Anton Vorontsov | 83ff9dc | 2008-05-23 20:38:54 +0400 | [diff] [blame] | 1 | /* |
| 2 | * Freescale General-purpose Timers Module |
| 3 | * |
| 4 | * Copyright (c) Freescale Semicondutor, Inc. 2006. |
| 5 | * Shlomi Gridish <gridish@freescale.com> |
| 6 | * Jerry Huang <Chang-Ming.Huang@freescale.com> |
| 7 | * Copyright (c) MontaVista Software, Inc. 2008. |
| 8 | * Anton Vorontsov <avorontsov@ru.mvista.com> |
| 9 | * |
| 10 | * This program is free software; you can redistribute it and/or modify it |
| 11 | * under the terms of the GNU General Public License as published by the |
| 12 | * Free Software Foundation; either version 2 of the License, or (at your |
| 13 | * option) any later version. |
| 14 | */ |
| 15 | |
| 16 | #include <linux/kernel.h> |
Grant Likely | 22ae782 | 2010-07-29 11:49:01 -0600 | [diff] [blame] | 17 | #include <linux/err.h> |
Anton Vorontsov | 83ff9dc | 2008-05-23 20:38:54 +0400 | [diff] [blame] | 18 | #include <linux/errno.h> |
| 19 | #include <linux/list.h> |
| 20 | #include <linux/io.h> |
| 21 | #include <linux/of.h> |
| 22 | #include <linux/spinlock.h> |
| 23 | #include <linux/bitops.h> |
Tejun Heo | 5a0e3ad | 2010-03-24 17:04:11 +0900 | [diff] [blame] | 24 | #include <linux/slab.h> |
Anton Vorontsov | 83ff9dc | 2008-05-23 20:38:54 +0400 | [diff] [blame] | 25 | #include <asm/fsl_gtm.h> |
| 26 | |
| 27 | #define GTCFR_STP(x) ((x) & 1 ? 1 << 5 : 1 << 1) |
| 28 | #define GTCFR_RST(x) ((x) & 1 ? 1 << 4 : 1 << 0) |
| 29 | |
| 30 | #define GTMDR_ICLK_MASK (3 << 1) |
| 31 | #define GTMDR_ICLK_ICAS (0 << 1) |
| 32 | #define GTMDR_ICLK_ICLK (1 << 1) |
| 33 | #define GTMDR_ICLK_SLGO (2 << 1) |
| 34 | #define GTMDR_FRR (1 << 3) |
| 35 | #define GTMDR_ORI (1 << 4) |
| 36 | #define GTMDR_SPS(x) ((x) << 8) |
| 37 | |
| 38 | struct gtm_timers_regs { |
| 39 | u8 gtcfr1; /* Timer 1, Timer 2 global config register */ |
| 40 | u8 res0[0x3]; |
| 41 | u8 gtcfr2; /* Timer 3, timer 4 global config register */ |
| 42 | u8 res1[0xB]; |
| 43 | __be16 gtmdr1; /* Timer 1 mode register */ |
| 44 | __be16 gtmdr2; /* Timer 2 mode register */ |
| 45 | __be16 gtrfr1; /* Timer 1 reference register */ |
| 46 | __be16 gtrfr2; /* Timer 2 reference register */ |
| 47 | __be16 gtcpr1; /* Timer 1 capture register */ |
| 48 | __be16 gtcpr2; /* Timer 2 capture register */ |
| 49 | __be16 gtcnr1; /* Timer 1 counter */ |
| 50 | __be16 gtcnr2; /* Timer 2 counter */ |
| 51 | __be16 gtmdr3; /* Timer 3 mode register */ |
| 52 | __be16 gtmdr4; /* Timer 4 mode register */ |
| 53 | __be16 gtrfr3; /* Timer 3 reference register */ |
| 54 | __be16 gtrfr4; /* Timer 4 reference register */ |
| 55 | __be16 gtcpr3; /* Timer 3 capture register */ |
| 56 | __be16 gtcpr4; /* Timer 4 capture register */ |
| 57 | __be16 gtcnr3; /* Timer 3 counter */ |
| 58 | __be16 gtcnr4; /* Timer 4 counter */ |
| 59 | __be16 gtevr1; /* Timer 1 event register */ |
| 60 | __be16 gtevr2; /* Timer 2 event register */ |
| 61 | __be16 gtevr3; /* Timer 3 event register */ |
| 62 | __be16 gtevr4; /* Timer 4 event register */ |
| 63 | __be16 gtpsr1; /* Timer 1 prescale register */ |
| 64 | __be16 gtpsr2; /* Timer 2 prescale register */ |
| 65 | __be16 gtpsr3; /* Timer 3 prescale register */ |
| 66 | __be16 gtpsr4; /* Timer 4 prescale register */ |
| 67 | u8 res2[0x40]; |
| 68 | } __attribute__ ((packed)); |
| 69 | |
| 70 | struct gtm { |
| 71 | unsigned int clock; |
| 72 | struct gtm_timers_regs __iomem *regs; |
| 73 | struct gtm_timer timers[4]; |
| 74 | spinlock_t lock; |
| 75 | struct list_head list_node; |
| 76 | }; |
| 77 | |
| 78 | static LIST_HEAD(gtms); |
| 79 | |
| 80 | /** |
| 81 | * gtm_get_timer - request GTM timer to use it with the rest of GTM API |
| 82 | * Context: non-IRQ |
| 83 | * |
| 84 | * This function reserves GTM timer for later use. It returns gtm_timer |
| 85 | * structure to use with the rest of GTM API, you should use timer->irq |
| 86 | * to manage timer interrupt. |
| 87 | */ |
| 88 | struct gtm_timer *gtm_get_timer16(void) |
| 89 | { |
| 90 | struct gtm *gtm = NULL; |
| 91 | int i; |
| 92 | |
| 93 | list_for_each_entry(gtm, >ms, list_node) { |
| 94 | spin_lock_irq(>m->lock); |
| 95 | |
| 96 | for (i = 0; i < ARRAY_SIZE(gtm->timers); i++) { |
| 97 | if (!gtm->timers[i].requested) { |
| 98 | gtm->timers[i].requested = true; |
| 99 | spin_unlock_irq(>m->lock); |
| 100 | return >m->timers[i]; |
| 101 | } |
| 102 | } |
| 103 | |
| 104 | spin_unlock_irq(>m->lock); |
| 105 | } |
| 106 | |
| 107 | if (gtm) |
| 108 | return ERR_PTR(-EBUSY); |
| 109 | return ERR_PTR(-ENODEV); |
| 110 | } |
| 111 | EXPORT_SYMBOL(gtm_get_timer16); |
| 112 | |
| 113 | /** |
| 114 | * gtm_get_specific_timer - request specific GTM timer |
| 115 | * @gtm: specific GTM, pass here GTM's device_node->data |
| 116 | * @timer: specific timer number, Timer1 is 0. |
| 117 | * Context: non-IRQ |
| 118 | * |
| 119 | * This function reserves GTM timer for later use. It returns gtm_timer |
| 120 | * structure to use with the rest of GTM API, you should use timer->irq |
| 121 | * to manage timer interrupt. |
| 122 | */ |
| 123 | struct gtm_timer *gtm_get_specific_timer16(struct gtm *gtm, |
| 124 | unsigned int timer) |
| 125 | { |
| 126 | struct gtm_timer *ret = ERR_PTR(-EBUSY); |
| 127 | |
| 128 | if (timer > 3) |
| 129 | return ERR_PTR(-EINVAL); |
| 130 | |
| 131 | spin_lock_irq(>m->lock); |
| 132 | |
| 133 | if (gtm->timers[timer].requested) |
| 134 | goto out; |
| 135 | |
| 136 | ret = >m->timers[timer]; |
| 137 | ret->requested = true; |
| 138 | |
| 139 | out: |
| 140 | spin_unlock_irq(>m->lock); |
| 141 | return ret; |
| 142 | } |
| 143 | EXPORT_SYMBOL(gtm_get_specific_timer16); |
| 144 | |
| 145 | /** |
| 146 | * gtm_put_timer16 - release 16 bits GTM timer |
| 147 | * @tmr: pointer to the gtm_timer structure obtained from gtm_get_timer |
| 148 | * Context: any |
| 149 | * |
| 150 | * This function releases GTM timer so others may request it. |
| 151 | */ |
| 152 | void gtm_put_timer16(struct gtm_timer *tmr) |
| 153 | { |
| 154 | gtm_stop_timer16(tmr); |
| 155 | |
| 156 | spin_lock_irq(&tmr->gtm->lock); |
| 157 | tmr->requested = false; |
| 158 | spin_unlock_irq(&tmr->gtm->lock); |
| 159 | } |
| 160 | EXPORT_SYMBOL(gtm_put_timer16); |
| 161 | |
| 162 | /* |
| 163 | * This is back-end for the exported functions, it's used to reset single |
| 164 | * timer in reference mode. |
| 165 | */ |
| 166 | static int gtm_set_ref_timer16(struct gtm_timer *tmr, int frequency, |
| 167 | int reference_value, bool free_run) |
| 168 | { |
| 169 | struct gtm *gtm = tmr->gtm; |
| 170 | int num = tmr - >m->timers[0]; |
| 171 | unsigned int prescaler; |
| 172 | u8 iclk = GTMDR_ICLK_ICLK; |
| 173 | u8 psr; |
| 174 | u8 sps; |
| 175 | unsigned long flags; |
| 176 | int max_prescaler = 256 * 256 * 16; |
| 177 | |
| 178 | /* CPM2 doesn't have primary prescaler */ |
| 179 | if (!tmr->gtpsr) |
| 180 | max_prescaler /= 256; |
| 181 | |
| 182 | prescaler = gtm->clock / frequency; |
| 183 | /* |
| 184 | * We have two 8 bit prescalers -- primary and secondary (psr, sps), |
| 185 | * plus "slow go" mode (clk / 16). So, total prescale value is |
| 186 | * 16 * (psr + 1) * (sps + 1). Though, for CPM2 GTMs we losing psr. |
| 187 | */ |
| 188 | if (prescaler > max_prescaler) |
| 189 | return -EINVAL; |
| 190 | |
| 191 | if (prescaler > max_prescaler / 16) { |
| 192 | iclk = GTMDR_ICLK_SLGO; |
| 193 | prescaler /= 16; |
| 194 | } |
| 195 | |
| 196 | if (prescaler <= 256) { |
| 197 | psr = 0; |
| 198 | sps = prescaler - 1; |
| 199 | } else { |
| 200 | psr = 256 - 1; |
| 201 | sps = prescaler / 256 - 1; |
| 202 | } |
| 203 | |
| 204 | spin_lock_irqsave(>m->lock, flags); |
| 205 | |
| 206 | /* |
| 207 | * Properly reset timers: stop, reset, set up prescalers, reference |
| 208 | * value and clear event register. |
| 209 | */ |
| 210 | clrsetbits_8(tmr->gtcfr, ~(GTCFR_STP(num) | GTCFR_RST(num)), |
| 211 | GTCFR_STP(num) | GTCFR_RST(num)); |
| 212 | |
| 213 | setbits8(tmr->gtcfr, GTCFR_STP(num)); |
| 214 | |
| 215 | if (tmr->gtpsr) |
| 216 | out_be16(tmr->gtpsr, psr); |
| 217 | clrsetbits_be16(tmr->gtmdr, 0xFFFF, iclk | GTMDR_SPS(sps) | |
| 218 | GTMDR_ORI | (free_run ? GTMDR_FRR : 0)); |
| 219 | out_be16(tmr->gtcnr, 0); |
| 220 | out_be16(tmr->gtrfr, reference_value); |
| 221 | out_be16(tmr->gtevr, 0xFFFF); |
| 222 | |
| 223 | /* Let it be. */ |
| 224 | clrbits8(tmr->gtcfr, GTCFR_STP(num)); |
| 225 | |
| 226 | spin_unlock_irqrestore(>m->lock, flags); |
| 227 | |
| 228 | return 0; |
| 229 | } |
| 230 | |
| 231 | /** |
| 232 | * gtm_set_timer16 - (re)set 16 bit timer with arbitrary precision |
| 233 | * @tmr: pointer to the gtm_timer structure obtained from gtm_get_timer |
| 234 | * @usec: timer interval in microseconds |
| 235 | * @reload: if set, the timer will reset upon expiry rather than |
| 236 | * continue running free. |
| 237 | * Context: any |
| 238 | * |
| 239 | * This function (re)sets the GTM timer so that it counts up to the requested |
| 240 | * interval value, and fires the interrupt when the value is reached. This |
| 241 | * function will reduce the precision of the timer as needed in order for the |
| 242 | * requested timeout to fit in a 16-bit register. |
| 243 | */ |
| 244 | int gtm_set_timer16(struct gtm_timer *tmr, unsigned long usec, bool reload) |
| 245 | { |
| 246 | /* quite obvious, frequency which is enough for µSec precision */ |
| 247 | int freq = 1000000; |
| 248 | unsigned int bit; |
| 249 | |
| 250 | bit = fls_long(usec); |
| 251 | if (bit > 15) { |
| 252 | freq >>= bit - 15; |
| 253 | usec >>= bit - 15; |
| 254 | } |
| 255 | |
| 256 | if (!freq) |
| 257 | return -EINVAL; |
| 258 | |
| 259 | return gtm_set_ref_timer16(tmr, freq, usec, reload); |
| 260 | } |
| 261 | EXPORT_SYMBOL(gtm_set_timer16); |
| 262 | |
| 263 | /** |
| 264 | * gtm_set_exact_utimer16 - (re)set 16 bits timer |
| 265 | * @tmr: pointer to the gtm_timer structure obtained from gtm_get_timer |
| 266 | * @usec: timer interval in microseconds |
| 267 | * @reload: if set, the timer will reset upon expiry rather than |
| 268 | * continue running free. |
| 269 | * Context: any |
| 270 | * |
| 271 | * This function (re)sets GTM timer so that it counts up to the requested |
| 272 | * interval value, and fires the interrupt when the value is reached. If reload |
| 273 | * flag was set, timer will also reset itself upon reference value, otherwise |
| 274 | * it continues to increment. |
| 275 | * |
| 276 | * The _exact_ bit in the function name states that this function will not |
| 277 | * crop precision of the "usec" argument, thus usec is limited to 16 bits |
| 278 | * (single timer width). |
| 279 | */ |
| 280 | int gtm_set_exact_timer16(struct gtm_timer *tmr, u16 usec, bool reload) |
| 281 | { |
| 282 | /* quite obvious, frequency which is enough for µSec precision */ |
| 283 | const int freq = 1000000; |
| 284 | |
| 285 | /* |
| 286 | * We can lower the frequency (and probably power consumption) by |
| 287 | * dividing both frequency and usec by 2 until there is no remainder. |
| 288 | * But we won't bother with this unless savings are measured, so just |
| 289 | * run the timer as is. |
| 290 | */ |
| 291 | |
| 292 | return gtm_set_ref_timer16(tmr, freq, usec, reload); |
| 293 | } |
| 294 | EXPORT_SYMBOL(gtm_set_exact_timer16); |
| 295 | |
| 296 | /** |
| 297 | * gtm_stop_timer16 - stop single timer |
| 298 | * @tmr: pointer to the gtm_timer structure obtained from gtm_get_timer |
| 299 | * Context: any |
| 300 | * |
| 301 | * This function simply stops the GTM timer. |
| 302 | */ |
| 303 | void gtm_stop_timer16(struct gtm_timer *tmr) |
| 304 | { |
| 305 | struct gtm *gtm = tmr->gtm; |
| 306 | int num = tmr - >m->timers[0]; |
| 307 | unsigned long flags; |
| 308 | |
| 309 | spin_lock_irqsave(>m->lock, flags); |
| 310 | |
| 311 | setbits8(tmr->gtcfr, GTCFR_STP(num)); |
| 312 | out_be16(tmr->gtevr, 0xFFFF); |
| 313 | |
| 314 | spin_unlock_irqrestore(>m->lock, flags); |
| 315 | } |
| 316 | EXPORT_SYMBOL(gtm_stop_timer16); |
| 317 | |
| 318 | /** |
| 319 | * gtm_ack_timer16 - acknowledge timer event (free-run timers only) |
| 320 | * @tmr: pointer to the gtm_timer structure obtained from gtm_get_timer |
| 321 | * @events: events mask to ack |
| 322 | * Context: any |
| 323 | * |
| 324 | * Thus function used to acknowledge timer interrupt event, use it inside the |
| 325 | * interrupt handler. |
| 326 | */ |
| 327 | void gtm_ack_timer16(struct gtm_timer *tmr, u16 events) |
| 328 | { |
| 329 | out_be16(tmr->gtevr, events); |
| 330 | } |
| 331 | EXPORT_SYMBOL(gtm_ack_timer16); |
| 332 | |
| 333 | static void __init gtm_set_shortcuts(struct device_node *np, |
| 334 | struct gtm_timer *timers, |
| 335 | struct gtm_timers_regs __iomem *regs) |
| 336 | { |
| 337 | /* |
| 338 | * Yeah, I don't like this either, but timers' registers a bit messed, |
| 339 | * so we have to provide shortcuts to write timer independent code. |
| 340 | * Alternative option is to create gt*() accessors, but that will be |
| 341 | * even uglier and cryptic. |
| 342 | */ |
| 343 | timers[0].gtcfr = ®s->gtcfr1; |
| 344 | timers[0].gtmdr = ®s->gtmdr1; |
| 345 | timers[0].gtcnr = ®s->gtcnr1; |
| 346 | timers[0].gtrfr = ®s->gtrfr1; |
| 347 | timers[0].gtevr = ®s->gtevr1; |
| 348 | |
| 349 | timers[1].gtcfr = ®s->gtcfr1; |
| 350 | timers[1].gtmdr = ®s->gtmdr2; |
| 351 | timers[1].gtcnr = ®s->gtcnr2; |
| 352 | timers[1].gtrfr = ®s->gtrfr2; |
| 353 | timers[1].gtevr = ®s->gtevr2; |
| 354 | |
| 355 | timers[2].gtcfr = ®s->gtcfr2; |
| 356 | timers[2].gtmdr = ®s->gtmdr3; |
| 357 | timers[2].gtcnr = ®s->gtcnr3; |
| 358 | timers[2].gtrfr = ®s->gtrfr3; |
| 359 | timers[2].gtevr = ®s->gtevr3; |
| 360 | |
| 361 | timers[3].gtcfr = ®s->gtcfr2; |
| 362 | timers[3].gtmdr = ®s->gtmdr4; |
| 363 | timers[3].gtcnr = ®s->gtcnr4; |
| 364 | timers[3].gtrfr = ®s->gtrfr4; |
| 365 | timers[3].gtevr = ®s->gtevr4; |
| 366 | |
| 367 | /* CPM2 doesn't have primary prescaler */ |
| 368 | if (!of_device_is_compatible(np, "fsl,cpm2-gtm")) { |
| 369 | timers[0].gtpsr = ®s->gtpsr1; |
| 370 | timers[1].gtpsr = ®s->gtpsr2; |
| 371 | timers[2].gtpsr = ®s->gtpsr3; |
| 372 | timers[3].gtpsr = ®s->gtpsr4; |
| 373 | } |
| 374 | } |
| 375 | |
| 376 | static int __init fsl_gtm_init(void) |
| 377 | { |
| 378 | struct device_node *np; |
| 379 | |
| 380 | for_each_compatible_node(np, NULL, "fsl,gtm") { |
| 381 | int i; |
| 382 | struct gtm *gtm; |
| 383 | const u32 *clock; |
| 384 | int size; |
| 385 | |
| 386 | gtm = kzalloc(sizeof(*gtm), GFP_KERNEL); |
| 387 | if (!gtm) { |
| 388 | pr_err("%s: unable to allocate memory\n", |
| 389 | np->full_name); |
| 390 | continue; |
| 391 | } |
| 392 | |
| 393 | spin_lock_init(>m->lock); |
| 394 | |
| 395 | clock = of_get_property(np, "clock-frequency", &size); |
| 396 | if (!clock || size != sizeof(*clock)) { |
| 397 | pr_err("%s: no clock-frequency\n", np->full_name); |
| 398 | goto err; |
| 399 | } |
| 400 | gtm->clock = *clock; |
| 401 | |
| 402 | for (i = 0; i < ARRAY_SIZE(gtm->timers); i++) { |
| 403 | int ret; |
| 404 | struct resource irq; |
| 405 | |
| 406 | ret = of_irq_to_resource(np, i, &irq); |
| 407 | if (ret == NO_IRQ) { |
| 408 | pr_err("%s: not enough interrupts specified\n", |
| 409 | np->full_name); |
| 410 | goto err; |
| 411 | } |
| 412 | gtm->timers[i].irq = irq.start; |
| 413 | gtm->timers[i].gtm = gtm; |
| 414 | } |
| 415 | |
| 416 | gtm->regs = of_iomap(np, 0); |
| 417 | if (!gtm->regs) { |
| 418 | pr_err("%s: unable to iomap registers\n", |
| 419 | np->full_name); |
| 420 | goto err; |
| 421 | } |
| 422 | |
| 423 | gtm_set_shortcuts(np, gtm->timers, gtm->regs); |
| 424 | list_add(>m->list_node, >ms); |
| 425 | |
| 426 | /* We don't want to lose the node and its ->data */ |
| 427 | np->data = gtm; |
| 428 | of_node_get(np); |
| 429 | |
| 430 | continue; |
| 431 | err: |
| 432 | kfree(gtm); |
| 433 | } |
| 434 | return 0; |
| 435 | } |
| 436 | arch_initcall(fsl_gtm_init); |