...P2+SP3
263
264 fmulx %fp0,%fp3 | ...S(Q3+SQ4)
265 fmulx %fp0,%fp2 | ...S(P2+SP3)
266
267 faddx TANQ2,%fp3 | ...Q2+S(Q3+SQ4)
268 faddx TANP1,%fp2 | ...P1+S(P2+SP3)
269
270 fmulx %fp0,%fp3 | ...S(Q2+S(Q3+SQ4))
271 fmulx %fp0,%fp2 | ...S(P1+S(P2+SP3))
272
273 faddx TANQ1,%fp3 | ...Q1+S(Q2+S(Q3+SQ4))
274 fmulx %fp1,%fp2 | ...RS(P1+S(P2+SP3))
275
276 fmulx %fp3,%fp0 | ...S(Q1+S(Q2+S(Q3+SQ4)))
277
278
279 faddx %fp2,%fp1 | ...R+RS(P1+S(P2+SP3))
280 fadds #0x3F800000,%fp0 | ...1+S(Q1+...)
281
282
283 fmovex %fp1,-(%sp)
284 eoril #0x80000000,(%sp)
285
286 fmovel %d1,%fpcr |restore users exceptions
287 fdivx (%sp)+,%fp0 |last inst - possible exception set
288
289 bra t_frcinx
290
291TANBORS:
292|--IF |X| > 15PI, WE USE THE GENERAL ARGUMENT REDUCTION.
293|--IF |X| < 2**(-40), RETURN X OR 1.
294 cmpil #0x3FFF8000,%d0
295 bgts REDUCEX
296
297TANSM:
298
299 fmovex %fp0,-(%sp)
300 fmovel %d1,%fpcr |restore users exceptions
301 fmovex (%sp)+,%fp0 |last inst - possible exception set
302
303 bra t_frcinx
304
305
306REDUCEX:
307|--WHEN REDUCEX IS USED, THE CODE WILL INEVITABLY BE SLOW.
308|--THIS REDUCTION METHOD, HOWEVER, IS MUCH FASTER THAN USING
309|--THE REMAINDER INSTRUCTION WHICH IS NOW IN SOFTWARE.
310
311 fmovemx %fp2-%fp5,-(%a7) | ...save FP2 through FP5
312 movel %d2,-(%a7)
313 fmoves #0x00000000,%fp1
314
315|--If compact form of abs(arg) in d0=$7ffeffff, argument is so large that
316|--there is a danger of unwanted overflow in first LOOP iteration. In this
317|--case, reduce argument by one remainder step to make subsequent reduction
318|--safe.
319 cmpil #0x7ffeffff,%d0 |is argument dangerously large?
320 bnes LOOP
321 movel #0x7ffe0000,FP_SCR2(%a6) |yes
322| ;create 2**16383*PI/2
323 movel #0xc90fdaa2,FP_SCR2+4(%a6)
324 clrl FP_SCR2+8(%a6)
325 ftstx %fp0 |test sign of argument
326 movel #0x7fdc0000,FP_SCR3(%a6) |create low half of 2**16383*
327| ;PI/2 at FP_SCR3
328 movel #0x85a308d3,FP_SCR3+4(%a6)
329 clrl FP_SCR3+8(%a6)
330 fblt red_neg
331 orw #0x8000,FP_SCR2(%a6) |positive arg
332 orw #0x8000,FP_SCR3(%a6)
333red_neg:
334 faddx FP_SCR2(%a6),%fp0 |high part of reduction is exact
335 fmovex %fp0,%fp1 |save high result in fp1
336 faddx FP_SCR3(%a6),%fp0 |low part of reduction
337 fsubx %fp0,%fp1 |determine low component of result
338 faddx FP_SCR3(%a6),%fp1 |fp0/fp1 are reduced argument.
339
340|--ON ENTRY, FP0 IS X, ON RETURN, FP0 IS X REM PI/2, |X| <= PI/4.
341|--integer quotient will be stored in N
342|--Intermediate remainder is 66-bit long; (R,r) in (FP0,FP1)
343
344LOOP:
345 fmovex %fp0,INARG(%a6) | ...+-2**K * F, 1 <= F < 2
346 movew INARG(%a6),%d0
347 movel %d0,%a1 | ...save a copy of D0
348 andil #0x00007FFF,%d0
349 subil #0x00003FFF,%d0 | ...D0 IS K
350 cmpil #28,%d0
351 bles LASTLOOP
352CONTLOOP:
353 subil #27,%d0 | ...D0 IS L := K-27
354 movel #0,ENDFLAG(%a6)
355 bras WORK
356LASTLOOP:
357 clrl %d0 | ...D0 IS L := 0
358 movel #1,ENDFLAG(%a6)
359
360WORK:
361|--FIND THE REMAINDER OF (R,r) W.R.T. 2**L * (PI/2). L IS SO CHOSEN
362|--THAT INT( X * (2/PI) / 2**(L) ) < 2**29.
363
364|--CREATE 2**(-L) * (2/PI), SIGN(INARG)*2**(63),
365|--2**L * (PIby2_1), 2**L * (PIby2_2)
366
367 movel #0x00003FFE,%d2 | ...BIASED EXPO OF 2/PI
368 subl %d0,%d2 | ...BIASED EXPO OF 2**(-L)*(2/PI)
369
370 movel #0xA2F9836E,FP_SCR1+4(%a6)
371 movel #0x4E44152A,FP_SCR1+8(%a6)
372 movew %d2,FP_SCR1(%a6) | ...FP_SCR1 is 2**(-L)*(2/PI)
373
374 fmovex %fp0,%fp2
375 fmulx FP_SCR1(%a6),%fp2
376|--WE MUST NOW FIND INT(FP2). SINCE WE NEED THIS VALUE IN
377|--FLOATING POINT FORMAT, THE TWO FMOVE'S FMOVE.L FP <--> N
378|--WILL BE TOO INEFFICIENT. THE WAY AROUND IT IS THAT
379|--(SIGN(INARG)*2**63 + FP2) - SIGN(INARG)*2**63 WILL GIVE
380|--US THE DESIRED VALUE IN FLOATING POINT.
381
382|--HIDE SIX CYCLES OF INSTRUCTION
383 movel %a1,%d2
384 swap %d2
385 andil #0x80000000,%d2
386 oril #0x5F000000,%d2 | ...D2 IS SIGN(INARG)*2**63 IN SGL
387 movel %d2,TWOTO63(%a6)
388
389 movel %d0,%d2
390 addil #0x00003FFF,%d2 | ...BIASED EXPO OF 2**L * (PI/2)
391
392|--FP2 IS READY
393 fadds TWOTO63(%a6),%fp2 | ...THE FRACTIONAL PART OF FP1 IS ROUNDED
394
395|--HIDE 4 CYCLES OF INSTRUCTION; creating 2**(L)*Piby2_1 and 2**(L)*Piby2_2
396 movew %d2,FP_SCR2(%a6)
397 clrw FP_SCR2+2(%a6)
398 movel #0xC90FDAA2,FP_SCR2+4(%a6)
399 clrl FP_SCR2+8(%a6) | ...FP_SCR2 is 2**(L) * Piby2_1
400
401|--FP2 IS READY
402 fsubs TWOTO63(%a6),%fp2 | ...FP2 is N
403
404 addil #0x00003FDD,%d0
405 movew %d0,FP_SCR3(%a6)
406 clrw FP_SCR3+2(%a6)
407 movel #0x85A308D3,FP_SCR3+4(%a6)
408 clrl FP_SCR3+8(%a6) | ...FP_SCR3 is 2**(L) * Piby2_2
409
410 movel ENDFLAG(%a6),%d0
411
412|--We are now ready to perform (R+r) - N*P1 - N*P2, P1 = 2**(L) * Piby2_1 and
413|--P2 = 2**(L) * Piby2_2
414 fmovex %fp2,%fp4
415 fmulx FP_SCR2(%a6),%fp4 | ...W = N*P1
416 fmovex %fp2,%fp5
417 fmulx FP_SCR3(%a6),%fp5 | ...w = N*P2
418 fmovex %fp4,%fp3
419|--we want P+p = W+w but |p| <= half ulp of P
420|--Then, we need to compute A := R-P and a := r-p
421 faddx %fp5,%fp3 | ...FP3 is P
422 fsubx %fp3,%fp4 | ...W-P
423
424 fsubx %fp3,%fp0 | ...FP0 is A := R - P
425 faddx %fp5,%fp4 | ...FP4 is p = (W-P)+w
426
427 fmovex %fp0,%fp3 | ...FP3 A
428 fsubx %fp4,%fp1 | ...FP1 is a := r - p
429
430|--Now we need to normalize (A,a) to "new (R,r)" where R+r = A+a but
431|--|r| <= half ulp of R.
432 faddx %fp1,%fp0 | ...FP0 is R := A+a
433|--No need to calculate r if this is the last loop
434 cmpil #0,%d0
435 bgt RESTORE
436
437|--Need to calculate r
438 fsubx %fp0,%fp3 | ...A-R
439 faddx %fp3,%fp1 | ...FP1 is r := (A-R)+a
440 bra LOOP
441
442RESTORE:
443 fmovel %fp2,N(%a6)
444 movel (%a7)+,%d2
445 fmovemx (%a7)+,%fp2-%fp5
446
447
448 movel N(%a6),%d0
449 rorl #1,%d0
450
451
452 bra TANCONT
453
454 |end