Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 1 | /* blz2060.c: Driver for Blizzard 2060 SCSI Controller. |
| 2 | * |
| 3 | * Copyright (C) 1996 Jesper Skov (jskov@cygnus.co.uk) |
| 4 | * |
| 5 | * This driver is based on the CyberStorm driver, hence the occasional |
| 6 | * reference to CyberStorm. |
| 7 | */ |
| 8 | |
| 9 | /* TODO: |
| 10 | * |
| 11 | * 1) Figure out how to make a cleaner merge with the sparc driver with regard |
| 12 | * to the caches and the Sparc MMU mapping. |
| 13 | * 2) Make as few routines required outside the generic driver. A lot of the |
| 14 | * routines in this file used to be inline! |
| 15 | */ |
| 16 | |
| 17 | #include <linux/module.h> |
| 18 | |
| 19 | #include <linux/init.h> |
| 20 | #include <linux/kernel.h> |
| 21 | #include <linux/delay.h> |
| 22 | #include <linux/types.h> |
| 23 | #include <linux/string.h> |
| 24 | #include <linux/slab.h> |
| 25 | #include <linux/blkdev.h> |
| 26 | #include <linux/proc_fs.h> |
| 27 | #include <linux/stat.h> |
| 28 | #include <linux/interrupt.h> |
| 29 | |
| 30 | #include "scsi.h" |
| 31 | #include <scsi/scsi_host.h> |
| 32 | #include "NCR53C9x.h" |
| 33 | |
| 34 | #include <linux/zorro.h> |
| 35 | #include <asm/irq.h> |
| 36 | #include <asm/amigaints.h> |
| 37 | #include <asm/amigahw.h> |
| 38 | |
| 39 | #include <asm/pgtable.h> |
| 40 | |
| 41 | /* The controller registers can be found in the Z2 config area at these |
| 42 | * offsets: |
| 43 | */ |
| 44 | #define BLZ2060_ESP_ADDR 0x1ff00 |
| 45 | #define BLZ2060_DMA_ADDR 0x1ffe0 |
| 46 | |
| 47 | |
| 48 | /* The Blizzard 2060 DMA interface |
| 49 | * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |
| 50 | * Only two things can be programmed in the Blizzard DMA: |
| 51 | * 1) The data direction is controlled by the status of bit 31 (1 = write) |
| 52 | * 2) The source/dest address (word aligned, shifted one right) in bits 30-0 |
| 53 | * |
| 54 | * Figure out interrupt status by reading the ESP status byte. |
| 55 | */ |
| 56 | struct blz2060_dma_registers { |
| 57 | volatile unsigned char dma_led_ctrl; /* DMA led control [0x000] */ |
| 58 | unsigned char dmapad1[0x0f]; |
| 59 | volatile unsigned char dma_addr0; /* DMA address (MSB) [0x010] */ |
| 60 | unsigned char dmapad2[0x03]; |
| 61 | volatile unsigned char dma_addr1; /* DMA address [0x014] */ |
| 62 | unsigned char dmapad3[0x03]; |
| 63 | volatile unsigned char dma_addr2; /* DMA address [0x018] */ |
| 64 | unsigned char dmapad4[0x03]; |
| 65 | volatile unsigned char dma_addr3; /* DMA address (LSB) [0x01c] */ |
| 66 | }; |
| 67 | |
| 68 | #define BLZ2060_DMA_WRITE 0x80000000 |
| 69 | |
| 70 | /* DMA control bits */ |
| 71 | #define BLZ2060_DMA_LED 0x02 /* HD led control 1 = off */ |
| 72 | |
| 73 | static int dma_bytes_sent(struct NCR_ESP *esp, int fifo_count); |
| 74 | static int dma_can_transfer(struct NCR_ESP *esp, Scsi_Cmnd *sp); |
| 75 | static void dma_dump_state(struct NCR_ESP *esp); |
| 76 | static void dma_init_read(struct NCR_ESP *esp, __u32 addr, int length); |
| 77 | static void dma_init_write(struct NCR_ESP *esp, __u32 addr, int length); |
| 78 | static void dma_ints_off(struct NCR_ESP *esp); |
| 79 | static void dma_ints_on(struct NCR_ESP *esp); |
| 80 | static int dma_irq_p(struct NCR_ESP *esp); |
| 81 | static void dma_led_off(struct NCR_ESP *esp); |
| 82 | static void dma_led_on(struct NCR_ESP *esp); |
| 83 | static int dma_ports_p(struct NCR_ESP *esp); |
| 84 | static void dma_setup(struct NCR_ESP *esp, __u32 addr, int count, int write); |
| 85 | |
| 86 | static volatile unsigned char cmd_buffer[16]; |
| 87 | /* This is where all commands are put |
| 88 | * before they are transferred to the ESP chip |
| 89 | * via PIO. |
| 90 | */ |
| 91 | |
| 92 | /***************************************************************** Detection */ |
Christoph Hellwig | d0be4a7d | 2005-10-31 18:31:40 +0100 | [diff] [blame] | 93 | int __init blz2060_esp_detect(struct scsi_host_template *tpnt) |
Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 94 | { |
| 95 | struct NCR_ESP *esp; |
| 96 | struct zorro_dev *z = NULL; |
| 97 | unsigned long address; |
| 98 | |
| 99 | if ((z = zorro_find_device(ZORRO_PROD_PHASE5_BLIZZARD_2060, z))) { |
| 100 | unsigned long board = z->resource.start; |
| 101 | if (request_mem_region(board+BLZ2060_ESP_ADDR, |
| 102 | sizeof(struct ESP_regs), "NCR53C9x")) { |
| 103 | esp = esp_allocate(tpnt, (void *)board+BLZ2060_ESP_ADDR); |
| 104 | |
| 105 | /* Do command transfer with programmed I/O */ |
| 106 | esp->do_pio_cmds = 1; |
| 107 | |
| 108 | /* Required functions */ |
| 109 | esp->dma_bytes_sent = &dma_bytes_sent; |
| 110 | esp->dma_can_transfer = &dma_can_transfer; |
| 111 | esp->dma_dump_state = &dma_dump_state; |
| 112 | esp->dma_init_read = &dma_init_read; |
| 113 | esp->dma_init_write = &dma_init_write; |
| 114 | esp->dma_ints_off = &dma_ints_off; |
| 115 | esp->dma_ints_on = &dma_ints_on; |
| 116 | esp->dma_irq_p = &dma_irq_p; |
| 117 | esp->dma_ports_p = &dma_ports_p; |
| 118 | esp->dma_setup = &dma_setup; |
| 119 | |
| 120 | /* Optional functions */ |
| 121 | esp->dma_barrier = 0; |
| 122 | esp->dma_drain = 0; |
| 123 | esp->dma_invalidate = 0; |
| 124 | esp->dma_irq_entry = 0; |
| 125 | esp->dma_irq_exit = 0; |
| 126 | esp->dma_led_on = &dma_led_on; |
| 127 | esp->dma_led_off = &dma_led_off; |
| 128 | esp->dma_poll = 0; |
| 129 | esp->dma_reset = 0; |
| 130 | |
| 131 | /* SCSI chip speed */ |
| 132 | esp->cfreq = 40000000; |
| 133 | |
| 134 | /* The DMA registers on the Blizzard are mapped |
| 135 | * relative to the device (i.e. in the same Zorro |
| 136 | * I/O block). |
| 137 | */ |
| 138 | address = (unsigned long)ZTWO_VADDR(board); |
| 139 | esp->dregs = (void *)(address + BLZ2060_DMA_ADDR); |
| 140 | |
| 141 | /* ESP register base */ |
| 142 | esp->eregs = (struct ESP_regs *)(address + BLZ2060_ESP_ADDR); |
| 143 | |
| 144 | /* Set the command buffer */ |
| 145 | esp->esp_command = cmd_buffer; |
| 146 | esp->esp_command_dvma = virt_to_bus((void *)cmd_buffer); |
| 147 | |
| 148 | esp->irq = IRQ_AMIGA_PORTS; |
| 149 | request_irq(IRQ_AMIGA_PORTS, esp_intr, SA_SHIRQ, |
| 150 | "Blizzard 2060 SCSI", esp->ehost); |
| 151 | |
| 152 | /* Figure out our scsi ID on the bus */ |
| 153 | esp->scsi_id = 7; |
| 154 | |
| 155 | /* We don't have a differential SCSI-bus. */ |
| 156 | esp->diff = 0; |
| 157 | |
| 158 | esp_initialize(esp); |
| 159 | |
| 160 | printk("ESP: Total of %d ESP hosts found, %d actually in use.\n", nesps, esps_in_use); |
| 161 | esps_running = esps_in_use; |
| 162 | return esps_in_use; |
| 163 | } |
| 164 | } |
| 165 | return 0; |
| 166 | } |
| 167 | |
| 168 | /************************************************************* DMA Functions */ |
| 169 | static int dma_bytes_sent(struct NCR_ESP *esp, int fifo_count) |
| 170 | { |
| 171 | /* Since the Blizzard DMA is fully dedicated to the ESP chip, |
| 172 | * the number of bytes sent (to the ESP chip) equals the number |
| 173 | * of bytes in the FIFO - there is no buffering in the DMA controller. |
| 174 | * XXXX Do I read this right? It is from host to ESP, right? |
| 175 | */ |
| 176 | return fifo_count; |
| 177 | } |
| 178 | |
| 179 | static int dma_can_transfer(struct NCR_ESP *esp, Scsi_Cmnd *sp) |
| 180 | { |
| 181 | /* I don't think there's any limit on the Blizzard DMA. So we use what |
| 182 | * the ESP chip can handle (24 bit). |
| 183 | */ |
| 184 | unsigned long sz = sp->SCp.this_residual; |
| 185 | if(sz > 0x1000000) |
| 186 | sz = 0x1000000; |
| 187 | return sz; |
| 188 | } |
| 189 | |
| 190 | static void dma_dump_state(struct NCR_ESP *esp) |
| 191 | { |
| 192 | ESPLOG(("intreq:<%04x>, intena:<%04x>\n", |
Al Viro | b4290a2 | 2006-01-12 01:06:12 -0800 | [diff] [blame] | 193 | amiga_custom.intreqr, amiga_custom.intenar)); |
Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 194 | } |
| 195 | |
| 196 | static void dma_init_read(struct NCR_ESP *esp, __u32 addr, int length) |
| 197 | { |
| 198 | struct blz2060_dma_registers *dregs = |
| 199 | (struct blz2060_dma_registers *) (esp->dregs); |
| 200 | |
| 201 | cache_clear(addr, length); |
| 202 | |
| 203 | addr >>= 1; |
| 204 | addr &= ~(BLZ2060_DMA_WRITE); |
| 205 | dregs->dma_addr3 = (addr ) & 0xff; |
| 206 | dregs->dma_addr2 = (addr >> 8) & 0xff; |
| 207 | dregs->dma_addr1 = (addr >> 16) & 0xff; |
| 208 | dregs->dma_addr0 = (addr >> 24) & 0xff; |
| 209 | } |
| 210 | |
| 211 | static void dma_init_write(struct NCR_ESP *esp, __u32 addr, int length) |
| 212 | { |
| 213 | struct blz2060_dma_registers *dregs = |
| 214 | (struct blz2060_dma_registers *) (esp->dregs); |
| 215 | |
| 216 | cache_push(addr, length); |
| 217 | |
| 218 | addr >>= 1; |
| 219 | addr |= BLZ2060_DMA_WRITE; |
| 220 | dregs->dma_addr3 = (addr ) & 0xff; |
| 221 | dregs->dma_addr2 = (addr >> 8) & 0xff; |
| 222 | dregs->dma_addr1 = (addr >> 16) & 0xff; |
| 223 | dregs->dma_addr0 = (addr >> 24) & 0xff; |
| 224 | } |
| 225 | |
| 226 | static void dma_ints_off(struct NCR_ESP *esp) |
| 227 | { |
| 228 | disable_irq(esp->irq); |
| 229 | } |
| 230 | |
| 231 | static void dma_ints_on(struct NCR_ESP *esp) |
| 232 | { |
| 233 | enable_irq(esp->irq); |
| 234 | } |
| 235 | |
| 236 | static int dma_irq_p(struct NCR_ESP *esp) |
| 237 | { |
| 238 | return (esp_read(esp->eregs->esp_status) & ESP_STAT_INTR); |
| 239 | } |
| 240 | |
| 241 | static void dma_led_off(struct NCR_ESP *esp) |
| 242 | { |
| 243 | ((struct blz2060_dma_registers *) (esp->dregs))->dma_led_ctrl = |
| 244 | BLZ2060_DMA_LED; |
| 245 | } |
| 246 | |
| 247 | static void dma_led_on(struct NCR_ESP *esp) |
| 248 | { |
| 249 | ((struct blz2060_dma_registers *) (esp->dregs))->dma_led_ctrl = 0; |
| 250 | } |
| 251 | |
| 252 | static int dma_ports_p(struct NCR_ESP *esp) |
| 253 | { |
Al Viro | b4290a2 | 2006-01-12 01:06:12 -0800 | [diff] [blame] | 254 | return ((amiga_custom.intenar) & IF_PORTS); |
Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 255 | } |
| 256 | |
| 257 | static void dma_setup(struct NCR_ESP *esp, __u32 addr, int count, int write) |
| 258 | { |
| 259 | /* On the Sparc, DMA_ST_WRITE means "move data from device to memory" |
| 260 | * so when (write) is true, it actually means READ! |
| 261 | */ |
| 262 | if(write){ |
| 263 | dma_init_read(esp, addr, count); |
| 264 | } else { |
| 265 | dma_init_write(esp, addr, count); |
| 266 | } |
| 267 | } |
| 268 | |
| 269 | #define HOSTS_C |
| 270 | |
| 271 | int blz2060_esp_release(struct Scsi_Host *instance) |
| 272 | { |
| 273 | #ifdef MODULE |
| 274 | unsigned long address = (unsigned long)((struct NCR_ESP *)instance->hostdata)->edev; |
| 275 | |
| 276 | esp_deallocate((struct NCR_ESP *)instance->hostdata); |
| 277 | esp_release(); |
| 278 | release_mem_region(address, sizeof(struct ESP_regs)); |
| 279 | free_irq(IRQ_AMIGA_PORTS, esp_intr); |
| 280 | #endif |
| 281 | return 1; |
| 282 | } |
| 283 | |
| 284 | |
Christoph Hellwig | d0be4a7d | 2005-10-31 18:31:40 +0100 | [diff] [blame] | 285 | static struct scsi_host_template driver_template = { |
Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 286 | .proc_name = "esp-blz2060", |
| 287 | .proc_info = esp_proc_info, |
| 288 | .name = "Blizzard2060 SCSI", |
| 289 | .detect = blz2060_esp_detect, |
| 290 | .slave_alloc = esp_slave_alloc, |
| 291 | .slave_destroy = esp_slave_destroy, |
| 292 | .release = blz2060_esp_release, |
| 293 | .queuecommand = esp_queue, |
| 294 | .eh_abort_handler = esp_abort, |
| 295 | .eh_bus_reset_handler = esp_reset, |
| 296 | .can_queue = 7, |
| 297 | .this_id = 7, |
| 298 | .sg_tablesize = SG_ALL, |
| 299 | .cmd_per_lun = 1, |
| 300 | .use_clustering = ENABLE_CLUSTERING |
| 301 | }; |
| 302 | |
| 303 | |
| 304 | #include "scsi_module.c" |
| 305 | |
| 306 | MODULE_LICENSE("GPL"); |