Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 1 | /* |
| 2 | * Cryptographic API. |
| 3 | * |
| 4 | * Support for VIA PadLock hardware crypto engine. |
| 5 | * |
| 6 | * Copyright (c) 2004 Michal Ludvig <michal@logix.cz> |
| 7 | * |
| 8 | * Key expansion routine taken from crypto/aes.c |
| 9 | * |
| 10 | * This program is free software; you can redistribute it and/or modify |
| 11 | * it under the terms of the GNU General Public License as published by |
| 12 | * the Free Software Foundation; either version 2 of the License, or |
| 13 | * (at your option) any later version. |
| 14 | * |
| 15 | * --------------------------------------------------------------------------- |
| 16 | * Copyright (c) 2002, Dr Brian Gladman <brg@gladman.me.uk>, Worcester, UK. |
| 17 | * All rights reserved. |
| 18 | * |
| 19 | * LICENSE TERMS |
| 20 | * |
| 21 | * The free distribution and use of this software in both source and binary |
| 22 | * form is allowed (with or without changes) provided that: |
| 23 | * |
| 24 | * 1. distributions of this source code include the above copyright |
| 25 | * notice, this list of conditions and the following disclaimer; |
| 26 | * |
| 27 | * 2. distributions in binary form include the above copyright |
| 28 | * notice, this list of conditions and the following disclaimer |
| 29 | * in the documentation and/or other associated materials; |
| 30 | * |
| 31 | * 3. the copyright holder's name is not used to endorse products |
| 32 | * built using this software without specific written permission. |
| 33 | * |
| 34 | * ALTERNATIVELY, provided that this notice is retained in full, this product |
| 35 | * may be distributed under the terms of the GNU General Public License (GPL), |
| 36 | * in which case the provisions of the GPL apply INSTEAD OF those given above. |
| 37 | * |
| 38 | * DISCLAIMER |
| 39 | * |
| 40 | * This software is provided 'as is' with no explicit or implied warranties |
| 41 | * in respect of its properties, including, but not limited to, correctness |
| 42 | * and/or fitness for purpose. |
| 43 | * --------------------------------------------------------------------------- |
| 44 | */ |
| 45 | |
| 46 | #include <linux/module.h> |
| 47 | #include <linux/init.h> |
| 48 | #include <linux/types.h> |
| 49 | #include <linux/errno.h> |
| 50 | #include <linux/crypto.h> |
| 51 | #include <linux/interrupt.h> |
| 52 | #include <asm/byteorder.h> |
| 53 | #include "padlock.h" |
| 54 | |
| 55 | #define AES_MIN_KEY_SIZE 16 /* in uint8_t units */ |
| 56 | #define AES_MAX_KEY_SIZE 32 /* ditto */ |
| 57 | #define AES_BLOCK_SIZE 16 /* ditto */ |
| 58 | #define AES_EXTENDED_KEY_SIZE 64 /* in uint32_t units */ |
| 59 | #define AES_EXTENDED_KEY_SIZE_B (AES_EXTENDED_KEY_SIZE * sizeof(uint32_t)) |
| 60 | |
| 61 | struct aes_ctx { |
| 62 | uint32_t e_data[AES_EXTENDED_KEY_SIZE+4]; |
| 63 | uint32_t d_data[AES_EXTENDED_KEY_SIZE+4]; |
| 64 | uint32_t *E; |
| 65 | uint32_t *D; |
| 66 | int key_length; |
| 67 | }; |
| 68 | |
| 69 | /* ====== Key management routines ====== */ |
| 70 | |
| 71 | static inline uint32_t |
| 72 | generic_rotr32 (const uint32_t x, const unsigned bits) |
| 73 | { |
| 74 | const unsigned n = bits % 32; |
| 75 | return (x >> n) | (x << (32 - n)); |
| 76 | } |
| 77 | |
| 78 | static inline uint32_t |
| 79 | generic_rotl32 (const uint32_t x, const unsigned bits) |
| 80 | { |
| 81 | const unsigned n = bits % 32; |
| 82 | return (x << n) | (x >> (32 - n)); |
| 83 | } |
| 84 | |
| 85 | #define rotl generic_rotl32 |
| 86 | #define rotr generic_rotr32 |
| 87 | |
| 88 | /* |
| 89 | * #define byte(x, nr) ((unsigned char)((x) >> (nr*8))) |
| 90 | */ |
| 91 | static inline uint8_t |
| 92 | byte(const uint32_t x, const unsigned n) |
| 93 | { |
| 94 | return x >> (n << 3); |
| 95 | } |
| 96 | |
| 97 | #define uint32_t_in(x) le32_to_cpu(*(const uint32_t *)(x)) |
| 98 | #define uint32_t_out(to, from) (*(uint32_t *)(to) = cpu_to_le32(from)) |
| 99 | |
| 100 | #define E_KEY ctx->E |
| 101 | #define D_KEY ctx->D |
| 102 | |
| 103 | static uint8_t pow_tab[256]; |
| 104 | static uint8_t log_tab[256]; |
| 105 | static uint8_t sbx_tab[256]; |
| 106 | static uint8_t isb_tab[256]; |
| 107 | static uint32_t rco_tab[10]; |
| 108 | static uint32_t ft_tab[4][256]; |
| 109 | static uint32_t it_tab[4][256]; |
| 110 | |
| 111 | static uint32_t fl_tab[4][256]; |
| 112 | static uint32_t il_tab[4][256]; |
| 113 | |
| 114 | static inline uint8_t |
| 115 | f_mult (uint8_t a, uint8_t b) |
| 116 | { |
| 117 | uint8_t aa = log_tab[a], cc = aa + log_tab[b]; |
| 118 | |
| 119 | return pow_tab[cc + (cc < aa ? 1 : 0)]; |
| 120 | } |
| 121 | |
| 122 | #define ff_mult(a,b) (a && b ? f_mult(a, b) : 0) |
| 123 | |
| 124 | #define f_rn(bo, bi, n, k) \ |
| 125 | bo[n] = ft_tab[0][byte(bi[n],0)] ^ \ |
| 126 | ft_tab[1][byte(bi[(n + 1) & 3],1)] ^ \ |
| 127 | ft_tab[2][byte(bi[(n + 2) & 3],2)] ^ \ |
| 128 | ft_tab[3][byte(bi[(n + 3) & 3],3)] ^ *(k + n) |
| 129 | |
| 130 | #define i_rn(bo, bi, n, k) \ |
| 131 | bo[n] = it_tab[0][byte(bi[n],0)] ^ \ |
| 132 | it_tab[1][byte(bi[(n + 3) & 3],1)] ^ \ |
| 133 | it_tab[2][byte(bi[(n + 2) & 3],2)] ^ \ |
| 134 | it_tab[3][byte(bi[(n + 1) & 3],3)] ^ *(k + n) |
| 135 | |
| 136 | #define ls_box(x) \ |
| 137 | ( fl_tab[0][byte(x, 0)] ^ \ |
| 138 | fl_tab[1][byte(x, 1)] ^ \ |
| 139 | fl_tab[2][byte(x, 2)] ^ \ |
| 140 | fl_tab[3][byte(x, 3)] ) |
| 141 | |
| 142 | #define f_rl(bo, bi, n, k) \ |
| 143 | bo[n] = fl_tab[0][byte(bi[n],0)] ^ \ |
| 144 | fl_tab[1][byte(bi[(n + 1) & 3],1)] ^ \ |
| 145 | fl_tab[2][byte(bi[(n + 2) & 3],2)] ^ \ |
| 146 | fl_tab[3][byte(bi[(n + 3) & 3],3)] ^ *(k + n) |
| 147 | |
| 148 | #define i_rl(bo, bi, n, k) \ |
| 149 | bo[n] = il_tab[0][byte(bi[n],0)] ^ \ |
| 150 | il_tab[1][byte(bi[(n + 3) & 3],1)] ^ \ |
| 151 | il_tab[2][byte(bi[(n + 2) & 3],2)] ^ \ |
| 152 | il_tab[3][byte(bi[(n + 1) & 3],3)] ^ *(k + n) |
| 153 | |
| 154 | static void |
| 155 | gen_tabs (void) |
| 156 | { |
| 157 | uint32_t i, t; |
| 158 | uint8_t p, q; |
| 159 | |
| 160 | /* log and power tables for GF(2**8) finite field with |
| 161 | 0x011b as modular polynomial - the simplest prmitive |
| 162 | root is 0x03, used here to generate the tables */ |
| 163 | |
| 164 | for (i = 0, p = 1; i < 256; ++i) { |
| 165 | pow_tab[i] = (uint8_t) p; |
| 166 | log_tab[p] = (uint8_t) i; |
| 167 | |
| 168 | p ^= (p << 1) ^ (p & 0x80 ? 0x01b : 0); |
| 169 | } |
| 170 | |
| 171 | log_tab[1] = 0; |
| 172 | |
| 173 | for (i = 0, p = 1; i < 10; ++i) { |
| 174 | rco_tab[i] = p; |
| 175 | |
| 176 | p = (p << 1) ^ (p & 0x80 ? 0x01b : 0); |
| 177 | } |
| 178 | |
| 179 | for (i = 0; i < 256; ++i) { |
| 180 | p = (i ? pow_tab[255 - log_tab[i]] : 0); |
| 181 | q = ((p >> 7) | (p << 1)) ^ ((p >> 6) | (p << 2)); |
| 182 | p ^= 0x63 ^ q ^ ((q >> 6) | (q << 2)); |
| 183 | sbx_tab[i] = p; |
| 184 | isb_tab[p] = (uint8_t) i; |
| 185 | } |
| 186 | |
| 187 | for (i = 0; i < 256; ++i) { |
| 188 | p = sbx_tab[i]; |
| 189 | |
| 190 | t = p; |
| 191 | fl_tab[0][i] = t; |
| 192 | fl_tab[1][i] = rotl (t, 8); |
| 193 | fl_tab[2][i] = rotl (t, 16); |
| 194 | fl_tab[3][i] = rotl (t, 24); |
| 195 | |
| 196 | t = ((uint32_t) ff_mult (2, p)) | |
| 197 | ((uint32_t) p << 8) | |
| 198 | ((uint32_t) p << 16) | ((uint32_t) ff_mult (3, p) << 24); |
| 199 | |
| 200 | ft_tab[0][i] = t; |
| 201 | ft_tab[1][i] = rotl (t, 8); |
| 202 | ft_tab[2][i] = rotl (t, 16); |
| 203 | ft_tab[3][i] = rotl (t, 24); |
| 204 | |
| 205 | p = isb_tab[i]; |
| 206 | |
| 207 | t = p; |
| 208 | il_tab[0][i] = t; |
| 209 | il_tab[1][i] = rotl (t, 8); |
| 210 | il_tab[2][i] = rotl (t, 16); |
| 211 | il_tab[3][i] = rotl (t, 24); |
| 212 | |
| 213 | t = ((uint32_t) ff_mult (14, p)) | |
| 214 | ((uint32_t) ff_mult (9, p) << 8) | |
| 215 | ((uint32_t) ff_mult (13, p) << 16) | |
| 216 | ((uint32_t) ff_mult (11, p) << 24); |
| 217 | |
| 218 | it_tab[0][i] = t; |
| 219 | it_tab[1][i] = rotl (t, 8); |
| 220 | it_tab[2][i] = rotl (t, 16); |
| 221 | it_tab[3][i] = rotl (t, 24); |
| 222 | } |
| 223 | } |
| 224 | |
| 225 | #define star_x(x) (((x) & 0x7f7f7f7f) << 1) ^ ((((x) & 0x80808080) >> 7) * 0x1b) |
| 226 | |
| 227 | #define imix_col(y,x) \ |
| 228 | u = star_x(x); \ |
| 229 | v = star_x(u); \ |
| 230 | w = star_x(v); \ |
| 231 | t = w ^ (x); \ |
| 232 | (y) = u ^ v ^ w; \ |
| 233 | (y) ^= rotr(u ^ t, 8) ^ \ |
| 234 | rotr(v ^ t, 16) ^ \ |
| 235 | rotr(t,24) |
| 236 | |
| 237 | /* initialise the key schedule from the user supplied key */ |
| 238 | |
| 239 | #define loop4(i) \ |
| 240 | { t = rotr(t, 8); t = ls_box(t) ^ rco_tab[i]; \ |
| 241 | t ^= E_KEY[4 * i]; E_KEY[4 * i + 4] = t; \ |
| 242 | t ^= E_KEY[4 * i + 1]; E_KEY[4 * i + 5] = t; \ |
| 243 | t ^= E_KEY[4 * i + 2]; E_KEY[4 * i + 6] = t; \ |
| 244 | t ^= E_KEY[4 * i + 3]; E_KEY[4 * i + 7] = t; \ |
| 245 | } |
| 246 | |
| 247 | #define loop6(i) \ |
| 248 | { t = rotr(t, 8); t = ls_box(t) ^ rco_tab[i]; \ |
| 249 | t ^= E_KEY[6 * i]; E_KEY[6 * i + 6] = t; \ |
| 250 | t ^= E_KEY[6 * i + 1]; E_KEY[6 * i + 7] = t; \ |
| 251 | t ^= E_KEY[6 * i + 2]; E_KEY[6 * i + 8] = t; \ |
| 252 | t ^= E_KEY[6 * i + 3]; E_KEY[6 * i + 9] = t; \ |
| 253 | t ^= E_KEY[6 * i + 4]; E_KEY[6 * i + 10] = t; \ |
| 254 | t ^= E_KEY[6 * i + 5]; E_KEY[6 * i + 11] = t; \ |
| 255 | } |
| 256 | |
| 257 | #define loop8(i) \ |
| 258 | { t = rotr(t, 8); ; t = ls_box(t) ^ rco_tab[i]; \ |
| 259 | t ^= E_KEY[8 * i]; E_KEY[8 * i + 8] = t; \ |
| 260 | t ^= E_KEY[8 * i + 1]; E_KEY[8 * i + 9] = t; \ |
| 261 | t ^= E_KEY[8 * i + 2]; E_KEY[8 * i + 10] = t; \ |
| 262 | t ^= E_KEY[8 * i + 3]; E_KEY[8 * i + 11] = t; \ |
| 263 | t = E_KEY[8 * i + 4] ^ ls_box(t); \ |
| 264 | E_KEY[8 * i + 12] = t; \ |
| 265 | t ^= E_KEY[8 * i + 5]; E_KEY[8 * i + 13] = t; \ |
| 266 | t ^= E_KEY[8 * i + 6]; E_KEY[8 * i + 14] = t; \ |
| 267 | t ^= E_KEY[8 * i + 7]; E_KEY[8 * i + 15] = t; \ |
| 268 | } |
| 269 | |
| 270 | /* Tells whether the ACE is capable to generate |
| 271 | the extended key for a given key_len. */ |
| 272 | static inline int |
| 273 | aes_hw_extkey_available(uint8_t key_len) |
| 274 | { |
| 275 | /* TODO: We should check the actual CPU model/stepping |
| 276 | as it's possible that the capability will be |
| 277 | added in the next CPU revisions. */ |
| 278 | if (key_len == 16) |
| 279 | return 1; |
| 280 | return 0; |
| 281 | } |
| 282 | |
| 283 | static int |
| 284 | aes_set_key(void *ctx_arg, const uint8_t *in_key, unsigned int key_len, uint32_t *flags) |
| 285 | { |
| 286 | struct aes_ctx *ctx = ctx_arg; |
| 287 | uint32_t i, t, u, v, w; |
| 288 | uint32_t P[AES_EXTENDED_KEY_SIZE]; |
| 289 | uint32_t rounds; |
| 290 | |
| 291 | if (key_len != 16 && key_len != 24 && key_len != 32) { |
| 292 | *flags |= CRYPTO_TFM_RES_BAD_KEY_LEN; |
| 293 | return -EINVAL; |
| 294 | } |
| 295 | |
| 296 | ctx->key_length = key_len; |
| 297 | |
| 298 | ctx->E = ctx->e_data; |
| 299 | ctx->D = ctx->d_data; |
| 300 | |
| 301 | /* Ensure 16-Bytes alignmentation of keys for VIA PadLock. */ |
| 302 | if ((int)(ctx->e_data) & 0x0F) |
| 303 | ctx->E += 4 - (((int)(ctx->e_data) & 0x0F) / sizeof (ctx->e_data[0])); |
| 304 | |
| 305 | if ((int)(ctx->d_data) & 0x0F) |
| 306 | ctx->D += 4 - (((int)(ctx->d_data) & 0x0F) / sizeof (ctx->d_data[0])); |
| 307 | |
| 308 | E_KEY[0] = uint32_t_in (in_key); |
| 309 | E_KEY[1] = uint32_t_in (in_key + 4); |
| 310 | E_KEY[2] = uint32_t_in (in_key + 8); |
| 311 | E_KEY[3] = uint32_t_in (in_key + 12); |
| 312 | |
| 313 | /* Don't generate extended keys if the hardware can do it. */ |
| 314 | if (aes_hw_extkey_available(key_len)) |
| 315 | return 0; |
| 316 | |
| 317 | switch (key_len) { |
| 318 | case 16: |
| 319 | t = E_KEY[3]; |
| 320 | for (i = 0; i < 10; ++i) |
| 321 | loop4 (i); |
| 322 | break; |
| 323 | |
| 324 | case 24: |
| 325 | E_KEY[4] = uint32_t_in (in_key + 16); |
| 326 | t = E_KEY[5] = uint32_t_in (in_key + 20); |
| 327 | for (i = 0; i < 8; ++i) |
| 328 | loop6 (i); |
| 329 | break; |
| 330 | |
| 331 | case 32: |
| 332 | E_KEY[4] = uint32_t_in (in_key + 16); |
| 333 | E_KEY[5] = uint32_t_in (in_key + 20); |
| 334 | E_KEY[6] = uint32_t_in (in_key + 24); |
| 335 | t = E_KEY[7] = uint32_t_in (in_key + 28); |
| 336 | for (i = 0; i < 7; ++i) |
| 337 | loop8 (i); |
| 338 | break; |
| 339 | } |
| 340 | |
| 341 | D_KEY[0] = E_KEY[0]; |
| 342 | D_KEY[1] = E_KEY[1]; |
| 343 | D_KEY[2] = E_KEY[2]; |
| 344 | D_KEY[3] = E_KEY[3]; |
| 345 | |
| 346 | for (i = 4; i < key_len + 24; ++i) { |
| 347 | imix_col (D_KEY[i], E_KEY[i]); |
| 348 | } |
| 349 | |
| 350 | /* PadLock needs a different format of the decryption key. */ |
| 351 | rounds = 10 + (key_len - 16) / 4; |
| 352 | |
| 353 | for (i = 0; i < rounds; i++) { |
| 354 | P[((i + 1) * 4) + 0] = D_KEY[((rounds - i - 1) * 4) + 0]; |
| 355 | P[((i + 1) * 4) + 1] = D_KEY[((rounds - i - 1) * 4) + 1]; |
| 356 | P[((i + 1) * 4) + 2] = D_KEY[((rounds - i - 1) * 4) + 2]; |
| 357 | P[((i + 1) * 4) + 3] = D_KEY[((rounds - i - 1) * 4) + 3]; |
| 358 | } |
| 359 | |
| 360 | P[0] = E_KEY[(rounds * 4) + 0]; |
| 361 | P[1] = E_KEY[(rounds * 4) + 1]; |
| 362 | P[2] = E_KEY[(rounds * 4) + 2]; |
| 363 | P[3] = E_KEY[(rounds * 4) + 3]; |
| 364 | |
| 365 | memcpy(D_KEY, P, AES_EXTENDED_KEY_SIZE_B); |
| 366 | |
| 367 | return 0; |
| 368 | } |
| 369 | |
| 370 | /* ====== Encryption/decryption routines ====== */ |
| 371 | |
| 372 | /* This is the real call to PadLock. */ |
| 373 | static inline void |
| 374 | padlock_xcrypt_ecb(uint8_t *input, uint8_t *output, uint8_t *key, |
| 375 | void *control_word, uint32_t count) |
| 376 | { |
| 377 | asm volatile ("pushfl; popfl"); /* enforce key reload. */ |
| 378 | asm volatile (".byte 0xf3,0x0f,0xa7,0xc8" /* rep xcryptecb */ |
| 379 | : "+S"(input), "+D"(output) |
| 380 | : "d"(control_word), "b"(key), "c"(count)); |
| 381 | } |
| 382 | |
| 383 | static void |
| 384 | aes_padlock(void *ctx_arg, uint8_t *out_arg, const uint8_t *in_arg, int encdec) |
| 385 | { |
| 386 | /* Don't blindly modify this structure - the items must |
| 387 | fit on 16-Bytes boundaries! */ |
| 388 | struct padlock_xcrypt_data { |
| 389 | uint8_t buf[AES_BLOCK_SIZE]; |
| 390 | union cword cword; |
| 391 | }; |
| 392 | |
| 393 | struct aes_ctx *ctx = ctx_arg; |
| 394 | char bigbuf[sizeof(struct padlock_xcrypt_data) + 16]; |
| 395 | struct padlock_xcrypt_data *data; |
| 396 | void *key; |
| 397 | |
| 398 | /* Place 'data' at the first 16-Bytes aligned address in 'bigbuf'. */ |
| 399 | if (((long)bigbuf) & 0x0F) |
| 400 | data = (void*)(bigbuf + 16 - ((long)bigbuf & 0x0F)); |
| 401 | else |
| 402 | data = (void*)bigbuf; |
| 403 | |
| 404 | /* Prepare Control word. */ |
| 405 | memset (data, 0, sizeof(struct padlock_xcrypt_data)); |
| 406 | data->cword.b.encdec = !encdec; /* in the rest of cryptoapi ENC=1/DEC=0 */ |
| 407 | data->cword.b.rounds = 10 + (ctx->key_length - 16) / 4; |
| 408 | data->cword.b.ksize = (ctx->key_length - 16) / 8; |
| 409 | |
| 410 | /* Is the hardware capable to generate the extended key? */ |
| 411 | if (!aes_hw_extkey_available(ctx->key_length)) |
| 412 | data->cword.b.keygen = 1; |
| 413 | |
| 414 | /* ctx->E starts with a plain key - if the hardware is capable |
| 415 | to generate the extended key itself we must supply |
| 416 | the plain key for both Encryption and Decryption. */ |
| 417 | if (encdec == CRYPTO_DIR_ENCRYPT || data->cword.b.keygen == 0) |
| 418 | key = ctx->E; |
| 419 | else |
| 420 | key = ctx->D; |
| 421 | |
| 422 | memcpy(data->buf, in_arg, AES_BLOCK_SIZE); |
| 423 | padlock_xcrypt_ecb(data->buf, data->buf, key, &data->cword, 1); |
| 424 | memcpy(out_arg, data->buf, AES_BLOCK_SIZE); |
| 425 | } |
| 426 | |
| 427 | static void |
| 428 | aes_encrypt(void *ctx_arg, uint8_t *out, const uint8_t *in) |
| 429 | { |
| 430 | aes_padlock(ctx_arg, out, in, CRYPTO_DIR_ENCRYPT); |
| 431 | } |
| 432 | |
| 433 | static void |
| 434 | aes_decrypt(void *ctx_arg, uint8_t *out, const uint8_t *in) |
| 435 | { |
| 436 | aes_padlock(ctx_arg, out, in, CRYPTO_DIR_DECRYPT); |
| 437 | } |
| 438 | |
| 439 | static struct crypto_alg aes_alg = { |
| 440 | .cra_name = "aes", |
| 441 | .cra_flags = CRYPTO_ALG_TYPE_CIPHER, |
| 442 | .cra_blocksize = AES_BLOCK_SIZE, |
| 443 | .cra_ctxsize = sizeof(struct aes_ctx), |
| 444 | .cra_module = THIS_MODULE, |
| 445 | .cra_list = LIST_HEAD_INIT(aes_alg.cra_list), |
| 446 | .cra_u = { |
| 447 | .cipher = { |
| 448 | .cia_min_keysize = AES_MIN_KEY_SIZE, |
| 449 | .cia_max_keysize = AES_MAX_KEY_SIZE, |
| 450 | .cia_setkey = aes_set_key, |
| 451 | .cia_encrypt = aes_encrypt, |
| 452 | .cia_decrypt = aes_decrypt |
| 453 | } |
| 454 | } |
| 455 | }; |
| 456 | |
| 457 | int __init padlock_init_aes(void) |
| 458 | { |
| 459 | printk(KERN_NOTICE PFX "Using VIA PadLock ACE for AES algorithm.\n"); |
| 460 | |
| 461 | gen_tabs(); |
| 462 | return crypto_register_alg(&aes_alg); |
| 463 | } |
| 464 | |
| 465 | void __exit padlock_fini_aes(void) |
| 466 | { |
| 467 | crypto_unregister_alg(&aes_alg); |
| 468 | } |