Bryan Huntsman | 3f2bc4d | 2011-08-16 17:27:22 -0700 | [diff] [blame] | 1 | /* |
| 2 | * Copyright (c) 2009, Code Aurora Forum. All rights reserved. |
| 3 | * |
| 4 | * This program is free software; you can redistribute it and/or modify |
| 5 | * it under the terms of the GNU General Public License version 2 and |
| 6 | * only version 2 as published by the Free Software Foundation. |
| 7 | * |
| 8 | * This program is distributed in the hope that it will be useful, |
| 9 | * but WITHOUT ANY WARRANTY; without even the implied warranty of |
| 10 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
| 11 | * GNU General Public License for more details. |
| 12 | */ |
| 13 | |
| 14 | #include <linux/kernel.h> |
| 15 | #include <linux/module.h> |
| 16 | #include <linux/init.h> |
| 17 | #include <linux/io.h> |
| 18 | #include <linux/delay.h> |
| 19 | #include <linux/kernel_stat.h> |
| 20 | #include <linux/workqueue.h> |
| 21 | #include <linux/slab.h> |
| 22 | |
| 23 | #include "avs.h" |
| 24 | |
| 25 | #define AVSDSCR_INPUT 0x01004860 /* magic # from circuit designer */ |
| 26 | #define TSCSR_INPUT 0x00000001 /* enable temperature sense */ |
| 27 | |
| 28 | #define TEMPRS 16 /* total number of temperature regions */ |
| 29 | #define GET_TEMPR() (avs_get_tscsr() >> 28) /* scale TSCSR[CTEMP] to regions */ |
| 30 | |
| 31 | struct mutex avs_lock; |
| 32 | |
| 33 | static struct avs_state_s |
| 34 | { |
| 35 | u32 freq_cnt; /* Frequencies supported list */ |
| 36 | short *avs_v; /* Dyanmically allocated storage for |
| 37 | * 2D table of voltages over temp & |
| 38 | * freq. Used as a set of 1D tables. |
| 39 | * Each table is for a single temp. |
| 40 | * For usage see avs_get_voltage |
| 41 | */ |
| 42 | int (*set_vdd) (int); /* Function Ptr for setting voltage */ |
| 43 | int changing; /* Clock frequency is changing */ |
| 44 | u32 freq_idx; /* Current frequency index */ |
| 45 | int vdd; /* Current ACPU voltage */ |
| 46 | } avs_state; |
| 47 | |
| 48 | /* |
| 49 | * Update the AVS voltage vs frequency table, for current temperature |
| 50 | * Adjust based on the AVS delay circuit hardware status |
| 51 | */ |
| 52 | static void avs_update_voltage_table(short *vdd_table) |
| 53 | { |
| 54 | u32 avscsr; |
| 55 | int cpu; |
| 56 | int vu; |
| 57 | int l2; |
| 58 | int i; |
| 59 | u32 cur_freq_idx; |
| 60 | short cur_voltage; |
| 61 | |
| 62 | cur_freq_idx = avs_state.freq_idx; |
| 63 | cur_voltage = avs_state.vdd; |
| 64 | |
| 65 | avscsr = avs_test_delays(); |
| 66 | AVSDEBUG("avscsr=%x, avsdscr=%x\n", avscsr, avs_get_avsdscr()); |
| 67 | |
| 68 | /* |
| 69 | * Read the results for the various unit's AVS delay circuits |
| 70 | * 2=> up, 1=>down, 0=>no-change |
| 71 | */ |
| 72 | cpu = ((avscsr >> 23) & 2) + ((avscsr >> 16) & 1); |
| 73 | vu = ((avscsr >> 28) & 2) + ((avscsr >> 21) & 1); |
| 74 | l2 = ((avscsr >> 29) & 2) + ((avscsr >> 22) & 1); |
| 75 | |
| 76 | if ((cpu == 3) || (vu == 3) || (l2 == 3)) { |
| 77 | printk(KERN_ERR "AVS: Dly Synth O/P error\n"); |
| 78 | } else if ((cpu == 2) || (l2 == 2) || (vu == 2)) { |
| 79 | /* |
| 80 | * even if one oscillator asks for up, increase the voltage, |
| 81 | * as its an indication we are running outside the |
| 82 | * critical acceptable range of v-f combination. |
| 83 | */ |
| 84 | AVSDEBUG("cpu=%d l2=%d vu=%d\n", cpu, l2, vu); |
| 85 | AVSDEBUG("Voltage up at %d\n", cur_freq_idx); |
| 86 | |
| 87 | if (cur_voltage >= VOLTAGE_MAX) |
| 88 | printk(KERN_ERR |
| 89 | "AVS: Voltage can not get high enough!\n"); |
| 90 | |
| 91 | /* Raise the voltage for all frequencies */ |
| 92 | for (i = 0; i < avs_state.freq_cnt; i++) { |
| 93 | vdd_table[i] = cur_voltage + VOLTAGE_STEP; |
| 94 | if (vdd_table[i] > VOLTAGE_MAX) |
| 95 | vdd_table[i] = VOLTAGE_MAX; |
| 96 | } |
| 97 | } else if ((cpu == 1) && (l2 == 1) && (vu == 1)) { |
| 98 | if ((cur_voltage - VOLTAGE_STEP >= VOLTAGE_MIN) && |
| 99 | (cur_voltage <= vdd_table[cur_freq_idx])) { |
| 100 | vdd_table[cur_freq_idx] = cur_voltage - VOLTAGE_STEP; |
| 101 | AVSDEBUG("Voltage down for %d and lower levels\n", |
| 102 | cur_freq_idx); |
| 103 | |
| 104 | /* clamp to this voltage for all lower levels */ |
| 105 | for (i = 0; i < cur_freq_idx; i++) { |
| 106 | if (vdd_table[i] > vdd_table[cur_freq_idx]) |
| 107 | vdd_table[i] = vdd_table[cur_freq_idx]; |
| 108 | } |
| 109 | } |
| 110 | } |
| 111 | } |
| 112 | |
| 113 | /* |
| 114 | * Return the voltage for the target performance freq_idx and optionally |
| 115 | * use AVS hardware to check the present voltage freq_idx |
| 116 | */ |
| 117 | static short avs_get_target_voltage(int freq_idx, bool update_table) |
| 118 | { |
| 119 | unsigned cur_tempr = GET_TEMPR(); |
| 120 | unsigned temp_index = cur_tempr*avs_state.freq_cnt; |
| 121 | |
| 122 | /* Table of voltages vs frequencies for this temp */ |
| 123 | short *vdd_table = avs_state.avs_v + temp_index; |
| 124 | |
| 125 | if (update_table) |
| 126 | avs_update_voltage_table(vdd_table); |
| 127 | |
| 128 | return vdd_table[freq_idx]; |
| 129 | } |
| 130 | |
| 131 | |
| 132 | /* |
| 133 | * Set the voltage for the freq_idx and optionally |
| 134 | * use AVS hardware to update the voltage |
| 135 | */ |
| 136 | static int avs_set_target_voltage(int freq_idx, bool update_table) |
| 137 | { |
| 138 | int rc = 0; |
| 139 | int new_voltage = avs_get_target_voltage(freq_idx, update_table); |
| 140 | if (avs_state.vdd != new_voltage) { |
| 141 | AVSDEBUG("AVS setting V to %d mV @%d\n", |
| 142 | new_voltage, freq_idx); |
| 143 | rc = avs_state.set_vdd(new_voltage); |
| 144 | if (rc) |
| 145 | return rc; |
| 146 | avs_state.vdd = new_voltage; |
| 147 | } |
| 148 | return rc; |
| 149 | } |
| 150 | |
| 151 | /* |
| 152 | * Notify avs of clk frquency transition begin & end |
| 153 | */ |
| 154 | int avs_adjust_freq(u32 freq_idx, int begin) |
| 155 | { |
| 156 | int rc = 0; |
| 157 | |
| 158 | if (!avs_state.set_vdd) { |
| 159 | /* AVS not initialized */ |
| 160 | return 0; |
| 161 | } |
| 162 | |
| 163 | if (freq_idx >= avs_state.freq_cnt) { |
| 164 | AVSDEBUG("Out of range :%d\n", freq_idx); |
| 165 | return -EINVAL; |
| 166 | } |
| 167 | |
| 168 | mutex_lock(&avs_lock); |
| 169 | if ((begin && (freq_idx > avs_state.freq_idx)) || |
| 170 | (!begin && (freq_idx < avs_state.freq_idx))) { |
| 171 | /* Update voltage before increasing frequency & |
| 172 | * after decreasing frequency |
| 173 | */ |
| 174 | rc = avs_set_target_voltage(freq_idx, 0); |
| 175 | if (rc) |
| 176 | goto aaf_out; |
| 177 | |
| 178 | avs_state.freq_idx = freq_idx; |
| 179 | } |
| 180 | avs_state.changing = begin; |
| 181 | aaf_out: |
| 182 | mutex_unlock(&avs_lock); |
| 183 | |
| 184 | return rc; |
| 185 | } |
| 186 | |
| 187 | |
| 188 | static struct delayed_work avs_work; |
| 189 | static struct workqueue_struct *kavs_wq; |
| 190 | #define AVS_DELAY ((CONFIG_HZ * 50 + 999) / 1000) |
| 191 | |
| 192 | static void do_avs_timer(struct work_struct *work) |
| 193 | { |
| 194 | int cur_freq_idx; |
| 195 | |
| 196 | mutex_lock(&avs_lock); |
| 197 | if (!avs_state.changing) { |
| 198 | /* Only adjust the voltage if clk is stable */ |
| 199 | cur_freq_idx = avs_state.freq_idx; |
| 200 | avs_set_target_voltage(cur_freq_idx, 1); |
| 201 | } |
| 202 | mutex_unlock(&avs_lock); |
| 203 | queue_delayed_work_on(0, kavs_wq, &avs_work, AVS_DELAY); |
| 204 | } |
| 205 | |
| 206 | |
| 207 | static void __init avs_timer_init(void) |
| 208 | { |
| 209 | INIT_DELAYED_WORK_DEFERRABLE(&avs_work, do_avs_timer); |
| 210 | queue_delayed_work_on(0, kavs_wq, &avs_work, AVS_DELAY); |
| 211 | } |
| 212 | |
| 213 | static void __exit avs_timer_exit(void) |
| 214 | { |
| 215 | cancel_delayed_work(&avs_work); |
| 216 | } |
| 217 | |
| 218 | static int __init avs_work_init(void) |
| 219 | { |
| 220 | kavs_wq = create_workqueue("avs"); |
| 221 | if (!kavs_wq) { |
| 222 | printk(KERN_ERR "AVS initialization failed\n"); |
| 223 | return -EFAULT; |
| 224 | } |
| 225 | avs_timer_init(); |
| 226 | |
| 227 | return 1; |
| 228 | } |
| 229 | |
| 230 | static void __exit avs_work_exit(void) |
| 231 | { |
| 232 | avs_timer_exit(); |
| 233 | destroy_workqueue(kavs_wq); |
| 234 | } |
| 235 | |
| 236 | int __init avs_init(int (*set_vdd)(int), u32 freq_cnt, u32 freq_idx) |
| 237 | { |
| 238 | int i; |
| 239 | |
| 240 | mutex_init(&avs_lock); |
| 241 | |
| 242 | if (freq_cnt == 0) |
| 243 | return -EINVAL; |
| 244 | |
| 245 | avs_state.freq_cnt = freq_cnt; |
| 246 | |
| 247 | if (freq_idx >= avs_state.freq_cnt) |
| 248 | return -EINVAL; |
| 249 | |
| 250 | avs_state.avs_v = kmalloc(TEMPRS * avs_state.freq_cnt * |
| 251 | sizeof(avs_state.avs_v[0]), GFP_KERNEL); |
| 252 | |
| 253 | if (avs_state.avs_v == 0) |
| 254 | return -ENOMEM; |
| 255 | |
| 256 | for (i = 0; i < TEMPRS*avs_state.freq_cnt; i++) |
| 257 | avs_state.avs_v[i] = VOLTAGE_MAX; |
| 258 | |
| 259 | avs_reset_delays(AVSDSCR_INPUT); |
| 260 | avs_set_tscsr(TSCSR_INPUT); |
| 261 | |
| 262 | avs_state.set_vdd = set_vdd; |
| 263 | avs_state.changing = 0; |
| 264 | avs_state.freq_idx = -1; |
| 265 | avs_state.vdd = -1; |
| 266 | avs_adjust_freq(freq_idx, 0); |
| 267 | |
| 268 | avs_work_init(); |
| 269 | |
| 270 | return 0; |
| 271 | } |
| 272 | |
| 273 | void __exit avs_exit() |
| 274 | { |
| 275 | avs_work_exit(); |
| 276 | |
| 277 | kfree(avs_state.avs_v); |
| 278 | } |
| 279 | |
| 280 | |