Jamie Iles | ce92136 | 2011-02-21 16:43:21 +1100 | [diff] [blame] | 1 | /* |
| 2 | * Copyright (c) 2010-2011 Picochip Ltd., Jamie Iles |
| 3 | * |
| 4 | * This program is free software; you can redistribute it and/or modify |
| 5 | * it under the terms of the GNU General Public License as published by |
| 6 | * the Free Software Foundation; either version 2 of the License, or |
| 7 | * (at your option) any later version. |
| 8 | * |
| 9 | * This program is distributed in the hope that it will be useful, |
| 10 | * but WITHOUT ANY WARRANTY; without even the implied warranty of |
| 11 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
| 12 | * GNU General Public License for more details. |
| 13 | * |
| 14 | * You should have received a copy of the GNU General Public License |
| 15 | * along with this program; if not, write to the Free Software |
| 16 | * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA |
| 17 | */ |
| 18 | #include <crypto/aead.h> |
| 19 | #include <crypto/aes.h> |
| 20 | #include <crypto/algapi.h> |
| 21 | #include <crypto/authenc.h> |
| 22 | #include <crypto/des.h> |
| 23 | #include <crypto/md5.h> |
| 24 | #include <crypto/sha.h> |
| 25 | #include <crypto/internal/skcipher.h> |
| 26 | #include <linux/clk.h> |
| 27 | #include <linux/crypto.h> |
| 28 | #include <linux/delay.h> |
| 29 | #include <linux/dma-mapping.h> |
| 30 | #include <linux/dmapool.h> |
| 31 | #include <linux/err.h> |
| 32 | #include <linux/init.h> |
| 33 | #include <linux/interrupt.h> |
| 34 | #include <linux/io.h> |
| 35 | #include <linux/list.h> |
| 36 | #include <linux/module.h> |
| 37 | #include <linux/platform_device.h> |
| 38 | #include <linux/pm.h> |
| 39 | #include <linux/rtnetlink.h> |
| 40 | #include <linux/scatterlist.h> |
| 41 | #include <linux/sched.h> |
| 42 | #include <linux/slab.h> |
| 43 | #include <linux/timer.h> |
| 44 | |
| 45 | #include "picoxcell_crypto_regs.h" |
| 46 | |
| 47 | /* |
| 48 | * The threshold for the number of entries in the CMD FIFO available before |
| 49 | * the CMD0_CNT interrupt is raised. Increasing this value will reduce the |
| 50 | * number of interrupts raised to the CPU. |
| 51 | */ |
| 52 | #define CMD0_IRQ_THRESHOLD 1 |
| 53 | |
| 54 | /* |
| 55 | * The timeout period (in jiffies) for a PDU. When the the number of PDUs in |
| 56 | * flight is greater than the STAT_IRQ_THRESHOLD or 0 the timer is disabled. |
| 57 | * When there are packets in flight but lower than the threshold, we enable |
| 58 | * the timer and at expiry, attempt to remove any processed packets from the |
| 59 | * queue and if there are still packets left, schedule the timer again. |
| 60 | */ |
| 61 | #define PACKET_TIMEOUT 1 |
| 62 | |
| 63 | /* The priority to register each algorithm with. */ |
| 64 | #define SPACC_CRYPTO_ALG_PRIORITY 10000 |
| 65 | |
| 66 | #define SPACC_CRYPTO_KASUMI_F8_KEY_LEN 16 |
| 67 | #define SPACC_CRYPTO_IPSEC_CIPHER_PG_SZ 64 |
| 68 | #define SPACC_CRYPTO_IPSEC_HASH_PG_SZ 64 |
| 69 | #define SPACC_CRYPTO_IPSEC_MAX_CTXS 32 |
| 70 | #define SPACC_CRYPTO_IPSEC_FIFO_SZ 32 |
| 71 | #define SPACC_CRYPTO_L2_CIPHER_PG_SZ 64 |
| 72 | #define SPACC_CRYPTO_L2_HASH_PG_SZ 64 |
| 73 | #define SPACC_CRYPTO_L2_MAX_CTXS 128 |
| 74 | #define SPACC_CRYPTO_L2_FIFO_SZ 128 |
| 75 | |
| 76 | #define MAX_DDT_LEN 16 |
| 77 | |
| 78 | /* DDT format. This must match the hardware DDT format exactly. */ |
| 79 | struct spacc_ddt { |
| 80 | dma_addr_t p; |
| 81 | u32 len; |
| 82 | }; |
| 83 | |
| 84 | /* |
| 85 | * Asynchronous crypto request structure. |
| 86 | * |
| 87 | * This structure defines a request that is either queued for processing or |
| 88 | * being processed. |
| 89 | */ |
| 90 | struct spacc_req { |
| 91 | struct list_head list; |
| 92 | struct spacc_engine *engine; |
| 93 | struct crypto_async_request *req; |
| 94 | int result; |
| 95 | bool is_encrypt; |
| 96 | unsigned ctx_id; |
| 97 | dma_addr_t src_addr, dst_addr; |
| 98 | struct spacc_ddt *src_ddt, *dst_ddt; |
| 99 | void (*complete)(struct spacc_req *req); |
| 100 | |
| 101 | /* AEAD specific bits. */ |
| 102 | u8 *giv; |
| 103 | size_t giv_len; |
| 104 | dma_addr_t giv_pa; |
| 105 | }; |
| 106 | |
| 107 | struct spacc_engine { |
| 108 | void __iomem *regs; |
| 109 | struct list_head pending; |
| 110 | int next_ctx; |
| 111 | spinlock_t hw_lock; |
| 112 | int in_flight; |
| 113 | struct list_head completed; |
| 114 | struct list_head in_progress; |
| 115 | struct tasklet_struct complete; |
| 116 | unsigned long fifo_sz; |
| 117 | void __iomem *cipher_ctx_base; |
| 118 | void __iomem *hash_key_base; |
| 119 | struct spacc_alg *algs; |
| 120 | unsigned num_algs; |
| 121 | struct list_head registered_algs; |
| 122 | size_t cipher_pg_sz; |
| 123 | size_t hash_pg_sz; |
| 124 | const char *name; |
| 125 | struct clk *clk; |
| 126 | struct device *dev; |
| 127 | unsigned max_ctxs; |
| 128 | struct timer_list packet_timeout; |
| 129 | unsigned stat_irq_thresh; |
| 130 | struct dma_pool *req_pool; |
| 131 | }; |
| 132 | |
| 133 | /* Algorithm type mask. */ |
| 134 | #define SPACC_CRYPTO_ALG_MASK 0x7 |
| 135 | |
| 136 | /* SPACC definition of a crypto algorithm. */ |
| 137 | struct spacc_alg { |
| 138 | unsigned long ctrl_default; |
| 139 | unsigned long type; |
| 140 | struct crypto_alg alg; |
| 141 | struct spacc_engine *engine; |
| 142 | struct list_head entry; |
| 143 | int key_offs; |
| 144 | int iv_offs; |
| 145 | }; |
| 146 | |
| 147 | /* Generic context structure for any algorithm type. */ |
| 148 | struct spacc_generic_ctx { |
| 149 | struct spacc_engine *engine; |
| 150 | int flags; |
| 151 | int key_offs; |
| 152 | int iv_offs; |
| 153 | }; |
| 154 | |
| 155 | /* Block cipher context. */ |
| 156 | struct spacc_ablk_ctx { |
| 157 | struct spacc_generic_ctx generic; |
| 158 | u8 key[AES_MAX_KEY_SIZE]; |
| 159 | u8 key_len; |
| 160 | /* |
| 161 | * The fallback cipher. If the operation can't be done in hardware, |
| 162 | * fallback to a software version. |
| 163 | */ |
| 164 | struct crypto_ablkcipher *sw_cipher; |
| 165 | }; |
| 166 | |
| 167 | /* AEAD cipher context. */ |
| 168 | struct spacc_aead_ctx { |
| 169 | struct spacc_generic_ctx generic; |
| 170 | u8 cipher_key[AES_MAX_KEY_SIZE]; |
| 171 | u8 hash_ctx[SPACC_CRYPTO_IPSEC_HASH_PG_SZ]; |
| 172 | u8 cipher_key_len; |
| 173 | u8 hash_key_len; |
| 174 | struct crypto_aead *sw_cipher; |
| 175 | size_t auth_size; |
| 176 | u8 salt[AES_BLOCK_SIZE]; |
| 177 | }; |
| 178 | |
| 179 | static inline struct spacc_alg *to_spacc_alg(struct crypto_alg *alg) |
| 180 | { |
| 181 | return alg ? container_of(alg, struct spacc_alg, alg) : NULL; |
| 182 | } |
| 183 | |
| 184 | static inline int spacc_fifo_cmd_full(struct spacc_engine *engine) |
| 185 | { |
| 186 | u32 fifo_stat = readl(engine->regs + SPA_FIFO_STAT_REG_OFFSET); |
| 187 | |
| 188 | return fifo_stat & SPA_FIFO_CMD_FULL; |
| 189 | } |
| 190 | |
| 191 | /* |
| 192 | * Given a cipher context, and a context number, get the base address of the |
| 193 | * context page. |
| 194 | * |
| 195 | * Returns the address of the context page where the key/context may |
| 196 | * be written. |
| 197 | */ |
| 198 | static inline void __iomem *spacc_ctx_page_addr(struct spacc_generic_ctx *ctx, |
| 199 | unsigned indx, |
| 200 | bool is_cipher_ctx) |
| 201 | { |
| 202 | return is_cipher_ctx ? ctx->engine->cipher_ctx_base + |
| 203 | (indx * ctx->engine->cipher_pg_sz) : |
| 204 | ctx->engine->hash_key_base + (indx * ctx->engine->hash_pg_sz); |
| 205 | } |
| 206 | |
| 207 | /* The context pages can only be written with 32-bit accesses. */ |
| 208 | static inline void memcpy_toio32(u32 __iomem *dst, const void *src, |
| 209 | unsigned count) |
| 210 | { |
| 211 | const u32 *src32 = (const u32 *) src; |
| 212 | |
| 213 | while (count--) |
| 214 | writel(*src32++, dst++); |
| 215 | } |
| 216 | |
| 217 | static void spacc_cipher_write_ctx(struct spacc_generic_ctx *ctx, |
| 218 | void __iomem *page_addr, const u8 *key, |
| 219 | size_t key_len, const u8 *iv, size_t iv_len) |
| 220 | { |
| 221 | void __iomem *key_ptr = page_addr + ctx->key_offs; |
| 222 | void __iomem *iv_ptr = page_addr + ctx->iv_offs; |
| 223 | |
| 224 | memcpy_toio32(key_ptr, key, key_len / 4); |
| 225 | memcpy_toio32(iv_ptr, iv, iv_len / 4); |
| 226 | } |
| 227 | |
| 228 | /* |
| 229 | * Load a context into the engines context memory. |
| 230 | * |
| 231 | * Returns the index of the context page where the context was loaded. |
| 232 | */ |
| 233 | static unsigned spacc_load_ctx(struct spacc_generic_ctx *ctx, |
| 234 | const u8 *ciph_key, size_t ciph_len, |
| 235 | const u8 *iv, size_t ivlen, const u8 *hash_key, |
| 236 | size_t hash_len) |
| 237 | { |
| 238 | unsigned indx = ctx->engine->next_ctx++; |
| 239 | void __iomem *ciph_page_addr, *hash_page_addr; |
| 240 | |
| 241 | ciph_page_addr = spacc_ctx_page_addr(ctx, indx, 1); |
| 242 | hash_page_addr = spacc_ctx_page_addr(ctx, indx, 0); |
| 243 | |
| 244 | ctx->engine->next_ctx &= ctx->engine->fifo_sz - 1; |
| 245 | spacc_cipher_write_ctx(ctx, ciph_page_addr, ciph_key, ciph_len, iv, |
| 246 | ivlen); |
| 247 | writel(ciph_len | (indx << SPA_KEY_SZ_CTX_INDEX_OFFSET) | |
| 248 | (1 << SPA_KEY_SZ_CIPHER_OFFSET), |
| 249 | ctx->engine->regs + SPA_KEY_SZ_REG_OFFSET); |
| 250 | |
| 251 | if (hash_key) { |
| 252 | memcpy_toio32(hash_page_addr, hash_key, hash_len / 4); |
| 253 | writel(hash_len | (indx << SPA_KEY_SZ_CTX_INDEX_OFFSET), |
| 254 | ctx->engine->regs + SPA_KEY_SZ_REG_OFFSET); |
| 255 | } |
| 256 | |
| 257 | return indx; |
| 258 | } |
| 259 | |
| 260 | /* Count the number of scatterlist entries in a scatterlist. */ |
| 261 | static int sg_count(struct scatterlist *sg_list, int nbytes) |
| 262 | { |
| 263 | struct scatterlist *sg = sg_list; |
| 264 | int sg_nents = 0; |
| 265 | |
| 266 | while (nbytes > 0) { |
| 267 | ++sg_nents; |
| 268 | nbytes -= sg->length; |
| 269 | sg = sg_next(sg); |
| 270 | } |
| 271 | |
| 272 | return sg_nents; |
| 273 | } |
| 274 | |
| 275 | static inline void ddt_set(struct spacc_ddt *ddt, dma_addr_t phys, size_t len) |
| 276 | { |
| 277 | ddt->p = phys; |
| 278 | ddt->len = len; |
| 279 | } |
| 280 | |
| 281 | /* |
| 282 | * Take a crypto request and scatterlists for the data and turn them into DDTs |
| 283 | * for passing to the crypto engines. This also DMA maps the data so that the |
| 284 | * crypto engines can DMA to/from them. |
| 285 | */ |
| 286 | static struct spacc_ddt *spacc_sg_to_ddt(struct spacc_engine *engine, |
| 287 | struct scatterlist *payload, |
| 288 | unsigned nbytes, |
| 289 | enum dma_data_direction dir, |
| 290 | dma_addr_t *ddt_phys) |
| 291 | { |
| 292 | unsigned nents, mapped_ents; |
| 293 | struct scatterlist *cur; |
| 294 | struct spacc_ddt *ddt; |
| 295 | int i; |
| 296 | |
| 297 | nents = sg_count(payload, nbytes); |
| 298 | mapped_ents = dma_map_sg(engine->dev, payload, nents, dir); |
| 299 | |
| 300 | if (mapped_ents + 1 > MAX_DDT_LEN) |
| 301 | goto out; |
| 302 | |
| 303 | ddt = dma_pool_alloc(engine->req_pool, GFP_ATOMIC, ddt_phys); |
| 304 | if (!ddt) |
| 305 | goto out; |
| 306 | |
| 307 | for_each_sg(payload, cur, mapped_ents, i) |
| 308 | ddt_set(&ddt[i], sg_dma_address(cur), sg_dma_len(cur)); |
| 309 | ddt_set(&ddt[mapped_ents], 0, 0); |
| 310 | |
| 311 | return ddt; |
| 312 | |
| 313 | out: |
| 314 | dma_unmap_sg(engine->dev, payload, nents, dir); |
| 315 | return NULL; |
| 316 | } |
| 317 | |
| 318 | static int spacc_aead_make_ddts(struct spacc_req *req, u8 *giv) |
| 319 | { |
| 320 | struct aead_request *areq = container_of(req->req, struct aead_request, |
| 321 | base); |
| 322 | struct spacc_engine *engine = req->engine; |
| 323 | struct spacc_ddt *src_ddt, *dst_ddt; |
| 324 | unsigned ivsize = crypto_aead_ivsize(crypto_aead_reqtfm(areq)); |
| 325 | unsigned nents = sg_count(areq->src, areq->cryptlen); |
| 326 | dma_addr_t iv_addr; |
| 327 | struct scatterlist *cur; |
| 328 | int i, dst_ents, src_ents, assoc_ents; |
| 329 | u8 *iv = giv ? giv : areq->iv; |
| 330 | |
| 331 | src_ddt = dma_pool_alloc(engine->req_pool, GFP_ATOMIC, &req->src_addr); |
| 332 | if (!src_ddt) |
| 333 | return -ENOMEM; |
| 334 | |
| 335 | dst_ddt = dma_pool_alloc(engine->req_pool, GFP_ATOMIC, &req->dst_addr); |
| 336 | if (!dst_ddt) { |
| 337 | dma_pool_free(engine->req_pool, src_ddt, req->src_addr); |
| 338 | return -ENOMEM; |
| 339 | } |
| 340 | |
| 341 | req->src_ddt = src_ddt; |
| 342 | req->dst_ddt = dst_ddt; |
| 343 | |
| 344 | assoc_ents = dma_map_sg(engine->dev, areq->assoc, |
| 345 | sg_count(areq->assoc, areq->assoclen), DMA_TO_DEVICE); |
| 346 | if (areq->src != areq->dst) { |
| 347 | src_ents = dma_map_sg(engine->dev, areq->src, nents, |
| 348 | DMA_TO_DEVICE); |
| 349 | dst_ents = dma_map_sg(engine->dev, areq->dst, nents, |
| 350 | DMA_FROM_DEVICE); |
| 351 | } else { |
| 352 | src_ents = dma_map_sg(engine->dev, areq->src, nents, |
| 353 | DMA_BIDIRECTIONAL); |
| 354 | dst_ents = 0; |
| 355 | } |
| 356 | |
| 357 | /* |
| 358 | * Map the IV/GIV. For the GIV it needs to be bidirectional as it is |
| 359 | * formed by the crypto block and sent as the ESP IV for IPSEC. |
| 360 | */ |
| 361 | iv_addr = dma_map_single(engine->dev, iv, ivsize, |
| 362 | giv ? DMA_BIDIRECTIONAL : DMA_TO_DEVICE); |
| 363 | req->giv_pa = iv_addr; |
| 364 | |
| 365 | /* |
| 366 | * Map the associated data. For decryption we don't copy the |
| 367 | * associated data. |
| 368 | */ |
| 369 | for_each_sg(areq->assoc, cur, assoc_ents, i) { |
| 370 | ddt_set(src_ddt++, sg_dma_address(cur), sg_dma_len(cur)); |
| 371 | if (req->is_encrypt) |
| 372 | ddt_set(dst_ddt++, sg_dma_address(cur), |
| 373 | sg_dma_len(cur)); |
| 374 | } |
| 375 | ddt_set(src_ddt++, iv_addr, ivsize); |
| 376 | |
| 377 | if (giv || req->is_encrypt) |
| 378 | ddt_set(dst_ddt++, iv_addr, ivsize); |
| 379 | |
| 380 | /* |
| 381 | * Now map in the payload for the source and destination and terminate |
| 382 | * with the NULL pointers. |
| 383 | */ |
| 384 | for_each_sg(areq->src, cur, src_ents, i) { |
| 385 | ddt_set(src_ddt++, sg_dma_address(cur), sg_dma_len(cur)); |
| 386 | if (areq->src == areq->dst) |
| 387 | ddt_set(dst_ddt++, sg_dma_address(cur), |
| 388 | sg_dma_len(cur)); |
| 389 | } |
| 390 | |
| 391 | for_each_sg(areq->dst, cur, dst_ents, i) |
| 392 | ddt_set(dst_ddt++, sg_dma_address(cur), |
| 393 | sg_dma_len(cur)); |
| 394 | |
| 395 | ddt_set(src_ddt, 0, 0); |
| 396 | ddt_set(dst_ddt, 0, 0); |
| 397 | |
| 398 | return 0; |
| 399 | } |
| 400 | |
| 401 | static void spacc_aead_free_ddts(struct spacc_req *req) |
| 402 | { |
| 403 | struct aead_request *areq = container_of(req->req, struct aead_request, |
| 404 | base); |
| 405 | struct spacc_alg *alg = to_spacc_alg(req->req->tfm->__crt_alg); |
| 406 | struct spacc_ablk_ctx *aead_ctx = crypto_tfm_ctx(req->req->tfm); |
| 407 | struct spacc_engine *engine = aead_ctx->generic.engine; |
| 408 | unsigned ivsize = alg->alg.cra_aead.ivsize; |
| 409 | unsigned nents = sg_count(areq->src, areq->cryptlen); |
| 410 | |
| 411 | if (areq->src != areq->dst) { |
| 412 | dma_unmap_sg(engine->dev, areq->src, nents, DMA_TO_DEVICE); |
| 413 | dma_unmap_sg(engine->dev, areq->dst, |
| 414 | sg_count(areq->dst, areq->cryptlen), |
| 415 | DMA_FROM_DEVICE); |
| 416 | } else |
| 417 | dma_unmap_sg(engine->dev, areq->src, nents, DMA_BIDIRECTIONAL); |
| 418 | |
| 419 | dma_unmap_sg(engine->dev, areq->assoc, |
| 420 | sg_count(areq->assoc, areq->assoclen), DMA_TO_DEVICE); |
| 421 | |
| 422 | dma_unmap_single(engine->dev, req->giv_pa, ivsize, DMA_BIDIRECTIONAL); |
| 423 | |
| 424 | dma_pool_free(engine->req_pool, req->src_ddt, req->src_addr); |
| 425 | dma_pool_free(engine->req_pool, req->dst_ddt, req->dst_addr); |
| 426 | } |
| 427 | |
| 428 | static void spacc_free_ddt(struct spacc_req *req, struct spacc_ddt *ddt, |
| 429 | dma_addr_t ddt_addr, struct scatterlist *payload, |
| 430 | unsigned nbytes, enum dma_data_direction dir) |
| 431 | { |
| 432 | unsigned nents = sg_count(payload, nbytes); |
| 433 | |
| 434 | dma_unmap_sg(req->engine->dev, payload, nents, dir); |
| 435 | dma_pool_free(req->engine->req_pool, ddt, ddt_addr); |
| 436 | } |
| 437 | |
| 438 | /* |
| 439 | * Set key for a DES operation in an AEAD cipher. This also performs weak key |
| 440 | * checking if required. |
| 441 | */ |
| 442 | static int spacc_aead_des_setkey(struct crypto_aead *aead, const u8 *key, |
| 443 | unsigned int len) |
| 444 | { |
| 445 | struct crypto_tfm *tfm = crypto_aead_tfm(aead); |
| 446 | struct spacc_aead_ctx *ctx = crypto_tfm_ctx(tfm); |
| 447 | u32 tmp[DES_EXPKEY_WORDS]; |
| 448 | |
| 449 | if (unlikely(!des_ekey(tmp, key)) && |
| 450 | (crypto_aead_get_flags(aead)) & CRYPTO_TFM_REQ_WEAK_KEY) { |
| 451 | tfm->crt_flags |= CRYPTO_TFM_RES_WEAK_KEY; |
| 452 | return -EINVAL; |
| 453 | } |
| 454 | |
| 455 | memcpy(ctx->cipher_key, key, len); |
| 456 | ctx->cipher_key_len = len; |
| 457 | |
| 458 | return 0; |
| 459 | } |
| 460 | |
| 461 | /* Set the key for the AES block cipher component of the AEAD transform. */ |
| 462 | static int spacc_aead_aes_setkey(struct crypto_aead *aead, const u8 *key, |
| 463 | unsigned int len) |
| 464 | { |
| 465 | struct crypto_tfm *tfm = crypto_aead_tfm(aead); |
| 466 | struct spacc_aead_ctx *ctx = crypto_tfm_ctx(tfm); |
| 467 | |
| 468 | /* |
| 469 | * IPSec engine only supports 128 and 256 bit AES keys. If we get a |
| 470 | * request for any other size (192 bits) then we need to do a software |
| 471 | * fallback. |
| 472 | */ |
| 473 | if (len != AES_KEYSIZE_128 && len != AES_KEYSIZE_256) { |
| 474 | /* |
| 475 | * Set the fallback transform to use the same request flags as |
| 476 | * the hardware transform. |
| 477 | */ |
| 478 | ctx->sw_cipher->base.crt_flags &= ~CRYPTO_TFM_REQ_MASK; |
| 479 | ctx->sw_cipher->base.crt_flags |= |
| 480 | tfm->crt_flags & CRYPTO_TFM_REQ_MASK; |
| 481 | return crypto_aead_setkey(ctx->sw_cipher, key, len); |
| 482 | } |
| 483 | |
| 484 | memcpy(ctx->cipher_key, key, len); |
| 485 | ctx->cipher_key_len = len; |
| 486 | |
| 487 | return 0; |
| 488 | } |
| 489 | |
| 490 | static int spacc_aead_setkey(struct crypto_aead *tfm, const u8 *key, |
| 491 | unsigned int keylen) |
| 492 | { |
| 493 | struct spacc_aead_ctx *ctx = crypto_aead_ctx(tfm); |
| 494 | struct spacc_alg *alg = to_spacc_alg(tfm->base.__crt_alg); |
| 495 | struct rtattr *rta = (void *)key; |
| 496 | struct crypto_authenc_key_param *param; |
| 497 | unsigned int authkeylen, enckeylen; |
| 498 | int err = -EINVAL; |
| 499 | |
| 500 | if (!RTA_OK(rta, keylen)) |
| 501 | goto badkey; |
| 502 | |
| 503 | if (rta->rta_type != CRYPTO_AUTHENC_KEYA_PARAM) |
| 504 | goto badkey; |
| 505 | |
| 506 | if (RTA_PAYLOAD(rta) < sizeof(*param)) |
| 507 | goto badkey; |
| 508 | |
| 509 | param = RTA_DATA(rta); |
| 510 | enckeylen = be32_to_cpu(param->enckeylen); |
| 511 | |
| 512 | key += RTA_ALIGN(rta->rta_len); |
| 513 | keylen -= RTA_ALIGN(rta->rta_len); |
| 514 | |
| 515 | if (keylen < enckeylen) |
| 516 | goto badkey; |
| 517 | |
| 518 | authkeylen = keylen - enckeylen; |
| 519 | |
| 520 | if (enckeylen > AES_MAX_KEY_SIZE) |
| 521 | goto badkey; |
| 522 | |
| 523 | if ((alg->ctrl_default & SPACC_CRYPTO_ALG_MASK) == |
| 524 | SPA_CTRL_CIPH_ALG_AES) |
| 525 | err = spacc_aead_aes_setkey(tfm, key + authkeylen, enckeylen); |
| 526 | else |
| 527 | err = spacc_aead_des_setkey(tfm, key + authkeylen, enckeylen); |
| 528 | |
| 529 | if (err) |
| 530 | goto badkey; |
| 531 | |
| 532 | memcpy(ctx->hash_ctx, key, authkeylen); |
| 533 | ctx->hash_key_len = authkeylen; |
| 534 | |
| 535 | return 0; |
| 536 | |
| 537 | badkey: |
| 538 | crypto_aead_set_flags(tfm, CRYPTO_TFM_RES_BAD_KEY_LEN); |
| 539 | return -EINVAL; |
| 540 | } |
| 541 | |
| 542 | static int spacc_aead_setauthsize(struct crypto_aead *tfm, |
| 543 | unsigned int authsize) |
| 544 | { |
| 545 | struct spacc_aead_ctx *ctx = crypto_tfm_ctx(crypto_aead_tfm(tfm)); |
| 546 | |
| 547 | ctx->auth_size = authsize; |
| 548 | |
| 549 | return 0; |
| 550 | } |
| 551 | |
| 552 | /* |
| 553 | * Check if an AEAD request requires a fallback operation. Some requests can't |
| 554 | * be completed in hardware because the hardware may not support certain key |
| 555 | * sizes. In these cases we need to complete the request in software. |
| 556 | */ |
| 557 | static int spacc_aead_need_fallback(struct spacc_req *req) |
| 558 | { |
| 559 | struct aead_request *aead_req; |
| 560 | struct crypto_tfm *tfm = req->req->tfm; |
| 561 | struct crypto_alg *alg = req->req->tfm->__crt_alg; |
| 562 | struct spacc_alg *spacc_alg = to_spacc_alg(alg); |
| 563 | struct spacc_aead_ctx *ctx = crypto_tfm_ctx(tfm); |
| 564 | |
| 565 | aead_req = container_of(req->req, struct aead_request, base); |
| 566 | /* |
| 567 | * If we have a non-supported key-length, then we need to do a |
| 568 | * software fallback. |
| 569 | */ |
| 570 | if ((spacc_alg->ctrl_default & SPACC_CRYPTO_ALG_MASK) == |
| 571 | SPA_CTRL_CIPH_ALG_AES && |
| 572 | ctx->cipher_key_len != AES_KEYSIZE_128 && |
| 573 | ctx->cipher_key_len != AES_KEYSIZE_256) |
| 574 | return 1; |
| 575 | |
| 576 | return 0; |
| 577 | } |
| 578 | |
| 579 | static int spacc_aead_do_fallback(struct aead_request *req, unsigned alg_type, |
| 580 | bool is_encrypt) |
| 581 | { |
| 582 | struct crypto_tfm *old_tfm = crypto_aead_tfm(crypto_aead_reqtfm(req)); |
| 583 | struct spacc_aead_ctx *ctx = crypto_tfm_ctx(old_tfm); |
| 584 | int err; |
| 585 | |
| 586 | if (ctx->sw_cipher) { |
| 587 | /* |
| 588 | * Change the request to use the software fallback transform, |
| 589 | * and once the ciphering has completed, put the old transform |
| 590 | * back into the request. |
| 591 | */ |
| 592 | aead_request_set_tfm(req, ctx->sw_cipher); |
| 593 | err = is_encrypt ? crypto_aead_encrypt(req) : |
| 594 | crypto_aead_decrypt(req); |
| 595 | aead_request_set_tfm(req, __crypto_aead_cast(old_tfm)); |
| 596 | } else |
| 597 | err = -EINVAL; |
| 598 | |
| 599 | return err; |
| 600 | } |
| 601 | |
| 602 | static void spacc_aead_complete(struct spacc_req *req) |
| 603 | { |
| 604 | spacc_aead_free_ddts(req); |
| 605 | req->req->complete(req->req, req->result); |
| 606 | } |
| 607 | |
| 608 | static int spacc_aead_submit(struct spacc_req *req) |
| 609 | { |
| 610 | struct crypto_tfm *tfm = req->req->tfm; |
| 611 | struct spacc_aead_ctx *ctx = crypto_tfm_ctx(tfm); |
| 612 | struct crypto_alg *alg = req->req->tfm->__crt_alg; |
| 613 | struct spacc_alg *spacc_alg = to_spacc_alg(alg); |
| 614 | struct spacc_engine *engine = ctx->generic.engine; |
| 615 | u32 ctrl, proc_len, assoc_len; |
| 616 | struct aead_request *aead_req = |
| 617 | container_of(req->req, struct aead_request, base); |
| 618 | |
| 619 | req->result = -EINPROGRESS; |
| 620 | req->ctx_id = spacc_load_ctx(&ctx->generic, ctx->cipher_key, |
| 621 | ctx->cipher_key_len, aead_req->iv, alg->cra_aead.ivsize, |
| 622 | ctx->hash_ctx, ctx->hash_key_len); |
| 623 | |
| 624 | /* Set the source and destination DDT pointers. */ |
| 625 | writel(req->src_addr, engine->regs + SPA_SRC_PTR_REG_OFFSET); |
| 626 | writel(req->dst_addr, engine->regs + SPA_DST_PTR_REG_OFFSET); |
| 627 | writel(0, engine->regs + SPA_OFFSET_REG_OFFSET); |
| 628 | |
| 629 | assoc_len = aead_req->assoclen; |
| 630 | proc_len = aead_req->cryptlen + assoc_len; |
| 631 | |
| 632 | /* |
| 633 | * If we aren't generating an IV, then we need to include the IV in the |
| 634 | * associated data so that it is included in the hash. |
| 635 | */ |
| 636 | if (!req->giv) { |
| 637 | assoc_len += crypto_aead_ivsize(crypto_aead_reqtfm(aead_req)); |
| 638 | proc_len += crypto_aead_ivsize(crypto_aead_reqtfm(aead_req)); |
| 639 | } else |
| 640 | proc_len += req->giv_len; |
| 641 | |
| 642 | /* |
| 643 | * If we are decrypting, we need to take the length of the ICV out of |
| 644 | * the processing length. |
| 645 | */ |
| 646 | if (!req->is_encrypt) |
| 647 | proc_len -= ctx->auth_size; |
| 648 | |
| 649 | writel(proc_len, engine->regs + SPA_PROC_LEN_REG_OFFSET); |
| 650 | writel(assoc_len, engine->regs + SPA_AAD_LEN_REG_OFFSET); |
| 651 | writel(ctx->auth_size, engine->regs + SPA_ICV_LEN_REG_OFFSET); |
| 652 | writel(0, engine->regs + SPA_ICV_OFFSET_REG_OFFSET); |
| 653 | writel(0, engine->regs + SPA_AUX_INFO_REG_OFFSET); |
| 654 | |
| 655 | ctrl = spacc_alg->ctrl_default | (req->ctx_id << SPA_CTRL_CTX_IDX) | |
| 656 | (1 << SPA_CTRL_ICV_APPEND); |
| 657 | if (req->is_encrypt) |
| 658 | ctrl |= (1 << SPA_CTRL_ENCRYPT_IDX) | (1 << SPA_CTRL_AAD_COPY); |
| 659 | else |
| 660 | ctrl |= (1 << SPA_CTRL_KEY_EXP); |
| 661 | |
| 662 | mod_timer(&engine->packet_timeout, jiffies + PACKET_TIMEOUT); |
| 663 | |
| 664 | writel(ctrl, engine->regs + SPA_CTRL_REG_OFFSET); |
| 665 | |
| 666 | return -EINPROGRESS; |
| 667 | } |
| 668 | |
| 669 | /* |
| 670 | * Setup an AEAD request for processing. This will configure the engine, load |
| 671 | * the context and then start the packet processing. |
| 672 | * |
| 673 | * @giv Pointer to destination address for a generated IV. If the |
| 674 | * request does not need to generate an IV then this should be set to NULL. |
| 675 | */ |
| 676 | static int spacc_aead_setup(struct aead_request *req, u8 *giv, |
| 677 | unsigned alg_type, bool is_encrypt) |
| 678 | { |
| 679 | struct crypto_alg *alg = req->base.tfm->__crt_alg; |
| 680 | struct spacc_engine *engine = to_spacc_alg(alg)->engine; |
| 681 | struct spacc_req *dev_req = aead_request_ctx(req); |
| 682 | int err = -EINPROGRESS; |
| 683 | unsigned long flags; |
| 684 | unsigned ivsize = crypto_aead_ivsize(crypto_aead_reqtfm(req)); |
| 685 | |
| 686 | dev_req->giv = giv; |
| 687 | dev_req->giv_len = ivsize; |
| 688 | dev_req->req = &req->base; |
| 689 | dev_req->is_encrypt = is_encrypt; |
| 690 | dev_req->result = -EBUSY; |
| 691 | dev_req->engine = engine; |
| 692 | dev_req->complete = spacc_aead_complete; |
| 693 | |
| 694 | if (unlikely(spacc_aead_need_fallback(dev_req))) |
| 695 | return spacc_aead_do_fallback(req, alg_type, is_encrypt); |
| 696 | |
| 697 | spacc_aead_make_ddts(dev_req, dev_req->giv); |
| 698 | |
| 699 | err = -EINPROGRESS; |
| 700 | spin_lock_irqsave(&engine->hw_lock, flags); |
| 701 | if (unlikely(spacc_fifo_cmd_full(engine))) { |
| 702 | if (!(req->base.flags & CRYPTO_TFM_REQ_MAY_BACKLOG)) { |
| 703 | err = -EBUSY; |
| 704 | spin_unlock_irqrestore(&engine->hw_lock, flags); |
| 705 | goto out_free_ddts; |
| 706 | } |
| 707 | list_add_tail(&dev_req->list, &engine->pending); |
| 708 | } else { |
| 709 | ++engine->in_flight; |
| 710 | list_add_tail(&dev_req->list, &engine->in_progress); |
| 711 | spacc_aead_submit(dev_req); |
| 712 | } |
| 713 | spin_unlock_irqrestore(&engine->hw_lock, flags); |
| 714 | |
| 715 | goto out; |
| 716 | |
| 717 | out_free_ddts: |
| 718 | spacc_aead_free_ddts(dev_req); |
| 719 | out: |
| 720 | return err; |
| 721 | } |
| 722 | |
| 723 | static int spacc_aead_encrypt(struct aead_request *req) |
| 724 | { |
| 725 | struct crypto_aead *aead = crypto_aead_reqtfm(req); |
| 726 | struct crypto_tfm *tfm = crypto_aead_tfm(aead); |
| 727 | struct spacc_alg *alg = to_spacc_alg(tfm->__crt_alg); |
| 728 | |
| 729 | return spacc_aead_setup(req, NULL, alg->type, 1); |
| 730 | } |
| 731 | |
| 732 | static int spacc_aead_givencrypt(struct aead_givcrypt_request *req) |
| 733 | { |
| 734 | struct crypto_aead *tfm = aead_givcrypt_reqtfm(req); |
| 735 | struct spacc_aead_ctx *ctx = crypto_aead_ctx(tfm); |
| 736 | size_t ivsize = crypto_aead_ivsize(tfm); |
| 737 | struct spacc_alg *alg = to_spacc_alg(tfm->base.__crt_alg); |
| 738 | unsigned len; |
| 739 | __be64 seq; |
| 740 | |
| 741 | memcpy(req->areq.iv, ctx->salt, ivsize); |
| 742 | len = ivsize; |
| 743 | if (ivsize > sizeof(u64)) { |
| 744 | memset(req->giv, 0, ivsize - sizeof(u64)); |
| 745 | len = sizeof(u64); |
| 746 | } |
| 747 | seq = cpu_to_be64(req->seq); |
| 748 | memcpy(req->giv + ivsize - len, &seq, len); |
| 749 | |
| 750 | return spacc_aead_setup(&req->areq, req->giv, alg->type, 1); |
| 751 | } |
| 752 | |
| 753 | static int spacc_aead_decrypt(struct aead_request *req) |
| 754 | { |
| 755 | struct crypto_aead *aead = crypto_aead_reqtfm(req); |
| 756 | struct crypto_tfm *tfm = crypto_aead_tfm(aead); |
| 757 | struct spacc_alg *alg = to_spacc_alg(tfm->__crt_alg); |
| 758 | |
| 759 | return spacc_aead_setup(req, NULL, alg->type, 0); |
| 760 | } |
| 761 | |
| 762 | /* |
| 763 | * Initialise a new AEAD context. This is responsible for allocating the |
| 764 | * fallback cipher and initialising the context. |
| 765 | */ |
| 766 | static int spacc_aead_cra_init(struct crypto_tfm *tfm) |
| 767 | { |
| 768 | struct spacc_aead_ctx *ctx = crypto_tfm_ctx(tfm); |
| 769 | struct crypto_alg *alg = tfm->__crt_alg; |
| 770 | struct spacc_alg *spacc_alg = to_spacc_alg(alg); |
| 771 | struct spacc_engine *engine = spacc_alg->engine; |
| 772 | |
| 773 | ctx->generic.flags = spacc_alg->type; |
| 774 | ctx->generic.engine = engine; |
| 775 | ctx->sw_cipher = crypto_alloc_aead(alg->cra_name, 0, |
| 776 | CRYPTO_ALG_ASYNC | |
| 777 | CRYPTO_ALG_NEED_FALLBACK); |
| 778 | if (IS_ERR(ctx->sw_cipher)) { |
| 779 | dev_warn(engine->dev, "failed to allocate fallback for %s\n", |
| 780 | alg->cra_name); |
| 781 | ctx->sw_cipher = NULL; |
| 782 | } |
| 783 | ctx->generic.key_offs = spacc_alg->key_offs; |
| 784 | ctx->generic.iv_offs = spacc_alg->iv_offs; |
| 785 | |
| 786 | get_random_bytes(ctx->salt, sizeof(ctx->salt)); |
| 787 | |
| 788 | tfm->crt_aead.reqsize = sizeof(struct spacc_req); |
| 789 | |
| 790 | return 0; |
| 791 | } |
| 792 | |
| 793 | /* |
| 794 | * Destructor for an AEAD context. This is called when the transform is freed |
| 795 | * and must free the fallback cipher. |
| 796 | */ |
| 797 | static void spacc_aead_cra_exit(struct crypto_tfm *tfm) |
| 798 | { |
| 799 | struct spacc_aead_ctx *ctx = crypto_tfm_ctx(tfm); |
| 800 | |
| 801 | if (ctx->sw_cipher) |
| 802 | crypto_free_aead(ctx->sw_cipher); |
| 803 | ctx->sw_cipher = NULL; |
| 804 | } |
| 805 | |
| 806 | /* |
| 807 | * Set the DES key for a block cipher transform. This also performs weak key |
| 808 | * checking if the transform has requested it. |
| 809 | */ |
| 810 | static int spacc_des_setkey(struct crypto_ablkcipher *cipher, const u8 *key, |
| 811 | unsigned int len) |
| 812 | { |
| 813 | struct crypto_tfm *tfm = crypto_ablkcipher_tfm(cipher); |
| 814 | struct spacc_ablk_ctx *ctx = crypto_tfm_ctx(tfm); |
| 815 | u32 tmp[DES_EXPKEY_WORDS]; |
| 816 | |
| 817 | if (len > DES3_EDE_KEY_SIZE) { |
| 818 | crypto_ablkcipher_set_flags(cipher, CRYPTO_TFM_RES_BAD_KEY_LEN); |
| 819 | return -EINVAL; |
| 820 | } |
| 821 | |
| 822 | if (unlikely(!des_ekey(tmp, key)) && |
| 823 | (crypto_ablkcipher_get_flags(cipher) & CRYPTO_TFM_REQ_WEAK_KEY)) { |
| 824 | tfm->crt_flags |= CRYPTO_TFM_RES_WEAK_KEY; |
| 825 | return -EINVAL; |
| 826 | } |
| 827 | |
| 828 | memcpy(ctx->key, key, len); |
| 829 | ctx->key_len = len; |
| 830 | |
| 831 | return 0; |
| 832 | } |
| 833 | |
| 834 | /* |
| 835 | * Set the key for an AES block cipher. Some key lengths are not supported in |
| 836 | * hardware so this must also check whether a fallback is needed. |
| 837 | */ |
| 838 | static int spacc_aes_setkey(struct crypto_ablkcipher *cipher, const u8 *key, |
| 839 | unsigned int len) |
| 840 | { |
| 841 | struct crypto_tfm *tfm = crypto_ablkcipher_tfm(cipher); |
| 842 | struct spacc_ablk_ctx *ctx = crypto_tfm_ctx(tfm); |
| 843 | int err = 0; |
| 844 | |
| 845 | if (len > AES_MAX_KEY_SIZE) { |
| 846 | crypto_ablkcipher_set_flags(cipher, CRYPTO_TFM_RES_BAD_KEY_LEN); |
| 847 | return -EINVAL; |
| 848 | } |
| 849 | |
| 850 | /* |
| 851 | * IPSec engine only supports 128 and 256 bit AES keys. If we get a |
| 852 | * request for any other size (192 bits) then we need to do a software |
| 853 | * fallback. |
| 854 | */ |
| 855 | if ((len != AES_KEYSIZE_128 || len != AES_KEYSIZE_256) && |
| 856 | ctx->sw_cipher) { |
| 857 | /* |
| 858 | * Set the fallback transform to use the same request flags as |
| 859 | * the hardware transform. |
| 860 | */ |
| 861 | ctx->sw_cipher->base.crt_flags &= ~CRYPTO_TFM_REQ_MASK; |
| 862 | ctx->sw_cipher->base.crt_flags |= |
| 863 | cipher->base.crt_flags & CRYPTO_TFM_REQ_MASK; |
| 864 | |
| 865 | err = crypto_ablkcipher_setkey(ctx->sw_cipher, key, len); |
| 866 | if (err) |
| 867 | goto sw_setkey_failed; |
| 868 | } else if ((len != AES_KEYSIZE_128 || len != AES_KEYSIZE_256) && |
| 869 | !ctx->sw_cipher) |
| 870 | err = -EINVAL; |
| 871 | |
| 872 | memcpy(ctx->key, key, len); |
| 873 | ctx->key_len = len; |
| 874 | |
| 875 | sw_setkey_failed: |
| 876 | if (err && ctx->sw_cipher) { |
| 877 | tfm->crt_flags &= ~CRYPTO_TFM_RES_MASK; |
| 878 | tfm->crt_flags |= |
| 879 | ctx->sw_cipher->base.crt_flags & CRYPTO_TFM_RES_MASK; |
| 880 | } |
| 881 | |
| 882 | return err; |
| 883 | } |
| 884 | |
| 885 | static int spacc_kasumi_f8_setkey(struct crypto_ablkcipher *cipher, |
| 886 | const u8 *key, unsigned int len) |
| 887 | { |
| 888 | struct crypto_tfm *tfm = crypto_ablkcipher_tfm(cipher); |
| 889 | struct spacc_ablk_ctx *ctx = crypto_tfm_ctx(tfm); |
| 890 | int err = 0; |
| 891 | |
| 892 | if (len > AES_MAX_KEY_SIZE) { |
| 893 | crypto_ablkcipher_set_flags(cipher, CRYPTO_TFM_RES_BAD_KEY_LEN); |
| 894 | err = -EINVAL; |
| 895 | goto out; |
| 896 | } |
| 897 | |
| 898 | memcpy(ctx->key, key, len); |
| 899 | ctx->key_len = len; |
| 900 | |
| 901 | out: |
| 902 | return err; |
| 903 | } |
| 904 | |
| 905 | static int spacc_ablk_need_fallback(struct spacc_req *req) |
| 906 | { |
| 907 | struct spacc_ablk_ctx *ctx; |
| 908 | struct crypto_tfm *tfm = req->req->tfm; |
| 909 | struct crypto_alg *alg = req->req->tfm->__crt_alg; |
| 910 | struct spacc_alg *spacc_alg = to_spacc_alg(alg); |
| 911 | |
| 912 | ctx = crypto_tfm_ctx(tfm); |
| 913 | |
| 914 | return (spacc_alg->ctrl_default & SPACC_CRYPTO_ALG_MASK) == |
| 915 | SPA_CTRL_CIPH_ALG_AES && |
| 916 | ctx->key_len != AES_KEYSIZE_128 && |
| 917 | ctx->key_len != AES_KEYSIZE_256; |
| 918 | } |
| 919 | |
| 920 | static void spacc_ablk_complete(struct spacc_req *req) |
| 921 | { |
| 922 | struct ablkcipher_request *ablk_req = |
| 923 | container_of(req->req, struct ablkcipher_request, base); |
| 924 | |
| 925 | if (ablk_req->src != ablk_req->dst) { |
| 926 | spacc_free_ddt(req, req->src_ddt, req->src_addr, ablk_req->src, |
| 927 | ablk_req->nbytes, DMA_TO_DEVICE); |
| 928 | spacc_free_ddt(req, req->dst_ddt, req->dst_addr, ablk_req->dst, |
| 929 | ablk_req->nbytes, DMA_FROM_DEVICE); |
| 930 | } else |
| 931 | spacc_free_ddt(req, req->dst_ddt, req->dst_addr, ablk_req->dst, |
| 932 | ablk_req->nbytes, DMA_BIDIRECTIONAL); |
| 933 | |
| 934 | req->req->complete(req->req, req->result); |
| 935 | } |
| 936 | |
| 937 | static int spacc_ablk_submit(struct spacc_req *req) |
| 938 | { |
| 939 | struct crypto_tfm *tfm = req->req->tfm; |
| 940 | struct spacc_ablk_ctx *ctx = crypto_tfm_ctx(tfm); |
| 941 | struct ablkcipher_request *ablk_req = ablkcipher_request_cast(req->req); |
| 942 | struct crypto_alg *alg = req->req->tfm->__crt_alg; |
| 943 | struct spacc_alg *spacc_alg = to_spacc_alg(alg); |
| 944 | struct spacc_engine *engine = ctx->generic.engine; |
| 945 | u32 ctrl; |
| 946 | |
| 947 | req->ctx_id = spacc_load_ctx(&ctx->generic, ctx->key, |
| 948 | ctx->key_len, ablk_req->info, alg->cra_ablkcipher.ivsize, |
| 949 | NULL, 0); |
| 950 | |
| 951 | writel(req->src_addr, engine->regs + SPA_SRC_PTR_REG_OFFSET); |
| 952 | writel(req->dst_addr, engine->regs + SPA_DST_PTR_REG_OFFSET); |
| 953 | writel(0, engine->regs + SPA_OFFSET_REG_OFFSET); |
| 954 | |
| 955 | writel(ablk_req->nbytes, engine->regs + SPA_PROC_LEN_REG_OFFSET); |
| 956 | writel(0, engine->regs + SPA_ICV_OFFSET_REG_OFFSET); |
| 957 | writel(0, engine->regs + SPA_AUX_INFO_REG_OFFSET); |
| 958 | writel(0, engine->regs + SPA_AAD_LEN_REG_OFFSET); |
| 959 | |
| 960 | ctrl = spacc_alg->ctrl_default | (req->ctx_id << SPA_CTRL_CTX_IDX) | |
| 961 | (req->is_encrypt ? (1 << SPA_CTRL_ENCRYPT_IDX) : |
| 962 | (1 << SPA_CTRL_KEY_EXP)); |
| 963 | |
| 964 | mod_timer(&engine->packet_timeout, jiffies + PACKET_TIMEOUT); |
| 965 | |
| 966 | writel(ctrl, engine->regs + SPA_CTRL_REG_OFFSET); |
| 967 | |
| 968 | return -EINPROGRESS; |
| 969 | } |
| 970 | |
| 971 | static int spacc_ablk_do_fallback(struct ablkcipher_request *req, |
| 972 | unsigned alg_type, bool is_encrypt) |
| 973 | { |
| 974 | struct crypto_tfm *old_tfm = |
| 975 | crypto_ablkcipher_tfm(crypto_ablkcipher_reqtfm(req)); |
| 976 | struct spacc_ablk_ctx *ctx = crypto_tfm_ctx(old_tfm); |
| 977 | int err; |
| 978 | |
| 979 | if (!ctx->sw_cipher) |
| 980 | return -EINVAL; |
| 981 | |
| 982 | /* |
| 983 | * Change the request to use the software fallback transform, and once |
| 984 | * the ciphering has completed, put the old transform back into the |
| 985 | * request. |
| 986 | */ |
| 987 | ablkcipher_request_set_tfm(req, ctx->sw_cipher); |
| 988 | err = is_encrypt ? crypto_ablkcipher_encrypt(req) : |
| 989 | crypto_ablkcipher_decrypt(req); |
| 990 | ablkcipher_request_set_tfm(req, __crypto_ablkcipher_cast(old_tfm)); |
| 991 | |
| 992 | return err; |
| 993 | } |
| 994 | |
| 995 | static int spacc_ablk_setup(struct ablkcipher_request *req, unsigned alg_type, |
| 996 | bool is_encrypt) |
| 997 | { |
| 998 | struct crypto_alg *alg = req->base.tfm->__crt_alg; |
| 999 | struct spacc_engine *engine = to_spacc_alg(alg)->engine; |
| 1000 | struct spacc_req *dev_req = ablkcipher_request_ctx(req); |
| 1001 | unsigned long flags; |
| 1002 | int err = -ENOMEM; |
| 1003 | |
| 1004 | dev_req->req = &req->base; |
| 1005 | dev_req->is_encrypt = is_encrypt; |
| 1006 | dev_req->engine = engine; |
| 1007 | dev_req->complete = spacc_ablk_complete; |
| 1008 | dev_req->result = -EINPROGRESS; |
| 1009 | |
| 1010 | if (unlikely(spacc_ablk_need_fallback(dev_req))) |
| 1011 | return spacc_ablk_do_fallback(req, alg_type, is_encrypt); |
| 1012 | |
| 1013 | /* |
| 1014 | * Create the DDT's for the engine. If we share the same source and |
| 1015 | * destination then we can optimize by reusing the DDT's. |
| 1016 | */ |
| 1017 | if (req->src != req->dst) { |
| 1018 | dev_req->src_ddt = spacc_sg_to_ddt(engine, req->src, |
| 1019 | req->nbytes, DMA_TO_DEVICE, &dev_req->src_addr); |
| 1020 | if (!dev_req->src_ddt) |
| 1021 | goto out; |
| 1022 | |
| 1023 | dev_req->dst_ddt = spacc_sg_to_ddt(engine, req->dst, |
| 1024 | req->nbytes, DMA_FROM_DEVICE, &dev_req->dst_addr); |
| 1025 | if (!dev_req->dst_ddt) |
| 1026 | goto out_free_src; |
| 1027 | } else { |
| 1028 | dev_req->dst_ddt = spacc_sg_to_ddt(engine, req->dst, |
| 1029 | req->nbytes, DMA_BIDIRECTIONAL, &dev_req->dst_addr); |
| 1030 | if (!dev_req->dst_ddt) |
| 1031 | goto out; |
| 1032 | |
| 1033 | dev_req->src_ddt = NULL; |
| 1034 | dev_req->src_addr = dev_req->dst_addr; |
| 1035 | } |
| 1036 | |
| 1037 | err = -EINPROGRESS; |
| 1038 | spin_lock_irqsave(&engine->hw_lock, flags); |
| 1039 | /* |
| 1040 | * Check if the engine will accept the operation now. If it won't then |
| 1041 | * we either stick it on the end of a pending list if we can backlog, |
| 1042 | * or bailout with an error if not. |
| 1043 | */ |
| 1044 | if (unlikely(spacc_fifo_cmd_full(engine))) { |
| 1045 | if (!(req->base.flags & CRYPTO_TFM_REQ_MAY_BACKLOG)) { |
| 1046 | err = -EBUSY; |
| 1047 | spin_unlock_irqrestore(&engine->hw_lock, flags); |
| 1048 | goto out_free_ddts; |
| 1049 | } |
| 1050 | list_add_tail(&dev_req->list, &engine->pending); |
| 1051 | } else { |
| 1052 | ++engine->in_flight; |
| 1053 | list_add_tail(&dev_req->list, &engine->in_progress); |
| 1054 | spacc_ablk_submit(dev_req); |
| 1055 | } |
| 1056 | spin_unlock_irqrestore(&engine->hw_lock, flags); |
| 1057 | |
| 1058 | goto out; |
| 1059 | |
| 1060 | out_free_ddts: |
| 1061 | spacc_free_ddt(dev_req, dev_req->dst_ddt, dev_req->dst_addr, req->dst, |
| 1062 | req->nbytes, req->src == req->dst ? |
| 1063 | DMA_BIDIRECTIONAL : DMA_FROM_DEVICE); |
| 1064 | out_free_src: |
| 1065 | if (req->src != req->dst) |
| 1066 | spacc_free_ddt(dev_req, dev_req->src_ddt, dev_req->src_addr, |
| 1067 | req->src, req->nbytes, DMA_TO_DEVICE); |
| 1068 | out: |
| 1069 | return err; |
| 1070 | } |
| 1071 | |
| 1072 | static int spacc_ablk_cra_init(struct crypto_tfm *tfm) |
| 1073 | { |
| 1074 | struct spacc_ablk_ctx *ctx = crypto_tfm_ctx(tfm); |
| 1075 | struct crypto_alg *alg = tfm->__crt_alg; |
| 1076 | struct spacc_alg *spacc_alg = to_spacc_alg(alg); |
| 1077 | struct spacc_engine *engine = spacc_alg->engine; |
| 1078 | |
| 1079 | ctx->generic.flags = spacc_alg->type; |
| 1080 | ctx->generic.engine = engine; |
| 1081 | if (alg->cra_flags & CRYPTO_ALG_NEED_FALLBACK) { |
| 1082 | ctx->sw_cipher = crypto_alloc_ablkcipher(alg->cra_name, 0, |
| 1083 | CRYPTO_ALG_ASYNC | CRYPTO_ALG_NEED_FALLBACK); |
| 1084 | if (IS_ERR(ctx->sw_cipher)) { |
| 1085 | dev_warn(engine->dev, "failed to allocate fallback for %s\n", |
| 1086 | alg->cra_name); |
| 1087 | ctx->sw_cipher = NULL; |
| 1088 | } |
| 1089 | } |
| 1090 | ctx->generic.key_offs = spacc_alg->key_offs; |
| 1091 | ctx->generic.iv_offs = spacc_alg->iv_offs; |
| 1092 | |
| 1093 | tfm->crt_ablkcipher.reqsize = sizeof(struct spacc_req); |
| 1094 | |
| 1095 | return 0; |
| 1096 | } |
| 1097 | |
| 1098 | static void spacc_ablk_cra_exit(struct crypto_tfm *tfm) |
| 1099 | { |
| 1100 | struct spacc_ablk_ctx *ctx = crypto_tfm_ctx(tfm); |
| 1101 | |
| 1102 | if (ctx->sw_cipher) |
| 1103 | crypto_free_ablkcipher(ctx->sw_cipher); |
| 1104 | ctx->sw_cipher = NULL; |
| 1105 | } |
| 1106 | |
| 1107 | static int spacc_ablk_encrypt(struct ablkcipher_request *req) |
| 1108 | { |
| 1109 | struct crypto_ablkcipher *cipher = crypto_ablkcipher_reqtfm(req); |
| 1110 | struct crypto_tfm *tfm = crypto_ablkcipher_tfm(cipher); |
| 1111 | struct spacc_alg *alg = to_spacc_alg(tfm->__crt_alg); |
| 1112 | |
| 1113 | return spacc_ablk_setup(req, alg->type, 1); |
| 1114 | } |
| 1115 | |
| 1116 | static int spacc_ablk_decrypt(struct ablkcipher_request *req) |
| 1117 | { |
| 1118 | struct crypto_ablkcipher *cipher = crypto_ablkcipher_reqtfm(req); |
| 1119 | struct crypto_tfm *tfm = crypto_ablkcipher_tfm(cipher); |
| 1120 | struct spacc_alg *alg = to_spacc_alg(tfm->__crt_alg); |
| 1121 | |
| 1122 | return spacc_ablk_setup(req, alg->type, 0); |
| 1123 | } |
| 1124 | |
| 1125 | static inline int spacc_fifo_stat_empty(struct spacc_engine *engine) |
| 1126 | { |
| 1127 | return readl(engine->regs + SPA_FIFO_STAT_REG_OFFSET) & |
| 1128 | SPA_FIFO_STAT_EMPTY; |
| 1129 | } |
| 1130 | |
| 1131 | static void spacc_process_done(struct spacc_engine *engine) |
| 1132 | { |
| 1133 | struct spacc_req *req; |
| 1134 | unsigned long flags; |
| 1135 | |
| 1136 | spin_lock_irqsave(&engine->hw_lock, flags); |
| 1137 | |
| 1138 | while (!spacc_fifo_stat_empty(engine)) { |
| 1139 | req = list_first_entry(&engine->in_progress, struct spacc_req, |
| 1140 | list); |
| 1141 | list_move_tail(&req->list, &engine->completed); |
| 1142 | |
| 1143 | /* POP the status register. */ |
| 1144 | writel(~0, engine->regs + SPA_STAT_POP_REG_OFFSET); |
| 1145 | req->result = (readl(engine->regs + SPA_STATUS_REG_OFFSET) & |
| 1146 | SPA_STATUS_RES_CODE_MASK) >> SPA_STATUS_RES_CODE_OFFSET; |
| 1147 | |
| 1148 | /* |
| 1149 | * Convert the SPAcc error status into the standard POSIX error |
| 1150 | * codes. |
| 1151 | */ |
| 1152 | if (unlikely(req->result)) { |
| 1153 | switch (req->result) { |
| 1154 | case SPA_STATUS_ICV_FAIL: |
| 1155 | req->result = -EBADMSG; |
| 1156 | break; |
| 1157 | |
| 1158 | case SPA_STATUS_MEMORY_ERROR: |
| 1159 | dev_warn(engine->dev, |
| 1160 | "memory error triggered\n"); |
| 1161 | req->result = -EFAULT; |
| 1162 | break; |
| 1163 | |
| 1164 | case SPA_STATUS_BLOCK_ERROR: |
| 1165 | dev_warn(engine->dev, |
| 1166 | "block error triggered\n"); |
| 1167 | req->result = -EIO; |
| 1168 | break; |
| 1169 | } |
| 1170 | } |
| 1171 | } |
| 1172 | |
| 1173 | tasklet_schedule(&engine->complete); |
| 1174 | |
| 1175 | spin_unlock_irqrestore(&engine->hw_lock, flags); |
| 1176 | } |
| 1177 | |
| 1178 | static irqreturn_t spacc_spacc_irq(int irq, void *dev) |
| 1179 | { |
| 1180 | struct spacc_engine *engine = (struct spacc_engine *)dev; |
| 1181 | u32 spacc_irq_stat = readl(engine->regs + SPA_IRQ_STAT_REG_OFFSET); |
| 1182 | |
| 1183 | writel(spacc_irq_stat, engine->regs + SPA_IRQ_STAT_REG_OFFSET); |
| 1184 | spacc_process_done(engine); |
| 1185 | |
| 1186 | return IRQ_HANDLED; |
| 1187 | } |
| 1188 | |
| 1189 | static void spacc_packet_timeout(unsigned long data) |
| 1190 | { |
| 1191 | struct spacc_engine *engine = (struct spacc_engine *)data; |
| 1192 | |
| 1193 | spacc_process_done(engine); |
| 1194 | } |
| 1195 | |
| 1196 | static int spacc_req_submit(struct spacc_req *req) |
| 1197 | { |
| 1198 | struct crypto_alg *alg = req->req->tfm->__crt_alg; |
| 1199 | |
| 1200 | if (CRYPTO_ALG_TYPE_AEAD == (CRYPTO_ALG_TYPE_MASK & alg->cra_flags)) |
| 1201 | return spacc_aead_submit(req); |
| 1202 | else |
| 1203 | return spacc_ablk_submit(req); |
| 1204 | } |
| 1205 | |
| 1206 | static void spacc_spacc_complete(unsigned long data) |
| 1207 | { |
| 1208 | struct spacc_engine *engine = (struct spacc_engine *)data; |
| 1209 | struct spacc_req *req, *tmp; |
| 1210 | unsigned long flags; |
| 1211 | int num_removed = 0; |
| 1212 | LIST_HEAD(completed); |
| 1213 | |
| 1214 | spin_lock_irqsave(&engine->hw_lock, flags); |
| 1215 | list_splice_init(&engine->completed, &completed); |
| 1216 | spin_unlock_irqrestore(&engine->hw_lock, flags); |
| 1217 | |
| 1218 | list_for_each_entry_safe(req, tmp, &completed, list) { |
| 1219 | ++num_removed; |
| 1220 | req->complete(req); |
| 1221 | } |
| 1222 | |
| 1223 | /* Try and fill the engine back up again. */ |
| 1224 | spin_lock_irqsave(&engine->hw_lock, flags); |
| 1225 | |
| 1226 | engine->in_flight -= num_removed; |
| 1227 | |
| 1228 | list_for_each_entry_safe(req, tmp, &engine->pending, list) { |
| 1229 | if (spacc_fifo_cmd_full(engine)) |
| 1230 | break; |
| 1231 | |
| 1232 | list_move_tail(&req->list, &engine->in_progress); |
| 1233 | ++engine->in_flight; |
| 1234 | req->result = spacc_req_submit(req); |
| 1235 | } |
| 1236 | |
| 1237 | if (engine->in_flight) |
| 1238 | mod_timer(&engine->packet_timeout, jiffies + PACKET_TIMEOUT); |
| 1239 | |
| 1240 | spin_unlock_irqrestore(&engine->hw_lock, flags); |
| 1241 | } |
| 1242 | |
| 1243 | #ifdef CONFIG_PM |
| 1244 | static int spacc_suspend(struct device *dev) |
| 1245 | { |
| 1246 | struct platform_device *pdev = to_platform_device(dev); |
| 1247 | struct spacc_engine *engine = platform_get_drvdata(pdev); |
| 1248 | |
| 1249 | /* |
| 1250 | * We only support standby mode. All we have to do is gate the clock to |
| 1251 | * the spacc. The hardware will preserve state until we turn it back |
| 1252 | * on again. |
| 1253 | */ |
| 1254 | clk_disable(engine->clk); |
| 1255 | |
| 1256 | return 0; |
| 1257 | } |
| 1258 | |
| 1259 | static int spacc_resume(struct device *dev) |
| 1260 | { |
| 1261 | struct platform_device *pdev = to_platform_device(dev); |
| 1262 | struct spacc_engine *engine = platform_get_drvdata(pdev); |
| 1263 | |
| 1264 | return clk_enable(engine->clk); |
| 1265 | } |
| 1266 | |
| 1267 | static const struct dev_pm_ops spacc_pm_ops = { |
| 1268 | .suspend = spacc_suspend, |
| 1269 | .resume = spacc_resume, |
| 1270 | }; |
| 1271 | #endif /* CONFIG_PM */ |
| 1272 | |
| 1273 | static inline struct spacc_engine *spacc_dev_to_engine(struct device *dev) |
| 1274 | { |
| 1275 | return dev ? platform_get_drvdata(to_platform_device(dev)) : NULL; |
| 1276 | } |
| 1277 | |
| 1278 | static ssize_t spacc_stat_irq_thresh_show(struct device *dev, |
| 1279 | struct device_attribute *attr, |
| 1280 | char *buf) |
| 1281 | { |
| 1282 | struct spacc_engine *engine = spacc_dev_to_engine(dev); |
| 1283 | |
| 1284 | return snprintf(buf, PAGE_SIZE, "%u\n", engine->stat_irq_thresh); |
| 1285 | } |
| 1286 | |
| 1287 | static ssize_t spacc_stat_irq_thresh_store(struct device *dev, |
| 1288 | struct device_attribute *attr, |
| 1289 | const char *buf, size_t len) |
| 1290 | { |
| 1291 | struct spacc_engine *engine = spacc_dev_to_engine(dev); |
| 1292 | unsigned long thresh; |
| 1293 | |
| 1294 | if (strict_strtoul(buf, 0, &thresh)) |
| 1295 | return -EINVAL; |
| 1296 | |
| 1297 | thresh = clamp(thresh, 1UL, engine->fifo_sz - 1); |
| 1298 | |
| 1299 | engine->stat_irq_thresh = thresh; |
| 1300 | writel(engine->stat_irq_thresh << SPA_IRQ_CTRL_STAT_CNT_OFFSET, |
| 1301 | engine->regs + SPA_IRQ_CTRL_REG_OFFSET); |
| 1302 | |
| 1303 | return len; |
| 1304 | } |
| 1305 | static DEVICE_ATTR(stat_irq_thresh, 0644, spacc_stat_irq_thresh_show, |
| 1306 | spacc_stat_irq_thresh_store); |
| 1307 | |
| 1308 | static struct spacc_alg ipsec_engine_algs[] = { |
| 1309 | { |
| 1310 | .ctrl_default = SPA_CTRL_CIPH_ALG_AES | SPA_CTRL_CIPH_MODE_CBC, |
| 1311 | .key_offs = 0, |
| 1312 | .iv_offs = AES_MAX_KEY_SIZE, |
| 1313 | .alg = { |
| 1314 | .cra_name = "cbc(aes)", |
| 1315 | .cra_driver_name = "cbc-aes-picoxcell", |
| 1316 | .cra_priority = SPACC_CRYPTO_ALG_PRIORITY, |
| 1317 | .cra_flags = CRYPTO_ALG_TYPE_ABLKCIPHER | |
| 1318 | CRYPTO_ALG_ASYNC | |
| 1319 | CRYPTO_ALG_NEED_FALLBACK, |
| 1320 | .cra_blocksize = AES_BLOCK_SIZE, |
| 1321 | .cra_ctxsize = sizeof(struct spacc_ablk_ctx), |
| 1322 | .cra_type = &crypto_ablkcipher_type, |
| 1323 | .cra_module = THIS_MODULE, |
| 1324 | .cra_ablkcipher = { |
| 1325 | .setkey = spacc_aes_setkey, |
| 1326 | .encrypt = spacc_ablk_encrypt, |
| 1327 | .decrypt = spacc_ablk_decrypt, |
| 1328 | .min_keysize = AES_MIN_KEY_SIZE, |
| 1329 | .max_keysize = AES_MAX_KEY_SIZE, |
| 1330 | .ivsize = AES_BLOCK_SIZE, |
| 1331 | }, |
| 1332 | .cra_init = spacc_ablk_cra_init, |
| 1333 | .cra_exit = spacc_ablk_cra_exit, |
| 1334 | }, |
| 1335 | }, |
| 1336 | { |
| 1337 | .key_offs = 0, |
| 1338 | .iv_offs = AES_MAX_KEY_SIZE, |
| 1339 | .ctrl_default = SPA_CTRL_CIPH_ALG_AES | SPA_CTRL_CIPH_MODE_ECB, |
| 1340 | .alg = { |
| 1341 | .cra_name = "ecb(aes)", |
| 1342 | .cra_driver_name = "ecb-aes-picoxcell", |
| 1343 | .cra_priority = SPACC_CRYPTO_ALG_PRIORITY, |
| 1344 | .cra_flags = CRYPTO_ALG_TYPE_ABLKCIPHER | |
| 1345 | CRYPTO_ALG_ASYNC | CRYPTO_ALG_NEED_FALLBACK, |
| 1346 | .cra_blocksize = AES_BLOCK_SIZE, |
| 1347 | .cra_ctxsize = sizeof(struct spacc_ablk_ctx), |
| 1348 | .cra_type = &crypto_ablkcipher_type, |
| 1349 | .cra_module = THIS_MODULE, |
| 1350 | .cra_ablkcipher = { |
| 1351 | .setkey = spacc_aes_setkey, |
| 1352 | .encrypt = spacc_ablk_encrypt, |
| 1353 | .decrypt = spacc_ablk_decrypt, |
| 1354 | .min_keysize = AES_MIN_KEY_SIZE, |
| 1355 | .max_keysize = AES_MAX_KEY_SIZE, |
| 1356 | }, |
| 1357 | .cra_init = spacc_ablk_cra_init, |
| 1358 | .cra_exit = spacc_ablk_cra_exit, |
| 1359 | }, |
| 1360 | }, |
| 1361 | { |
| 1362 | .key_offs = DES_BLOCK_SIZE, |
| 1363 | .iv_offs = 0, |
| 1364 | .ctrl_default = SPA_CTRL_CIPH_ALG_DES | SPA_CTRL_CIPH_MODE_CBC, |
| 1365 | .alg = { |
| 1366 | .cra_name = "cbc(des)", |
| 1367 | .cra_driver_name = "cbc-des-picoxcell", |
| 1368 | .cra_priority = SPACC_CRYPTO_ALG_PRIORITY, |
| 1369 | .cra_flags = CRYPTO_ALG_TYPE_ABLKCIPHER | CRYPTO_ALG_ASYNC, |
| 1370 | .cra_blocksize = DES_BLOCK_SIZE, |
| 1371 | .cra_ctxsize = sizeof(struct spacc_ablk_ctx), |
| 1372 | .cra_type = &crypto_ablkcipher_type, |
| 1373 | .cra_module = THIS_MODULE, |
| 1374 | .cra_ablkcipher = { |
| 1375 | .setkey = spacc_des_setkey, |
| 1376 | .encrypt = spacc_ablk_encrypt, |
| 1377 | .decrypt = spacc_ablk_decrypt, |
| 1378 | .min_keysize = DES_KEY_SIZE, |
| 1379 | .max_keysize = DES_KEY_SIZE, |
| 1380 | .ivsize = DES_BLOCK_SIZE, |
| 1381 | }, |
| 1382 | .cra_init = spacc_ablk_cra_init, |
| 1383 | .cra_exit = spacc_ablk_cra_exit, |
| 1384 | }, |
| 1385 | }, |
| 1386 | { |
| 1387 | .key_offs = DES_BLOCK_SIZE, |
| 1388 | .iv_offs = 0, |
| 1389 | .ctrl_default = SPA_CTRL_CIPH_ALG_DES | SPA_CTRL_CIPH_MODE_ECB, |
| 1390 | .alg = { |
| 1391 | .cra_name = "ecb(des)", |
| 1392 | .cra_driver_name = "ecb-des-picoxcell", |
| 1393 | .cra_priority = SPACC_CRYPTO_ALG_PRIORITY, |
| 1394 | .cra_flags = CRYPTO_ALG_TYPE_ABLKCIPHER | CRYPTO_ALG_ASYNC, |
| 1395 | .cra_blocksize = DES_BLOCK_SIZE, |
| 1396 | .cra_ctxsize = sizeof(struct spacc_ablk_ctx), |
| 1397 | .cra_type = &crypto_ablkcipher_type, |
| 1398 | .cra_module = THIS_MODULE, |
| 1399 | .cra_ablkcipher = { |
| 1400 | .setkey = spacc_des_setkey, |
| 1401 | .encrypt = spacc_ablk_encrypt, |
| 1402 | .decrypt = spacc_ablk_decrypt, |
| 1403 | .min_keysize = DES_KEY_SIZE, |
| 1404 | .max_keysize = DES_KEY_SIZE, |
| 1405 | }, |
| 1406 | .cra_init = spacc_ablk_cra_init, |
| 1407 | .cra_exit = spacc_ablk_cra_exit, |
| 1408 | }, |
| 1409 | }, |
| 1410 | { |
| 1411 | .key_offs = DES_BLOCK_SIZE, |
| 1412 | .iv_offs = 0, |
| 1413 | .ctrl_default = SPA_CTRL_CIPH_ALG_DES | SPA_CTRL_CIPH_MODE_CBC, |
| 1414 | .alg = { |
| 1415 | .cra_name = "cbc(des3_ede)", |
| 1416 | .cra_driver_name = "cbc-des3-ede-picoxcell", |
| 1417 | .cra_priority = SPACC_CRYPTO_ALG_PRIORITY, |
| 1418 | .cra_flags = CRYPTO_ALG_TYPE_ABLKCIPHER | CRYPTO_ALG_ASYNC, |
| 1419 | .cra_blocksize = DES3_EDE_BLOCK_SIZE, |
| 1420 | .cra_ctxsize = sizeof(struct spacc_ablk_ctx), |
| 1421 | .cra_type = &crypto_ablkcipher_type, |
| 1422 | .cra_module = THIS_MODULE, |
| 1423 | .cra_ablkcipher = { |
| 1424 | .setkey = spacc_des_setkey, |
| 1425 | .encrypt = spacc_ablk_encrypt, |
| 1426 | .decrypt = spacc_ablk_decrypt, |
| 1427 | .min_keysize = DES3_EDE_KEY_SIZE, |
| 1428 | .max_keysize = DES3_EDE_KEY_SIZE, |
| 1429 | .ivsize = DES3_EDE_BLOCK_SIZE, |
| 1430 | }, |
| 1431 | .cra_init = spacc_ablk_cra_init, |
| 1432 | .cra_exit = spacc_ablk_cra_exit, |
| 1433 | }, |
| 1434 | }, |
| 1435 | { |
| 1436 | .key_offs = DES_BLOCK_SIZE, |
| 1437 | .iv_offs = 0, |
| 1438 | .ctrl_default = SPA_CTRL_CIPH_ALG_DES | SPA_CTRL_CIPH_MODE_ECB, |
| 1439 | .alg = { |
| 1440 | .cra_name = "ecb(des3_ede)", |
| 1441 | .cra_driver_name = "ecb-des3-ede-picoxcell", |
| 1442 | .cra_priority = SPACC_CRYPTO_ALG_PRIORITY, |
| 1443 | .cra_flags = CRYPTO_ALG_TYPE_ABLKCIPHER | CRYPTO_ALG_ASYNC, |
| 1444 | .cra_blocksize = DES3_EDE_BLOCK_SIZE, |
| 1445 | .cra_ctxsize = sizeof(struct spacc_ablk_ctx), |
| 1446 | .cra_type = &crypto_ablkcipher_type, |
| 1447 | .cra_module = THIS_MODULE, |
| 1448 | .cra_ablkcipher = { |
| 1449 | .setkey = spacc_des_setkey, |
| 1450 | .encrypt = spacc_ablk_encrypt, |
| 1451 | .decrypt = spacc_ablk_decrypt, |
| 1452 | .min_keysize = DES3_EDE_KEY_SIZE, |
| 1453 | .max_keysize = DES3_EDE_KEY_SIZE, |
| 1454 | }, |
| 1455 | .cra_init = spacc_ablk_cra_init, |
| 1456 | .cra_exit = spacc_ablk_cra_exit, |
| 1457 | }, |
| 1458 | }, |
| 1459 | { |
| 1460 | .ctrl_default = SPA_CTRL_CIPH_ALG_AES | SPA_CTRL_CIPH_MODE_CBC | |
| 1461 | SPA_CTRL_HASH_ALG_SHA | SPA_CTRL_HASH_MODE_HMAC, |
| 1462 | .key_offs = 0, |
| 1463 | .iv_offs = AES_MAX_KEY_SIZE, |
| 1464 | .alg = { |
| 1465 | .cra_name = "authenc(hmac(sha1),cbc(aes))", |
| 1466 | .cra_driver_name = "authenc-hmac-sha1-cbc-aes-picoxcell", |
| 1467 | .cra_priority = SPACC_CRYPTO_ALG_PRIORITY, |
| 1468 | .cra_flags = CRYPTO_ALG_TYPE_AEAD | CRYPTO_ALG_ASYNC, |
| 1469 | .cra_blocksize = AES_BLOCK_SIZE, |
| 1470 | .cra_ctxsize = sizeof(struct spacc_aead_ctx), |
| 1471 | .cra_type = &crypto_aead_type, |
| 1472 | .cra_module = THIS_MODULE, |
| 1473 | .cra_aead = { |
| 1474 | .setkey = spacc_aead_setkey, |
| 1475 | .setauthsize = spacc_aead_setauthsize, |
| 1476 | .encrypt = spacc_aead_encrypt, |
| 1477 | .decrypt = spacc_aead_decrypt, |
| 1478 | .givencrypt = spacc_aead_givencrypt, |
| 1479 | .ivsize = AES_BLOCK_SIZE, |
| 1480 | .maxauthsize = SHA1_DIGEST_SIZE, |
| 1481 | }, |
| 1482 | .cra_init = spacc_aead_cra_init, |
| 1483 | .cra_exit = spacc_aead_cra_exit, |
| 1484 | }, |
| 1485 | }, |
| 1486 | { |
| 1487 | .ctrl_default = SPA_CTRL_CIPH_ALG_AES | SPA_CTRL_CIPH_MODE_CBC | |
| 1488 | SPA_CTRL_HASH_ALG_SHA256 | |
| 1489 | SPA_CTRL_HASH_MODE_HMAC, |
| 1490 | .key_offs = 0, |
| 1491 | .iv_offs = AES_MAX_KEY_SIZE, |
| 1492 | .alg = { |
| 1493 | .cra_name = "authenc(hmac(sha256),cbc(aes))", |
| 1494 | .cra_driver_name = "authenc-hmac-sha256-cbc-aes-picoxcell", |
| 1495 | .cra_priority = SPACC_CRYPTO_ALG_PRIORITY, |
| 1496 | .cra_flags = CRYPTO_ALG_TYPE_AEAD | CRYPTO_ALG_ASYNC, |
| 1497 | .cra_blocksize = AES_BLOCK_SIZE, |
| 1498 | .cra_ctxsize = sizeof(struct spacc_aead_ctx), |
| 1499 | .cra_type = &crypto_aead_type, |
| 1500 | .cra_module = THIS_MODULE, |
| 1501 | .cra_aead = { |
| 1502 | .setkey = spacc_aead_setkey, |
| 1503 | .setauthsize = spacc_aead_setauthsize, |
| 1504 | .encrypt = spacc_aead_encrypt, |
| 1505 | .decrypt = spacc_aead_decrypt, |
| 1506 | .givencrypt = spacc_aead_givencrypt, |
| 1507 | .ivsize = AES_BLOCK_SIZE, |
| 1508 | .maxauthsize = SHA256_DIGEST_SIZE, |
| 1509 | }, |
| 1510 | .cra_init = spacc_aead_cra_init, |
| 1511 | .cra_exit = spacc_aead_cra_exit, |
| 1512 | }, |
| 1513 | }, |
| 1514 | { |
| 1515 | .key_offs = 0, |
| 1516 | .iv_offs = AES_MAX_KEY_SIZE, |
| 1517 | .ctrl_default = SPA_CTRL_CIPH_ALG_AES | SPA_CTRL_CIPH_MODE_CBC | |
| 1518 | SPA_CTRL_HASH_ALG_MD5 | SPA_CTRL_HASH_MODE_HMAC, |
| 1519 | .alg = { |
| 1520 | .cra_name = "authenc(hmac(md5),cbc(aes))", |
| 1521 | .cra_driver_name = "authenc-hmac-md5-cbc-aes-picoxcell", |
| 1522 | .cra_priority = SPACC_CRYPTO_ALG_PRIORITY, |
| 1523 | .cra_flags = CRYPTO_ALG_TYPE_AEAD | CRYPTO_ALG_ASYNC, |
| 1524 | .cra_blocksize = AES_BLOCK_SIZE, |
| 1525 | .cra_ctxsize = sizeof(struct spacc_aead_ctx), |
| 1526 | .cra_type = &crypto_aead_type, |
| 1527 | .cra_module = THIS_MODULE, |
| 1528 | .cra_aead = { |
| 1529 | .setkey = spacc_aead_setkey, |
| 1530 | .setauthsize = spacc_aead_setauthsize, |
| 1531 | .encrypt = spacc_aead_encrypt, |
| 1532 | .decrypt = spacc_aead_decrypt, |
| 1533 | .givencrypt = spacc_aead_givencrypt, |
| 1534 | .ivsize = AES_BLOCK_SIZE, |
| 1535 | .maxauthsize = MD5_DIGEST_SIZE, |
| 1536 | }, |
| 1537 | .cra_init = spacc_aead_cra_init, |
| 1538 | .cra_exit = spacc_aead_cra_exit, |
| 1539 | }, |
| 1540 | }, |
| 1541 | { |
| 1542 | .key_offs = DES_BLOCK_SIZE, |
| 1543 | .iv_offs = 0, |
| 1544 | .ctrl_default = SPA_CTRL_CIPH_ALG_DES | SPA_CTRL_CIPH_MODE_CBC | |
| 1545 | SPA_CTRL_HASH_ALG_SHA | SPA_CTRL_HASH_MODE_HMAC, |
| 1546 | .alg = { |
| 1547 | .cra_name = "authenc(hmac(sha1),cbc(des3_ede))", |
| 1548 | .cra_driver_name = "authenc-hmac-sha1-cbc-3des-picoxcell", |
| 1549 | .cra_priority = SPACC_CRYPTO_ALG_PRIORITY, |
| 1550 | .cra_flags = CRYPTO_ALG_TYPE_AEAD | CRYPTO_ALG_ASYNC, |
| 1551 | .cra_blocksize = DES3_EDE_BLOCK_SIZE, |
| 1552 | .cra_ctxsize = sizeof(struct spacc_aead_ctx), |
| 1553 | .cra_type = &crypto_aead_type, |
| 1554 | .cra_module = THIS_MODULE, |
| 1555 | .cra_aead = { |
| 1556 | .setkey = spacc_aead_setkey, |
| 1557 | .setauthsize = spacc_aead_setauthsize, |
| 1558 | .encrypt = spacc_aead_encrypt, |
| 1559 | .decrypt = spacc_aead_decrypt, |
| 1560 | .givencrypt = spacc_aead_givencrypt, |
| 1561 | .ivsize = DES3_EDE_BLOCK_SIZE, |
| 1562 | .maxauthsize = SHA1_DIGEST_SIZE, |
| 1563 | }, |
| 1564 | .cra_init = spacc_aead_cra_init, |
| 1565 | .cra_exit = spacc_aead_cra_exit, |
| 1566 | }, |
| 1567 | }, |
| 1568 | { |
| 1569 | .key_offs = DES_BLOCK_SIZE, |
| 1570 | .iv_offs = 0, |
| 1571 | .ctrl_default = SPA_CTRL_CIPH_ALG_AES | SPA_CTRL_CIPH_MODE_CBC | |
| 1572 | SPA_CTRL_HASH_ALG_SHA256 | |
| 1573 | SPA_CTRL_HASH_MODE_HMAC, |
| 1574 | .alg = { |
| 1575 | .cra_name = "authenc(hmac(sha256),cbc(des3_ede))", |
| 1576 | .cra_driver_name = "authenc-hmac-sha256-cbc-3des-picoxcell", |
| 1577 | .cra_priority = SPACC_CRYPTO_ALG_PRIORITY, |
| 1578 | .cra_flags = CRYPTO_ALG_TYPE_AEAD | CRYPTO_ALG_ASYNC, |
| 1579 | .cra_blocksize = DES3_EDE_BLOCK_SIZE, |
| 1580 | .cra_ctxsize = sizeof(struct spacc_aead_ctx), |
| 1581 | .cra_type = &crypto_aead_type, |
| 1582 | .cra_module = THIS_MODULE, |
| 1583 | .cra_aead = { |
| 1584 | .setkey = spacc_aead_setkey, |
| 1585 | .setauthsize = spacc_aead_setauthsize, |
| 1586 | .encrypt = spacc_aead_encrypt, |
| 1587 | .decrypt = spacc_aead_decrypt, |
| 1588 | .givencrypt = spacc_aead_givencrypt, |
| 1589 | .ivsize = DES3_EDE_BLOCK_SIZE, |
| 1590 | .maxauthsize = SHA256_DIGEST_SIZE, |
| 1591 | }, |
| 1592 | .cra_init = spacc_aead_cra_init, |
| 1593 | .cra_exit = spacc_aead_cra_exit, |
| 1594 | }, |
| 1595 | }, |
| 1596 | { |
| 1597 | .key_offs = DES_BLOCK_SIZE, |
| 1598 | .iv_offs = 0, |
| 1599 | .ctrl_default = SPA_CTRL_CIPH_ALG_DES | SPA_CTRL_CIPH_MODE_CBC | |
| 1600 | SPA_CTRL_HASH_ALG_MD5 | SPA_CTRL_HASH_MODE_HMAC, |
| 1601 | .alg = { |
| 1602 | .cra_name = "authenc(hmac(md5),cbc(des3_ede))", |
| 1603 | .cra_driver_name = "authenc-hmac-md5-cbc-3des-picoxcell", |
| 1604 | .cra_priority = SPACC_CRYPTO_ALG_PRIORITY, |
| 1605 | .cra_flags = CRYPTO_ALG_TYPE_AEAD | CRYPTO_ALG_ASYNC, |
| 1606 | .cra_blocksize = DES3_EDE_BLOCK_SIZE, |
| 1607 | .cra_ctxsize = sizeof(struct spacc_aead_ctx), |
| 1608 | .cra_type = &crypto_aead_type, |
| 1609 | .cra_module = THIS_MODULE, |
| 1610 | .cra_aead = { |
| 1611 | .setkey = spacc_aead_setkey, |
| 1612 | .setauthsize = spacc_aead_setauthsize, |
| 1613 | .encrypt = spacc_aead_encrypt, |
| 1614 | .decrypt = spacc_aead_decrypt, |
| 1615 | .givencrypt = spacc_aead_givencrypt, |
| 1616 | .ivsize = DES3_EDE_BLOCK_SIZE, |
| 1617 | .maxauthsize = MD5_DIGEST_SIZE, |
| 1618 | }, |
| 1619 | .cra_init = spacc_aead_cra_init, |
| 1620 | .cra_exit = spacc_aead_cra_exit, |
| 1621 | }, |
| 1622 | }, |
| 1623 | }; |
| 1624 | |
| 1625 | static struct spacc_alg l2_engine_algs[] = { |
| 1626 | { |
| 1627 | .key_offs = 0, |
| 1628 | .iv_offs = SPACC_CRYPTO_KASUMI_F8_KEY_LEN, |
| 1629 | .ctrl_default = SPA_CTRL_CIPH_ALG_KASUMI | |
| 1630 | SPA_CTRL_CIPH_MODE_F8, |
| 1631 | .alg = { |
| 1632 | .cra_name = "f8(kasumi)", |
| 1633 | .cra_driver_name = "f8-kasumi-picoxcell", |
| 1634 | .cra_priority = SPACC_CRYPTO_ALG_PRIORITY, |
| 1635 | .cra_flags = CRYPTO_ALG_TYPE_GIVCIPHER | CRYPTO_ALG_ASYNC, |
| 1636 | .cra_blocksize = 8, |
| 1637 | .cra_ctxsize = sizeof(struct spacc_ablk_ctx), |
| 1638 | .cra_type = &crypto_ablkcipher_type, |
| 1639 | .cra_module = THIS_MODULE, |
| 1640 | .cra_ablkcipher = { |
| 1641 | .setkey = spacc_kasumi_f8_setkey, |
| 1642 | .encrypt = spacc_ablk_encrypt, |
| 1643 | .decrypt = spacc_ablk_decrypt, |
| 1644 | .min_keysize = 16, |
| 1645 | .max_keysize = 16, |
| 1646 | .ivsize = 8, |
| 1647 | }, |
| 1648 | .cra_init = spacc_ablk_cra_init, |
| 1649 | .cra_exit = spacc_ablk_cra_exit, |
| 1650 | }, |
| 1651 | }, |
| 1652 | }; |
| 1653 | |
| 1654 | static int __devinit spacc_probe(struct platform_device *pdev, |
| 1655 | unsigned max_ctxs, size_t cipher_pg_sz, |
| 1656 | size_t hash_pg_sz, size_t fifo_sz, |
| 1657 | struct spacc_alg *algs, size_t num_algs) |
| 1658 | { |
| 1659 | int i, err, ret = -EINVAL; |
| 1660 | struct resource *mem, *irq; |
| 1661 | struct spacc_engine *engine = devm_kzalloc(&pdev->dev, sizeof(*engine), |
| 1662 | GFP_KERNEL); |
| 1663 | if (!engine) |
| 1664 | return -ENOMEM; |
| 1665 | |
| 1666 | engine->max_ctxs = max_ctxs; |
| 1667 | engine->cipher_pg_sz = cipher_pg_sz; |
| 1668 | engine->hash_pg_sz = hash_pg_sz; |
| 1669 | engine->fifo_sz = fifo_sz; |
| 1670 | engine->algs = algs; |
| 1671 | engine->num_algs = num_algs; |
| 1672 | engine->name = dev_name(&pdev->dev); |
| 1673 | |
| 1674 | mem = platform_get_resource(pdev, IORESOURCE_MEM, 0); |
| 1675 | irq = platform_get_resource(pdev, IORESOURCE_IRQ, 0); |
| 1676 | if (!mem || !irq) { |
| 1677 | dev_err(&pdev->dev, "no memory/irq resource for engine\n"); |
| 1678 | return -ENXIO; |
| 1679 | } |
| 1680 | |
| 1681 | if (!devm_request_mem_region(&pdev->dev, mem->start, resource_size(mem), |
| 1682 | engine->name)) |
| 1683 | return -ENOMEM; |
| 1684 | |
| 1685 | engine->regs = devm_ioremap(&pdev->dev, mem->start, resource_size(mem)); |
| 1686 | if (!engine->regs) { |
| 1687 | dev_err(&pdev->dev, "memory map failed\n"); |
| 1688 | return -ENOMEM; |
| 1689 | } |
| 1690 | |
| 1691 | if (devm_request_irq(&pdev->dev, irq->start, spacc_spacc_irq, 0, |
| 1692 | engine->name, engine)) { |
| 1693 | dev_err(engine->dev, "failed to request IRQ\n"); |
| 1694 | return -EBUSY; |
| 1695 | } |
| 1696 | |
| 1697 | engine->dev = &pdev->dev; |
| 1698 | engine->cipher_ctx_base = engine->regs + SPA_CIPH_KEY_BASE_REG_OFFSET; |
| 1699 | engine->hash_key_base = engine->regs + SPA_HASH_KEY_BASE_REG_OFFSET; |
| 1700 | |
| 1701 | engine->req_pool = dmam_pool_create(engine->name, engine->dev, |
| 1702 | MAX_DDT_LEN * sizeof(struct spacc_ddt), 8, SZ_64K); |
| 1703 | if (!engine->req_pool) |
| 1704 | return -ENOMEM; |
| 1705 | |
| 1706 | spin_lock_init(&engine->hw_lock); |
| 1707 | |
| 1708 | engine->clk = clk_get(&pdev->dev, NULL); |
| 1709 | if (IS_ERR(engine->clk)) { |
| 1710 | dev_info(&pdev->dev, "clk unavailable\n"); |
| 1711 | device_remove_file(&pdev->dev, &dev_attr_stat_irq_thresh); |
| 1712 | return PTR_ERR(engine->clk); |
| 1713 | } |
| 1714 | |
| 1715 | if (clk_enable(engine->clk)) { |
| 1716 | dev_info(&pdev->dev, "unable to enable clk\n"); |
| 1717 | clk_put(engine->clk); |
| 1718 | return -EIO; |
| 1719 | } |
| 1720 | |
| 1721 | err = device_create_file(&pdev->dev, &dev_attr_stat_irq_thresh); |
| 1722 | if (err) { |
| 1723 | clk_disable(engine->clk); |
| 1724 | clk_put(engine->clk); |
| 1725 | return err; |
| 1726 | } |
| 1727 | |
| 1728 | |
| 1729 | /* |
| 1730 | * Use an IRQ threshold of 50% as a default. This seems to be a |
| 1731 | * reasonable trade off of latency against throughput but can be |
| 1732 | * changed at runtime. |
| 1733 | */ |
| 1734 | engine->stat_irq_thresh = (engine->fifo_sz / 2); |
| 1735 | |
| 1736 | /* |
| 1737 | * Configure the interrupts. We only use the STAT_CNT interrupt as we |
| 1738 | * only submit a new packet for processing when we complete another in |
| 1739 | * the queue. This minimizes time spent in the interrupt handler. |
| 1740 | */ |
| 1741 | writel(engine->stat_irq_thresh << SPA_IRQ_CTRL_STAT_CNT_OFFSET, |
| 1742 | engine->regs + SPA_IRQ_CTRL_REG_OFFSET); |
| 1743 | writel(SPA_IRQ_EN_STAT_EN | SPA_IRQ_EN_GLBL_EN, |
| 1744 | engine->regs + SPA_IRQ_EN_REG_OFFSET); |
| 1745 | |
| 1746 | setup_timer(&engine->packet_timeout, spacc_packet_timeout, |
| 1747 | (unsigned long)engine); |
| 1748 | |
| 1749 | INIT_LIST_HEAD(&engine->pending); |
| 1750 | INIT_LIST_HEAD(&engine->completed); |
| 1751 | INIT_LIST_HEAD(&engine->in_progress); |
| 1752 | engine->in_flight = 0; |
| 1753 | tasklet_init(&engine->complete, spacc_spacc_complete, |
| 1754 | (unsigned long)engine); |
| 1755 | |
| 1756 | platform_set_drvdata(pdev, engine); |
| 1757 | |
| 1758 | INIT_LIST_HEAD(&engine->registered_algs); |
| 1759 | for (i = 0; i < engine->num_algs; ++i) { |
| 1760 | engine->algs[i].engine = engine; |
| 1761 | err = crypto_register_alg(&engine->algs[i].alg); |
| 1762 | if (!err) { |
| 1763 | list_add_tail(&engine->algs[i].entry, |
| 1764 | &engine->registered_algs); |
| 1765 | ret = 0; |
| 1766 | } |
| 1767 | if (err) |
| 1768 | dev_err(engine->dev, "failed to register alg \"%s\"\n", |
| 1769 | engine->algs[i].alg.cra_name); |
| 1770 | else |
| 1771 | dev_dbg(engine->dev, "registered alg \"%s\"\n", |
| 1772 | engine->algs[i].alg.cra_name); |
| 1773 | } |
| 1774 | |
| 1775 | return ret; |
| 1776 | } |
| 1777 | |
| 1778 | static int __devexit spacc_remove(struct platform_device *pdev) |
| 1779 | { |
| 1780 | struct spacc_alg *alg, *next; |
| 1781 | struct spacc_engine *engine = platform_get_drvdata(pdev); |
| 1782 | |
| 1783 | del_timer_sync(&engine->packet_timeout); |
| 1784 | device_remove_file(&pdev->dev, &dev_attr_stat_irq_thresh); |
| 1785 | |
| 1786 | list_for_each_entry_safe(alg, next, &engine->registered_algs, entry) { |
| 1787 | list_del(&alg->entry); |
| 1788 | crypto_unregister_alg(&alg->alg); |
| 1789 | } |
| 1790 | |
| 1791 | clk_disable(engine->clk); |
| 1792 | clk_put(engine->clk); |
| 1793 | |
| 1794 | return 0; |
| 1795 | } |
| 1796 | |
| 1797 | static int __devinit ipsec_probe(struct platform_device *pdev) |
| 1798 | { |
| 1799 | return spacc_probe(pdev, SPACC_CRYPTO_IPSEC_MAX_CTXS, |
| 1800 | SPACC_CRYPTO_IPSEC_CIPHER_PG_SZ, |
| 1801 | SPACC_CRYPTO_IPSEC_HASH_PG_SZ, |
| 1802 | SPACC_CRYPTO_IPSEC_FIFO_SZ, ipsec_engine_algs, |
| 1803 | ARRAY_SIZE(ipsec_engine_algs)); |
| 1804 | } |
| 1805 | |
| 1806 | static struct platform_driver ipsec_driver = { |
| 1807 | .probe = ipsec_probe, |
| 1808 | .remove = __devexit_p(spacc_remove), |
| 1809 | .driver = { |
| 1810 | .name = "picoxcell-ipsec", |
| 1811 | #ifdef CONFIG_PM |
| 1812 | .pm = &spacc_pm_ops, |
| 1813 | #endif /* CONFIG_PM */ |
| 1814 | }, |
| 1815 | }; |
| 1816 | |
| 1817 | static int __devinit l2_probe(struct platform_device *pdev) |
| 1818 | { |
| 1819 | return spacc_probe(pdev, SPACC_CRYPTO_L2_MAX_CTXS, |
| 1820 | SPACC_CRYPTO_L2_CIPHER_PG_SZ, |
| 1821 | SPACC_CRYPTO_L2_HASH_PG_SZ, SPACC_CRYPTO_L2_FIFO_SZ, |
| 1822 | l2_engine_algs, ARRAY_SIZE(l2_engine_algs)); |
| 1823 | } |
| 1824 | |
| 1825 | static struct platform_driver l2_driver = { |
| 1826 | .probe = l2_probe, |
| 1827 | .remove = __devexit_p(spacc_remove), |
| 1828 | .driver = { |
| 1829 | .name = "picoxcell-l2", |
| 1830 | #ifdef CONFIG_PM |
| 1831 | .pm = &spacc_pm_ops, |
| 1832 | #endif /* CONFIG_PM */ |
| 1833 | }, |
| 1834 | }; |
| 1835 | |
| 1836 | static int __init spacc_init(void) |
| 1837 | { |
| 1838 | int ret = platform_driver_register(&ipsec_driver); |
| 1839 | if (ret) { |
| 1840 | pr_err("failed to register ipsec spacc driver"); |
| 1841 | goto out; |
| 1842 | } |
| 1843 | |
| 1844 | ret = platform_driver_register(&l2_driver); |
| 1845 | if (ret) { |
| 1846 | pr_err("failed to register l2 spacc driver"); |
| 1847 | goto l2_failed; |
| 1848 | } |
| 1849 | |
| 1850 | return 0; |
| 1851 | |
| 1852 | l2_failed: |
| 1853 | platform_driver_unregister(&ipsec_driver); |
| 1854 | out: |
| 1855 | return ret; |
| 1856 | } |
| 1857 | module_init(spacc_init); |
| 1858 | |
| 1859 | static void __exit spacc_exit(void) |
| 1860 | { |
| 1861 | platform_driver_unregister(&ipsec_driver); |
| 1862 | platform_driver_unregister(&l2_driver); |
| 1863 | } |
| 1864 | module_exit(spacc_exit); |
| 1865 | |
| 1866 | MODULE_LICENSE("GPL"); |
| 1867 | MODULE_AUTHOR("Jamie Iles"); |