blob: 0ba35df9a6df910d63ae2bb0375e91f1adf093cd [file] [log] [blame]
Mika Westerberg011f23a2010-05-06 04:47:04 +00001/*
2 * Driver for Cirrus Logic EP93xx SPI controller.
3 *
4 * Copyright (c) 2010 Mika Westerberg
5 *
6 * Explicit FIFO handling code was inspired by amba-pl022 driver.
7 *
8 * Chip select support using other than built-in GPIOs by H. Hartley Sweeten.
9 *
10 * For more information about the SPI controller see documentation on Cirrus
11 * Logic web site:
12 * http://www.cirrus.com/en/pubs/manual/EP93xx_Users_Guide_UM1.pdf
13 *
14 * This program is free software; you can redistribute it and/or modify
15 * it under the terms of the GNU General Public License version 2 as
16 * published by the Free Software Foundation.
17 */
18
19#include <linux/io.h>
20#include <linux/clk.h>
21#include <linux/err.h>
22#include <linux/delay.h>
23#include <linux/device.h>
24#include <linux/bitops.h>
25#include <linux/interrupt.h>
26#include <linux/platform_device.h>
27#include <linux/workqueue.h>
28#include <linux/sched.h>
29#include <linux/spi/spi.h>
30
31#include <mach/ep93xx_spi.h>
32
33#define SSPCR0 0x0000
34#define SSPCR0_MODE_SHIFT 6
35#define SSPCR0_SCR_SHIFT 8
36
37#define SSPCR1 0x0004
38#define SSPCR1_RIE BIT(0)
39#define SSPCR1_TIE BIT(1)
40#define SSPCR1_RORIE BIT(2)
41#define SSPCR1_LBM BIT(3)
42#define SSPCR1_SSE BIT(4)
43#define SSPCR1_MS BIT(5)
44#define SSPCR1_SOD BIT(6)
45
46#define SSPDR 0x0008
47
48#define SSPSR 0x000c
49#define SSPSR_TFE BIT(0)
50#define SSPSR_TNF BIT(1)
51#define SSPSR_RNE BIT(2)
52#define SSPSR_RFF BIT(3)
53#define SSPSR_BSY BIT(4)
54#define SSPCPSR 0x0010
55
56#define SSPIIR 0x0014
57#define SSPIIR_RIS BIT(0)
58#define SSPIIR_TIS BIT(1)
59#define SSPIIR_RORIS BIT(2)
60#define SSPICR SSPIIR
61
62/* timeout in milliseconds */
63#define SPI_TIMEOUT 5
64/* maximum depth of RX/TX FIFO */
65#define SPI_FIFO_SIZE 8
66
67/**
68 * struct ep93xx_spi - EP93xx SPI controller structure
69 * @lock: spinlock that protects concurrent accesses to fields @running,
70 * @current_msg and @msg_queue
71 * @pdev: pointer to platform device
72 * @clk: clock for the controller
73 * @regs_base: pointer to ioremap()'d registers
74 * @irq: IRQ number used by the driver
75 * @min_rate: minimum clock rate (in Hz) supported by the controller
76 * @max_rate: maximum clock rate (in Hz) supported by the controller
77 * @running: is the queue running
78 * @wq: workqueue used by the driver
79 * @msg_work: work that is queued for the driver
80 * @wait: wait here until given transfer is completed
81 * @msg_queue: queue for the messages
82 * @current_msg: message that is currently processed (or %NULL if none)
83 * @tx: current byte in transfer to transmit
84 * @rx: current byte in transfer to receive
85 * @fifo_level: how full is FIFO (%0..%SPI_FIFO_SIZE - %1). Receiving one
86 * frame decreases this level and sending one frame increases it.
87 *
88 * This structure holds EP93xx SPI controller specific information. When
89 * @running is %true, driver accepts transfer requests from protocol drivers.
90 * @current_msg is used to hold pointer to the message that is currently
91 * processed. If @current_msg is %NULL, it means that no processing is going
92 * on.
93 *
94 * Most of the fields are only written once and they can be accessed without
95 * taking the @lock. Fields that are accessed concurrently are: @current_msg,
96 * @running, and @msg_queue.
97 */
98struct ep93xx_spi {
99 spinlock_t lock;
100 const struct platform_device *pdev;
101 struct clk *clk;
102 void __iomem *regs_base;
103 int irq;
104 unsigned long min_rate;
105 unsigned long max_rate;
106 bool running;
107 struct workqueue_struct *wq;
108 struct work_struct msg_work;
109 struct completion wait;
110 struct list_head msg_queue;
111 struct spi_message *current_msg;
112 size_t tx;
113 size_t rx;
114 size_t fifo_level;
115};
116
117/**
118 * struct ep93xx_spi_chip - SPI device hardware settings
119 * @spi: back pointer to the SPI device
120 * @rate: max rate in hz this chip supports
121 * @div_cpsr: cpsr (pre-scaler) divider
122 * @div_scr: scr divider
123 * @dss: bits per word (4 - 16 bits)
124 * @ops: private chip operations
125 *
126 * This structure is used to store hardware register specific settings for each
127 * SPI device. Settings are written to hardware by function
128 * ep93xx_spi_chip_setup().
129 */
130struct ep93xx_spi_chip {
131 const struct spi_device *spi;
132 unsigned long rate;
133 u8 div_cpsr;
134 u8 div_scr;
135 u8 dss;
136 struct ep93xx_spi_chip_ops *ops;
137};
138
139/* converts bits per word to CR0.DSS value */
140#define bits_per_word_to_dss(bpw) ((bpw) - 1)
141
142static inline void
143ep93xx_spi_write_u8(const struct ep93xx_spi *espi, u16 reg, u8 value)
144{
145 __raw_writeb(value, espi->regs_base + reg);
146}
147
148static inline u8
149ep93xx_spi_read_u8(const struct ep93xx_spi *spi, u16 reg)
150{
151 return __raw_readb(spi->regs_base + reg);
152}
153
154static inline void
155ep93xx_spi_write_u16(const struct ep93xx_spi *espi, u16 reg, u16 value)
156{
157 __raw_writew(value, espi->regs_base + reg);
158}
159
160static inline u16
161ep93xx_spi_read_u16(const struct ep93xx_spi *spi, u16 reg)
162{
163 return __raw_readw(spi->regs_base + reg);
164}
165
166static int ep93xx_spi_enable(const struct ep93xx_spi *espi)
167{
168 u8 regval;
169 int err;
170
171 err = clk_enable(espi->clk);
172 if (err)
173 return err;
174
175 regval = ep93xx_spi_read_u8(espi, SSPCR1);
176 regval |= SSPCR1_SSE;
177 ep93xx_spi_write_u8(espi, SSPCR1, regval);
178
179 return 0;
180}
181
182static void ep93xx_spi_disable(const struct ep93xx_spi *espi)
183{
184 u8 regval;
185
186 regval = ep93xx_spi_read_u8(espi, SSPCR1);
187 regval &= ~SSPCR1_SSE;
188 ep93xx_spi_write_u8(espi, SSPCR1, regval);
189
190 clk_disable(espi->clk);
191}
192
193static void ep93xx_spi_enable_interrupts(const struct ep93xx_spi *espi)
194{
195 u8 regval;
196
197 regval = ep93xx_spi_read_u8(espi, SSPCR1);
198 regval |= (SSPCR1_RORIE | SSPCR1_TIE | SSPCR1_RIE);
199 ep93xx_spi_write_u8(espi, SSPCR1, regval);
200}
201
202static void ep93xx_spi_disable_interrupts(const struct ep93xx_spi *espi)
203{
204 u8 regval;
205
206 regval = ep93xx_spi_read_u8(espi, SSPCR1);
207 regval &= ~(SSPCR1_RORIE | SSPCR1_TIE | SSPCR1_RIE);
208 ep93xx_spi_write_u8(espi, SSPCR1, regval);
209}
210
211/**
212 * ep93xx_spi_calc_divisors() - calculates SPI clock divisors
213 * @espi: ep93xx SPI controller struct
214 * @chip: divisors are calculated for this chip
215 * @rate: desired SPI output clock rate
216 *
217 * Function calculates cpsr (clock pre-scaler) and scr divisors based on
218 * given @rate and places them to @chip->div_cpsr and @chip->div_scr. If,
219 * for some reason, divisors cannot be calculated nothing is stored and
220 * %-EINVAL is returned.
221 */
222static int ep93xx_spi_calc_divisors(const struct ep93xx_spi *espi,
223 struct ep93xx_spi_chip *chip,
224 unsigned long rate)
225{
226 unsigned long spi_clk_rate = clk_get_rate(espi->clk);
227 int cpsr, scr;
228
229 /*
230 * Make sure that max value is between values supported by the
231 * controller. Note that minimum value is already checked in
232 * ep93xx_spi_transfer().
233 */
234 rate = clamp(rate, espi->min_rate, espi->max_rate);
235
236 /*
237 * Calculate divisors so that we can get speed according the
238 * following formula:
239 * rate = spi_clock_rate / (cpsr * (1 + scr))
240 *
241 * cpsr must be even number and starts from 2, scr can be any number
242 * between 0 and 255.
243 */
244 for (cpsr = 2; cpsr <= 254; cpsr += 2) {
245 for (scr = 0; scr <= 255; scr++) {
246 if ((spi_clk_rate / (cpsr * (scr + 1))) <= rate) {
247 chip->div_scr = (u8)scr;
248 chip->div_cpsr = (u8)cpsr;
249 return 0;
250 }
251 }
252 }
253
254 return -EINVAL;
255}
256
257static void ep93xx_spi_cs_control(struct spi_device *spi, bool control)
258{
259 struct ep93xx_spi_chip *chip = spi_get_ctldata(spi);
260 int value = (spi->mode & SPI_CS_HIGH) ? control : !control;
261
262 if (chip->ops && chip->ops->cs_control)
263 chip->ops->cs_control(spi, value);
264}
265
266/**
267 * ep93xx_spi_setup() - setup an SPI device
268 * @spi: SPI device to setup
269 *
270 * This function sets up SPI device mode, speed etc. Can be called multiple
271 * times for a single device. Returns %0 in case of success, negative error in
272 * case of failure. When this function returns success, the device is
273 * deselected.
274 */
275static int ep93xx_spi_setup(struct spi_device *spi)
276{
277 struct ep93xx_spi *espi = spi_master_get_devdata(spi->master);
278 struct ep93xx_spi_chip *chip;
279
280 if (spi->bits_per_word < 4 || spi->bits_per_word > 16) {
281 dev_err(&espi->pdev->dev, "invalid bits per word %d\n",
282 spi->bits_per_word);
283 return -EINVAL;
284 }
285
286 chip = spi_get_ctldata(spi);
287 if (!chip) {
288 dev_dbg(&espi->pdev->dev, "initial setup for %s\n",
289 spi->modalias);
290
291 chip = kzalloc(sizeof(*chip), GFP_KERNEL);
292 if (!chip)
293 return -ENOMEM;
294
295 chip->spi = spi;
296 chip->ops = spi->controller_data;
297
298 if (chip->ops && chip->ops->setup) {
299 int ret = chip->ops->setup(spi);
300 if (ret) {
301 kfree(chip);
302 return ret;
303 }
304 }
305
306 spi_set_ctldata(spi, chip);
307 }
308
309 if (spi->max_speed_hz != chip->rate) {
310 int err;
311
312 err = ep93xx_spi_calc_divisors(espi, chip, spi->max_speed_hz);
313 if (err != 0) {
314 spi_set_ctldata(spi, NULL);
315 kfree(chip);
316 return err;
317 }
318 chip->rate = spi->max_speed_hz;
319 }
320
321 chip->dss = bits_per_word_to_dss(spi->bits_per_word);
322
323 ep93xx_spi_cs_control(spi, false);
324 return 0;
325}
326
327/**
328 * ep93xx_spi_transfer() - queue message to be transferred
329 * @spi: target SPI device
330 * @msg: message to be transferred
331 *
332 * This function is called by SPI device drivers when they are going to transfer
333 * a new message. It simply puts the message in the queue and schedules
334 * workqueue to perform the actual transfer later on.
335 *
336 * Returns %0 on success and negative error in case of failure.
337 */
338static int ep93xx_spi_transfer(struct spi_device *spi, struct spi_message *msg)
339{
340 struct ep93xx_spi *espi = spi_master_get_devdata(spi->master);
341 struct spi_transfer *t;
342 unsigned long flags;
343
344 if (!msg || !msg->complete)
345 return -EINVAL;
346
347 /* first validate each transfer */
348 list_for_each_entry(t, &msg->transfers, transfer_list) {
349 if (t->bits_per_word) {
350 if (t->bits_per_word < 4 || t->bits_per_word > 16)
351 return -EINVAL;
352 }
353 if (t->speed_hz && t->speed_hz < espi->min_rate)
354 return -EINVAL;
355 }
356
357 /*
358 * Now that we own the message, let's initialize it so that it is
359 * suitable for us. We use @msg->status to signal whether there was
360 * error in transfer and @msg->state is used to hold pointer to the
361 * current transfer (or %NULL if no active current transfer).
362 */
363 msg->state = NULL;
364 msg->status = 0;
365 msg->actual_length = 0;
366
367 spin_lock_irqsave(&espi->lock, flags);
368 if (!espi->running) {
369 spin_unlock_irqrestore(&espi->lock, flags);
370 return -ESHUTDOWN;
371 }
372 list_add_tail(&msg->queue, &espi->msg_queue);
373 queue_work(espi->wq, &espi->msg_work);
374 spin_unlock_irqrestore(&espi->lock, flags);
375
376 return 0;
377}
378
379/**
380 * ep93xx_spi_cleanup() - cleans up master controller specific state
381 * @spi: SPI device to cleanup
382 *
383 * This function releases master controller specific state for given @spi
384 * device.
385 */
386static void ep93xx_spi_cleanup(struct spi_device *spi)
387{
388 struct ep93xx_spi_chip *chip;
389
390 chip = spi_get_ctldata(spi);
391 if (chip) {
392 if (chip->ops && chip->ops->cleanup)
393 chip->ops->cleanup(spi);
394 spi_set_ctldata(spi, NULL);
395 kfree(chip);
396 }
397}
398
399/**
400 * ep93xx_spi_chip_setup() - configures hardware according to given @chip
401 * @espi: ep93xx SPI controller struct
402 * @chip: chip specific settings
403 *
404 * This function sets up the actual hardware registers with settings given in
405 * @chip. Note that no validation is done so make sure that callers validate
406 * settings before calling this.
407 */
408static void ep93xx_spi_chip_setup(const struct ep93xx_spi *espi,
409 const struct ep93xx_spi_chip *chip)
410{
411 u16 cr0;
412
413 cr0 = chip->div_scr << SSPCR0_SCR_SHIFT;
414 cr0 |= (chip->spi->mode & (SPI_CPHA|SPI_CPOL)) << SSPCR0_MODE_SHIFT;
415 cr0 |= chip->dss;
416
417 dev_dbg(&espi->pdev->dev, "setup: mode %d, cpsr %d, scr %d, dss %d\n",
418 chip->spi->mode, chip->div_cpsr, chip->div_scr, chip->dss);
419 dev_dbg(&espi->pdev->dev, "setup: cr0 %#x", cr0);
420
421 ep93xx_spi_write_u8(espi, SSPCPSR, chip->div_cpsr);
422 ep93xx_spi_write_u16(espi, SSPCR0, cr0);
423}
424
425static inline int bits_per_word(const struct ep93xx_spi *espi)
426{
427 struct spi_message *msg = espi->current_msg;
428 struct spi_transfer *t = msg->state;
429
430 return t->bits_per_word ? t->bits_per_word : msg->spi->bits_per_word;
431}
432
433static void ep93xx_do_write(struct ep93xx_spi *espi, struct spi_transfer *t)
434{
435 if (bits_per_word(espi) > 8) {
436 u16 tx_val = 0;
437
438 if (t->tx_buf)
439 tx_val = ((u16 *)t->tx_buf)[espi->tx];
440 ep93xx_spi_write_u16(espi, SSPDR, tx_val);
441 espi->tx += sizeof(tx_val);
442 } else {
443 u8 tx_val = 0;
444
445 if (t->tx_buf)
446 tx_val = ((u8 *)t->tx_buf)[espi->tx];
447 ep93xx_spi_write_u8(espi, SSPDR, tx_val);
448 espi->tx += sizeof(tx_val);
449 }
450}
451
452static void ep93xx_do_read(struct ep93xx_spi *espi, struct spi_transfer *t)
453{
454 if (bits_per_word(espi) > 8) {
455 u16 rx_val;
456
457 rx_val = ep93xx_spi_read_u16(espi, SSPDR);
458 if (t->rx_buf)
459 ((u16 *)t->rx_buf)[espi->rx] = rx_val;
460 espi->rx += sizeof(rx_val);
461 } else {
462 u8 rx_val;
463
464 rx_val = ep93xx_spi_read_u8(espi, SSPDR);
465 if (t->rx_buf)
466 ((u8 *)t->rx_buf)[espi->rx] = rx_val;
467 espi->rx += sizeof(rx_val);
468 }
469}
470
471/**
472 * ep93xx_spi_read_write() - perform next RX/TX transfer
473 * @espi: ep93xx SPI controller struct
474 *
475 * This function transfers next bytes (or half-words) to/from RX/TX FIFOs. If
476 * called several times, the whole transfer will be completed. Returns
477 * %-EINPROGRESS when current transfer was not yet completed otherwise %0.
478 *
479 * When this function is finished, RX FIFO should be empty and TX FIFO should be
480 * full.
481 */
482static int ep93xx_spi_read_write(struct ep93xx_spi *espi)
483{
484 struct spi_message *msg = espi->current_msg;
485 struct spi_transfer *t = msg->state;
486
487 /* read as long as RX FIFO has frames in it */
488 while ((ep93xx_spi_read_u8(espi, SSPSR) & SSPSR_RNE)) {
489 ep93xx_do_read(espi, t);
490 espi->fifo_level--;
491 }
492
493 /* write as long as TX FIFO has room */
494 while (espi->fifo_level < SPI_FIFO_SIZE && espi->tx < t->len) {
495 ep93xx_do_write(espi, t);
496 espi->fifo_level++;
497 }
498
499 if (espi->rx == t->len) {
500 msg->actual_length += t->len;
501 return 0;
502 }
503
504 return -EINPROGRESS;
505}
506
507/**
508 * ep93xx_spi_process_transfer() - processes one SPI transfer
509 * @espi: ep93xx SPI controller struct
510 * @msg: current message
511 * @t: transfer to process
512 *
513 * This function processes one SPI transfer given in @t. Function waits until
514 * transfer is complete (may sleep) and updates @msg->status based on whether
515 * transfer was succesfully processed or not.
516 */
517static void ep93xx_spi_process_transfer(struct ep93xx_spi *espi,
518 struct spi_message *msg,
519 struct spi_transfer *t)
520{
521 struct ep93xx_spi_chip *chip = spi_get_ctldata(msg->spi);
522
523 msg->state = t;
524
525 /*
526 * Handle any transfer specific settings if needed. We use
527 * temporary chip settings here and restore original later when
528 * the transfer is finished.
529 */
530 if (t->speed_hz || t->bits_per_word) {
531 struct ep93xx_spi_chip tmp_chip = *chip;
532
533 if (t->speed_hz) {
534 int err;
535
536 err = ep93xx_spi_calc_divisors(espi, &tmp_chip,
537 t->speed_hz);
538 if (err) {
539 dev_err(&espi->pdev->dev,
540 "failed to adjust speed\n");
541 msg->status = err;
542 return;
543 }
544 }
545
546 if (t->bits_per_word)
547 tmp_chip.dss = bits_per_word_to_dss(t->bits_per_word);
548
549 /*
550 * Set up temporary new hw settings for this transfer.
551 */
552 ep93xx_spi_chip_setup(espi, &tmp_chip);
553 }
554
555 espi->rx = 0;
556 espi->tx = 0;
557
558 /*
559 * Now everything is set up for the current transfer. We prime the TX
560 * FIFO, enable interrupts, and wait for the transfer to complete.
561 */
562 if (ep93xx_spi_read_write(espi)) {
563 ep93xx_spi_enable_interrupts(espi);
564 wait_for_completion(&espi->wait);
565 }
566
567 /*
568 * In case of error during transmit, we bail out from processing
569 * the message.
570 */
571 if (msg->status)
572 return;
573
574 /*
575 * After this transfer is finished, perform any possible
576 * post-transfer actions requested by the protocol driver.
577 */
578 if (t->delay_usecs) {
579 set_current_state(TASK_UNINTERRUPTIBLE);
580 schedule_timeout(usecs_to_jiffies(t->delay_usecs));
581 }
582 if (t->cs_change) {
583 if (!list_is_last(&t->transfer_list, &msg->transfers)) {
584 /*
585 * In case protocol driver is asking us to drop the
586 * chipselect briefly, we let the scheduler to handle
587 * any "delay" here.
588 */
589 ep93xx_spi_cs_control(msg->spi, false);
590 cond_resched();
591 ep93xx_spi_cs_control(msg->spi, true);
592 }
593 }
594
595 if (t->speed_hz || t->bits_per_word)
596 ep93xx_spi_chip_setup(espi, chip);
597}
598
599/*
600 * ep93xx_spi_process_message() - process one SPI message
601 * @espi: ep93xx SPI controller struct
602 * @msg: message to process
603 *
604 * This function processes a single SPI message. We go through all transfers in
605 * the message and pass them to ep93xx_spi_process_transfer(). Chipselect is
606 * asserted during the whole message (unless per transfer cs_change is set).
607 *
608 * @msg->status contains %0 in case of success or negative error code in case of
609 * failure.
610 */
611static void ep93xx_spi_process_message(struct ep93xx_spi *espi,
612 struct spi_message *msg)
613{
614 unsigned long timeout;
615 struct spi_transfer *t;
616 int err;
617
618 /*
619 * Enable the SPI controller and its clock.
620 */
621 err = ep93xx_spi_enable(espi);
622 if (err) {
623 dev_err(&espi->pdev->dev, "failed to enable SPI controller\n");
624 msg->status = err;
625 return;
626 }
627
628 /*
629 * Just to be sure: flush any data from RX FIFO.
630 */
631 timeout = jiffies + msecs_to_jiffies(SPI_TIMEOUT);
632 while (ep93xx_spi_read_u16(espi, SSPSR) & SSPSR_RNE) {
633 if (time_after(jiffies, timeout)) {
634 dev_warn(&espi->pdev->dev,
635 "timeout while flushing RX FIFO\n");
636 msg->status = -ETIMEDOUT;
637 return;
638 }
639 ep93xx_spi_read_u16(espi, SSPDR);
640 }
641
642 /*
643 * We explicitly handle FIFO level. This way we don't have to check TX
644 * FIFO status using %SSPSR_TNF bit which may cause RX FIFO overruns.
645 */
646 espi->fifo_level = 0;
647
648 /*
649 * Update SPI controller registers according to spi device and assert
650 * the chipselect.
651 */
652 ep93xx_spi_chip_setup(espi, spi_get_ctldata(msg->spi));
653 ep93xx_spi_cs_control(msg->spi, true);
654
655 list_for_each_entry(t, &msg->transfers, transfer_list) {
656 ep93xx_spi_process_transfer(espi, msg, t);
657 if (msg->status)
658 break;
659 }
660
661 /*
662 * Now the whole message is transferred (or failed for some reason). We
663 * deselect the device and disable the SPI controller.
664 */
665 ep93xx_spi_cs_control(msg->spi, false);
666 ep93xx_spi_disable(espi);
667}
668
669#define work_to_espi(work) (container_of((work), struct ep93xx_spi, msg_work))
670
671/**
672 * ep93xx_spi_work() - EP93xx SPI workqueue worker function
673 * @work: work struct
674 *
675 * Workqueue worker function. This function is called when there are new
676 * SPI messages to be processed. Message is taken out from the queue and then
677 * passed to ep93xx_spi_process_message().
678 *
679 * After message is transferred, protocol driver is notified by calling
680 * @msg->complete(). In case of error, @msg->status is set to negative error
681 * number, otherwise it contains zero (and @msg->actual_length is updated).
682 */
683static void ep93xx_spi_work(struct work_struct *work)
684{
685 struct ep93xx_spi *espi = work_to_espi(work);
686 struct spi_message *msg;
687
688 spin_lock_irq(&espi->lock);
689 if (!espi->running || espi->current_msg ||
690 list_empty(&espi->msg_queue)) {
691 spin_unlock_irq(&espi->lock);
692 return;
693 }
694 msg = list_first_entry(&espi->msg_queue, struct spi_message, queue);
695 list_del_init(&msg->queue);
696 espi->current_msg = msg;
697 spin_unlock_irq(&espi->lock);
698
699 ep93xx_spi_process_message(espi, msg);
700
701 /*
702 * Update the current message and re-schedule ourselves if there are
703 * more messages in the queue.
704 */
705 spin_lock_irq(&espi->lock);
706 espi->current_msg = NULL;
707 if (espi->running && !list_empty(&espi->msg_queue))
708 queue_work(espi->wq, &espi->msg_work);
709 spin_unlock_irq(&espi->lock);
710
711 /* notify the protocol driver that we are done with this message */
712 msg->complete(msg->context);
713}
714
715static irqreturn_t ep93xx_spi_interrupt(int irq, void *dev_id)
716{
717 struct ep93xx_spi *espi = dev_id;
718 u8 irq_status = ep93xx_spi_read_u8(espi, SSPIIR);
719
720 /*
721 * If we got ROR (receive overrun) interrupt we know that something is
722 * wrong. Just abort the message.
723 */
724 if (unlikely(irq_status & SSPIIR_RORIS)) {
725 /* clear the overrun interrupt */
726 ep93xx_spi_write_u8(espi, SSPICR, 0);
727 dev_warn(&espi->pdev->dev,
728 "receive overrun, aborting the message\n");
729 espi->current_msg->status = -EIO;
730 } else {
731 /*
732 * Interrupt is either RX (RIS) or TX (TIS). For both cases we
733 * simply execute next data transfer.
734 */
735 if (ep93xx_spi_read_write(espi)) {
736 /*
737 * In normal case, there still is some processing left
738 * for current transfer. Let's wait for the next
739 * interrupt then.
740 */
741 return IRQ_HANDLED;
742 }
743 }
744
745 /*
746 * Current transfer is finished, either with error or with success. In
747 * any case we disable interrupts and notify the worker to handle
748 * any post-processing of the message.
749 */
750 ep93xx_spi_disable_interrupts(espi);
751 complete(&espi->wait);
752 return IRQ_HANDLED;
753}
754
755static int __init ep93xx_spi_probe(struct platform_device *pdev)
756{
757 struct spi_master *master;
758 struct ep93xx_spi_info *info;
759 struct ep93xx_spi *espi;
760 struct resource *res;
761 int error;
762
763 info = pdev->dev.platform_data;
764
765 master = spi_alloc_master(&pdev->dev, sizeof(*espi));
766 if (!master) {
767 dev_err(&pdev->dev, "failed to allocate spi master\n");
768 return -ENOMEM;
769 }
770
771 master->setup = ep93xx_spi_setup;
772 master->transfer = ep93xx_spi_transfer;
773 master->cleanup = ep93xx_spi_cleanup;
774 master->bus_num = pdev->id;
775 master->num_chipselect = info->num_chipselect;
776 master->mode_bits = SPI_CPOL | SPI_CPHA | SPI_CS_HIGH;
777
778 platform_set_drvdata(pdev, master);
779
780 espi = spi_master_get_devdata(master);
781
782 espi->clk = clk_get(&pdev->dev, NULL);
783 if (IS_ERR(espi->clk)) {
784 dev_err(&pdev->dev, "unable to get spi clock\n");
785 error = PTR_ERR(espi->clk);
786 goto fail_release_master;
787 }
788
789 spin_lock_init(&espi->lock);
790 init_completion(&espi->wait);
791
792 /*
793 * Calculate maximum and minimum supported clock rates
794 * for the controller.
795 */
796 espi->max_rate = clk_get_rate(espi->clk) / 2;
797 espi->min_rate = clk_get_rate(espi->clk) / (254 * 256);
798 espi->pdev = pdev;
799
800 espi->irq = platform_get_irq(pdev, 0);
801 if (espi->irq < 0) {
802 error = -EBUSY;
803 dev_err(&pdev->dev, "failed to get irq resources\n");
804 goto fail_put_clock;
805 }
806
807 res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
808 if (!res) {
809 dev_err(&pdev->dev, "unable to get iomem resource\n");
810 error = -ENODEV;
811 goto fail_put_clock;
812 }
813
814 res = request_mem_region(res->start, resource_size(res), pdev->name);
815 if (!res) {
816 dev_err(&pdev->dev, "unable to request iomem resources\n");
817 error = -EBUSY;
818 goto fail_put_clock;
819 }
820
821 espi->regs_base = ioremap(res->start, resource_size(res));
822 if (!espi->regs_base) {
823 dev_err(&pdev->dev, "failed to map resources\n");
824 error = -ENODEV;
825 goto fail_free_mem;
826 }
827
828 error = request_irq(espi->irq, ep93xx_spi_interrupt, 0,
829 "ep93xx-spi", espi);
830 if (error) {
831 dev_err(&pdev->dev, "failed to request irq\n");
832 goto fail_unmap_regs;
833 }
834
835 espi->wq = create_singlethread_workqueue("ep93xx_spid");
836 if (!espi->wq) {
837 dev_err(&pdev->dev, "unable to create workqueue\n");
838 goto fail_free_irq;
839 }
840 INIT_WORK(&espi->msg_work, ep93xx_spi_work);
841 INIT_LIST_HEAD(&espi->msg_queue);
842 espi->running = true;
843
844 /* make sure that the hardware is disabled */
845 ep93xx_spi_write_u8(espi, SSPCR1, 0);
846
847 error = spi_register_master(master);
848 if (error) {
849 dev_err(&pdev->dev, "failed to register SPI master\n");
850 goto fail_free_queue;
851 }
852
853 dev_info(&pdev->dev, "EP93xx SPI Controller at 0x%08lx irq %d\n",
854 (unsigned long)res->start, espi->irq);
855
856 return 0;
857
858fail_free_queue:
859 destroy_workqueue(espi->wq);
860fail_free_irq:
861 free_irq(espi->irq, espi);
862fail_unmap_regs:
863 iounmap(espi->regs_base);
864fail_free_mem:
865 release_mem_region(res->start, resource_size(res));
866fail_put_clock:
867 clk_put(espi->clk);
868fail_release_master:
869 spi_master_put(master);
870 platform_set_drvdata(pdev, NULL);
871
872 return error;
873}
874
875static int __exit ep93xx_spi_remove(struct platform_device *pdev)
876{
877 struct spi_master *master = platform_get_drvdata(pdev);
878 struct ep93xx_spi *espi = spi_master_get_devdata(master);
879 struct resource *res;
880
881 spin_lock_irq(&espi->lock);
882 espi->running = false;
883 spin_unlock_irq(&espi->lock);
884
885 destroy_workqueue(espi->wq);
886
887 /*
888 * Complete remaining messages with %-ESHUTDOWN status.
889 */
890 spin_lock_irq(&espi->lock);
891 while (!list_empty(&espi->msg_queue)) {
892 struct spi_message *msg;
893
894 msg = list_first_entry(&espi->msg_queue,
895 struct spi_message, queue);
896 list_del_init(&msg->queue);
897 msg->status = -ESHUTDOWN;
898 spin_unlock_irq(&espi->lock);
899 msg->complete(msg->context);
900 spin_lock_irq(&espi->lock);
901 }
902 spin_unlock_irq(&espi->lock);
903
904 free_irq(espi->irq, espi);
905 iounmap(espi->regs_base);
906 res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
907 release_mem_region(res->start, resource_size(res));
908 clk_put(espi->clk);
909 platform_set_drvdata(pdev, NULL);
910
911 spi_unregister_master(master);
912 return 0;
913}
914
915static struct platform_driver ep93xx_spi_driver = {
916 .driver = {
917 .name = "ep93xx-spi",
918 .owner = THIS_MODULE,
919 },
920 .remove = __exit_p(ep93xx_spi_remove),
921};
922
923static int __init ep93xx_spi_init(void)
924{
925 return platform_driver_probe(&ep93xx_spi_driver, ep93xx_spi_probe);
926}
927module_init(ep93xx_spi_init);
928
929static void __exit ep93xx_spi_exit(void)
930{
931 platform_driver_unregister(&ep93xx_spi_driver);
932}
933module_exit(ep93xx_spi_exit);
934
935MODULE_DESCRIPTION("EP93xx SPI Controller driver");
936MODULE_AUTHOR("Mika Westerberg <mika.westerberg@iki.fi>");
937MODULE_LICENSE("GPL");
938MODULE_ALIAS("platform:ep93xx-spi");