Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 1 | /* |
Paul Mundt | a23ba43 | 2007-11-28 20:19:38 +0900 | [diff] [blame] | 2 | * arch/sh/mm/cache-sh5.c |
Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 3 | * |
Paul Mundt | 38350e0 | 2008-02-13 20:14:10 +0900 | [diff] [blame] | 4 | * Copyright (C) 2000, 2001 Paolo Alberelli |
| 5 | * Copyright (C) 2002 Benedict Gaster |
| 6 | * Copyright (C) 2003 Richard Curnow |
| 7 | * Copyright (C) 2003 - 2008 Paul Mundt |
Paul Mundt | a23ba43 | 2007-11-28 20:19:38 +0900 | [diff] [blame] | 8 | * |
| 9 | * This file is subject to the terms and conditions of the GNU General Public |
| 10 | * License. See the file "COPYING" in the main directory of this archive |
| 11 | * for more details. |
Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 12 | */ |
Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 13 | #include <linux/init.h> |
| 14 | #include <linux/mman.h> |
| 15 | #include <linux/mm.h> |
Paul Mundt | 38350e0 | 2008-02-13 20:14:10 +0900 | [diff] [blame] | 16 | #include <asm/tlb.h> |
Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 17 | #include <asm/processor.h> |
| 18 | #include <asm/cache.h> |
Paul Mundt | 38350e0 | 2008-02-13 20:14:10 +0900 | [diff] [blame] | 19 | #include <asm/pgalloc.h> |
Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 20 | #include <asm/uaccess.h> |
| 21 | #include <asm/mmu_context.h> |
Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 22 | |
| 23 | /* Wired TLB entry for the D-cache */ |
| 24 | static unsigned long long dtlb_cache_slot; |
| 25 | |
Paul Mundt | 38350e0 | 2008-02-13 20:14:10 +0900 | [diff] [blame] | 26 | void __init p3_cache_init(void) |
Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 27 | { |
Paul Mundt | 38350e0 | 2008-02-13 20:14:10 +0900 | [diff] [blame] | 28 | /* Reserve a slot for dcache colouring in the DTLB */ |
| 29 | dtlb_cache_slot = sh64_get_wired_dtlb_entry(); |
Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 30 | } |
| 31 | |
| 32 | #ifdef CONFIG_DCACHE_DISABLED |
| 33 | #define sh64_dcache_purge_all() do { } while (0) |
| 34 | #define sh64_dcache_purge_coloured_phy_page(paddr, eaddr) do { } while (0) |
| 35 | #define sh64_dcache_purge_user_range(mm, start, end) do { } while (0) |
| 36 | #define sh64_dcache_purge_phy_page(paddr) do { } while (0) |
| 37 | #define sh64_dcache_purge_virt_page(mm, eaddr) do { } while (0) |
Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 38 | #endif |
| 39 | |
Paul Mundt | 38350e0 | 2008-02-13 20:14:10 +0900 | [diff] [blame] | 40 | /* |
| 41 | * The following group of functions deal with mapping and unmapping a |
| 42 | * temporary page into a DTLB slot that has been set aside for exclusive |
| 43 | * use. |
| 44 | */ |
| 45 | static inline void |
| 46 | sh64_setup_dtlb_cache_slot(unsigned long eaddr, unsigned long asid, |
| 47 | unsigned long paddr) |
Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 48 | { |
Paul Mundt | 38350e0 | 2008-02-13 20:14:10 +0900 | [diff] [blame] | 49 | local_irq_disable(); |
Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 50 | sh64_setup_tlb_slot(dtlb_cache_slot, eaddr, asid, paddr); |
| 51 | } |
| 52 | |
| 53 | static inline void sh64_teardown_dtlb_cache_slot(void) |
| 54 | { |
| 55 | sh64_teardown_tlb_slot(dtlb_cache_slot); |
Paul Mundt | 38350e0 | 2008-02-13 20:14:10 +0900 | [diff] [blame] | 56 | local_irq_enable(); |
Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 57 | } |
| 58 | |
Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 59 | #ifndef CONFIG_ICACHE_DISABLED |
Paul Mundt | 38350e0 | 2008-02-13 20:14:10 +0900 | [diff] [blame] | 60 | static inline void sh64_icache_inv_all(void) |
Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 61 | { |
| 62 | unsigned long long addr, flag, data; |
| 63 | unsigned int flags; |
| 64 | |
Paul Mundt | 38350e0 | 2008-02-13 20:14:10 +0900 | [diff] [blame] | 65 | addr = ICCR0; |
| 66 | flag = ICCR0_ICI; |
| 67 | data = 0; |
Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 68 | |
| 69 | /* Make this a critical section for safety (probably not strictly necessary.) */ |
| 70 | local_irq_save(flags); |
| 71 | |
| 72 | /* Without %1 it gets unexplicably wrong */ |
Paul Mundt | 38350e0 | 2008-02-13 20:14:10 +0900 | [diff] [blame] | 73 | __asm__ __volatile__ ( |
| 74 | "getcfg %3, 0, %0\n\t" |
| 75 | "or %0, %2, %0\n\t" |
| 76 | "putcfg %3, 0, %0\n\t" |
| 77 | "synci" |
| 78 | : "=&r" (data) |
| 79 | : "0" (data), "r" (flag), "r" (addr)); |
Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 80 | |
| 81 | local_irq_restore(flags); |
| 82 | } |
| 83 | |
| 84 | static void sh64_icache_inv_kernel_range(unsigned long start, unsigned long end) |
| 85 | { |
| 86 | /* Invalidate range of addresses [start,end] from the I-cache, where |
| 87 | * the addresses lie in the kernel superpage. */ |
| 88 | |
| 89 | unsigned long long ullend, addr, aligned_start; |
Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 90 | aligned_start = (unsigned long long)(signed long long)(signed long) start; |
Paul Mundt | 38350e0 | 2008-02-13 20:14:10 +0900 | [diff] [blame] | 91 | addr = L1_CACHE_ALIGN(aligned_start); |
Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 92 | ullend = (unsigned long long) (signed long long) (signed long) end; |
Paul Mundt | 38350e0 | 2008-02-13 20:14:10 +0900 | [diff] [blame] | 93 | |
Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 94 | while (addr <= ullend) { |
Paul Mundt | 38350e0 | 2008-02-13 20:14:10 +0900 | [diff] [blame] | 95 | __asm__ __volatile__ ("icbi %0, 0" : : "r" (addr)); |
Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 96 | addr += L1_CACHE_BYTES; |
| 97 | } |
| 98 | } |
| 99 | |
| 100 | static void sh64_icache_inv_user_page(struct vm_area_struct *vma, unsigned long eaddr) |
| 101 | { |
| 102 | /* If we get called, we know that vma->vm_flags contains VM_EXEC. |
| 103 | Also, eaddr is page-aligned. */ |
Paul Mundt | 38350e0 | 2008-02-13 20:14:10 +0900 | [diff] [blame] | 104 | unsigned int cpu = smp_processor_id(); |
Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 105 | unsigned long long addr, end_addr; |
| 106 | unsigned long flags = 0; |
| 107 | unsigned long running_asid, vma_asid; |
| 108 | addr = eaddr; |
| 109 | end_addr = addr + PAGE_SIZE; |
| 110 | |
| 111 | /* Check whether we can use the current ASID for the I-cache |
| 112 | invalidation. For example, if we're called via |
| 113 | access_process_vm->flush_cache_page->here, (e.g. when reading from |
| 114 | /proc), 'running_asid' will be that of the reader, not of the |
| 115 | victim. |
| 116 | |
| 117 | Also, note the risk that we might get pre-empted between the ASID |
| 118 | compare and blocking IRQs, and before we regain control, the |
| 119 | pid->ASID mapping changes. However, the whole cache will get |
| 120 | invalidated when the mapping is renewed, so the worst that can |
| 121 | happen is that the loop below ends up invalidating somebody else's |
| 122 | cache entries. |
| 123 | */ |
| 124 | |
| 125 | running_asid = get_asid(); |
Paul Mundt | 38350e0 | 2008-02-13 20:14:10 +0900 | [diff] [blame] | 126 | vma_asid = cpu_asid(cpu, vma->vm_mm); |
Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 127 | if (running_asid != vma_asid) { |
| 128 | local_irq_save(flags); |
| 129 | switch_and_save_asid(vma_asid); |
| 130 | } |
| 131 | while (addr < end_addr) { |
| 132 | /* Worth unrolling a little */ |
Paul Mundt | 38350e0 | 2008-02-13 20:14:10 +0900 | [diff] [blame] | 133 | __asm__ __volatile__("icbi %0, 0" : : "r" (addr)); |
| 134 | __asm__ __volatile__("icbi %0, 32" : : "r" (addr)); |
| 135 | __asm__ __volatile__("icbi %0, 64" : : "r" (addr)); |
| 136 | __asm__ __volatile__("icbi %0, 96" : : "r" (addr)); |
Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 137 | addr += 128; |
| 138 | } |
| 139 | if (running_asid != vma_asid) { |
| 140 | switch_and_save_asid(running_asid); |
| 141 | local_irq_restore(flags); |
| 142 | } |
| 143 | } |
| 144 | |
Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 145 | static void sh64_icache_inv_user_page_range(struct mm_struct *mm, |
| 146 | unsigned long start, unsigned long end) |
| 147 | { |
| 148 | /* Used for invalidating big chunks of I-cache, i.e. assume the range |
| 149 | is whole pages. If 'start' or 'end' is not page aligned, the code |
| 150 | is conservative and invalidates to the ends of the enclosing pages. |
| 151 | This is functionally OK, just a performance loss. */ |
| 152 | |
| 153 | /* See the comments below in sh64_dcache_purge_user_range() regarding |
| 154 | the choice of algorithm. However, for the I-cache option (2) isn't |
| 155 | available because there are no physical tags so aliases can't be |
| 156 | resolved. The icbi instruction has to be used through the user |
| 157 | mapping. Because icbi is cheaper than ocbp on a cache hit, it |
| 158 | would be cheaper to use the selective code for a large range than is |
| 159 | possible with the D-cache. Just assume 64 for now as a working |
| 160 | figure. |
| 161 | */ |
Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 162 | int n_pages; |
| 163 | |
Paul Mundt | 38350e0 | 2008-02-13 20:14:10 +0900 | [diff] [blame] | 164 | if (!mm) |
| 165 | return; |
Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 166 | |
| 167 | n_pages = ((end - start) >> PAGE_SHIFT); |
| 168 | if (n_pages >= 64) { |
| 169 | sh64_icache_inv_all(); |
| 170 | } else { |
| 171 | unsigned long aligned_start; |
| 172 | unsigned long eaddr; |
| 173 | unsigned long after_last_page_start; |
| 174 | unsigned long mm_asid, current_asid; |
| 175 | unsigned long long flags = 0ULL; |
| 176 | |
Paul Mundt | 38350e0 | 2008-02-13 20:14:10 +0900 | [diff] [blame] | 177 | mm_asid = cpu_asid(smp_processor_id(), mm); |
Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 178 | current_asid = get_asid(); |
| 179 | |
| 180 | if (mm_asid != current_asid) { |
| 181 | /* Switch ASID and run the invalidate loop under cli */ |
| 182 | local_irq_save(flags); |
| 183 | switch_and_save_asid(mm_asid); |
| 184 | } |
| 185 | |
| 186 | aligned_start = start & PAGE_MASK; |
| 187 | after_last_page_start = PAGE_SIZE + ((end - 1) & PAGE_MASK); |
| 188 | |
| 189 | while (aligned_start < after_last_page_start) { |
| 190 | struct vm_area_struct *vma; |
| 191 | unsigned long vma_end; |
| 192 | vma = find_vma(mm, aligned_start); |
| 193 | if (!vma || (aligned_start <= vma->vm_end)) { |
| 194 | /* Avoid getting stuck in an error condition */ |
| 195 | aligned_start += PAGE_SIZE; |
| 196 | continue; |
| 197 | } |
| 198 | vma_end = vma->vm_end; |
| 199 | if (vma->vm_flags & VM_EXEC) { |
| 200 | /* Executable */ |
| 201 | eaddr = aligned_start; |
| 202 | while (eaddr < vma_end) { |
| 203 | sh64_icache_inv_user_page(vma, eaddr); |
| 204 | eaddr += PAGE_SIZE; |
| 205 | } |
| 206 | } |
| 207 | aligned_start = vma->vm_end; /* Skip to start of next region */ |
| 208 | } |
Paul Mundt | 38350e0 | 2008-02-13 20:14:10 +0900 | [diff] [blame] | 209 | |
Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 210 | if (mm_asid != current_asid) { |
| 211 | switch_and_save_asid(current_asid); |
| 212 | local_irq_restore(flags); |
| 213 | } |
| 214 | } |
| 215 | } |
| 216 | |
Paul Mundt | 38350e0 | 2008-02-13 20:14:10 +0900 | [diff] [blame] | 217 | /* |
| 218 | * Invalidate a small range of user context I-cache, not necessarily page |
| 219 | * (or even cache-line) aligned. |
| 220 | * |
| 221 | * Since this is used inside ptrace, the ASID in the mm context typically |
| 222 | * won't match current_asid. We'll have to switch ASID to do this. For |
| 223 | * safety, and given that the range will be small, do all this under cli. |
| 224 | * |
| 225 | * Note, there is a hazard that the ASID in mm->context is no longer |
| 226 | * actually associated with mm, i.e. if the mm->context has started a new |
| 227 | * cycle since mm was last active. However, this is just a performance |
| 228 | * issue: all that happens is that we invalidate lines belonging to |
| 229 | * another mm, so the owning process has to refill them when that mm goes |
| 230 | * live again. mm itself can't have any cache entries because there will |
| 231 | * have been a flush_cache_all when the new mm->context cycle started. |
| 232 | */ |
Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 233 | static void sh64_icache_inv_user_small_range(struct mm_struct *mm, |
| 234 | unsigned long start, int len) |
| 235 | { |
Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 236 | unsigned long long eaddr = start; |
| 237 | unsigned long long eaddr_end = start + len; |
| 238 | unsigned long current_asid, mm_asid; |
| 239 | unsigned long long flags; |
| 240 | unsigned long long epage_start; |
| 241 | |
Paul Mundt | 38350e0 | 2008-02-13 20:14:10 +0900 | [diff] [blame] | 242 | /* |
| 243 | * Align to start of cache line. Otherwise, suppose len==8 and |
| 244 | * start was at 32N+28 : the last 4 bytes wouldn't get invalidated. |
| 245 | */ |
| 246 | eaddr = L1_CACHE_ALIGN(start); |
Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 247 | eaddr_end = start + len; |
| 248 | |
Paul Mundt | 38350e0 | 2008-02-13 20:14:10 +0900 | [diff] [blame] | 249 | mm_asid = cpu_asid(smp_processor_id(), mm); |
Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 250 | local_irq_save(flags); |
Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 251 | current_asid = switch_and_save_asid(mm_asid); |
| 252 | |
| 253 | epage_start = eaddr & PAGE_MASK; |
| 254 | |
Paul Mundt | 38350e0 | 2008-02-13 20:14:10 +0900 | [diff] [blame] | 255 | while (eaddr < eaddr_end) { |
| 256 | __asm__ __volatile__("icbi %0, 0" : : "r" (eaddr)); |
Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 257 | eaddr += L1_CACHE_BYTES; |
| 258 | } |
| 259 | switch_and_save_asid(current_asid); |
| 260 | local_irq_restore(flags); |
| 261 | } |
| 262 | |
| 263 | static void sh64_icache_inv_current_user_range(unsigned long start, unsigned long end) |
| 264 | { |
| 265 | /* The icbi instruction never raises ITLBMISS. i.e. if there's not a |
| 266 | cache hit on the virtual tag the instruction ends there, without a |
| 267 | TLB lookup. */ |
| 268 | |
| 269 | unsigned long long aligned_start; |
| 270 | unsigned long long ull_end; |
| 271 | unsigned long long addr; |
| 272 | |
| 273 | ull_end = end; |
| 274 | |
| 275 | /* Just invalidate over the range using the natural addresses. TLB |
| 276 | miss handling will be OK (TBC). Since it's for the current process, |
| 277 | either we're already in the right ASID context, or the ASIDs have |
| 278 | been recycled since we were last active in which case we might just |
| 279 | invalidate another processes I-cache entries : no worries, just a |
| 280 | performance drop for him. */ |
Paul Mundt | 38350e0 | 2008-02-13 20:14:10 +0900 | [diff] [blame] | 281 | aligned_start = L1_CACHE_ALIGN(start); |
Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 282 | addr = aligned_start; |
| 283 | while (addr < ull_end) { |
Paul Mundt | 38350e0 | 2008-02-13 20:14:10 +0900 | [diff] [blame] | 284 | __asm__ __volatile__ ("icbi %0, 0" : : "r" (addr)); |
| 285 | __asm__ __volatile__ ("nop"); |
| 286 | __asm__ __volatile__ ("nop"); |
Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 287 | addr += L1_CACHE_BYTES; |
| 288 | } |
| 289 | } |
Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 290 | #endif /* !CONFIG_ICACHE_DISABLED */ |
| 291 | |
Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 292 | #ifndef CONFIG_DCACHE_DISABLED |
Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 293 | /* Buffer used as the target of alloco instructions to purge data from cache |
| 294 | sets by natural eviction. -- RPC */ |
Paul Mundt | 38350e0 | 2008-02-13 20:14:10 +0900 | [diff] [blame] | 295 | #define DUMMY_ALLOCO_AREA_SIZE ((L1_CACHE_BYTES << 10) + (1024 * 4)) |
Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 296 | static unsigned char dummy_alloco_area[DUMMY_ALLOCO_AREA_SIZE] __cacheline_aligned = { 0, }; |
| 297 | |
Paul Mundt | 38350e0 | 2008-02-13 20:14:10 +0900 | [diff] [blame] | 298 | static void inline sh64_dcache_purge_sets(int sets_to_purge_base, int n_sets) |
Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 299 | { |
| 300 | /* Purge all ways in a particular block of sets, specified by the base |
| 301 | set number and number of sets. Can handle wrap-around, if that's |
| 302 | needed. */ |
| 303 | |
| 304 | int dummy_buffer_base_set; |
| 305 | unsigned long long eaddr, eaddr0, eaddr1; |
| 306 | int j; |
| 307 | int set_offset; |
| 308 | |
Paul Mundt | 38350e0 | 2008-02-13 20:14:10 +0900 | [diff] [blame] | 309 | dummy_buffer_base_set = ((int)&dummy_alloco_area & |
| 310 | cpu_data->dcache.entry_mask) >> |
| 311 | cpu_data->dcache.entry_shift; |
Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 312 | set_offset = sets_to_purge_base - dummy_buffer_base_set; |
| 313 | |
Paul Mundt | 38350e0 | 2008-02-13 20:14:10 +0900 | [diff] [blame] | 314 | for (j = 0; j < n_sets; j++, set_offset++) { |
Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 315 | set_offset &= (cpu_data->dcache.sets - 1); |
Paul Mundt | 38350e0 | 2008-02-13 20:14:10 +0900 | [diff] [blame] | 316 | eaddr0 = (unsigned long long)dummy_alloco_area + |
| 317 | (set_offset << cpu_data->dcache.entry_shift); |
Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 318 | |
Paul Mundt | 38350e0 | 2008-02-13 20:14:10 +0900 | [diff] [blame] | 319 | /* |
| 320 | * Do one alloco which hits the required set per cache |
| 321 | * way. For write-back mode, this will purge the #ways |
| 322 | * resident lines. There's little point unrolling this |
| 323 | * loop because the allocos stall more if they're too |
| 324 | * close together. |
| 325 | */ |
| 326 | eaddr1 = eaddr0 + cpu_data->dcache.way_size * |
| 327 | cpu_data->dcache.ways; |
| 328 | |
| 329 | for (eaddr = eaddr0; eaddr < eaddr1; |
| 330 | eaddr += cpu_data->dcache.way_size) { |
| 331 | __asm__ __volatile__ ("alloco %0, 0" : : "r" (eaddr)); |
| 332 | __asm__ __volatile__ ("synco"); /* TAKum03020 */ |
Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 333 | } |
| 334 | |
Paul Mundt | 38350e0 | 2008-02-13 20:14:10 +0900 | [diff] [blame] | 335 | eaddr1 = eaddr0 + cpu_data->dcache.way_size * |
| 336 | cpu_data->dcache.ways; |
| 337 | |
| 338 | for (eaddr = eaddr0; eaddr < eaddr1; |
| 339 | eaddr += cpu_data->dcache.way_size) { |
| 340 | /* |
| 341 | * Load from each address. Required because |
| 342 | * alloco is a NOP if the cache is write-through. |
| 343 | */ |
Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 344 | if (test_bit(SH_CACHE_MODE_WT, &(cpu_data->dcache.flags))) |
Paul Mundt | 38350e0 | 2008-02-13 20:14:10 +0900 | [diff] [blame] | 345 | ctrl_inb(eaddr); |
Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 346 | } |
| 347 | } |
| 348 | |
Paul Mundt | 38350e0 | 2008-02-13 20:14:10 +0900 | [diff] [blame] | 349 | /* |
| 350 | * Don't use OCBI to invalidate the lines. That costs cycles |
| 351 | * directly. If the dummy block is just left resident, it will |
| 352 | * naturally get evicted as required. |
| 353 | */ |
Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 354 | } |
| 355 | |
Paul Mundt | 38350e0 | 2008-02-13 20:14:10 +0900 | [diff] [blame] | 356 | /* |
| 357 | * Purge the entire contents of the dcache. The most efficient way to |
| 358 | * achieve this is to use alloco instructions on a region of unused |
| 359 | * memory equal in size to the cache, thereby causing the current |
| 360 | * contents to be discarded by natural eviction. The alternative, namely |
| 361 | * reading every tag, setting up a mapping for the corresponding page and |
| 362 | * doing an OCBP for the line, would be much more expensive. |
| 363 | */ |
Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 364 | static void sh64_dcache_purge_all(void) |
| 365 | { |
Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 366 | |
| 367 | sh64_dcache_purge_sets(0, cpu_data->dcache.sets); |
Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 368 | } |
| 369 | |
Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 370 | |
| 371 | /* Assumes this address (+ (2**n_synbits) pages up from it) aren't used for |
| 372 | anything else in the kernel */ |
| 373 | #define MAGIC_PAGE0_START 0xffffffffec000000ULL |
| 374 | |
Paul Mundt | 38350e0 | 2008-02-13 20:14:10 +0900 | [diff] [blame] | 375 | /* Purge the physical page 'paddr' from the cache. It's known that any |
| 376 | * cache lines requiring attention have the same page colour as the the |
| 377 | * address 'eaddr'. |
| 378 | * |
| 379 | * This relies on the fact that the D-cache matches on physical tags when |
| 380 | * no virtual tag matches. So we create an alias for the original page |
| 381 | * and purge through that. (Alternatively, we could have done this by |
| 382 | * switching ASID to match the original mapping and purged through that, |
| 383 | * but that involves ASID switching cost + probably a TLBMISS + refill |
| 384 | * anyway.) |
| 385 | */ |
| 386 | static void sh64_dcache_purge_coloured_phy_page(unsigned long paddr, |
| 387 | unsigned long eaddr) |
Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 388 | { |
Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 389 | unsigned long long magic_page_start; |
| 390 | unsigned long long magic_eaddr, magic_eaddr_end; |
| 391 | |
| 392 | magic_page_start = MAGIC_PAGE0_START + (eaddr & CACHE_OC_SYN_MASK); |
| 393 | |
| 394 | /* As long as the kernel is not pre-emptible, this doesn't need to be |
| 395 | under cli/sti. */ |
Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 396 | sh64_setup_dtlb_cache_slot(magic_page_start, get_asid(), paddr); |
| 397 | |
| 398 | magic_eaddr = magic_page_start; |
| 399 | magic_eaddr_end = magic_eaddr + PAGE_SIZE; |
Paul Mundt | 38350e0 | 2008-02-13 20:14:10 +0900 | [diff] [blame] | 400 | |
Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 401 | while (magic_eaddr < magic_eaddr_end) { |
| 402 | /* Little point in unrolling this loop - the OCBPs are blocking |
| 403 | and won't go any quicker (i.e. the loop overhead is parallel |
| 404 | to part of the OCBP execution.) */ |
Paul Mundt | 38350e0 | 2008-02-13 20:14:10 +0900 | [diff] [blame] | 405 | __asm__ __volatile__ ("ocbp %0, 0" : : "r" (magic_eaddr)); |
Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 406 | magic_eaddr += L1_CACHE_BYTES; |
| 407 | } |
| 408 | |
| 409 | sh64_teardown_dtlb_cache_slot(); |
| 410 | } |
| 411 | |
Paul Mundt | 38350e0 | 2008-02-13 20:14:10 +0900 | [diff] [blame] | 412 | /* |
| 413 | * Purge a page given its physical start address, by creating a temporary |
| 414 | * 1 page mapping and purging across that. Even if we know the virtual |
| 415 | * address (& vma or mm) of the page, the method here is more elegant |
| 416 | * because it avoids issues of coping with page faults on the purge |
| 417 | * instructions (i.e. no special-case code required in the critical path |
| 418 | * in the TLB miss handling). |
| 419 | */ |
Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 420 | static void sh64_dcache_purge_phy_page(unsigned long paddr) |
| 421 | { |
Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 422 | unsigned long long eaddr_start, eaddr, eaddr_end; |
| 423 | int i; |
| 424 | |
| 425 | /* As long as the kernel is not pre-emptible, this doesn't need to be |
| 426 | under cli/sti. */ |
Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 427 | eaddr_start = MAGIC_PAGE0_START; |
Paul Mundt | 38350e0 | 2008-02-13 20:14:10 +0900 | [diff] [blame] | 428 | for (i = 0; i < (1 << CACHE_OC_N_SYNBITS); i++) { |
Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 429 | sh64_setup_dtlb_cache_slot(eaddr_start, get_asid(), paddr); |
| 430 | |
| 431 | eaddr = eaddr_start; |
| 432 | eaddr_end = eaddr + PAGE_SIZE; |
| 433 | while (eaddr < eaddr_end) { |
Paul Mundt | 38350e0 | 2008-02-13 20:14:10 +0900 | [diff] [blame] | 434 | __asm__ __volatile__ ("ocbp %0, 0" : : "r" (eaddr)); |
Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 435 | eaddr += L1_CACHE_BYTES; |
| 436 | } |
| 437 | |
| 438 | sh64_teardown_dtlb_cache_slot(); |
| 439 | eaddr_start += PAGE_SIZE; |
| 440 | } |
| 441 | } |
| 442 | |
Hugh Dickins | 60ec558 | 2005-10-29 18:16:34 -0700 | [diff] [blame] | 443 | static void sh64_dcache_purge_user_pages(struct mm_struct *mm, |
| 444 | unsigned long addr, unsigned long end) |
Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 445 | { |
| 446 | pgd_t *pgd; |
Paul Mundt | 38350e0 | 2008-02-13 20:14:10 +0900 | [diff] [blame] | 447 | pud_t *pud; |
Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 448 | pmd_t *pmd; |
| 449 | pte_t *pte; |
| 450 | pte_t entry; |
Hugh Dickins | 60ec558 | 2005-10-29 18:16:34 -0700 | [diff] [blame] | 451 | spinlock_t *ptl; |
Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 452 | unsigned long paddr; |
| 453 | |
Hugh Dickins | 60ec558 | 2005-10-29 18:16:34 -0700 | [diff] [blame] | 454 | if (!mm) |
| 455 | return; /* No way to find physical address of page */ |
Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 456 | |
Hugh Dickins | 60ec558 | 2005-10-29 18:16:34 -0700 | [diff] [blame] | 457 | pgd = pgd_offset(mm, addr); |
| 458 | if (pgd_bad(*pgd)) |
| 459 | return; |
Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 460 | |
Paul Mundt | 38350e0 | 2008-02-13 20:14:10 +0900 | [diff] [blame] | 461 | pud = pud_offset(pgd, addr); |
| 462 | if (pud_none(*pud) || pud_bad(*pud)) |
| 463 | return; |
| 464 | |
| 465 | pmd = pmd_offset(pud, addr); |
Hugh Dickins | 60ec558 | 2005-10-29 18:16:34 -0700 | [diff] [blame] | 466 | if (pmd_none(*pmd) || pmd_bad(*pmd)) |
| 467 | return; |
Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 468 | |
Hugh Dickins | 60ec558 | 2005-10-29 18:16:34 -0700 | [diff] [blame] | 469 | pte = pte_offset_map_lock(mm, pmd, addr, &ptl); |
| 470 | do { |
| 471 | entry = *pte; |
| 472 | if (pte_none(entry) || !pte_present(entry)) |
| 473 | continue; |
| 474 | paddr = pte_val(entry) & PAGE_MASK; |
| 475 | sh64_dcache_purge_coloured_phy_page(paddr, addr); |
| 476 | } while (pte++, addr += PAGE_SIZE, addr != end); |
| 477 | pte_unmap_unlock(pte - 1, ptl); |
Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 478 | } |
Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 479 | |
Paul Mundt | 38350e0 | 2008-02-13 20:14:10 +0900 | [diff] [blame] | 480 | /* |
| 481 | * There are at least 5 choices for the implementation of this, with |
| 482 | * pros (+), cons(-), comments(*): |
| 483 | * |
| 484 | * 1. ocbp each line in the range through the original user's ASID |
| 485 | * + no lines spuriously evicted |
| 486 | * - tlbmiss handling (must either handle faults on demand => extra |
| 487 | * special-case code in tlbmiss critical path), or map the page in |
| 488 | * advance (=> flush_tlb_range in advance to avoid multiple hits) |
| 489 | * - ASID switching |
| 490 | * - expensive for large ranges |
| 491 | * |
| 492 | * 2. temporarily map each page in the range to a special effective |
| 493 | * address and ocbp through the temporary mapping; relies on the |
| 494 | * fact that SH-5 OCB* always do TLB lookup and match on ptags (they |
| 495 | * never look at the etags) |
| 496 | * + no spurious evictions |
| 497 | * - expensive for large ranges |
| 498 | * * surely cheaper than (1) |
| 499 | * |
| 500 | * 3. walk all the lines in the cache, check the tags, if a match |
| 501 | * occurs create a page mapping to ocbp the line through |
| 502 | * + no spurious evictions |
| 503 | * - tag inspection overhead |
| 504 | * - (especially for small ranges) |
| 505 | * - potential cost of setting up/tearing down page mapping for |
| 506 | * every line that matches the range |
| 507 | * * cost partly independent of range size |
| 508 | * |
| 509 | * 4. walk all the lines in the cache, check the tags, if a match |
| 510 | * occurs use 4 * alloco to purge the line (+3 other probably |
| 511 | * innocent victims) by natural eviction |
| 512 | * + no tlb mapping overheads |
| 513 | * - spurious evictions |
| 514 | * - tag inspection overhead |
| 515 | * |
| 516 | * 5. implement like flush_cache_all |
| 517 | * + no tag inspection overhead |
| 518 | * - spurious evictions |
| 519 | * - bad for small ranges |
| 520 | * |
| 521 | * (1) can be ruled out as more expensive than (2). (2) appears best |
| 522 | * for small ranges. The choice between (3), (4) and (5) for large |
| 523 | * ranges and the range size for the large/small boundary need |
| 524 | * benchmarking to determine. |
| 525 | * |
| 526 | * For now use approach (2) for small ranges and (5) for large ones. |
| 527 | */ |
Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 528 | static void sh64_dcache_purge_user_range(struct mm_struct *mm, |
| 529 | unsigned long start, unsigned long end) |
| 530 | { |
Paul Mundt | 38350e0 | 2008-02-13 20:14:10 +0900 | [diff] [blame] | 531 | int n_pages = ((end - start) >> PAGE_SHIFT); |
Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 532 | |
Hugh Dickins | 60ec558 | 2005-10-29 18:16:34 -0700 | [diff] [blame] | 533 | if (n_pages >= 64 || ((start ^ (end - 1)) & PMD_MASK)) { |
Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 534 | sh64_dcache_purge_all(); |
Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 535 | } else { |
Hugh Dickins | 60ec558 | 2005-10-29 18:16:34 -0700 | [diff] [blame] | 536 | /* Small range, covered by a single page table page */ |
| 537 | start &= PAGE_MASK; /* should already be so */ |
| 538 | end = PAGE_ALIGN(end); /* should already be so */ |
| 539 | sh64_dcache_purge_user_pages(mm, start, end); |
Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 540 | } |
Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 541 | } |
| 542 | |
Paul Mundt | 38350e0 | 2008-02-13 20:14:10 +0900 | [diff] [blame] | 543 | /* |
| 544 | * Purge the range of addresses from the D-cache. |
| 545 | * |
| 546 | * The addresses lie in the superpage mapping. There's no harm if we |
| 547 | * overpurge at either end - just a small performance loss. |
| 548 | */ |
| 549 | void __flush_purge_region(void *start, int size) |
Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 550 | { |
Paul Mundt | 38350e0 | 2008-02-13 20:14:10 +0900 | [diff] [blame] | 551 | unsigned long long ullend, addr, aligned_start; |
Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 552 | |
Paul Mundt | 38350e0 | 2008-02-13 20:14:10 +0900 | [diff] [blame] | 553 | aligned_start = (unsigned long long)(signed long long)(signed long) start; |
| 554 | addr = L1_CACHE_ALIGN(aligned_start); |
| 555 | ullend = (unsigned long long) (signed long long) (signed long) start + size; |
Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 556 | |
Paul Mundt | 38350e0 | 2008-02-13 20:14:10 +0900 | [diff] [blame] | 557 | while (addr <= ullend) { |
| 558 | __asm__ __volatile__ ("ocbp %0, 0" : : "r" (addr)); |
Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 559 | addr += L1_CACHE_BYTES; |
| 560 | } |
| 561 | } |
| 562 | |
Paul Mundt | 38350e0 | 2008-02-13 20:14:10 +0900 | [diff] [blame] | 563 | void __flush_wback_region(void *start, int size) |
| 564 | { |
| 565 | unsigned long long ullend, addr, aligned_start; |
Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 566 | |
Paul Mundt | 38350e0 | 2008-02-13 20:14:10 +0900 | [diff] [blame] | 567 | aligned_start = (unsigned long long)(signed long long)(signed long) start; |
| 568 | addr = L1_CACHE_ALIGN(aligned_start); |
| 569 | ullend = (unsigned long long) (signed long long) (signed long) start + size; |
| 570 | |
| 571 | while (addr < ullend) { |
| 572 | __asm__ __volatile__ ("ocbwb %0, 0" : : "r" (addr)); |
| 573 | addr += L1_CACHE_BYTES; |
| 574 | } |
| 575 | } |
| 576 | |
| 577 | void __flush_invalidate_region(void *start, int size) |
| 578 | { |
| 579 | unsigned long long ullend, addr, aligned_start; |
| 580 | |
| 581 | aligned_start = (unsigned long long)(signed long long)(signed long) start; |
| 582 | addr = L1_CACHE_ALIGN(aligned_start); |
| 583 | ullend = (unsigned long long) (signed long long) (signed long) start + size; |
| 584 | |
| 585 | while (addr < ullend) { |
| 586 | __asm__ __volatile__ ("ocbi %0, 0" : : "r" (addr)); |
| 587 | addr += L1_CACHE_BYTES; |
| 588 | } |
| 589 | } |
| 590 | #endif /* !CONFIG_DCACHE_DISABLED */ |
| 591 | |
| 592 | /* |
| 593 | * Invalidate the entire contents of both caches, after writing back to |
| 594 | * memory any dirty data from the D-cache. |
| 595 | */ |
| 596 | void flush_cache_all(void) |
| 597 | { |
| 598 | sh64_dcache_purge_all(); |
| 599 | sh64_icache_inv_all(); |
| 600 | } |
| 601 | |
| 602 | /* |
| 603 | * Invalidate an entire user-address space from both caches, after |
| 604 | * writing back dirty data (e.g. for shared mmap etc). |
| 605 | * |
| 606 | * This could be coded selectively by inspecting all the tags then |
| 607 | * doing 4*alloco on any set containing a match (as for |
| 608 | * flush_cache_range), but fork/exit/execve (where this is called from) |
| 609 | * are expensive anyway. |
| 610 | * |
| 611 | * Have to do a purge here, despite the comments re I-cache below. |
| 612 | * There could be odd-coloured dirty data associated with the mm still |
| 613 | * in the cache - if this gets written out through natural eviction |
| 614 | * after the kernel has reused the page there will be chaos. |
| 615 | * |
| 616 | * The mm being torn down won't ever be active again, so any Icache |
| 617 | * lines tagged with its ASID won't be visible for the rest of the |
| 618 | * lifetime of this ASID cycle. Before the ASID gets reused, there |
| 619 | * will be a flush_cache_all. Hence we don't need to touch the |
| 620 | * I-cache. This is similar to the lack of action needed in |
| 621 | * flush_tlb_mm - see fault.c. |
| 622 | */ |
| 623 | void flush_cache_mm(struct mm_struct *mm) |
| 624 | { |
| 625 | sh64_dcache_purge_all(); |
| 626 | } |
| 627 | |
| 628 | /* |
| 629 | * Invalidate (from both caches) the range [start,end) of virtual |
| 630 | * addresses from the user address space specified by mm, after writing |
| 631 | * back any dirty data. |
| 632 | * |
| 633 | * Note, 'end' is 1 byte beyond the end of the range to flush. |
| 634 | */ |
| 635 | void flush_cache_range(struct vm_area_struct *vma, unsigned long start, |
| 636 | unsigned long end) |
| 637 | { |
| 638 | struct mm_struct *mm = vma->vm_mm; |
| 639 | |
| 640 | sh64_dcache_purge_user_range(mm, start, end); |
| 641 | sh64_icache_inv_user_page_range(mm, start, end); |
| 642 | } |
| 643 | |
| 644 | /* |
| 645 | * Invalidate any entries in either cache for the vma within the user |
| 646 | * address space vma->vm_mm for the page starting at virtual address |
| 647 | * 'eaddr'. This seems to be used primarily in breaking COW. Note, |
| 648 | * the I-cache must be searched too in case the page in question is |
| 649 | * both writable and being executed from (e.g. stack trampolines.) |
| 650 | * |
| 651 | * Note, this is called with pte lock held. |
| 652 | */ |
| 653 | void flush_cache_page(struct vm_area_struct *vma, unsigned long eaddr, |
| 654 | unsigned long pfn) |
| 655 | { |
| 656 | sh64_dcache_purge_phy_page(pfn << PAGE_SHIFT); |
| 657 | |
| 658 | if (vma->vm_flags & VM_EXEC) |
| 659 | sh64_icache_inv_user_page(vma, eaddr); |
| 660 | } |
| 661 | |
| 662 | void flush_dcache_page(struct page *page) |
| 663 | { |
| 664 | sh64_dcache_purge_phy_page(page_to_phys(page)); |
| 665 | wmb(); |
| 666 | } |
| 667 | |
| 668 | /* |
| 669 | * Flush the range [start,end] of kernel virtual adddress space from |
| 670 | * the I-cache. The corresponding range must be purged from the |
| 671 | * D-cache also because the SH-5 doesn't have cache snooping between |
| 672 | * the caches. The addresses will be visible through the superpage |
| 673 | * mapping, therefore it's guaranteed that there no cache entries for |
| 674 | * the range in cache sets of the wrong colour. |
| 675 | */ |
| 676 | void flush_icache_range(unsigned long start, unsigned long end) |
| 677 | { |
| 678 | __flush_purge_region((void *)start, end); |
| 679 | wmb(); |
| 680 | sh64_icache_inv_kernel_range(start, end); |
| 681 | } |
| 682 | |
| 683 | /* |
| 684 | * Flush the range of user (defined by vma->vm_mm) address space starting |
| 685 | * at 'addr' for 'len' bytes from the cache. The range does not straddle |
| 686 | * a page boundary, the unique physical page containing the range is |
| 687 | * 'page'. This seems to be used mainly for invalidating an address |
| 688 | * range following a poke into the program text through the ptrace() call |
| 689 | * from another process (e.g. for BRK instruction insertion). |
| 690 | */ |
| 691 | void flush_icache_user_range(struct vm_area_struct *vma, |
| 692 | struct page *page, unsigned long addr, int len) |
| 693 | { |
| 694 | |
| 695 | sh64_dcache_purge_coloured_phy_page(page_to_phys(page), addr); |
| 696 | mb(); |
| 697 | |
| 698 | if (vma->vm_flags & VM_EXEC) |
| 699 | sh64_icache_inv_user_small_range(vma->vm_mm, addr, len); |
| 700 | } |
| 701 | |
| 702 | /* |
| 703 | * For the address range [start,end), write back the data from the |
| 704 | * D-cache and invalidate the corresponding region of the I-cache for the |
| 705 | * current process. Used to flush signal trampolines on the stack to |
| 706 | * make them executable. |
| 707 | */ |
| 708 | void flush_cache_sigtramp(unsigned long vaddr) |
| 709 | { |
| 710 | unsigned long end = vaddr + L1_CACHE_BYTES; |
| 711 | |
| 712 | __flush_wback_region((void *)vaddr, L1_CACHE_BYTES); |
| 713 | wmb(); |
| 714 | sh64_icache_inv_current_user_range(vaddr, end); |
| 715 | } |
| 716 | |
Paul Mundt | ccd8058 | 2008-04-25 12:58:40 +0900 | [diff] [blame] | 717 | #ifdef CONFIG_MMU |
Paul Mundt | 38350e0 | 2008-02-13 20:14:10 +0900 | [diff] [blame] | 718 | /* |
| 719 | * These *MUST* lie in an area of virtual address space that's otherwise |
| 720 | * unused. |
| 721 | */ |
Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 722 | #define UNIQUE_EADDR_START 0xe0000000UL |
| 723 | #define UNIQUE_EADDR_END 0xe8000000UL |
| 724 | |
Paul Mundt | 38350e0 | 2008-02-13 20:14:10 +0900 | [diff] [blame] | 725 | /* |
| 726 | * Given a physical address paddr, and a user virtual address user_eaddr |
| 727 | * which will eventually be mapped to it, create a one-off kernel-private |
| 728 | * eaddr mapped to the same paddr. This is used for creating special |
| 729 | * destination pages for copy_user_page and clear_user_page. |
| 730 | */ |
| 731 | static unsigned long sh64_make_unique_eaddr(unsigned long user_eaddr, |
| 732 | unsigned long paddr) |
Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 733 | { |
Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 734 | static unsigned long current_pointer = UNIQUE_EADDR_START; |
| 735 | unsigned long coloured_pointer; |
| 736 | |
| 737 | if (current_pointer == UNIQUE_EADDR_END) { |
| 738 | sh64_dcache_purge_all(); |
| 739 | current_pointer = UNIQUE_EADDR_START; |
| 740 | } |
| 741 | |
Paul Mundt | 38350e0 | 2008-02-13 20:14:10 +0900 | [diff] [blame] | 742 | coloured_pointer = (current_pointer & ~CACHE_OC_SYN_MASK) | |
| 743 | (user_eaddr & CACHE_OC_SYN_MASK); |
Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 744 | sh64_setup_dtlb_cache_slot(coloured_pointer, get_asid(), paddr); |
| 745 | |
| 746 | current_pointer += (PAGE_SIZE << CACHE_OC_N_SYNBITS); |
| 747 | |
| 748 | return coloured_pointer; |
| 749 | } |
| 750 | |
Paul Mundt | 38350e0 | 2008-02-13 20:14:10 +0900 | [diff] [blame] | 751 | static void sh64_copy_user_page_coloured(void *to, void *from, |
| 752 | unsigned long address) |
Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 753 | { |
| 754 | void *coloured_to; |
| 755 | |
Paul Mundt | 38350e0 | 2008-02-13 20:14:10 +0900 | [diff] [blame] | 756 | /* |
| 757 | * Discard any existing cache entries of the wrong colour. These are |
| 758 | * present quite often, if the kernel has recently used the page |
| 759 | * internally, then given it up, then it's been allocated to the user. |
| 760 | */ |
| 761 | sh64_dcache_purge_coloured_phy_page(__pa(to), (unsigned long)to); |
Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 762 | |
Paul Mundt | 38350e0 | 2008-02-13 20:14:10 +0900 | [diff] [blame] | 763 | coloured_to = (void *)sh64_make_unique_eaddr(address, __pa(to)); |
| 764 | copy_page(from, coloured_to); |
Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 765 | |
| 766 | sh64_teardown_dtlb_cache_slot(); |
| 767 | } |
| 768 | |
| 769 | static void sh64_clear_user_page_coloured(void *to, unsigned long address) |
| 770 | { |
| 771 | void *coloured_to; |
| 772 | |
Paul Mundt | 38350e0 | 2008-02-13 20:14:10 +0900 | [diff] [blame] | 773 | /* |
| 774 | * Discard any existing kernel-originated lines of the wrong |
| 775 | * colour (as above) |
| 776 | */ |
| 777 | sh64_dcache_purge_coloured_phy_page(__pa(to), (unsigned long)to); |
Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 778 | |
Paul Mundt | 38350e0 | 2008-02-13 20:14:10 +0900 | [diff] [blame] | 779 | coloured_to = (void *)sh64_make_unique_eaddr(address, __pa(to)); |
| 780 | clear_page(coloured_to); |
Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 781 | |
| 782 | sh64_teardown_dtlb_cache_slot(); |
| 783 | } |
| 784 | |
Paul Mundt | 38350e0 | 2008-02-13 20:14:10 +0900 | [diff] [blame] | 785 | /* |
| 786 | * 'from' and 'to' are kernel virtual addresses (within the superpage |
| 787 | * mapping of the physical RAM). 'address' is the user virtual address |
| 788 | * where the copy 'to' will be mapped after. This allows a custom |
| 789 | * mapping to be used to ensure that the new copy is placed in the |
| 790 | * right cache sets for the user to see it without having to bounce it |
| 791 | * out via memory. Note however : the call to flush_page_to_ram in |
| 792 | * (generic)/mm/memory.c:(break_cow) undoes all this good work in that one |
| 793 | * very important case! |
| 794 | * |
| 795 | * TBD : can we guarantee that on every call, any cache entries for |
| 796 | * 'from' are in the same colour sets as 'address' also? i.e. is this |
| 797 | * always used just to deal with COW? (I suspect not). |
| 798 | * |
| 799 | * There are two possibilities here for when the page 'from' was last accessed: |
| 800 | * - by the kernel : this is OK, no purge required. |
| 801 | * - by the/a user (e.g. for break_COW) : need to purge. |
| 802 | * |
| 803 | * If the potential user mapping at 'address' is the same colour as |
| 804 | * 'from' there is no need to purge any cache lines from the 'from' |
| 805 | * page mapped into cache sets of colour 'address'. (The copy will be |
| 806 | * accessing the page through 'from'). |
| 807 | */ |
| 808 | void copy_user_page(void *to, void *from, unsigned long address, |
| 809 | struct page *page) |
Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 810 | { |
Paul Mundt | 38350e0 | 2008-02-13 20:14:10 +0900 | [diff] [blame] | 811 | if (((address ^ (unsigned long) from) & CACHE_OC_SYN_MASK) != 0) |
Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 812 | sh64_dcache_purge_coloured_phy_page(__pa(from), address); |
Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 813 | |
Paul Mundt | 38350e0 | 2008-02-13 20:14:10 +0900 | [diff] [blame] | 814 | if (((address ^ (unsigned long) to) & CACHE_OC_SYN_MASK) == 0) |
| 815 | copy_page(to, from); |
| 816 | else |
Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 817 | sh64_copy_user_page_coloured(to, from, address); |
Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 818 | } |
| 819 | |
Paul Mundt | 38350e0 | 2008-02-13 20:14:10 +0900 | [diff] [blame] | 820 | /* |
| 821 | * 'to' is a kernel virtual address (within the superpage mapping of the |
| 822 | * physical RAM). 'address' is the user virtual address where the 'to' |
| 823 | * page will be mapped after. This allows a custom mapping to be used to |
| 824 | * ensure that the new copy is placed in the right cache sets for the |
| 825 | * user to see it without having to bounce it out via memory. |
| 826 | */ |
Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 827 | void clear_user_page(void *to, unsigned long address, struct page *page) |
| 828 | { |
Paul Mundt | 38350e0 | 2008-02-13 20:14:10 +0900 | [diff] [blame] | 829 | if (((address ^ (unsigned long) to) & CACHE_OC_SYN_MASK) == 0) |
| 830 | clear_page(to); |
| 831 | else |
Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 832 | sh64_clear_user_page_coloured(to, address); |
Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 833 | } |
Paul Mundt | ccd8058 | 2008-04-25 12:58:40 +0900 | [diff] [blame] | 834 | #endif |