Andy Grover | eff5f53 | 2009-02-24 15:30:29 +0000 | [diff] [blame^] | 1 | /* |
| 2 | * Copyright (c) 2007 Oracle. All rights reserved. |
| 3 | * |
| 4 | * This software is available to you under a choice of one of two |
| 5 | * licenses. You may choose to be licensed under the terms of the GNU |
| 6 | * General Public License (GPL) Version 2, available from the file |
| 7 | * COPYING in the main directory of this source tree, or the |
| 8 | * OpenIB.org BSD license below: |
| 9 | * |
| 10 | * Redistribution and use in source and binary forms, with or |
| 11 | * without modification, are permitted provided that the following |
| 12 | * conditions are met: |
| 13 | * |
| 14 | * - Redistributions of source code must retain the above |
| 15 | * copyright notice, this list of conditions and the following |
| 16 | * disclaimer. |
| 17 | * |
| 18 | * - Redistributions in binary form must reproduce the above |
| 19 | * copyright notice, this list of conditions and the following |
| 20 | * disclaimer in the documentation and/or other materials |
| 21 | * provided with the distribution. |
| 22 | * |
| 23 | * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, |
| 24 | * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF |
| 25 | * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND |
| 26 | * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS |
| 27 | * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN |
| 28 | * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN |
| 29 | * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE |
| 30 | * SOFTWARE. |
| 31 | * |
| 32 | */ |
| 33 | #include <linux/pagemap.h> |
| 34 | #include <linux/rbtree.h> |
| 35 | #include <linux/dma-mapping.h> /* for DMA_*_DEVICE */ |
| 36 | |
| 37 | #include "rdma.h" |
| 38 | |
| 39 | /* |
| 40 | * XXX |
| 41 | * - build with sparse |
| 42 | * - should we limit the size of a mr region? let transport return failure? |
| 43 | * - should we detect duplicate keys on a socket? hmm. |
| 44 | * - an rdma is an mlock, apply rlimit? |
| 45 | */ |
| 46 | |
| 47 | /* |
| 48 | * get the number of pages by looking at the page indices that the start and |
| 49 | * end addresses fall in. |
| 50 | * |
| 51 | * Returns 0 if the vec is invalid. It is invalid if the number of bytes |
| 52 | * causes the address to wrap or overflows an unsigned int. This comes |
| 53 | * from being stored in the 'length' member of 'struct scatterlist'. |
| 54 | */ |
| 55 | static unsigned int rds_pages_in_vec(struct rds_iovec *vec) |
| 56 | { |
| 57 | if ((vec->addr + vec->bytes <= vec->addr) || |
| 58 | (vec->bytes > (u64)UINT_MAX)) |
| 59 | return 0; |
| 60 | |
| 61 | return ((vec->addr + vec->bytes + PAGE_SIZE - 1) >> PAGE_SHIFT) - |
| 62 | (vec->addr >> PAGE_SHIFT); |
| 63 | } |
| 64 | |
| 65 | static struct rds_mr *rds_mr_tree_walk(struct rb_root *root, u64 key, |
| 66 | struct rds_mr *insert) |
| 67 | { |
| 68 | struct rb_node **p = &root->rb_node; |
| 69 | struct rb_node *parent = NULL; |
| 70 | struct rds_mr *mr; |
| 71 | |
| 72 | while (*p) { |
| 73 | parent = *p; |
| 74 | mr = rb_entry(parent, struct rds_mr, r_rb_node); |
| 75 | |
| 76 | if (key < mr->r_key) |
| 77 | p = &(*p)->rb_left; |
| 78 | else if (key > mr->r_key) |
| 79 | p = &(*p)->rb_right; |
| 80 | else |
| 81 | return mr; |
| 82 | } |
| 83 | |
| 84 | if (insert) { |
| 85 | rb_link_node(&insert->r_rb_node, parent, p); |
| 86 | rb_insert_color(&insert->r_rb_node, root); |
| 87 | atomic_inc(&insert->r_refcount); |
| 88 | } |
| 89 | return NULL; |
| 90 | } |
| 91 | |
| 92 | /* |
| 93 | * Destroy the transport-specific part of a MR. |
| 94 | */ |
| 95 | static void rds_destroy_mr(struct rds_mr *mr) |
| 96 | { |
| 97 | struct rds_sock *rs = mr->r_sock; |
| 98 | void *trans_private = NULL; |
| 99 | unsigned long flags; |
| 100 | |
| 101 | rdsdebug("RDS: destroy mr key is %x refcnt %u\n", |
| 102 | mr->r_key, atomic_read(&mr->r_refcount)); |
| 103 | |
| 104 | if (test_and_set_bit(RDS_MR_DEAD, &mr->r_state)) |
| 105 | return; |
| 106 | |
| 107 | spin_lock_irqsave(&rs->rs_rdma_lock, flags); |
| 108 | if (!RB_EMPTY_NODE(&mr->r_rb_node)) |
| 109 | rb_erase(&mr->r_rb_node, &rs->rs_rdma_keys); |
| 110 | trans_private = mr->r_trans_private; |
| 111 | mr->r_trans_private = NULL; |
| 112 | spin_unlock_irqrestore(&rs->rs_rdma_lock, flags); |
| 113 | |
| 114 | if (trans_private) |
| 115 | mr->r_trans->free_mr(trans_private, mr->r_invalidate); |
| 116 | } |
| 117 | |
| 118 | void __rds_put_mr_final(struct rds_mr *mr) |
| 119 | { |
| 120 | rds_destroy_mr(mr); |
| 121 | kfree(mr); |
| 122 | } |
| 123 | |
| 124 | /* |
| 125 | * By the time this is called we can't have any more ioctls called on |
| 126 | * the socket so we don't need to worry about racing with others. |
| 127 | */ |
| 128 | void rds_rdma_drop_keys(struct rds_sock *rs) |
| 129 | { |
| 130 | struct rds_mr *mr; |
| 131 | struct rb_node *node; |
| 132 | |
| 133 | /* Release any MRs associated with this socket */ |
| 134 | while ((node = rb_first(&rs->rs_rdma_keys))) { |
| 135 | mr = container_of(node, struct rds_mr, r_rb_node); |
| 136 | if (mr->r_trans == rs->rs_transport) |
| 137 | mr->r_invalidate = 0; |
| 138 | rds_mr_put(mr); |
| 139 | } |
| 140 | |
| 141 | if (rs->rs_transport && rs->rs_transport->flush_mrs) |
| 142 | rs->rs_transport->flush_mrs(); |
| 143 | } |
| 144 | |
| 145 | /* |
| 146 | * Helper function to pin user pages. |
| 147 | */ |
| 148 | static int rds_pin_pages(unsigned long user_addr, unsigned int nr_pages, |
| 149 | struct page **pages, int write) |
| 150 | { |
| 151 | int ret; |
| 152 | |
| 153 | down_read(¤t->mm->mmap_sem); |
| 154 | ret = get_user_pages(current, current->mm, user_addr, |
| 155 | nr_pages, write, 0, pages, NULL); |
| 156 | up_read(¤t->mm->mmap_sem); |
| 157 | |
| 158 | if (0 <= ret && (unsigned) ret < nr_pages) { |
| 159 | while (ret--) |
| 160 | put_page(pages[ret]); |
| 161 | ret = -EFAULT; |
| 162 | } |
| 163 | |
| 164 | return ret; |
| 165 | } |
| 166 | |
| 167 | static int __rds_rdma_map(struct rds_sock *rs, struct rds_get_mr_args *args, |
| 168 | u64 *cookie_ret, struct rds_mr **mr_ret) |
| 169 | { |
| 170 | struct rds_mr *mr = NULL, *found; |
| 171 | unsigned int nr_pages; |
| 172 | struct page **pages = NULL; |
| 173 | struct scatterlist *sg; |
| 174 | void *trans_private; |
| 175 | unsigned long flags; |
| 176 | rds_rdma_cookie_t cookie; |
| 177 | unsigned int nents; |
| 178 | long i; |
| 179 | int ret; |
| 180 | |
| 181 | if (rs->rs_bound_addr == 0) { |
| 182 | ret = -ENOTCONN; /* XXX not a great errno */ |
| 183 | goto out; |
| 184 | } |
| 185 | |
| 186 | if (rs->rs_transport->get_mr == NULL) { |
| 187 | ret = -EOPNOTSUPP; |
| 188 | goto out; |
| 189 | } |
| 190 | |
| 191 | nr_pages = rds_pages_in_vec(&args->vec); |
| 192 | if (nr_pages == 0) { |
| 193 | ret = -EINVAL; |
| 194 | goto out; |
| 195 | } |
| 196 | |
| 197 | rdsdebug("RDS: get_mr addr %llx len %llu nr_pages %u\n", |
| 198 | args->vec.addr, args->vec.bytes, nr_pages); |
| 199 | |
| 200 | /* XXX clamp nr_pages to limit the size of this alloc? */ |
| 201 | pages = kcalloc(nr_pages, sizeof(struct page *), GFP_KERNEL); |
| 202 | if (pages == NULL) { |
| 203 | ret = -ENOMEM; |
| 204 | goto out; |
| 205 | } |
| 206 | |
| 207 | mr = kzalloc(sizeof(struct rds_mr), GFP_KERNEL); |
| 208 | if (mr == NULL) { |
| 209 | ret = -ENOMEM; |
| 210 | goto out; |
| 211 | } |
| 212 | |
| 213 | atomic_set(&mr->r_refcount, 1); |
| 214 | RB_CLEAR_NODE(&mr->r_rb_node); |
| 215 | mr->r_trans = rs->rs_transport; |
| 216 | mr->r_sock = rs; |
| 217 | |
| 218 | if (args->flags & RDS_RDMA_USE_ONCE) |
| 219 | mr->r_use_once = 1; |
| 220 | if (args->flags & RDS_RDMA_INVALIDATE) |
| 221 | mr->r_invalidate = 1; |
| 222 | if (args->flags & RDS_RDMA_READWRITE) |
| 223 | mr->r_write = 1; |
| 224 | |
| 225 | /* |
| 226 | * Pin the pages that make up the user buffer and transfer the page |
| 227 | * pointers to the mr's sg array. We check to see if we've mapped |
| 228 | * the whole region after transferring the partial page references |
| 229 | * to the sg array so that we can have one page ref cleanup path. |
| 230 | * |
| 231 | * For now we have no flag that tells us whether the mapping is |
| 232 | * r/o or r/w. We need to assume r/w, or we'll do a lot of RDMA to |
| 233 | * the zero page. |
| 234 | */ |
| 235 | ret = rds_pin_pages(args->vec.addr & PAGE_MASK, nr_pages, pages, 1); |
| 236 | if (ret < 0) |
| 237 | goto out; |
| 238 | |
| 239 | nents = ret; |
| 240 | sg = kcalloc(nents, sizeof(*sg), GFP_KERNEL); |
| 241 | if (sg == NULL) { |
| 242 | ret = -ENOMEM; |
| 243 | goto out; |
| 244 | } |
| 245 | WARN_ON(!nents); |
| 246 | sg_init_table(sg, nents); |
| 247 | |
| 248 | /* Stick all pages into the scatterlist */ |
| 249 | for (i = 0 ; i < nents; i++) |
| 250 | sg_set_page(&sg[i], pages[i], PAGE_SIZE, 0); |
| 251 | |
| 252 | rdsdebug("RDS: trans_private nents is %u\n", nents); |
| 253 | |
| 254 | /* Obtain a transport specific MR. If this succeeds, the |
| 255 | * s/g list is now owned by the MR. |
| 256 | * Note that dma_map() implies that pending writes are |
| 257 | * flushed to RAM, so no dma_sync is needed here. */ |
| 258 | trans_private = rs->rs_transport->get_mr(sg, nents, rs, |
| 259 | &mr->r_key); |
| 260 | |
| 261 | if (IS_ERR(trans_private)) { |
| 262 | for (i = 0 ; i < nents; i++) |
| 263 | put_page(sg_page(&sg[i])); |
| 264 | kfree(sg); |
| 265 | ret = PTR_ERR(trans_private); |
| 266 | goto out; |
| 267 | } |
| 268 | |
| 269 | mr->r_trans_private = trans_private; |
| 270 | |
| 271 | rdsdebug("RDS: get_mr put_user key is %x cookie_addr %p\n", |
| 272 | mr->r_key, (void *)(unsigned long) args->cookie_addr); |
| 273 | |
| 274 | /* The user may pass us an unaligned address, but we can only |
| 275 | * map page aligned regions. So we keep the offset, and build |
| 276 | * a 64bit cookie containing <R_Key, offset> and pass that |
| 277 | * around. */ |
| 278 | cookie = rds_rdma_make_cookie(mr->r_key, args->vec.addr & ~PAGE_MASK); |
| 279 | if (cookie_ret) |
| 280 | *cookie_ret = cookie; |
| 281 | |
| 282 | if (args->cookie_addr && put_user(cookie, (u64 __user *)(unsigned long) args->cookie_addr)) { |
| 283 | ret = -EFAULT; |
| 284 | goto out; |
| 285 | } |
| 286 | |
| 287 | /* Inserting the new MR into the rbtree bumps its |
| 288 | * reference count. */ |
| 289 | spin_lock_irqsave(&rs->rs_rdma_lock, flags); |
| 290 | found = rds_mr_tree_walk(&rs->rs_rdma_keys, mr->r_key, mr); |
| 291 | spin_unlock_irqrestore(&rs->rs_rdma_lock, flags); |
| 292 | |
| 293 | BUG_ON(found && found != mr); |
| 294 | |
| 295 | rdsdebug("RDS: get_mr key is %x\n", mr->r_key); |
| 296 | if (mr_ret) { |
| 297 | atomic_inc(&mr->r_refcount); |
| 298 | *mr_ret = mr; |
| 299 | } |
| 300 | |
| 301 | ret = 0; |
| 302 | out: |
| 303 | kfree(pages); |
| 304 | if (mr) |
| 305 | rds_mr_put(mr); |
| 306 | return ret; |
| 307 | } |
| 308 | |
| 309 | int rds_get_mr(struct rds_sock *rs, char __user *optval, int optlen) |
| 310 | { |
| 311 | struct rds_get_mr_args args; |
| 312 | |
| 313 | if (optlen != sizeof(struct rds_get_mr_args)) |
| 314 | return -EINVAL; |
| 315 | |
| 316 | if (copy_from_user(&args, (struct rds_get_mr_args __user *)optval, |
| 317 | sizeof(struct rds_get_mr_args))) |
| 318 | return -EFAULT; |
| 319 | |
| 320 | return __rds_rdma_map(rs, &args, NULL, NULL); |
| 321 | } |
| 322 | |
| 323 | /* |
| 324 | * Free the MR indicated by the given R_Key |
| 325 | */ |
| 326 | int rds_free_mr(struct rds_sock *rs, char __user *optval, int optlen) |
| 327 | { |
| 328 | struct rds_free_mr_args args; |
| 329 | struct rds_mr *mr; |
| 330 | unsigned long flags; |
| 331 | |
| 332 | if (optlen != sizeof(struct rds_free_mr_args)) |
| 333 | return -EINVAL; |
| 334 | |
| 335 | if (copy_from_user(&args, (struct rds_free_mr_args __user *)optval, |
| 336 | sizeof(struct rds_free_mr_args))) |
| 337 | return -EFAULT; |
| 338 | |
| 339 | /* Special case - a null cookie means flush all unused MRs */ |
| 340 | if (args.cookie == 0) { |
| 341 | if (!rs->rs_transport || !rs->rs_transport->flush_mrs) |
| 342 | return -EINVAL; |
| 343 | rs->rs_transport->flush_mrs(); |
| 344 | return 0; |
| 345 | } |
| 346 | |
| 347 | /* Look up the MR given its R_key and remove it from the rbtree |
| 348 | * so nobody else finds it. |
| 349 | * This should also prevent races with rds_rdma_unuse. |
| 350 | */ |
| 351 | spin_lock_irqsave(&rs->rs_rdma_lock, flags); |
| 352 | mr = rds_mr_tree_walk(&rs->rs_rdma_keys, rds_rdma_cookie_key(args.cookie), NULL); |
| 353 | if (mr) { |
| 354 | rb_erase(&mr->r_rb_node, &rs->rs_rdma_keys); |
| 355 | RB_CLEAR_NODE(&mr->r_rb_node); |
| 356 | if (args.flags & RDS_RDMA_INVALIDATE) |
| 357 | mr->r_invalidate = 1; |
| 358 | } |
| 359 | spin_unlock_irqrestore(&rs->rs_rdma_lock, flags); |
| 360 | |
| 361 | if (!mr) |
| 362 | return -EINVAL; |
| 363 | |
| 364 | /* |
| 365 | * call rds_destroy_mr() ourselves so that we're sure it's done by the time |
| 366 | * we return. If we let rds_mr_put() do it it might not happen until |
| 367 | * someone else drops their ref. |
| 368 | */ |
| 369 | rds_destroy_mr(mr); |
| 370 | rds_mr_put(mr); |
| 371 | return 0; |
| 372 | } |
| 373 | |
| 374 | /* |
| 375 | * This is called when we receive an extension header that |
| 376 | * tells us this MR was used. It allows us to implement |
| 377 | * use_once semantics |
| 378 | */ |
| 379 | void rds_rdma_unuse(struct rds_sock *rs, u32 r_key, int force) |
| 380 | { |
| 381 | struct rds_mr *mr; |
| 382 | unsigned long flags; |
| 383 | int zot_me = 0; |
| 384 | |
| 385 | spin_lock_irqsave(&rs->rs_rdma_lock, flags); |
| 386 | mr = rds_mr_tree_walk(&rs->rs_rdma_keys, r_key, NULL); |
| 387 | if (mr && (mr->r_use_once || force)) { |
| 388 | rb_erase(&mr->r_rb_node, &rs->rs_rdma_keys); |
| 389 | RB_CLEAR_NODE(&mr->r_rb_node); |
| 390 | zot_me = 1; |
| 391 | } else if (mr) |
| 392 | atomic_inc(&mr->r_refcount); |
| 393 | spin_unlock_irqrestore(&rs->rs_rdma_lock, flags); |
| 394 | |
| 395 | /* May have to issue a dma_sync on this memory region. |
| 396 | * Note we could avoid this if the operation was a RDMA READ, |
| 397 | * but at this point we can't tell. */ |
| 398 | if (mr != NULL) { |
| 399 | if (mr->r_trans->sync_mr) |
| 400 | mr->r_trans->sync_mr(mr->r_trans_private, DMA_FROM_DEVICE); |
| 401 | |
| 402 | /* If the MR was marked as invalidate, this will |
| 403 | * trigger an async flush. */ |
| 404 | if (zot_me) |
| 405 | rds_destroy_mr(mr); |
| 406 | rds_mr_put(mr); |
| 407 | } |
| 408 | } |
| 409 | |
| 410 | void rds_rdma_free_op(struct rds_rdma_op *ro) |
| 411 | { |
| 412 | unsigned int i; |
| 413 | |
| 414 | for (i = 0; i < ro->r_nents; i++) { |
| 415 | struct page *page = sg_page(&ro->r_sg[i]); |
| 416 | |
| 417 | /* Mark page dirty if it was possibly modified, which |
| 418 | * is the case for a RDMA_READ which copies from remote |
| 419 | * to local memory */ |
| 420 | if (!ro->r_write) |
| 421 | set_page_dirty(page); |
| 422 | put_page(page); |
| 423 | } |
| 424 | |
| 425 | kfree(ro->r_notifier); |
| 426 | kfree(ro); |
| 427 | } |
| 428 | |
| 429 | /* |
| 430 | * args is a pointer to an in-kernel copy in the sendmsg cmsg. |
| 431 | */ |
| 432 | static struct rds_rdma_op *rds_rdma_prepare(struct rds_sock *rs, |
| 433 | struct rds_rdma_args *args) |
| 434 | { |
| 435 | struct rds_iovec vec; |
| 436 | struct rds_rdma_op *op = NULL; |
| 437 | unsigned int nr_pages; |
| 438 | unsigned int max_pages; |
| 439 | unsigned int nr_bytes; |
| 440 | struct page **pages = NULL; |
| 441 | struct rds_iovec __user *local_vec; |
| 442 | struct scatterlist *sg; |
| 443 | unsigned int nr; |
| 444 | unsigned int i, j; |
| 445 | int ret; |
| 446 | |
| 447 | |
| 448 | if (rs->rs_bound_addr == 0) { |
| 449 | ret = -ENOTCONN; /* XXX not a great errno */ |
| 450 | goto out; |
| 451 | } |
| 452 | |
| 453 | if (args->nr_local > (u64)UINT_MAX) { |
| 454 | ret = -EMSGSIZE; |
| 455 | goto out; |
| 456 | } |
| 457 | |
| 458 | nr_pages = 0; |
| 459 | max_pages = 0; |
| 460 | |
| 461 | local_vec = (struct rds_iovec __user *)(unsigned long) args->local_vec_addr; |
| 462 | |
| 463 | /* figure out the number of pages in the vector */ |
| 464 | for (i = 0; i < args->nr_local; i++) { |
| 465 | if (copy_from_user(&vec, &local_vec[i], |
| 466 | sizeof(struct rds_iovec))) { |
| 467 | ret = -EFAULT; |
| 468 | goto out; |
| 469 | } |
| 470 | |
| 471 | nr = rds_pages_in_vec(&vec); |
| 472 | if (nr == 0) { |
| 473 | ret = -EINVAL; |
| 474 | goto out; |
| 475 | } |
| 476 | |
| 477 | max_pages = max(nr, max_pages); |
| 478 | nr_pages += nr; |
| 479 | } |
| 480 | |
| 481 | pages = kcalloc(max_pages, sizeof(struct page *), GFP_KERNEL); |
| 482 | if (pages == NULL) { |
| 483 | ret = -ENOMEM; |
| 484 | goto out; |
| 485 | } |
| 486 | |
| 487 | op = kzalloc(offsetof(struct rds_rdma_op, r_sg[nr_pages]), GFP_KERNEL); |
| 488 | if (op == NULL) { |
| 489 | ret = -ENOMEM; |
| 490 | goto out; |
| 491 | } |
| 492 | |
| 493 | op->r_write = !!(args->flags & RDS_RDMA_READWRITE); |
| 494 | op->r_fence = !!(args->flags & RDS_RDMA_FENCE); |
| 495 | op->r_notify = !!(args->flags & RDS_RDMA_NOTIFY_ME); |
| 496 | op->r_recverr = rs->rs_recverr; |
| 497 | WARN_ON(!nr_pages); |
| 498 | sg_init_table(op->r_sg, nr_pages); |
| 499 | |
| 500 | if (op->r_notify || op->r_recverr) { |
| 501 | /* We allocate an uninitialized notifier here, because |
| 502 | * we don't want to do that in the completion handler. We |
| 503 | * would have to use GFP_ATOMIC there, and don't want to deal |
| 504 | * with failed allocations. |
| 505 | */ |
| 506 | op->r_notifier = kmalloc(sizeof(struct rds_notifier), GFP_KERNEL); |
| 507 | if (!op->r_notifier) { |
| 508 | ret = -ENOMEM; |
| 509 | goto out; |
| 510 | } |
| 511 | op->r_notifier->n_user_token = args->user_token; |
| 512 | op->r_notifier->n_status = RDS_RDMA_SUCCESS; |
| 513 | } |
| 514 | |
| 515 | /* The cookie contains the R_Key of the remote memory region, and |
| 516 | * optionally an offset into it. This is how we implement RDMA into |
| 517 | * unaligned memory. |
| 518 | * When setting up the RDMA, we need to add that offset to the |
| 519 | * destination address (which is really an offset into the MR) |
| 520 | * FIXME: We may want to move this into ib_rdma.c |
| 521 | */ |
| 522 | op->r_key = rds_rdma_cookie_key(args->cookie); |
| 523 | op->r_remote_addr = args->remote_vec.addr + rds_rdma_cookie_offset(args->cookie); |
| 524 | |
| 525 | nr_bytes = 0; |
| 526 | |
| 527 | rdsdebug("RDS: rdma prepare nr_local %llu rva %llx rkey %x\n", |
| 528 | (unsigned long long)args->nr_local, |
| 529 | (unsigned long long)args->remote_vec.addr, |
| 530 | op->r_key); |
| 531 | |
| 532 | for (i = 0; i < args->nr_local; i++) { |
| 533 | if (copy_from_user(&vec, &local_vec[i], |
| 534 | sizeof(struct rds_iovec))) { |
| 535 | ret = -EFAULT; |
| 536 | goto out; |
| 537 | } |
| 538 | |
| 539 | nr = rds_pages_in_vec(&vec); |
| 540 | if (nr == 0) { |
| 541 | ret = -EINVAL; |
| 542 | goto out; |
| 543 | } |
| 544 | |
| 545 | rs->rs_user_addr = vec.addr; |
| 546 | rs->rs_user_bytes = vec.bytes; |
| 547 | |
| 548 | /* did the user change the vec under us? */ |
| 549 | if (nr > max_pages || op->r_nents + nr > nr_pages) { |
| 550 | ret = -EINVAL; |
| 551 | goto out; |
| 552 | } |
| 553 | /* If it's a WRITE operation, we want to pin the pages for reading. |
| 554 | * If it's a READ operation, we need to pin the pages for writing. |
| 555 | */ |
| 556 | ret = rds_pin_pages(vec.addr & PAGE_MASK, nr, pages, !op->r_write); |
| 557 | if (ret < 0) |
| 558 | goto out; |
| 559 | |
| 560 | rdsdebug("RDS: nr_bytes %u nr %u vec.bytes %llu vec.addr %llx\n", |
| 561 | nr_bytes, nr, vec.bytes, vec.addr); |
| 562 | |
| 563 | nr_bytes += vec.bytes; |
| 564 | |
| 565 | for (j = 0; j < nr; j++) { |
| 566 | unsigned int offset = vec.addr & ~PAGE_MASK; |
| 567 | |
| 568 | sg = &op->r_sg[op->r_nents + j]; |
| 569 | sg_set_page(sg, pages[j], |
| 570 | min_t(unsigned int, vec.bytes, PAGE_SIZE - offset), |
| 571 | offset); |
| 572 | |
| 573 | rdsdebug("RDS: sg->offset %x sg->len %x vec.addr %llx vec.bytes %llu\n", |
| 574 | sg->offset, sg->length, vec.addr, vec.bytes); |
| 575 | |
| 576 | vec.addr += sg->length; |
| 577 | vec.bytes -= sg->length; |
| 578 | } |
| 579 | |
| 580 | op->r_nents += nr; |
| 581 | } |
| 582 | |
| 583 | |
| 584 | if (nr_bytes > args->remote_vec.bytes) { |
| 585 | rdsdebug("RDS nr_bytes %u remote_bytes %u do not match\n", |
| 586 | nr_bytes, |
| 587 | (unsigned int) args->remote_vec.bytes); |
| 588 | ret = -EINVAL; |
| 589 | goto out; |
| 590 | } |
| 591 | op->r_bytes = nr_bytes; |
| 592 | |
| 593 | ret = 0; |
| 594 | out: |
| 595 | kfree(pages); |
| 596 | if (ret) { |
| 597 | if (op) |
| 598 | rds_rdma_free_op(op); |
| 599 | op = ERR_PTR(ret); |
| 600 | } |
| 601 | return op; |
| 602 | } |
| 603 | |
| 604 | /* |
| 605 | * The application asks for a RDMA transfer. |
| 606 | * Extract all arguments and set up the rdma_op |
| 607 | */ |
| 608 | int rds_cmsg_rdma_args(struct rds_sock *rs, struct rds_message *rm, |
| 609 | struct cmsghdr *cmsg) |
| 610 | { |
| 611 | struct rds_rdma_op *op; |
| 612 | |
| 613 | if (cmsg->cmsg_len < CMSG_LEN(sizeof(struct rds_rdma_args)) |
| 614 | || rm->m_rdma_op != NULL) |
| 615 | return -EINVAL; |
| 616 | |
| 617 | op = rds_rdma_prepare(rs, CMSG_DATA(cmsg)); |
| 618 | if (IS_ERR(op)) |
| 619 | return PTR_ERR(op); |
| 620 | rds_stats_inc(s_send_rdma); |
| 621 | rm->m_rdma_op = op; |
| 622 | return 0; |
| 623 | } |
| 624 | |
| 625 | /* |
| 626 | * The application wants us to pass an RDMA destination (aka MR) |
| 627 | * to the remote |
| 628 | */ |
| 629 | int rds_cmsg_rdma_dest(struct rds_sock *rs, struct rds_message *rm, |
| 630 | struct cmsghdr *cmsg) |
| 631 | { |
| 632 | unsigned long flags; |
| 633 | struct rds_mr *mr; |
| 634 | u32 r_key; |
| 635 | int err = 0; |
| 636 | |
| 637 | if (cmsg->cmsg_len < CMSG_LEN(sizeof(rds_rdma_cookie_t)) |
| 638 | || rm->m_rdma_cookie != 0) |
| 639 | return -EINVAL; |
| 640 | |
| 641 | memcpy(&rm->m_rdma_cookie, CMSG_DATA(cmsg), sizeof(rm->m_rdma_cookie)); |
| 642 | |
| 643 | /* We are reusing a previously mapped MR here. Most likely, the |
| 644 | * application has written to the buffer, so we need to explicitly |
| 645 | * flush those writes to RAM. Otherwise the HCA may not see them |
| 646 | * when doing a DMA from that buffer. |
| 647 | */ |
| 648 | r_key = rds_rdma_cookie_key(rm->m_rdma_cookie); |
| 649 | |
| 650 | spin_lock_irqsave(&rs->rs_rdma_lock, flags); |
| 651 | mr = rds_mr_tree_walk(&rs->rs_rdma_keys, r_key, NULL); |
| 652 | if (mr == NULL) |
| 653 | err = -EINVAL; /* invalid r_key */ |
| 654 | else |
| 655 | atomic_inc(&mr->r_refcount); |
| 656 | spin_unlock_irqrestore(&rs->rs_rdma_lock, flags); |
| 657 | |
| 658 | if (mr) { |
| 659 | mr->r_trans->sync_mr(mr->r_trans_private, DMA_TO_DEVICE); |
| 660 | rm->m_rdma_mr = mr; |
| 661 | } |
| 662 | return err; |
| 663 | } |
| 664 | |
| 665 | /* |
| 666 | * The application passes us an address range it wants to enable RDMA |
| 667 | * to/from. We map the area, and save the <R_Key,offset> pair |
| 668 | * in rm->m_rdma_cookie. This causes it to be sent along to the peer |
| 669 | * in an extension header. |
| 670 | */ |
| 671 | int rds_cmsg_rdma_map(struct rds_sock *rs, struct rds_message *rm, |
| 672 | struct cmsghdr *cmsg) |
| 673 | { |
| 674 | if (cmsg->cmsg_len < CMSG_LEN(sizeof(struct rds_get_mr_args)) |
| 675 | || rm->m_rdma_cookie != 0) |
| 676 | return -EINVAL; |
| 677 | |
| 678 | return __rds_rdma_map(rs, CMSG_DATA(cmsg), &rm->m_rdma_cookie, &rm->m_rdma_mr); |
| 679 | } |