blob: 6568aab745a0014944f619465bf0fc7bc6429d32 [file] [log] [blame]
Linus Torvalds1da177e2005-04-16 15:20:36 -07001/*
2 * in2000.c - Linux device driver for the
3 * Always IN2000 ISA SCSI card.
4 *
5 * Copyright (c) 1996 John Shifflett, GeoLog Consulting
6 * john@geolog.com
7 * jshiffle@netcom.com
8 *
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of the GNU General Public License as published by
11 * the Free Software Foundation; either version 2, or (at your option)
12 * any later version.
13 *
14 * This program is distributed in the hope that it will be useful,
15 * but WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 * GNU General Public License for more details.
18 *
19 * For the avoidance of doubt the "preferred form" of this code is one which
20 * is in an open non patent encumbered format. Where cryptographic key signing
21 * forms part of the process of creating an executable the information
22 * including keys needed to generate an equivalently functional executable
23 * are deemed to be part of the source code.
24 *
25 * Drew Eckhardt's excellent 'Generic NCR5380' sources provided
26 * much of the inspiration and some of the code for this driver.
27 * The Linux IN2000 driver distributed in the Linux kernels through
28 * version 1.2.13 was an extremely valuable reference on the arcane
29 * (and still mysterious) workings of the IN2000's fifo. It also
30 * is where I lifted in2000_biosparam(), the gist of the card
31 * detection scheme, and other bits of code. Many thanks to the
32 * talented and courageous people who wrote, contributed to, and
33 * maintained that driver (including Brad McLean, Shaun Savage,
34 * Bill Earnest, Larry Doolittle, Roger Sunshine, John Luckey,
35 * Matt Postiff, Peter Lu, zerucha@shell.portal.com, and Eric
36 * Youngdale). I should also mention the driver written by
37 * Hamish Macdonald for the (GASP!) Amiga A2091 card, included
38 * in the Linux-m68k distribution; it gave me a good initial
39 * understanding of the proper way to run a WD33c93 chip, and I
40 * ended up stealing lots of code from it.
41 *
42 * _This_ driver is (I feel) an improvement over the old one in
43 * several respects:
44 * - All problems relating to the data size of a SCSI request are
45 * gone (as far as I know). The old driver couldn't handle
46 * swapping to partitions because that involved 4k blocks, nor
47 * could it deal with the st.c tape driver unmodified, because
48 * that usually involved 4k - 32k blocks. The old driver never
49 * quite got away from a morbid dependence on 2k block sizes -
50 * which of course is the size of the card's fifo.
51 *
52 * - Target Disconnection/Reconnection is now supported. Any
53 * system with more than one device active on the SCSI bus
54 * will benefit from this. The driver defaults to what I'm
55 * calling 'adaptive disconnect' - meaning that each command
56 * is evaluated individually as to whether or not it should
57 * be run with the option to disconnect/reselect (if the
58 * device chooses), or as a "SCSI-bus-hog".
59 *
60 * - Synchronous data transfers are now supported. Because there
61 * are a few devices (and many improperly terminated systems)
62 * that choke when doing sync, the default is sync DISABLED
63 * for all devices. This faster protocol can (and should!)
64 * be enabled on selected devices via the command-line.
65 *
66 * - Runtime operating parameters can now be specified through
67 * either the LILO or the 'insmod' command line. For LILO do:
68 * "in2000=blah,blah,blah"
69 * and with insmod go like:
70 * "insmod /usr/src/linux/modules/in2000.o setup_strings=blah,blah"
71 * The defaults should be good for most people. See the comment
72 * for 'setup_strings' below for more details.
73 *
74 * - The old driver relied exclusively on what the Western Digital
75 * docs call "Combination Level 2 Commands", which are a great
76 * idea in that the CPU is relieved of a lot of interrupt
77 * overhead. However, by accepting a certain (user-settable)
78 * amount of additional interrupts, this driver achieves
79 * better control over the SCSI bus, and data transfers are
80 * almost as fast while being much easier to define, track,
81 * and debug.
82 *
83 * - You can force detection of a card whose BIOS has been disabled.
84 *
85 * - Multiple IN2000 cards might almost be supported. I've tried to
86 * keep it in mind, but have no way to test...
87 *
88 *
89 * TODO:
90 * tagged queuing. multiple cards.
91 *
92 *
93 * NOTE:
94 * When using this or any other SCSI driver as a module, you'll
95 * find that with the stock kernel, at most _two_ SCSI hard
96 * drives will be linked into the device list (ie, usable).
97 * If your IN2000 card has more than 2 disks on its bus, you
98 * might want to change the define of 'SD_EXTRA_DEVS' in the
99 * 'hosts.h' file from 2 to whatever is appropriate. It took
100 * me a while to track down this surprisingly obscure and
101 * undocumented little "feature".
102 *
103 *
104 * People with bug reports, wish-lists, complaints, comments,
105 * or improvements are asked to pah-leeez email me (John Shifflett)
106 * at john@geolog.com or jshiffle@netcom.com! I'm anxious to get
107 * this thing into as good a shape as possible, and I'm positive
108 * there are lots of lurking bugs and "Stupid Places".
109 *
Alan Coxfa195af2008-10-27 15:16:36 +0000110 * Updated for Linux 2.5 by Alan Cox <alan@lxorguk.ukuu.org.uk>
Linus Torvalds1da177e2005-04-16 15:20:36 -0700111 * - Using new_eh handler
112 * - Hopefully got all the locking right again
113 * See "FIXME" notes for items that could do with more work
114 */
115
116#include <linux/module.h>
117#include <linux/blkdev.h>
118#include <linux/interrupt.h>
119#include <linux/string.h>
120#include <linux/delay.h>
121#include <linux/proc_fs.h>
122#include <linux/ioport.h>
123#include <linux/stat.h>
124
125#include <asm/io.h>
126#include <asm/system.h>
127
128#include "scsi.h"
129#include <scsi/scsi_host.h>
130
131#define IN2000_VERSION "1.33-2.5"
132#define IN2000_DATE "2002/11/03"
133
134#include "in2000.h"
135
136
137/*
138 * 'setup_strings' is a single string used to pass operating parameters and
139 * settings from the kernel/module command-line to the driver. 'setup_args[]'
140 * is an array of strings that define the compile-time default values for
141 * these settings. If Linux boots with a LILO or insmod command-line, those
142 * settings are combined with 'setup_args[]'. Note that LILO command-lines
143 * are prefixed with "in2000=" while insmod uses a "setup_strings=" prefix.
144 * The driver recognizes the following keywords (lower case required) and
145 * arguments:
146 *
147 * - ioport:addr -Where addr is IO address of a (usually ROM-less) card.
148 * - noreset -No optional args. Prevents SCSI bus reset at boot time.
149 * - nosync:x -x is a bitmask where the 1st 7 bits correspond with
150 * the 7 possible SCSI devices (bit 0 for device #0, etc).
151 * Set a bit to PREVENT sync negotiation on that device.
152 * The driver default is sync DISABLED on all devices.
153 * - period:ns -ns is the minimum # of nanoseconds in a SCSI data transfer
154 * period. Default is 500; acceptable values are 250 - 1000.
155 * - disconnect:x -x = 0 to never allow disconnects, 2 to always allow them.
156 * x = 1 does 'adaptive' disconnects, which is the default
157 * and generally the best choice.
158 * - debug:x -If 'DEBUGGING_ON' is defined, x is a bitmask that causes
159 * various types of debug output to printed - see the DB_xxx
160 * defines in in2000.h
161 * - proc:x -If 'PROC_INTERFACE' is defined, x is a bitmask that
162 * determines how the /proc interface works and what it
163 * does - see the PR_xxx defines in in2000.h
164 *
165 * Syntax Notes:
166 * - Numeric arguments can be decimal or the '0x' form of hex notation. There
167 * _must_ be a colon between a keyword and its numeric argument, with no
168 * spaces.
169 * - Keywords are separated by commas, no spaces, in the standard kernel
170 * command-line manner.
171 * - A keyword in the 'nth' comma-separated command-line member will overwrite
172 * the 'nth' element of setup_args[]. A blank command-line member (in
173 * other words, a comma with no preceding keyword) will _not_ overwrite
174 * the corresponding setup_args[] element.
175 *
176 * A few LILO examples (for insmod, use 'setup_strings' instead of 'in2000'):
177 * - in2000=ioport:0x220,noreset
178 * - in2000=period:250,disconnect:2,nosync:0x03
179 * - in2000=debug:0x1e
180 * - in2000=proc:3
181 */
182
183/* Normally, no defaults are specified... */
184static char *setup_args[] = { "", "", "", "", "", "", "", "", "" };
185
186/* filled in by 'insmod' */
187static char *setup_strings;
188
189module_param(setup_strings, charp, 0);
190
191static inline uchar read_3393(struct IN2000_hostdata *hostdata, uchar reg_num)
192{
193 write1_io(reg_num, IO_WD_ADDR);
194 return read1_io(IO_WD_DATA);
195}
196
197
198#define READ_AUX_STAT() read1_io(IO_WD_ASR)
199
200
201static inline void write_3393(struct IN2000_hostdata *hostdata, uchar reg_num, uchar value)
202{
203 write1_io(reg_num, IO_WD_ADDR);
204 write1_io(value, IO_WD_DATA);
205}
206
207
208static inline void write_3393_cmd(struct IN2000_hostdata *hostdata, uchar cmd)
209{
210/* while (READ_AUX_STAT() & ASR_CIP)
211 printk("|");*/
212 write1_io(WD_COMMAND, IO_WD_ADDR);
213 write1_io(cmd, IO_WD_DATA);
214}
215
216
217static uchar read_1_byte(struct IN2000_hostdata *hostdata)
218{
219 uchar asr, x = 0;
220
221 write_3393(hostdata, WD_CONTROL, CTRL_IDI | CTRL_EDI | CTRL_POLLED);
222 write_3393_cmd(hostdata, WD_CMD_TRANS_INFO | 0x80);
223 do {
224 asr = READ_AUX_STAT();
225 if (asr & ASR_DBR)
226 x = read_3393(hostdata, WD_DATA);
227 } while (!(asr & ASR_INT));
228 return x;
229}
230
231
232static void write_3393_count(struct IN2000_hostdata *hostdata, unsigned long value)
233{
234 write1_io(WD_TRANSFER_COUNT_MSB, IO_WD_ADDR);
235 write1_io((value >> 16), IO_WD_DATA);
236 write1_io((value >> 8), IO_WD_DATA);
237 write1_io(value, IO_WD_DATA);
238}
239
240
241static unsigned long read_3393_count(struct IN2000_hostdata *hostdata)
242{
243 unsigned long value;
244
245 write1_io(WD_TRANSFER_COUNT_MSB, IO_WD_ADDR);
246 value = read1_io(IO_WD_DATA) << 16;
247 value |= read1_io(IO_WD_DATA) << 8;
248 value |= read1_io(IO_WD_DATA);
249 return value;
250}
251
252
253/* The 33c93 needs to be told which direction a command transfers its
254 * data; we use this function to figure it out. Returns true if there
255 * will be a DATA_OUT phase with this command, false otherwise.
256 * (Thanks to Joerg Dorchain for the research and suggestion.)
257 */
258static int is_dir_out(Scsi_Cmnd * cmd)
259{
260 switch (cmd->cmnd[0]) {
261 case WRITE_6:
262 case WRITE_10:
263 case WRITE_12:
264 case WRITE_LONG:
265 case WRITE_SAME:
266 case WRITE_BUFFER:
267 case WRITE_VERIFY:
268 case WRITE_VERIFY_12:
269 case COMPARE:
270 case COPY:
271 case COPY_VERIFY:
272 case SEARCH_EQUAL:
273 case SEARCH_HIGH:
274 case SEARCH_LOW:
275 case SEARCH_EQUAL_12:
276 case SEARCH_HIGH_12:
277 case SEARCH_LOW_12:
278 case FORMAT_UNIT:
279 case REASSIGN_BLOCKS:
280 case RESERVE:
281 case MODE_SELECT:
282 case MODE_SELECT_10:
283 case LOG_SELECT:
284 case SEND_DIAGNOSTIC:
285 case CHANGE_DEFINITION:
286 case UPDATE_BLOCK:
287 case SET_WINDOW:
288 case MEDIUM_SCAN:
289 case SEND_VOLUME_TAG:
290 case 0xea:
291 return 1;
292 default:
293 return 0;
294 }
295}
296
297
298
299static struct sx_period sx_table[] = {
300 {1, 0x20},
301 {252, 0x20},
302 {376, 0x30},
303 {500, 0x40},
304 {624, 0x50},
305 {752, 0x60},
306 {876, 0x70},
307 {1000, 0x00},
308 {0, 0}
309};
310
311static int round_period(unsigned int period)
312{
313 int x;
314
315 for (x = 1; sx_table[x].period_ns; x++) {
316 if ((period <= sx_table[x - 0].period_ns) && (period > sx_table[x - 1].period_ns)) {
317 return x;
318 }
319 }
320 return 7;
321}
322
323static uchar calc_sync_xfer(unsigned int period, unsigned int offset)
324{
325 uchar result;
326
327 period *= 4; /* convert SDTR code to ns */
328 result = sx_table[round_period(period)].reg_value;
329 result |= (offset < OPTIMUM_SX_OFF) ? offset : OPTIMUM_SX_OFF;
330 return result;
331}
332
333
334
335static void in2000_execute(struct Scsi_Host *instance);
336
Jeff Garzikf2812332010-11-16 02:10:29 -0500337static int in2000_queuecommand_lck(Scsi_Cmnd * cmd, void (*done) (Scsi_Cmnd *))
Linus Torvalds1da177e2005-04-16 15:20:36 -0700338{
339 struct Scsi_Host *instance;
340 struct IN2000_hostdata *hostdata;
341 Scsi_Cmnd *tmp;
342
343 instance = cmd->device->host;
344 hostdata = (struct IN2000_hostdata *) instance->hostdata;
345
Matthew Wilcox12a44162007-09-18 19:54:43 -0600346 DB(DB_QUEUE_COMMAND, scmd_printk(KERN_DEBUG, cmd, "Q-%02x-%ld(", cmd->cmnd[0], cmd->serial_number))
Linus Torvalds1da177e2005-04-16 15:20:36 -0700347
348/* Set up a few fields in the Scsi_Cmnd structure for our own use:
349 * - host_scribble is the pointer to the next cmd in the input queue
350 * - scsi_done points to the routine we call when a cmd is finished
351 * - result is what you'd expect
352 */
353 cmd->host_scribble = NULL;
354 cmd->scsi_done = done;
355 cmd->result = 0;
356
357/* We use the Scsi_Pointer structure that's included with each command
358 * as a scratchpad (as it's intended to be used!). The handy thing about
359 * the SCp.xxx fields is that they're always associated with a given
360 * cmd, and are preserved across disconnect-reselect. This means we
361 * can pretty much ignore SAVE_POINTERS and RESTORE_POINTERS messages
362 * if we keep all the critical pointers and counters in SCp:
363 * - SCp.ptr is the pointer into the RAM buffer
364 * - SCp.this_residual is the size of that buffer
365 * - SCp.buffer points to the current scatter-gather buffer
366 * - SCp.buffers_residual tells us how many S.G. buffers there are
367 * - SCp.have_data_in helps keep track of >2048 byte transfers
368 * - SCp.sent_command is not used
369 * - SCp.phase records this command's SRCID_ER bit setting
370 */
371
Boaz Harrosh53d2a882007-09-09 21:14:41 +0300372 if (scsi_bufflen(cmd)) {
373 cmd->SCp.buffer = scsi_sglist(cmd);
374 cmd->SCp.buffers_residual = scsi_sg_count(cmd) - 1;
Jens Axboe45711f12007-10-22 21:19:53 +0200375 cmd->SCp.ptr = sg_virt(cmd->SCp.buffer);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700376 cmd->SCp.this_residual = cmd->SCp.buffer->length;
377 } else {
378 cmd->SCp.buffer = NULL;
379 cmd->SCp.buffers_residual = 0;
Boaz Harrosh53d2a882007-09-09 21:14:41 +0300380 cmd->SCp.ptr = NULL;
381 cmd->SCp.this_residual = 0;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700382 }
383 cmd->SCp.have_data_in = 0;
384
385/* We don't set SCp.phase here - that's done in in2000_execute() */
386
387/* WD docs state that at the conclusion of a "LEVEL2" command, the
388 * status byte can be retrieved from the LUN register. Apparently,
389 * this is the case only for *uninterrupted* LEVEL2 commands! If
390 * there are any unexpected phases entered, even if they are 100%
391 * legal (different devices may choose to do things differently),
392 * the LEVEL2 command sequence is exited. This often occurs prior
393 * to receiving the status byte, in which case the driver does a
394 * status phase interrupt and gets the status byte on its own.
395 * While such a command can then be "resumed" (ie restarted to
396 * finish up as a LEVEL2 command), the LUN register will NOT be
397 * a valid status byte at the command's conclusion, and we must
398 * use the byte obtained during the earlier interrupt. Here, we
399 * preset SCp.Status to an illegal value (0xff) so that when
400 * this command finally completes, we can tell where the actual
401 * status byte is stored.
402 */
403
404 cmd->SCp.Status = ILLEGAL_STATUS_BYTE;
405
406/* We need to disable interrupts before messing with the input
407 * queue and calling in2000_execute().
408 */
409
410 /*
411 * Add the cmd to the end of 'input_Q'. Note that REQUEST_SENSE
412 * commands are added to the head of the queue so that the desired
413 * sense data is not lost before REQUEST_SENSE executes.
414 */
415
416 if (!(hostdata->input_Q) || (cmd->cmnd[0] == REQUEST_SENSE)) {
417 cmd->host_scribble = (uchar *) hostdata->input_Q;
418 hostdata->input_Q = cmd;
419 } else { /* find the end of the queue */
420 for (tmp = (Scsi_Cmnd *) hostdata->input_Q; tmp->host_scribble; tmp = (Scsi_Cmnd *) tmp->host_scribble);
421 tmp->host_scribble = (uchar *) cmd;
422 }
423
424/* We know that there's at least one command in 'input_Q' now.
425 * Go see if any of them are runnable!
426 */
427
428 in2000_execute(cmd->device->host);
429
Matthew Wilcox12a44162007-09-18 19:54:43 -0600430 DB(DB_QUEUE_COMMAND, printk(")Q-%ld ", cmd->serial_number))
Linus Torvalds1da177e2005-04-16 15:20:36 -0700431 return 0;
432}
433
Jeff Garzikf2812332010-11-16 02:10:29 -0500434static DEF_SCSI_QCMD(in2000_queuecommand)
435
Linus Torvalds1da177e2005-04-16 15:20:36 -0700436
437
438/*
439 * This routine attempts to start a scsi command. If the host_card is
440 * already connected, we give up immediately. Otherwise, look through
441 * the input_Q, using the first command we find that's intended
442 * for a currently non-busy target/lun.
443 * Note that this function is always called with interrupts already
444 * disabled (either from in2000_queuecommand() or in2000_intr()).
445 */
446static void in2000_execute(struct Scsi_Host *instance)
447{
448 struct IN2000_hostdata *hostdata;
449 Scsi_Cmnd *cmd, *prev;
450 int i;
451 unsigned short *sp;
452 unsigned short f;
453 unsigned short flushbuf[16];
454
455
456 hostdata = (struct IN2000_hostdata *) instance->hostdata;
457
458 DB(DB_EXECUTE, printk("EX("))
459
460 if (hostdata->selecting || hostdata->connected) {
461
462 DB(DB_EXECUTE, printk(")EX-0 "))
463
464 return;
465 }
466
467 /*
468 * Search through the input_Q for a command destined
469 * for an idle target/lun.
470 */
471
472 cmd = (Scsi_Cmnd *) hostdata->input_Q;
473 prev = NULL;
474 while (cmd) {
475 if (!(hostdata->busy[cmd->device->id] & (1 << cmd->device->lun)))
476 break;
477 prev = cmd;
478 cmd = (Scsi_Cmnd *) cmd->host_scribble;
479 }
480
481 /* quit if queue empty or all possible targets are busy */
482
483 if (!cmd) {
484
485 DB(DB_EXECUTE, printk(")EX-1 "))
486
487 return;
488 }
489
490 /* remove command from queue */
491
492 if (prev)
493 prev->host_scribble = cmd->host_scribble;
494 else
495 hostdata->input_Q = (Scsi_Cmnd *) cmd->host_scribble;
496
497#ifdef PROC_STATISTICS
498 hostdata->cmd_cnt[cmd->device->id]++;
499#endif
500
501/*
502 * Start the selection process
503 */
504
505 if (is_dir_out(cmd))
506 write_3393(hostdata, WD_DESTINATION_ID, cmd->device->id);
507 else
508 write_3393(hostdata, WD_DESTINATION_ID, cmd->device->id | DSTID_DPD);
509
510/* Now we need to figure out whether or not this command is a good
511 * candidate for disconnect/reselect. We guess to the best of our
512 * ability, based on a set of hierarchical rules. When several
513 * devices are operating simultaneously, disconnects are usually
514 * an advantage. In a single device system, or if only 1 device
515 * is being accessed, transfers usually go faster if disconnects
516 * are not allowed:
517 *
518 * + Commands should NEVER disconnect if hostdata->disconnect =
519 * DIS_NEVER (this holds for tape drives also), and ALWAYS
520 * disconnect if hostdata->disconnect = DIS_ALWAYS.
521 * + Tape drive commands should always be allowed to disconnect.
522 * + Disconnect should be allowed if disconnected_Q isn't empty.
523 * + Commands should NOT disconnect if input_Q is empty.
524 * + Disconnect should be allowed if there are commands in input_Q
525 * for a different target/lun. In this case, the other commands
526 * should be made disconnect-able, if not already.
527 *
528 * I know, I know - this code would flunk me out of any
529 * "C Programming 101" class ever offered. But it's easy
530 * to change around and experiment with for now.
531 */
532
533 cmd->SCp.phase = 0; /* assume no disconnect */
534 if (hostdata->disconnect == DIS_NEVER)
535 goto no;
536 if (hostdata->disconnect == DIS_ALWAYS)
537 goto yes;
538 if (cmd->device->type == 1) /* tape drive? */
539 goto yes;
540 if (hostdata->disconnected_Q) /* other commands disconnected? */
541 goto yes;
542 if (!(hostdata->input_Q)) /* input_Q empty? */
543 goto no;
544 for (prev = (Scsi_Cmnd *) hostdata->input_Q; prev; prev = (Scsi_Cmnd *) prev->host_scribble) {
545 if ((prev->device->id != cmd->device->id) || (prev->device->lun != cmd->device->lun)) {
546 for (prev = (Scsi_Cmnd *) hostdata->input_Q; prev; prev = (Scsi_Cmnd *) prev->host_scribble)
547 prev->SCp.phase = 1;
548 goto yes;
549 }
550 }
551 goto no;
552
553 yes:
554 cmd->SCp.phase = 1;
555
556#ifdef PROC_STATISTICS
557 hostdata->disc_allowed_cnt[cmd->device->id]++;
558#endif
559
560 no:
561 write_3393(hostdata, WD_SOURCE_ID, ((cmd->SCp.phase) ? SRCID_ER : 0));
562
563 write_3393(hostdata, WD_TARGET_LUN, cmd->device->lun);
564 write_3393(hostdata, WD_SYNCHRONOUS_TRANSFER, hostdata->sync_xfer[cmd->device->id]);
565 hostdata->busy[cmd->device->id] |= (1 << cmd->device->lun);
566
567 if ((hostdata->level2 <= L2_NONE) || (hostdata->sync_stat[cmd->device->id] == SS_UNSET)) {
568
569 /*
570 * Do a 'Select-With-ATN' command. This will end with
571 * one of the following interrupts:
572 * CSR_RESEL_AM: failure - can try again later.
573 * CSR_TIMEOUT: failure - give up.
574 * CSR_SELECT: success - proceed.
575 */
576
577 hostdata->selecting = cmd;
578
579/* Every target has its own synchronous transfer setting, kept in
580 * the sync_xfer array, and a corresponding status byte in sync_stat[].
581 * Each target's sync_stat[] entry is initialized to SS_UNSET, and its
582 * sync_xfer[] entry is initialized to the default/safe value. SS_UNSET
583 * means that the parameters are undetermined as yet, and that we
584 * need to send an SDTR message to this device after selection is
585 * complete. We set SS_FIRST to tell the interrupt routine to do so,
586 * unless we don't want to even _try_ synchronous transfers: In this
587 * case we set SS_SET to make the defaults final.
588 */
589 if (hostdata->sync_stat[cmd->device->id] == SS_UNSET) {
590 if (hostdata->sync_off & (1 << cmd->device->id))
591 hostdata->sync_stat[cmd->device->id] = SS_SET;
592 else
593 hostdata->sync_stat[cmd->device->id] = SS_FIRST;
594 }
595 hostdata->state = S_SELECTING;
596 write_3393_count(hostdata, 0); /* this guarantees a DATA_PHASE interrupt */
597 write_3393_cmd(hostdata, WD_CMD_SEL_ATN);
598 }
599
600 else {
601
602 /*
603 * Do a 'Select-With-ATN-Xfer' command. This will end with
604 * one of the following interrupts:
605 * CSR_RESEL_AM: failure - can try again later.
606 * CSR_TIMEOUT: failure - give up.
607 * anything else: success - proceed.
608 */
609
610 hostdata->connected = cmd;
611 write_3393(hostdata, WD_COMMAND_PHASE, 0);
612
613 /* copy command_descriptor_block into WD chip
614 * (take advantage of auto-incrementing)
615 */
616
617 write1_io(WD_CDB_1, IO_WD_ADDR);
618 for (i = 0; i < cmd->cmd_len; i++)
619 write1_io(cmd->cmnd[i], IO_WD_DATA);
620
621 /* The wd33c93 only knows about Group 0, 1, and 5 commands when
622 * it's doing a 'select-and-transfer'. To be safe, we write the
623 * size of the CDB into the OWN_ID register for every case. This
624 * way there won't be problems with vendor-unique, audio, etc.
625 */
626
627 write_3393(hostdata, WD_OWN_ID, cmd->cmd_len);
628
629 /* When doing a non-disconnect command, we can save ourselves a DATA
630 * phase interrupt later by setting everything up now. With writes we
631 * need to pre-fill the fifo; if there's room for the 32 flush bytes,
632 * put them in there too - that'll avoid a fifo interrupt. Reads are
633 * somewhat simpler.
634 * KLUDGE NOTE: It seems that you can't completely fill the fifo here:
635 * This results in the IO_FIFO_COUNT register rolling over to zero,
636 * and apparently the gate array logic sees this as empty, not full,
637 * so the 3393 chip is never signalled to start reading from the
638 * fifo. Or maybe it's seen as a permanent fifo interrupt condition.
639 * Regardless, we fix this by temporarily pretending that the fifo
640 * is 16 bytes smaller. (I see now that the old driver has a comment
641 * about "don't fill completely" in an analogous place - must be the
642 * same deal.) This results in CDROM, swap partitions, and tape drives
643 * needing an extra interrupt per write command - I think we can live
644 * with that!
645 */
646
647 if (!(cmd->SCp.phase)) {
648 write_3393_count(hostdata, cmd->SCp.this_residual);
649 write_3393(hostdata, WD_CONTROL, CTRL_IDI | CTRL_EDI | CTRL_BUS);
650 write1_io(0, IO_FIFO_WRITE); /* clear fifo counter, write mode */
651
652 if (is_dir_out(cmd)) {
653 hostdata->fifo = FI_FIFO_WRITING;
654 if ((i = cmd->SCp.this_residual) > (IN2000_FIFO_SIZE - 16))
655 i = IN2000_FIFO_SIZE - 16;
656 cmd->SCp.have_data_in = i; /* this much data in fifo */
657 i >>= 1; /* Gulp. Assuming modulo 2. */
658 sp = (unsigned short *) cmd->SCp.ptr;
659 f = hostdata->io_base + IO_FIFO;
660
661#ifdef FAST_WRITE_IO
662
663 FAST_WRITE2_IO();
664#else
665 while (i--)
666 write2_io(*sp++, IO_FIFO);
667
668#endif
669
670 /* Is there room for the flush bytes? */
671
672 if (cmd->SCp.have_data_in <= ((IN2000_FIFO_SIZE - 16) - 32)) {
673 sp = flushbuf;
674 i = 16;
675
676#ifdef FAST_WRITE_IO
677
678 FAST_WRITE2_IO();
679#else
680 while (i--)
681 write2_io(0, IO_FIFO);
682
683#endif
684
685 }
686 }
687
688 else {
689 write1_io(0, IO_FIFO_READ); /* put fifo in read mode */
690 hostdata->fifo = FI_FIFO_READING;
691 cmd->SCp.have_data_in = 0; /* nothing transferred yet */
692 }
693
694 } else {
695 write_3393_count(hostdata, 0); /* this guarantees a DATA_PHASE interrupt */
696 }
697 hostdata->state = S_RUNNING_LEVEL2;
698 write_3393_cmd(hostdata, WD_CMD_SEL_ATN_XFER);
699 }
700
701 /*
702 * Since the SCSI bus can handle only 1 connection at a time,
703 * we get out of here now. If the selection fails, or when
704 * the command disconnects, we'll come back to this routine
705 * to search the input_Q again...
706 */
707
Matthew Wilcox12a44162007-09-18 19:54:43 -0600708 DB(DB_EXECUTE, printk("%s%ld)EX-2 ", (cmd->SCp.phase) ? "d:" : "", cmd->serial_number))
Linus Torvalds1da177e2005-04-16 15:20:36 -0700709
710}
711
712
713
714static void transfer_pio(uchar * buf, int cnt, int data_in_dir, struct IN2000_hostdata *hostdata)
715{
716 uchar asr;
717
718 DB(DB_TRANSFER, printk("(%p,%d,%s)", buf, cnt, data_in_dir ? "in" : "out"))
719
720 write_3393(hostdata, WD_CONTROL, CTRL_IDI | CTRL_EDI | CTRL_POLLED);
721 write_3393_count(hostdata, cnt);
722 write_3393_cmd(hostdata, WD_CMD_TRANS_INFO);
723 if (data_in_dir) {
724 do {
725 asr = READ_AUX_STAT();
726 if (asr & ASR_DBR)
727 *buf++ = read_3393(hostdata, WD_DATA);
728 } while (!(asr & ASR_INT));
729 } else {
730 do {
731 asr = READ_AUX_STAT();
732 if (asr & ASR_DBR)
733 write_3393(hostdata, WD_DATA, *buf++);
734 } while (!(asr & ASR_INT));
735 }
736
737 /* Note: we are returning with the interrupt UN-cleared.
738 * Since (presumably) an entire I/O operation has
739 * completed, the bus phase is probably different, and
740 * the interrupt routine will discover this when it
741 * responds to the uncleared int.
742 */
743
744}
745
746
747
748static void transfer_bytes(Scsi_Cmnd * cmd, int data_in_dir)
749{
750 struct IN2000_hostdata *hostdata;
751 unsigned short *sp;
752 unsigned short f;
753 int i;
754
755 hostdata = (struct IN2000_hostdata *) cmd->device->host->hostdata;
756
757/* Normally, you'd expect 'this_residual' to be non-zero here.
758 * In a series of scatter-gather transfers, however, this
759 * routine will usually be called with 'this_residual' equal
760 * to 0 and 'buffers_residual' non-zero. This means that a
761 * previous transfer completed, clearing 'this_residual', and
762 * now we need to setup the next scatter-gather buffer as the
763 * source or destination for THIS transfer.
764 */
765 if (!cmd->SCp.this_residual && cmd->SCp.buffers_residual) {
766 ++cmd->SCp.buffer;
767 --cmd->SCp.buffers_residual;
768 cmd->SCp.this_residual = cmd->SCp.buffer->length;
Jens Axboe45711f12007-10-22 21:19:53 +0200769 cmd->SCp.ptr = sg_virt(cmd->SCp.buffer);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700770 }
771
772/* Set up hardware registers */
773
774 write_3393(hostdata, WD_SYNCHRONOUS_TRANSFER, hostdata->sync_xfer[cmd->device->id]);
775 write_3393_count(hostdata, cmd->SCp.this_residual);
776 write_3393(hostdata, WD_CONTROL, CTRL_IDI | CTRL_EDI | CTRL_BUS);
777 write1_io(0, IO_FIFO_WRITE); /* zero counter, assume write */
778
779/* Reading is easy. Just issue the command and return - we'll
780 * get an interrupt later when we have actual data to worry about.
781 */
782
783 if (data_in_dir) {
784 write1_io(0, IO_FIFO_READ);
785 if ((hostdata->level2 >= L2_DATA) || (hostdata->level2 == L2_BASIC && cmd->SCp.phase == 0)) {
786 write_3393(hostdata, WD_COMMAND_PHASE, 0x45);
787 write_3393_cmd(hostdata, WD_CMD_SEL_ATN_XFER);
788 hostdata->state = S_RUNNING_LEVEL2;
789 } else
790 write_3393_cmd(hostdata, WD_CMD_TRANS_INFO);
791 hostdata->fifo = FI_FIFO_READING;
792 cmd->SCp.have_data_in = 0;
793 return;
794 }
795
796/* Writing is more involved - we'll start the WD chip and write as
797 * much data to the fifo as we can right now. Later interrupts will
798 * write any bytes that don't make it at this stage.
799 */
800
801 if ((hostdata->level2 >= L2_DATA) || (hostdata->level2 == L2_BASIC && cmd->SCp.phase == 0)) {
802 write_3393(hostdata, WD_COMMAND_PHASE, 0x45);
803 write_3393_cmd(hostdata, WD_CMD_SEL_ATN_XFER);
804 hostdata->state = S_RUNNING_LEVEL2;
805 } else
806 write_3393_cmd(hostdata, WD_CMD_TRANS_INFO);
807 hostdata->fifo = FI_FIFO_WRITING;
808 sp = (unsigned short *) cmd->SCp.ptr;
809
810 if ((i = cmd->SCp.this_residual) > IN2000_FIFO_SIZE)
811 i = IN2000_FIFO_SIZE;
812 cmd->SCp.have_data_in = i;
813 i >>= 1; /* Gulp. We assume this_residual is modulo 2 */
814 f = hostdata->io_base + IO_FIFO;
815
816#ifdef FAST_WRITE_IO
817
818 FAST_WRITE2_IO();
819#else
820 while (i--)
821 write2_io(*sp++, IO_FIFO);
822
823#endif
824
825}
826
827
828/* We need to use spin_lock_irqsave() & spin_unlock_irqrestore() in this
829 * function in order to work in an SMP environment. (I'd be surprised
830 * if the driver is ever used by anyone on a real multi-CPU motherboard,
831 * but it _does_ need to be able to compile and run in an SMP kernel.)
832 */
833
David Howells7d12e782006-10-05 14:55:46 +0100834static irqreturn_t in2000_intr(int irqnum, void *dev_id)
Linus Torvalds1da177e2005-04-16 15:20:36 -0700835{
836 struct Scsi_Host *instance = dev_id;
837 struct IN2000_hostdata *hostdata;
838 Scsi_Cmnd *patch, *cmd;
839 uchar asr, sr, phs, id, lun, *ucp, msg;
840 int i, j;
841 unsigned long length;
842 unsigned short *sp;
843 unsigned short f;
844 unsigned long flags;
845
846 hostdata = (struct IN2000_hostdata *) instance->hostdata;
847
848/* Get the spin_lock and disable further ints, for SMP */
849
850 spin_lock_irqsave(instance->host_lock, flags);
851
852#ifdef PROC_STATISTICS
853 hostdata->int_cnt++;
854#endif
855
856/* The IN2000 card has 2 interrupt sources OR'ed onto its IRQ line - the
857 * WD3393 chip and the 2k fifo (which is actually a dual-port RAM combined
858 * with a big logic array, so it's a little different than what you might
859 * expect). As far as I know, there's no reason that BOTH can't be active
860 * at the same time, but there's a problem: while we can read the 3393
861 * to tell if _it_ wants an interrupt, I don't know of a way to ask the
862 * fifo the same question. The best we can do is check the 3393 and if
863 * it _isn't_ the source of the interrupt, then we can be pretty sure
864 * that the fifo is the culprit.
865 * UPDATE: I have it on good authority (Bill Earnest) that bit 0 of the
866 * IO_FIFO_COUNT register mirrors the fifo interrupt state. I
867 * assume that bit clear means interrupt active. As it turns
868 * out, the driver really doesn't need to check for this after
869 * all, so my remarks above about a 'problem' can safely be
870 * ignored. The way the logic is set up, there's no advantage
871 * (that I can see) to worrying about it.
872 *
873 * It seems that the fifo interrupt signal is negated when we extract
874 * bytes during read or write bytes during write.
875 * - fifo will interrupt when data is moving from it to the 3393, and
876 * there are 31 (or less?) bytes left to go. This is sort of short-
877 * sighted: what if you don't WANT to do more? In any case, our
878 * response is to push more into the fifo - either actual data or
879 * dummy bytes if need be. Note that we apparently have to write at
880 * least 32 additional bytes to the fifo after an interrupt in order
881 * to get it to release the ones it was holding on to - writing fewer
882 * than 32 will result in another fifo int.
883 * UPDATE: Again, info from Bill Earnest makes this more understandable:
884 * 32 bytes = two counts of the fifo counter register. He tells
885 * me that the fifo interrupt is a non-latching signal derived
886 * from a straightforward boolean interpretation of the 7
887 * highest bits of the fifo counter and the fifo-read/fifo-write
888 * state. Who'd a thought?
889 */
890
891 write1_io(0, IO_LED_ON);
892 asr = READ_AUX_STAT();
893 if (!(asr & ASR_INT)) { /* no WD33c93 interrupt? */
894
895/* Ok. This is definitely a FIFO-only interrupt.
896 *
897 * If FI_FIFO_READING is set, there are up to 2048 bytes waiting to be read,
898 * maybe more to come from the SCSI bus. Read as many as we can out of the
899 * fifo and into memory at the location of SCp.ptr[SCp.have_data_in], and
900 * update have_data_in afterwards.
901 *
902 * If we have FI_FIFO_WRITING, the FIFO has almost run out of bytes to move
903 * into the WD3393 chip (I think the interrupt happens when there are 31
904 * bytes left, but it may be fewer...). The 3393 is still waiting, so we
905 * shove some more into the fifo, which gets things moving again. If the
906 * original SCSI command specified more than 2048 bytes, there may still
907 * be some of that data left: fine - use it (from SCp.ptr[SCp.have_data_in]).
908 * Don't forget to update have_data_in. If we've already written out the
909 * entire buffer, feed 32 dummy bytes to the fifo - they're needed to
910 * push out the remaining real data.
911 * (Big thanks to Bill Earnest for getting me out of the mud in here.)
912 */
913
914 cmd = (Scsi_Cmnd *) hostdata->connected; /* assume we're connected */
915 CHECK_NULL(cmd, "fifo_int")
916
917 if (hostdata->fifo == FI_FIFO_READING) {
918
919 DB(DB_FIFO, printk("{R:%02x} ", read1_io(IO_FIFO_COUNT)))
920
921 sp = (unsigned short *) (cmd->SCp.ptr + cmd->SCp.have_data_in);
922 i = read1_io(IO_FIFO_COUNT) & 0xfe;
923 i <<= 2; /* # of words waiting in the fifo */
924 f = hostdata->io_base + IO_FIFO;
925
926#ifdef FAST_READ_IO
927
928 FAST_READ2_IO();
929#else
930 while (i--)
931 *sp++ = read2_io(IO_FIFO);
932
933#endif
934
935 i = sp - (unsigned short *) (cmd->SCp.ptr + cmd->SCp.have_data_in);
936 i <<= 1;
937 cmd->SCp.have_data_in += i;
938 }
939
940 else if (hostdata->fifo == FI_FIFO_WRITING) {
941
942 DB(DB_FIFO, printk("{W:%02x} ", read1_io(IO_FIFO_COUNT)))
943
944/* If all bytes have been written to the fifo, flush out the stragglers.
945 * Note that while writing 16 dummy words seems arbitrary, we don't
946 * have another choice that I can see. What we really want is to read
947 * the 3393 transfer count register (that would tell us how many bytes
948 * needed flushing), but the TRANSFER_INFO command hasn't completed
949 * yet (not enough bytes!) and that register won't be accessible. So,
950 * we use 16 words - a number obtained through trial and error.
951 * UPDATE: Bill says this is exactly what Always does, so there.
952 * More thanks due him for help in this section.
953 */
954 if (cmd->SCp.this_residual == cmd->SCp.have_data_in) {
955 i = 16;
956 while (i--) /* write 32 dummy bytes */
957 write2_io(0, IO_FIFO);
958 }
959
960/* If there are still bytes left in the SCSI buffer, write as many as we
961 * can out to the fifo.
962 */
963
964 else {
965 sp = (unsigned short *) (cmd->SCp.ptr + cmd->SCp.have_data_in);
966 i = cmd->SCp.this_residual - cmd->SCp.have_data_in; /* bytes yet to go */
967 j = read1_io(IO_FIFO_COUNT) & 0xfe;
968 j <<= 2; /* how many words the fifo has room for */
969 if ((j << 1) > i)
970 j = (i >> 1);
971 while (j--)
972 write2_io(*sp++, IO_FIFO);
973
974 i = sp - (unsigned short *) (cmd->SCp.ptr + cmd->SCp.have_data_in);
975 i <<= 1;
976 cmd->SCp.have_data_in += i;
977 }
978 }
979
980 else {
981 printk("*** Spurious FIFO interrupt ***");
982 }
983
984 write1_io(0, IO_LED_OFF);
985
986/* release the SMP spin_lock and restore irq state */
987 spin_unlock_irqrestore(instance->host_lock, flags);
988 return IRQ_HANDLED;
989 }
990
991/* This interrupt was triggered by the WD33c93 chip. The fifo interrupt
992 * may also be asserted, but we don't bother to check it: we get more
993 * detailed info from FIFO_READING and FIFO_WRITING (see below).
994 */
995
996 cmd = (Scsi_Cmnd *) hostdata->connected; /* assume we're connected */
997 sr = read_3393(hostdata, WD_SCSI_STATUS); /* clear the interrupt */
998 phs = read_3393(hostdata, WD_COMMAND_PHASE);
999
1000 if (!cmd && (sr != CSR_RESEL_AM && sr != CSR_TIMEOUT && sr != CSR_SELECT)) {
1001 printk("\nNR:wd-intr-1\n");
1002 write1_io(0, IO_LED_OFF);
1003
1004/* release the SMP spin_lock and restore irq state */
1005 spin_unlock_irqrestore(instance->host_lock, flags);
1006 return IRQ_HANDLED;
1007 }
1008
1009 DB(DB_INTR, printk("{%02x:%02x-", asr, sr))
1010
1011/* After starting a FIFO-based transfer, the next _WD3393_ interrupt is
1012 * guaranteed to be in response to the completion of the transfer.
1013 * If we were reading, there's probably data in the fifo that needs
1014 * to be copied into RAM - do that here. Also, we have to update
1015 * 'this_residual' and 'ptr' based on the contents of the
1016 * TRANSFER_COUNT register, in case the device decided to do an
1017 * intermediate disconnect (a device may do this if it has to
1018 * do a seek, or just to be nice and let other devices have
1019 * some bus time during long transfers).
1020 * After doing whatever is necessary with the fifo, we go on and
1021 * service the WD3393 interrupt normally.
1022 */
1023 if (hostdata->fifo == FI_FIFO_READING) {
1024
1025/* buffer index = start-of-buffer + #-of-bytes-already-read */
1026
1027 sp = (unsigned short *) (cmd->SCp.ptr + cmd->SCp.have_data_in);
1028
1029/* bytes remaining in fifo = (total-wanted - #-not-got) - #-already-read */
1030
1031 i = (cmd->SCp.this_residual - read_3393_count(hostdata)) - cmd->SCp.have_data_in;
1032 i >>= 1; /* Gulp. We assume this will always be modulo 2 */
1033 f = hostdata->io_base + IO_FIFO;
1034
1035#ifdef FAST_READ_IO
1036
1037 FAST_READ2_IO();
1038#else
1039 while (i--)
1040 *sp++ = read2_io(IO_FIFO);
1041
1042#endif
1043
1044 hostdata->fifo = FI_FIFO_UNUSED;
1045 length = cmd->SCp.this_residual;
1046 cmd->SCp.this_residual = read_3393_count(hostdata);
1047 cmd->SCp.ptr += (length - cmd->SCp.this_residual);
1048
1049 DB(DB_TRANSFER, printk("(%p,%d)", cmd->SCp.ptr, cmd->SCp.this_residual))
1050
1051 }
1052
1053 else if (hostdata->fifo == FI_FIFO_WRITING) {
1054 hostdata->fifo = FI_FIFO_UNUSED;
1055 length = cmd->SCp.this_residual;
1056 cmd->SCp.this_residual = read_3393_count(hostdata);
1057 cmd->SCp.ptr += (length - cmd->SCp.this_residual);
1058
1059 DB(DB_TRANSFER, printk("(%p,%d)", cmd->SCp.ptr, cmd->SCp.this_residual))
1060
1061 }
1062
1063/* Respond to the specific WD3393 interrupt - there are quite a few! */
1064
1065 switch (sr) {
1066
1067 case CSR_TIMEOUT:
1068 DB(DB_INTR, printk("TIMEOUT"))
1069
1070 if (hostdata->state == S_RUNNING_LEVEL2)
1071 hostdata->connected = NULL;
1072 else {
1073 cmd = (Scsi_Cmnd *) hostdata->selecting; /* get a valid cmd */
1074 CHECK_NULL(cmd, "csr_timeout")
1075 hostdata->selecting = NULL;
1076 }
1077
1078 cmd->result = DID_NO_CONNECT << 16;
1079 hostdata->busy[cmd->device->id] &= ~(1 << cmd->device->lun);
1080 hostdata->state = S_UNCONNECTED;
1081 cmd->scsi_done(cmd);
1082
1083/* We are not connected to a target - check to see if there
1084 * are commands waiting to be executed.
1085 */
1086
1087 in2000_execute(instance);
1088 break;
1089
1090
1091/* Note: this interrupt should not occur in a LEVEL2 command */
1092
1093 case CSR_SELECT:
1094 DB(DB_INTR, printk("SELECT"))
1095 hostdata->connected = cmd = (Scsi_Cmnd *) hostdata->selecting;
1096 CHECK_NULL(cmd, "csr_select")
1097 hostdata->selecting = NULL;
1098
1099 /* construct an IDENTIFY message with correct disconnect bit */
1100
1101 hostdata->outgoing_msg[0] = (0x80 | 0x00 | cmd->device->lun);
1102 if (cmd->SCp.phase)
1103 hostdata->outgoing_msg[0] |= 0x40;
1104
1105 if (hostdata->sync_stat[cmd->device->id] == SS_FIRST) {
1106#ifdef SYNC_DEBUG
1107 printk(" sending SDTR ");
1108#endif
1109
1110 hostdata->sync_stat[cmd->device->id] = SS_WAITING;
1111
1112 /* tack on a 2nd message to ask about synchronous transfers */
1113
1114 hostdata->outgoing_msg[1] = EXTENDED_MESSAGE;
1115 hostdata->outgoing_msg[2] = 3;
1116 hostdata->outgoing_msg[3] = EXTENDED_SDTR;
1117 hostdata->outgoing_msg[4] = OPTIMUM_SX_PER / 4;
1118 hostdata->outgoing_msg[5] = OPTIMUM_SX_OFF;
1119 hostdata->outgoing_len = 6;
1120 } else
1121 hostdata->outgoing_len = 1;
1122
1123 hostdata->state = S_CONNECTED;
1124 break;
1125
1126
1127 case CSR_XFER_DONE | PHS_DATA_IN:
1128 case CSR_UNEXP | PHS_DATA_IN:
1129 case CSR_SRV_REQ | PHS_DATA_IN:
1130 DB(DB_INTR, printk("IN-%d.%d", cmd->SCp.this_residual, cmd->SCp.buffers_residual))
1131 transfer_bytes(cmd, DATA_IN_DIR);
1132 if (hostdata->state != S_RUNNING_LEVEL2)
1133 hostdata->state = S_CONNECTED;
1134 break;
1135
1136
1137 case CSR_XFER_DONE | PHS_DATA_OUT:
1138 case CSR_UNEXP | PHS_DATA_OUT:
1139 case CSR_SRV_REQ | PHS_DATA_OUT:
1140 DB(DB_INTR, printk("OUT-%d.%d", cmd->SCp.this_residual, cmd->SCp.buffers_residual))
1141 transfer_bytes(cmd, DATA_OUT_DIR);
1142 if (hostdata->state != S_RUNNING_LEVEL2)
1143 hostdata->state = S_CONNECTED;
1144 break;
1145
1146
1147/* Note: this interrupt should not occur in a LEVEL2 command */
1148
1149 case CSR_XFER_DONE | PHS_COMMAND:
1150 case CSR_UNEXP | PHS_COMMAND:
1151 case CSR_SRV_REQ | PHS_COMMAND:
Matthew Wilcox12a44162007-09-18 19:54:43 -06001152 DB(DB_INTR, printk("CMND-%02x,%ld", cmd->cmnd[0], cmd->serial_number))
Linus Torvalds1da177e2005-04-16 15:20:36 -07001153 transfer_pio(cmd->cmnd, cmd->cmd_len, DATA_OUT_DIR, hostdata);
1154 hostdata->state = S_CONNECTED;
1155 break;
1156
1157
1158 case CSR_XFER_DONE | PHS_STATUS:
1159 case CSR_UNEXP | PHS_STATUS:
1160 case CSR_SRV_REQ | PHS_STATUS:
1161 DB(DB_INTR, printk("STATUS="))
1162
1163 cmd->SCp.Status = read_1_byte(hostdata);
1164 DB(DB_INTR, printk("%02x", cmd->SCp.Status))
1165 if (hostdata->level2 >= L2_BASIC) {
1166 sr = read_3393(hostdata, WD_SCSI_STATUS); /* clear interrupt */
1167 hostdata->state = S_RUNNING_LEVEL2;
1168 write_3393(hostdata, WD_COMMAND_PHASE, 0x50);
1169 write_3393_cmd(hostdata, WD_CMD_SEL_ATN_XFER);
1170 } else {
1171 hostdata->state = S_CONNECTED;
1172 }
1173 break;
1174
1175
1176 case CSR_XFER_DONE | PHS_MESS_IN:
1177 case CSR_UNEXP | PHS_MESS_IN:
1178 case CSR_SRV_REQ | PHS_MESS_IN:
1179 DB(DB_INTR, printk("MSG_IN="))
1180
1181 msg = read_1_byte(hostdata);
1182 sr = read_3393(hostdata, WD_SCSI_STATUS); /* clear interrupt */
1183
1184 hostdata->incoming_msg[hostdata->incoming_ptr] = msg;
1185 if (hostdata->incoming_msg[0] == EXTENDED_MESSAGE)
1186 msg = EXTENDED_MESSAGE;
1187 else
1188 hostdata->incoming_ptr = 0;
1189
1190 cmd->SCp.Message = msg;
1191 switch (msg) {
1192
1193 case COMMAND_COMPLETE:
Matthew Wilcox12a44162007-09-18 19:54:43 -06001194 DB(DB_INTR, printk("CCMP-%ld", cmd->serial_number))
Linus Torvalds1da177e2005-04-16 15:20:36 -07001195 write_3393_cmd(hostdata, WD_CMD_NEGATE_ACK);
1196 hostdata->state = S_PRE_CMP_DISC;
1197 break;
1198
1199 case SAVE_POINTERS:
1200 DB(DB_INTR, printk("SDP"))
1201 write_3393_cmd(hostdata, WD_CMD_NEGATE_ACK);
1202 hostdata->state = S_CONNECTED;
1203 break;
1204
1205 case RESTORE_POINTERS:
1206 DB(DB_INTR, printk("RDP"))
1207 if (hostdata->level2 >= L2_BASIC) {
1208 write_3393(hostdata, WD_COMMAND_PHASE, 0x45);
1209 write_3393_cmd(hostdata, WD_CMD_SEL_ATN_XFER);
1210 hostdata->state = S_RUNNING_LEVEL2;
1211 } else {
1212 write_3393_cmd(hostdata, WD_CMD_NEGATE_ACK);
1213 hostdata->state = S_CONNECTED;
1214 }
1215 break;
1216
1217 case DISCONNECT:
1218 DB(DB_INTR, printk("DIS"))
1219 cmd->device->disconnect = 1;
1220 write_3393_cmd(hostdata, WD_CMD_NEGATE_ACK);
1221 hostdata->state = S_PRE_TMP_DISC;
1222 break;
1223
1224 case MESSAGE_REJECT:
1225 DB(DB_INTR, printk("REJ"))
1226#ifdef SYNC_DEBUG
1227 printk("-REJ-");
1228#endif
1229 if (hostdata->sync_stat[cmd->device->id] == SS_WAITING)
1230 hostdata->sync_stat[cmd->device->id] = SS_SET;
1231 write_3393_cmd(hostdata, WD_CMD_NEGATE_ACK);
1232 hostdata->state = S_CONNECTED;
1233 break;
1234
1235 case EXTENDED_MESSAGE:
1236 DB(DB_INTR, printk("EXT"))
1237
1238 ucp = hostdata->incoming_msg;
1239
1240#ifdef SYNC_DEBUG
1241 printk("%02x", ucp[hostdata->incoming_ptr]);
1242#endif
1243 /* Is this the last byte of the extended message? */
1244
1245 if ((hostdata->incoming_ptr >= 2) && (hostdata->incoming_ptr == (ucp[1] + 1))) {
1246
1247 switch (ucp[2]) { /* what's the EXTENDED code? */
1248 case EXTENDED_SDTR:
1249 id = calc_sync_xfer(ucp[3], ucp[4]);
1250 if (hostdata->sync_stat[cmd->device->id] != SS_WAITING) {
1251
1252/* A device has sent an unsolicited SDTR message; rather than go
1253 * through the effort of decoding it and then figuring out what
1254 * our reply should be, we're just gonna say that we have a
1255 * synchronous fifo depth of 0. This will result in asynchronous
1256 * transfers - not ideal but so much easier.
1257 * Actually, this is OK because it assures us that if we don't
1258 * specifically ask for sync transfers, we won't do any.
1259 */
1260
1261 write_3393_cmd(hostdata, WD_CMD_ASSERT_ATN); /* want MESS_OUT */
1262 hostdata->outgoing_msg[0] = EXTENDED_MESSAGE;
1263 hostdata->outgoing_msg[1] = 3;
1264 hostdata->outgoing_msg[2] = EXTENDED_SDTR;
1265 hostdata->outgoing_msg[3] = hostdata->default_sx_per / 4;
1266 hostdata->outgoing_msg[4] = 0;
1267 hostdata->outgoing_len = 5;
1268 hostdata->sync_xfer[cmd->device->id] = calc_sync_xfer(hostdata->default_sx_per / 4, 0);
1269 } else {
1270 hostdata->sync_xfer[cmd->device->id] = id;
1271 }
1272#ifdef SYNC_DEBUG
1273 printk("sync_xfer=%02x", hostdata->sync_xfer[cmd->device->id]);
1274#endif
1275 hostdata->sync_stat[cmd->device->id] = SS_SET;
1276 write_3393_cmd(hostdata, WD_CMD_NEGATE_ACK);
1277 hostdata->state = S_CONNECTED;
1278 break;
1279 case EXTENDED_WDTR:
1280 write_3393_cmd(hostdata, WD_CMD_ASSERT_ATN); /* want MESS_OUT */
1281 printk("sending WDTR ");
1282 hostdata->outgoing_msg[0] = EXTENDED_MESSAGE;
1283 hostdata->outgoing_msg[1] = 2;
1284 hostdata->outgoing_msg[2] = EXTENDED_WDTR;
1285 hostdata->outgoing_msg[3] = 0; /* 8 bit transfer width */
1286 hostdata->outgoing_len = 4;
1287 write_3393_cmd(hostdata, WD_CMD_NEGATE_ACK);
1288 hostdata->state = S_CONNECTED;
1289 break;
1290 default:
1291 write_3393_cmd(hostdata, WD_CMD_ASSERT_ATN); /* want MESS_OUT */
1292 printk("Rejecting Unknown Extended Message(%02x). ", ucp[2]);
1293 hostdata->outgoing_msg[0] = MESSAGE_REJECT;
1294 hostdata->outgoing_len = 1;
1295 write_3393_cmd(hostdata, WD_CMD_NEGATE_ACK);
1296 hostdata->state = S_CONNECTED;
1297 break;
1298 }
1299 hostdata->incoming_ptr = 0;
1300 }
1301
1302 /* We need to read more MESS_IN bytes for the extended message */
1303
1304 else {
1305 hostdata->incoming_ptr++;
1306 write_3393_cmd(hostdata, WD_CMD_NEGATE_ACK);
1307 hostdata->state = S_CONNECTED;
1308 }
1309 break;
1310
1311 default:
1312 printk("Rejecting Unknown Message(%02x) ", msg);
1313 write_3393_cmd(hostdata, WD_CMD_ASSERT_ATN); /* want MESS_OUT */
1314 hostdata->outgoing_msg[0] = MESSAGE_REJECT;
1315 hostdata->outgoing_len = 1;
1316 write_3393_cmd(hostdata, WD_CMD_NEGATE_ACK);
1317 hostdata->state = S_CONNECTED;
1318 }
1319 break;
1320
1321
1322/* Note: this interrupt will occur only after a LEVEL2 command */
1323
1324 case CSR_SEL_XFER_DONE:
1325
1326/* Make sure that reselection is enabled at this point - it may
1327 * have been turned off for the command that just completed.
1328 */
1329
1330 write_3393(hostdata, WD_SOURCE_ID, SRCID_ER);
1331 if (phs == 0x60) {
Matthew Wilcox12a44162007-09-18 19:54:43 -06001332 DB(DB_INTR, printk("SX-DONE-%ld", cmd->serial_number))
Linus Torvalds1da177e2005-04-16 15:20:36 -07001333 cmd->SCp.Message = COMMAND_COMPLETE;
1334 lun = read_3393(hostdata, WD_TARGET_LUN);
1335 DB(DB_INTR, printk(":%d.%d", cmd->SCp.Status, lun))
1336 hostdata->connected = NULL;
1337 hostdata->busy[cmd->device->id] &= ~(1 << cmd->device->lun);
1338 hostdata->state = S_UNCONNECTED;
1339 if (cmd->SCp.Status == ILLEGAL_STATUS_BYTE)
1340 cmd->SCp.Status = lun;
1341 if (cmd->cmnd[0] == REQUEST_SENSE && cmd->SCp.Status != GOOD)
1342 cmd->result = (cmd->result & 0x00ffff) | (DID_ERROR << 16);
1343 else
1344 cmd->result = cmd->SCp.Status | (cmd->SCp.Message << 8);
1345 cmd->scsi_done(cmd);
1346
1347/* We are no longer connected to a target - check to see if
1348 * there are commands waiting to be executed.
1349 */
1350
1351 in2000_execute(instance);
1352 } else {
Matthew Wilcox12a44162007-09-18 19:54:43 -06001353 printk("%02x:%02x:%02x-%ld: Unknown SEL_XFER_DONE phase!!---", asr, sr, phs, cmd->serial_number);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001354 }
1355 break;
1356
1357
1358/* Note: this interrupt will occur only after a LEVEL2 command */
1359
1360 case CSR_SDP:
1361 DB(DB_INTR, printk("SDP"))
1362 hostdata->state = S_RUNNING_LEVEL2;
1363 write_3393(hostdata, WD_COMMAND_PHASE, 0x41);
1364 write_3393_cmd(hostdata, WD_CMD_SEL_ATN_XFER);
1365 break;
1366
1367
1368 case CSR_XFER_DONE | PHS_MESS_OUT:
1369 case CSR_UNEXP | PHS_MESS_OUT:
1370 case CSR_SRV_REQ | PHS_MESS_OUT:
1371 DB(DB_INTR, printk("MSG_OUT="))
1372
1373/* To get here, we've probably requested MESSAGE_OUT and have
1374 * already put the correct bytes in outgoing_msg[] and filled
1375 * in outgoing_len. We simply send them out to the SCSI bus.
1376 * Sometimes we get MESSAGE_OUT phase when we're not expecting
1377 * it - like when our SDTR message is rejected by a target. Some
1378 * targets send the REJECT before receiving all of the extended
1379 * message, and then seem to go back to MESSAGE_OUT for a byte
1380 * or two. Not sure why, or if I'm doing something wrong to
1381 * cause this to happen. Regardless, it seems that sending
1382 * NOP messages in these situations results in no harm and
1383 * makes everyone happy.
1384 */
1385 if (hostdata->outgoing_len == 0) {
1386 hostdata->outgoing_len = 1;
1387 hostdata->outgoing_msg[0] = NOP;
1388 }
1389 transfer_pio(hostdata->outgoing_msg, hostdata->outgoing_len, DATA_OUT_DIR, hostdata);
1390 DB(DB_INTR, printk("%02x", hostdata->outgoing_msg[0]))
1391 hostdata->outgoing_len = 0;
1392 hostdata->state = S_CONNECTED;
1393 break;
1394
1395
1396 case CSR_UNEXP_DISC:
1397
1398/* I think I've seen this after a request-sense that was in response
1399 * to an error condition, but not sure. We certainly need to do
1400 * something when we get this interrupt - the question is 'what?'.
1401 * Let's think positively, and assume some command has finished
1402 * in a legal manner (like a command that provokes a request-sense),
1403 * so we treat it as a normal command-complete-disconnect.
1404 */
1405
1406
1407/* Make sure that reselection is enabled at this point - it may
1408 * have been turned off for the command that just completed.
1409 */
1410
1411 write_3393(hostdata, WD_SOURCE_ID, SRCID_ER);
1412 if (cmd == NULL) {
1413 printk(" - Already disconnected! ");
1414 hostdata->state = S_UNCONNECTED;
1415
1416/* release the SMP spin_lock and restore irq state */
1417 spin_unlock_irqrestore(instance->host_lock, flags);
1418 return IRQ_HANDLED;
1419 }
Matthew Wilcox12a44162007-09-18 19:54:43 -06001420 DB(DB_INTR, printk("UNEXP_DISC-%ld", cmd->serial_number))
Linus Torvalds1da177e2005-04-16 15:20:36 -07001421 hostdata->connected = NULL;
1422 hostdata->busy[cmd->device->id] &= ~(1 << cmd->device->lun);
1423 hostdata->state = S_UNCONNECTED;
1424 if (cmd->cmnd[0] == REQUEST_SENSE && cmd->SCp.Status != GOOD)
1425 cmd->result = (cmd->result & 0x00ffff) | (DID_ERROR << 16);
1426 else
1427 cmd->result = cmd->SCp.Status | (cmd->SCp.Message << 8);
1428 cmd->scsi_done(cmd);
1429
1430/* We are no longer connected to a target - check to see if
1431 * there are commands waiting to be executed.
1432 */
1433
1434 in2000_execute(instance);
1435 break;
1436
1437
1438 case CSR_DISC:
1439
1440/* Make sure that reselection is enabled at this point - it may
1441 * have been turned off for the command that just completed.
1442 */
1443
1444 write_3393(hostdata, WD_SOURCE_ID, SRCID_ER);
Matthew Wilcox12a44162007-09-18 19:54:43 -06001445 DB(DB_INTR, printk("DISC-%ld", cmd->serial_number))
Linus Torvalds1da177e2005-04-16 15:20:36 -07001446 if (cmd == NULL) {
1447 printk(" - Already disconnected! ");
1448 hostdata->state = S_UNCONNECTED;
1449 }
1450 switch (hostdata->state) {
1451 case S_PRE_CMP_DISC:
1452 hostdata->connected = NULL;
1453 hostdata->busy[cmd->device->id] &= ~(1 << cmd->device->lun);
1454 hostdata->state = S_UNCONNECTED;
1455 DB(DB_INTR, printk(":%d", cmd->SCp.Status))
1456 if (cmd->cmnd[0] == REQUEST_SENSE && cmd->SCp.Status != GOOD)
1457 cmd->result = (cmd->result & 0x00ffff) | (DID_ERROR << 16);
1458 else
1459 cmd->result = cmd->SCp.Status | (cmd->SCp.Message << 8);
1460 cmd->scsi_done(cmd);
1461 break;
1462 case S_PRE_TMP_DISC:
1463 case S_RUNNING_LEVEL2:
1464 cmd->host_scribble = (uchar *) hostdata->disconnected_Q;
1465 hostdata->disconnected_Q = cmd;
1466 hostdata->connected = NULL;
1467 hostdata->state = S_UNCONNECTED;
1468
1469#ifdef PROC_STATISTICS
1470 hostdata->disc_done_cnt[cmd->device->id]++;
1471#endif
1472
1473 break;
1474 default:
1475 printk("*** Unexpected DISCONNECT interrupt! ***");
1476 hostdata->state = S_UNCONNECTED;
1477 }
1478
1479/* We are no longer connected to a target - check to see if
1480 * there are commands waiting to be executed.
1481 */
1482
1483 in2000_execute(instance);
1484 break;
1485
1486
1487 case CSR_RESEL_AM:
1488 DB(DB_INTR, printk("RESEL"))
1489
1490 /* First we have to make sure this reselection didn't */
1491 /* happen during Arbitration/Selection of some other device. */
1492 /* If yes, put losing command back on top of input_Q. */
1493 if (hostdata->level2 <= L2_NONE) {
1494
1495 if (hostdata->selecting) {
1496 cmd = (Scsi_Cmnd *) hostdata->selecting;
1497 hostdata->selecting = NULL;
1498 hostdata->busy[cmd->device->id] &= ~(1 << cmd->device->lun);
1499 cmd->host_scribble = (uchar *) hostdata->input_Q;
1500 hostdata->input_Q = cmd;
1501 }
1502 }
1503
1504 else {
1505
1506 if (cmd) {
1507 if (phs == 0x00) {
1508 hostdata->busy[cmd->device->id] &= ~(1 << cmd->device->lun);
1509 cmd->host_scribble = (uchar *) hostdata->input_Q;
1510 hostdata->input_Q = cmd;
1511 } else {
1512 printk("---%02x:%02x:%02x-TROUBLE: Intrusive ReSelect!---", asr, sr, phs);
1513 while (1)
1514 printk("\r");
1515 }
1516 }
1517
1518 }
1519
1520 /* OK - find out which device reselected us. */
1521
1522 id = read_3393(hostdata, WD_SOURCE_ID);
1523 id &= SRCID_MASK;
1524
1525 /* and extract the lun from the ID message. (Note that we don't
1526 * bother to check for a valid message here - I guess this is
1527 * not the right way to go, but....)
1528 */
1529
1530 lun = read_3393(hostdata, WD_DATA);
1531 if (hostdata->level2 < L2_RESELECT)
1532 write_3393_cmd(hostdata, WD_CMD_NEGATE_ACK);
1533 lun &= 7;
1534
1535 /* Now we look for the command that's reconnecting. */
1536
1537 cmd = (Scsi_Cmnd *) hostdata->disconnected_Q;
1538 patch = NULL;
1539 while (cmd) {
1540 if (id == cmd->device->id && lun == cmd->device->lun)
1541 break;
1542 patch = cmd;
1543 cmd = (Scsi_Cmnd *) cmd->host_scribble;
1544 }
1545
1546 /* Hmm. Couldn't find a valid command.... What to do? */
1547
1548 if (!cmd) {
1549 printk("---TROUBLE: target %d.%d not in disconnect queue---", id, lun);
1550 break;
1551 }
1552
1553 /* Ok, found the command - now start it up again. */
1554
1555 if (patch)
1556 patch->host_scribble = cmd->host_scribble;
1557 else
1558 hostdata->disconnected_Q = (Scsi_Cmnd *) cmd->host_scribble;
1559 hostdata->connected = cmd;
1560
1561 /* We don't need to worry about 'initialize_SCp()' or 'hostdata->busy[]'
1562 * because these things are preserved over a disconnect.
1563 * But we DO need to fix the DPD bit so it's correct for this command.
1564 */
1565
1566 if (is_dir_out(cmd))
1567 write_3393(hostdata, WD_DESTINATION_ID, cmd->device->id);
1568 else
1569 write_3393(hostdata, WD_DESTINATION_ID, cmd->device->id | DSTID_DPD);
1570 if (hostdata->level2 >= L2_RESELECT) {
1571 write_3393_count(hostdata, 0); /* we want a DATA_PHASE interrupt */
1572 write_3393(hostdata, WD_COMMAND_PHASE, 0x45);
1573 write_3393_cmd(hostdata, WD_CMD_SEL_ATN_XFER);
1574 hostdata->state = S_RUNNING_LEVEL2;
1575 } else
1576 hostdata->state = S_CONNECTED;
1577
Matthew Wilcox12a44162007-09-18 19:54:43 -06001578 DB(DB_INTR, printk("-%ld", cmd->serial_number))
Linus Torvalds1da177e2005-04-16 15:20:36 -07001579 break;
1580
1581 default:
1582 printk("--UNKNOWN INTERRUPT:%02x:%02x:%02x--", asr, sr, phs);
1583 }
1584
1585 write1_io(0, IO_LED_OFF);
1586
1587 DB(DB_INTR, printk("} "))
1588
1589/* release the SMP spin_lock and restore irq state */
1590 spin_unlock_irqrestore(instance->host_lock, flags);
1591 return IRQ_HANDLED;
1592}
1593
1594
1595
1596#define RESET_CARD 0
1597#define RESET_CARD_AND_BUS 1
1598#define B_FLAG 0x80
1599
1600/*
1601 * Caller must hold instance lock!
1602 */
1603
1604static int reset_hardware(struct Scsi_Host *instance, int type)
1605{
1606 struct IN2000_hostdata *hostdata;
1607 int qt, x;
1608
1609 hostdata = (struct IN2000_hostdata *) instance->hostdata;
1610
1611 write1_io(0, IO_LED_ON);
1612 if (type == RESET_CARD_AND_BUS) {
1613 write1_io(0, IO_CARD_RESET);
1614 x = read1_io(IO_HARDWARE);
1615 }
1616 x = read_3393(hostdata, WD_SCSI_STATUS); /* clear any WD intrpt */
1617 write_3393(hostdata, WD_OWN_ID, instance->this_id | OWNID_EAF | OWNID_RAF | OWNID_FS_8);
1618 write_3393(hostdata, WD_CONTROL, CTRL_IDI | CTRL_EDI | CTRL_POLLED);
1619 write_3393(hostdata, WD_SYNCHRONOUS_TRANSFER, calc_sync_xfer(hostdata->default_sx_per / 4, DEFAULT_SX_OFF));
1620
1621 write1_io(0, IO_FIFO_WRITE); /* clear fifo counter */
1622 write1_io(0, IO_FIFO_READ); /* start fifo out in read mode */
1623 write_3393(hostdata, WD_COMMAND, WD_CMD_RESET);
1624 /* FIXME: timeout ?? */
1625 while (!(READ_AUX_STAT() & ASR_INT))
1626 cpu_relax(); /* wait for RESET to complete */
1627
1628 x = read_3393(hostdata, WD_SCSI_STATUS); /* clear interrupt */
1629
1630 write_3393(hostdata, WD_QUEUE_TAG, 0xa5); /* any random number */
1631 qt = read_3393(hostdata, WD_QUEUE_TAG);
1632 if (qt == 0xa5) {
1633 x |= B_FLAG;
1634 write_3393(hostdata, WD_QUEUE_TAG, 0);
1635 }
1636 write_3393(hostdata, WD_TIMEOUT_PERIOD, TIMEOUT_PERIOD_VALUE);
1637 write_3393(hostdata, WD_CONTROL, CTRL_IDI | CTRL_EDI | CTRL_POLLED);
1638 write1_io(0, IO_LED_OFF);
1639 return x;
1640}
1641
1642
1643
1644static int in2000_bus_reset(Scsi_Cmnd * cmd)
1645{
1646 struct Scsi_Host *instance;
1647 struct IN2000_hostdata *hostdata;
1648 int x;
Jeff Garzik 68b3aa72005-05-28 07:56:31 -04001649 unsigned long flags;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001650
1651 instance = cmd->device->host;
1652 hostdata = (struct IN2000_hostdata *) instance->hostdata;
1653
1654 printk(KERN_WARNING "scsi%d: Reset. ", instance->host_no);
1655
Jeff Garzik 68b3aa72005-05-28 07:56:31 -04001656 spin_lock_irqsave(instance->host_lock, flags);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001657
Jeff Garzik 68b3aa72005-05-28 07:56:31 -04001658 /* do scsi-reset here */
Linus Torvalds1da177e2005-04-16 15:20:36 -07001659 reset_hardware(instance, RESET_CARD_AND_BUS);
1660 for (x = 0; x < 8; x++) {
1661 hostdata->busy[x] = 0;
1662 hostdata->sync_xfer[x] = calc_sync_xfer(DEFAULT_SX_PER / 4, DEFAULT_SX_OFF);
1663 hostdata->sync_stat[x] = SS_UNSET; /* using default sync values */
1664 }
1665 hostdata->input_Q = NULL;
1666 hostdata->selecting = NULL;
1667 hostdata->connected = NULL;
1668 hostdata->disconnected_Q = NULL;
1669 hostdata->state = S_UNCONNECTED;
1670 hostdata->fifo = FI_FIFO_UNUSED;
1671 hostdata->incoming_ptr = 0;
1672 hostdata->outgoing_len = 0;
1673
1674 cmd->result = DID_RESET << 16;
Jeff Garzik 68b3aa72005-05-28 07:56:31 -04001675
1676 spin_unlock_irqrestore(instance->host_lock, flags);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001677 return SUCCESS;
1678}
1679
Jeff Garzik 8fa728a2005-05-28 07:54:40 -04001680static int __in2000_abort(Scsi_Cmnd * cmd)
Linus Torvalds1da177e2005-04-16 15:20:36 -07001681{
1682 struct Scsi_Host *instance;
1683 struct IN2000_hostdata *hostdata;
1684 Scsi_Cmnd *tmp, *prev;
1685 uchar sr, asr;
1686 unsigned long timeout;
1687
1688 instance = cmd->device->host;
1689 hostdata = (struct IN2000_hostdata *) instance->hostdata;
1690
1691 printk(KERN_DEBUG "scsi%d: Abort-", instance->host_no);
1692 printk("(asr=%02x,count=%ld,resid=%d,buf_resid=%d,have_data=%d,FC=%02x)- ", READ_AUX_STAT(), read_3393_count(hostdata), cmd->SCp.this_residual, cmd->SCp.buffers_residual, cmd->SCp.have_data_in, read1_io(IO_FIFO_COUNT));
1693
1694/*
1695 * Case 1 : If the command hasn't been issued yet, we simply remove it
1696 * from the inout_Q.
1697 */
1698
1699 tmp = (Scsi_Cmnd *) hostdata->input_Q;
1700 prev = NULL;
1701 while (tmp) {
1702 if (tmp == cmd) {
1703 if (prev)
1704 prev->host_scribble = cmd->host_scribble;
1705 cmd->host_scribble = NULL;
1706 cmd->result = DID_ABORT << 16;
Matthew Wilcox12a44162007-09-18 19:54:43 -06001707 printk(KERN_WARNING "scsi%d: Abort - removing command %ld from input_Q. ", instance->host_no, cmd->serial_number);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001708 cmd->scsi_done(cmd);
1709 return SUCCESS;
1710 }
1711 prev = tmp;
1712 tmp = (Scsi_Cmnd *) tmp->host_scribble;
1713 }
1714
1715/*
1716 * Case 2 : If the command is connected, we're going to fail the abort
1717 * and let the high level SCSI driver retry at a later time or
1718 * issue a reset.
1719 *
1720 * Timeouts, and therefore aborted commands, will be highly unlikely
1721 * and handling them cleanly in this situation would make the common
1722 * case of noresets less efficient, and would pollute our code. So,
1723 * we fail.
1724 */
1725
1726 if (hostdata->connected == cmd) {
1727
Matthew Wilcox12a44162007-09-18 19:54:43 -06001728 printk(KERN_WARNING "scsi%d: Aborting connected command %ld - ", instance->host_no, cmd->serial_number);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001729
1730 printk("sending wd33c93 ABORT command - ");
1731 write_3393(hostdata, WD_CONTROL, CTRL_IDI | CTRL_EDI | CTRL_POLLED);
1732 write_3393_cmd(hostdata, WD_CMD_ABORT);
1733
1734/* Now we have to attempt to flush out the FIFO... */
1735
1736 printk("flushing fifo - ");
1737 timeout = 1000000;
1738 do {
1739 asr = READ_AUX_STAT();
1740 if (asr & ASR_DBR)
1741 read_3393(hostdata, WD_DATA);
1742 } while (!(asr & ASR_INT) && timeout-- > 0);
1743 sr = read_3393(hostdata, WD_SCSI_STATUS);
1744 printk("asr=%02x, sr=%02x, %ld bytes un-transferred (timeout=%ld) - ", asr, sr, read_3393_count(hostdata), timeout);
1745
1746 /*
1747 * Abort command processed.
1748 * Still connected.
1749 * We must disconnect.
1750 */
1751
1752 printk("sending wd33c93 DISCONNECT command - ");
1753 write_3393_cmd(hostdata, WD_CMD_DISCONNECT);
1754
1755 timeout = 1000000;
1756 asr = READ_AUX_STAT();
1757 while ((asr & ASR_CIP) && timeout-- > 0)
1758 asr = READ_AUX_STAT();
1759 sr = read_3393(hostdata, WD_SCSI_STATUS);
1760 printk("asr=%02x, sr=%02x.", asr, sr);
1761
1762 hostdata->busy[cmd->device->id] &= ~(1 << cmd->device->lun);
1763 hostdata->connected = NULL;
1764 hostdata->state = S_UNCONNECTED;
1765 cmd->result = DID_ABORT << 16;
1766 cmd->scsi_done(cmd);
1767
1768 in2000_execute(instance);
1769
1770 return SUCCESS;
1771 }
1772
1773/*
1774 * Case 3: If the command is currently disconnected from the bus,
1775 * we're not going to expend much effort here: Let's just return
1776 * an ABORT_SNOOZE and hope for the best...
1777 */
1778
1779 for (tmp = (Scsi_Cmnd *) hostdata->disconnected_Q; tmp; tmp = (Scsi_Cmnd *) tmp->host_scribble)
1780 if (cmd == tmp) {
1781 printk(KERN_DEBUG "scsi%d: unable to abort disconnected command.\n", instance->host_no);
1782 return FAILED;
1783 }
1784
1785/*
1786 * Case 4 : If we reached this point, the command was not found in any of
1787 * the queues.
1788 *
1789 * We probably reached this point because of an unlikely race condition
1790 * between the command completing successfully and the abortion code,
1791 * so we won't panic, but we will notify the user in case something really
1792 * broke.
1793 */
1794
1795 in2000_execute(instance);
1796
1797 printk("scsi%d: warning : SCSI command probably completed successfully" " before abortion. ", instance->host_no);
1798 return SUCCESS;
1799}
1800
Jeff Garzik 8fa728a2005-05-28 07:54:40 -04001801static int in2000_abort(Scsi_Cmnd * cmd)
1802{
1803 int rc;
1804
1805 spin_lock_irq(cmd->device->host->host_lock);
1806 rc = __in2000_abort(cmd);
1807 spin_unlock_irq(cmd->device->host->host_lock);
1808
1809 return rc;
1810}
Linus Torvalds1da177e2005-04-16 15:20:36 -07001811
1812
1813#define MAX_IN2000_HOSTS 3
Tobias Klauser6391a112006-06-08 22:23:48 -07001814#define MAX_SETUP_ARGS ARRAY_SIZE(setup_args)
Linus Torvalds1da177e2005-04-16 15:20:36 -07001815#define SETUP_BUFFER_SIZE 200
1816static char setup_buffer[SETUP_BUFFER_SIZE];
1817static char setup_used[MAX_SETUP_ARGS];
1818static int done_setup = 0;
1819
1820static void __init in2000_setup(char *str, int *ints)
1821{
1822 int i;
1823 char *p1, *p2;
1824
1825 strlcpy(setup_buffer, str, SETUP_BUFFER_SIZE);
1826 p1 = setup_buffer;
1827 i = 0;
1828 while (*p1 && (i < MAX_SETUP_ARGS)) {
1829 p2 = strchr(p1, ',');
1830 if (p2) {
1831 *p2 = '\0';
1832 if (p1 != p2)
1833 setup_args[i] = p1;
1834 p1 = p2 + 1;
1835 i++;
1836 } else {
1837 setup_args[i] = p1;
1838 break;
1839 }
1840 }
1841 for (i = 0; i < MAX_SETUP_ARGS; i++)
1842 setup_used[i] = 0;
1843 done_setup = 1;
1844}
1845
1846
1847/* check_setup_args() returns index if key found, 0 if not
1848 */
1849
1850static int __init check_setup_args(char *key, int *val, char *buf)
1851{
1852 int x;
1853 char *cp;
1854
1855 for (x = 0; x < MAX_SETUP_ARGS; x++) {
1856 if (setup_used[x])
1857 continue;
1858 if (!strncmp(setup_args[x], key, strlen(key)))
1859 break;
1860 }
1861 if (x == MAX_SETUP_ARGS)
1862 return 0;
1863 setup_used[x] = 1;
1864 cp = setup_args[x] + strlen(key);
1865 *val = -1;
1866 if (*cp != ':')
1867 return ++x;
1868 cp++;
1869 if ((*cp >= '0') && (*cp <= '9')) {
1870 *val = simple_strtoul(cp, NULL, 0);
1871 }
1872 return ++x;
1873}
1874
1875
1876
1877/* The "correct" (ie portable) way to access memory-mapped hardware
1878 * such as the IN2000 EPROM and dip switch is through the use of
1879 * special macros declared in 'asm/io.h'. We use readb() and readl()
1880 * when reading from the card's BIOS area in in2000_detect().
1881 */
1882static u32 bios_tab[] in2000__INITDATA = {
1883 0xc8000,
1884 0xd0000,
1885 0xd8000,
1886 0
1887};
1888
1889static unsigned short base_tab[] in2000__INITDATA = {
1890 0x220,
1891 0x200,
1892 0x110,
1893 0x100,
1894};
1895
1896static int int_tab[] in2000__INITDATA = {
1897 15,
1898 14,
1899 11,
1900 10
1901};
1902
Al Viro22bc6852006-03-24 03:15:38 -08001903static int probe_bios(u32 addr, u32 *s1, uchar *switches)
1904{
1905 void __iomem *p = ioremap(addr, 0x34);
1906 if (!p)
1907 return 0;
1908 *s1 = readl(p + 0x10);
1909 if (*s1 == 0x41564f4e || readl(p + 0x30) == 0x61776c41) {
1910 /* Read the switch image that's mapped into EPROM space */
1911 *switches = ~readb(p + 0x20);
1912 iounmap(p);
1913 return 1;
1914 }
1915 iounmap(p);
1916 return 0;
1917}
Linus Torvalds1da177e2005-04-16 15:20:36 -07001918
Christoph Hellwigd0be4a7d2005-10-31 18:31:40 +01001919static int __init in2000_detect(struct scsi_host_template * tpnt)
Linus Torvalds1da177e2005-04-16 15:20:36 -07001920{
1921 struct Scsi_Host *instance;
1922 struct IN2000_hostdata *hostdata;
1923 int detect_count;
1924 int bios;
1925 int x;
1926 unsigned short base;
1927 uchar switches;
1928 uchar hrev;
1929 unsigned long flags;
1930 int val;
1931 char buf[32];
1932
1933/* Thanks to help from Bill Earnest, probing for IN2000 cards is a
1934 * pretty straightforward and fool-proof operation. There are 3
1935 * possible locations for the IN2000 EPROM in memory space - if we
1936 * find a BIOS signature, we can read the dip switch settings from
1937 * the byte at BIOS+32 (shadowed in by logic on the card). From 2
1938 * of the switch bits we get the card's address in IO space. There's
1939 * an image of the dip switch there, also, so we have a way to back-
1940 * check that this really is an IN2000 card. Very nifty. Use the
1941 * 'ioport:xx' command-line parameter if your BIOS EPROM is absent
1942 * or disabled.
1943 */
1944
1945 if (!done_setup && setup_strings)
1946 in2000_setup(setup_strings, NULL);
1947
1948 detect_count = 0;
1949 for (bios = 0; bios_tab[bios]; bios++) {
Al Viro22bc6852006-03-24 03:15:38 -08001950 u32 s1 = 0;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001951 if (check_setup_args("ioport", &val, buf)) {
1952 base = val;
1953 switches = ~inb(base + IO_SWITCHES) & 0xff;
1954 printk("Forcing IN2000 detection at IOport 0x%x ", base);
1955 bios = 2;
1956 }
1957/*
1958 * There have been a couple of BIOS versions with different layouts
1959 * for the obvious ID strings. We look for the 2 most common ones and
1960 * hope that they cover all the cases...
1961 */
Al Viro22bc6852006-03-24 03:15:38 -08001962 else if (probe_bios(bios_tab[bios], &s1, &switches)) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07001963 printk("Found IN2000 BIOS at 0x%x ", (unsigned int) bios_tab[bios]);
1964
Linus Torvalds1da177e2005-04-16 15:20:36 -07001965/* Find out where the IO space is */
1966
1967 x = switches & (SW_ADDR0 | SW_ADDR1);
1968 base = base_tab[x];
1969
1970/* Check for the IN2000 signature in IO space. */
1971
1972 x = ~inb(base + IO_SWITCHES) & 0xff;
1973 if (x != switches) {
1974 printk("Bad IO signature: %02x vs %02x.\n", x, switches);
1975 continue;
1976 }
1977 } else
1978 continue;
1979
1980/* OK. We have a base address for the IO ports - run a few safety checks */
1981
1982 if (!(switches & SW_BIT7)) { /* I _think_ all cards do this */
1983 printk("There is no IN-2000 SCSI card at IOport 0x%03x!\n", base);
1984 continue;
1985 }
1986
1987/* Let's assume any hardware version will work, although the driver
1988 * has only been tested on 0x21, 0x22, 0x25, 0x26, and 0x27. We'll
1989 * print out the rev number for reference later, but accept them all.
1990 */
1991
1992 hrev = inb(base + IO_HARDWARE);
1993
1994 /* Bit 2 tells us if interrupts are disabled */
1995 if (switches & SW_DISINT) {
1996 printk("The IN-2000 SCSI card at IOport 0x%03x ", base);
1997 printk("is not configured for interrupt operation!\n");
1998 printk("This driver requires an interrupt: cancelling detection.\n");
1999 continue;
2000 }
2001
2002/* Ok. We accept that there's an IN2000 at ioaddr 'base'. Now
2003 * initialize it.
2004 */
2005
2006 tpnt->proc_name = "in2000";
2007 instance = scsi_register(tpnt, sizeof(struct IN2000_hostdata));
2008 if (instance == NULL)
2009 continue;
2010 detect_count++;
2011 hostdata = (struct IN2000_hostdata *) instance->hostdata;
2012 instance->io_port = hostdata->io_base = base;
2013 hostdata->dip_switch = switches;
2014 hostdata->hrev = hrev;
2015
2016 write1_io(0, IO_FIFO_WRITE); /* clear fifo counter */
2017 write1_io(0, IO_FIFO_READ); /* start fifo out in read mode */
2018 write1_io(0, IO_INTR_MASK); /* allow all ints */
2019 x = int_tab[(switches & (SW_INT0 | SW_INT1)) >> SW_INT_SHIFT];
Thomas Gleixner1d6f3592006-07-01 19:29:42 -07002020 if (request_irq(x, in2000_intr, IRQF_DISABLED, "in2000", instance)) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07002021 printk("in2000_detect: Unable to allocate IRQ.\n");
2022 detect_count--;
2023 continue;
2024 }
2025 instance->irq = x;
2026 instance->n_io_port = 13;
2027 request_region(base, 13, "in2000"); /* lock in this IO space for our use */
2028
2029 for (x = 0; x < 8; x++) {
2030 hostdata->busy[x] = 0;
2031 hostdata->sync_xfer[x] = calc_sync_xfer(DEFAULT_SX_PER / 4, DEFAULT_SX_OFF);
2032 hostdata->sync_stat[x] = SS_UNSET; /* using default sync values */
2033#ifdef PROC_STATISTICS
2034 hostdata->cmd_cnt[x] = 0;
2035 hostdata->disc_allowed_cnt[x] = 0;
2036 hostdata->disc_done_cnt[x] = 0;
2037#endif
2038 }
2039 hostdata->input_Q = NULL;
2040 hostdata->selecting = NULL;
2041 hostdata->connected = NULL;
2042 hostdata->disconnected_Q = NULL;
2043 hostdata->state = S_UNCONNECTED;
2044 hostdata->fifo = FI_FIFO_UNUSED;
2045 hostdata->level2 = L2_BASIC;
2046 hostdata->disconnect = DIS_ADAPTIVE;
2047 hostdata->args = DEBUG_DEFAULTS;
2048 hostdata->incoming_ptr = 0;
2049 hostdata->outgoing_len = 0;
2050 hostdata->default_sx_per = DEFAULT_SX_PER;
2051
2052/* Older BIOS's had a 'sync on/off' switch - use its setting */
2053
Al Viro22bc6852006-03-24 03:15:38 -08002054 if (s1 == 0x41564f4e && (switches & SW_SYNC_DOS5))
Linus Torvalds1da177e2005-04-16 15:20:36 -07002055 hostdata->sync_off = 0x00; /* sync defaults to on */
2056 else
2057 hostdata->sync_off = 0xff; /* sync defaults to off */
2058
2059#ifdef PROC_INTERFACE
2060 hostdata->proc = PR_VERSION | PR_INFO | PR_STATISTICS | PR_CONNECTED | PR_INPUTQ | PR_DISCQ | PR_STOP;
2061#ifdef PROC_STATISTICS
2062 hostdata->int_cnt = 0;
2063#endif
2064#endif
2065
2066 if (check_setup_args("nosync", &val, buf))
2067 hostdata->sync_off = val;
2068
2069 if (check_setup_args("period", &val, buf))
2070 hostdata->default_sx_per = sx_table[round_period((unsigned int) val)].period_ns;
2071
2072 if (check_setup_args("disconnect", &val, buf)) {
2073 if ((val >= DIS_NEVER) && (val <= DIS_ALWAYS))
2074 hostdata->disconnect = val;
2075 else
2076 hostdata->disconnect = DIS_ADAPTIVE;
2077 }
2078
2079 if (check_setup_args("noreset", &val, buf))
2080 hostdata->args ^= A_NO_SCSI_RESET;
2081
2082 if (check_setup_args("level2", &val, buf))
2083 hostdata->level2 = val;
2084
2085 if (check_setup_args("debug", &val, buf))
2086 hostdata->args = (val & DB_MASK);
2087
2088#ifdef PROC_INTERFACE
2089 if (check_setup_args("proc", &val, buf))
2090 hostdata->proc = val;
2091#endif
2092
2093
2094 /* FIXME: not strictly needed I think but the called code expects
2095 to be locked */
2096 spin_lock_irqsave(instance->host_lock, flags);
2097 x = reset_hardware(instance, (hostdata->args & A_NO_SCSI_RESET) ? RESET_CARD : RESET_CARD_AND_BUS);
2098 spin_unlock_irqrestore(instance->host_lock, flags);
2099
2100 hostdata->microcode = read_3393(hostdata, WD_CDB_1);
2101 if (x & 0x01) {
2102 if (x & B_FLAG)
2103 hostdata->chip = C_WD33C93B;
2104 else
2105 hostdata->chip = C_WD33C93A;
2106 } else
2107 hostdata->chip = C_WD33C93;
2108
2109 printk("dip_switch=%02x irq=%d ioport=%02x floppy=%s sync/DOS5=%s ", (switches & 0x7f), instance->irq, hostdata->io_base, (switches & SW_FLOPPY) ? "Yes" : "No", (switches & SW_SYNC_DOS5) ? "Yes" : "No");
2110 printk("hardware_ver=%02x chip=%s microcode=%02x\n", hrev, (hostdata->chip == C_WD33C93) ? "WD33c93" : (hostdata->chip == C_WD33C93A) ? "WD33c93A" : (hostdata->chip == C_WD33C93B) ? "WD33c93B" : "unknown", hostdata->microcode);
2111#ifdef DEBUGGING_ON
2112 printk("setup_args = ");
2113 for (x = 0; x < MAX_SETUP_ARGS; x++)
2114 printk("%s,", setup_args[x]);
2115 printk("\n");
2116#endif
2117 if (hostdata->sync_off == 0xff)
2118 printk("Sync-transfer DISABLED on all devices: ENABLE from command-line\n");
2119 printk("IN2000 driver version %s - %s\n", IN2000_VERSION, IN2000_DATE);
2120 }
2121
2122 return detect_count;
2123}
2124
2125static int in2000_release(struct Scsi_Host *shost)
2126{
2127 if (shost->irq)
2128 free_irq(shost->irq, shost);
2129 if (shost->io_port && shost->n_io_port)
2130 release_region(shost->io_port, shost->n_io_port);
2131 return 0;
2132}
2133
2134/* NOTE: I lifted this function straight out of the old driver,
2135 * and have not tested it. Presumably it does what it's
2136 * supposed to do...
2137 */
2138
2139static int in2000_biosparam(struct scsi_device *sdev, struct block_device *bdev, sector_t capacity, int *iinfo)
2140{
2141 int size;
2142
2143 size = capacity;
2144 iinfo[0] = 64;
2145 iinfo[1] = 32;
2146 iinfo[2] = size >> 11;
2147
2148/* This should approximate the large drive handling that the DOS ASPI manager
2149 uses. Drives very near the boundaries may not be handled correctly (i.e.
2150 near 2.0 Gb and 4.0 Gb) */
2151
2152 if (iinfo[2] > 1024) {
2153 iinfo[0] = 64;
2154 iinfo[1] = 63;
2155 iinfo[2] = (unsigned long) capacity / (iinfo[0] * iinfo[1]);
2156 }
2157 if (iinfo[2] > 1024) {
2158 iinfo[0] = 128;
2159 iinfo[1] = 63;
2160 iinfo[2] = (unsigned long) capacity / (iinfo[0] * iinfo[1]);
2161 }
2162 if (iinfo[2] > 1024) {
2163 iinfo[0] = 255;
2164 iinfo[1] = 63;
2165 iinfo[2] = (unsigned long) capacity / (iinfo[0] * iinfo[1]);
2166 }
2167 return 0;
2168}
2169
2170
2171static int in2000_proc_info(struct Scsi_Host *instance, char *buf, char **start, off_t off, int len, int in)
2172{
2173
2174#ifdef PROC_INTERFACE
2175
2176 char *bp;
2177 char tbuf[128];
2178 unsigned long flags;
2179 struct IN2000_hostdata *hd;
2180 Scsi_Cmnd *cmd;
2181 int x, i;
2182 static int stop = 0;
2183
2184 hd = (struct IN2000_hostdata *) instance->hostdata;
2185
2186/* If 'in' is TRUE we need to _read_ the proc file. We accept the following
2187 * keywords (same format as command-line, but only ONE per read):
2188 * debug
2189 * disconnect
2190 * period
2191 * resync
2192 * proc
2193 */
2194
2195 if (in) {
2196 buf[len] = '\0';
2197 bp = buf;
2198 if (!strncmp(bp, "debug:", 6)) {
2199 bp += 6;
2200 hd->args = simple_strtoul(bp, NULL, 0) & DB_MASK;
2201 } else if (!strncmp(bp, "disconnect:", 11)) {
2202 bp += 11;
2203 x = simple_strtoul(bp, NULL, 0);
2204 if (x < DIS_NEVER || x > DIS_ALWAYS)
2205 x = DIS_ADAPTIVE;
2206 hd->disconnect = x;
2207 } else if (!strncmp(bp, "period:", 7)) {
2208 bp += 7;
2209 x = simple_strtoul(bp, NULL, 0);
2210 hd->default_sx_per = sx_table[round_period((unsigned int) x)].period_ns;
2211 } else if (!strncmp(bp, "resync:", 7)) {
2212 bp += 7;
2213 x = simple_strtoul(bp, NULL, 0);
2214 for (i = 0; i < 7; i++)
2215 if (x & (1 << i))
2216 hd->sync_stat[i] = SS_UNSET;
2217 } else if (!strncmp(bp, "proc:", 5)) {
2218 bp += 5;
2219 hd->proc = simple_strtoul(bp, NULL, 0);
2220 } else if (!strncmp(bp, "level2:", 7)) {
2221 bp += 7;
2222 hd->level2 = simple_strtoul(bp, NULL, 0);
2223 }
2224 return len;
2225 }
2226
2227 spin_lock_irqsave(instance->host_lock, flags);
2228 bp = buf;
2229 *bp = '\0';
2230 if (hd->proc & PR_VERSION) {
2231 sprintf(tbuf, "\nVersion %s - %s. Compiled %s %s", IN2000_VERSION, IN2000_DATE, __DATE__, __TIME__);
2232 strcat(bp, tbuf);
2233 }
2234 if (hd->proc & PR_INFO) {
2235 sprintf(tbuf, "\ndip_switch=%02x: irq=%d io=%02x floppy=%s sync/DOS5=%s", (hd->dip_switch & 0x7f), instance->irq, hd->io_base, (hd->dip_switch & 0x40) ? "Yes" : "No", (hd->dip_switch & 0x20) ? "Yes" : "No");
2236 strcat(bp, tbuf);
2237 strcat(bp, "\nsync_xfer[] = ");
2238 for (x = 0; x < 7; x++) {
2239 sprintf(tbuf, "\t%02x", hd->sync_xfer[x]);
2240 strcat(bp, tbuf);
2241 }
2242 strcat(bp, "\nsync_stat[] = ");
2243 for (x = 0; x < 7; x++) {
2244 sprintf(tbuf, "\t%02x", hd->sync_stat[x]);
2245 strcat(bp, tbuf);
2246 }
2247 }
2248#ifdef PROC_STATISTICS
2249 if (hd->proc & PR_STATISTICS) {
2250 strcat(bp, "\ncommands issued: ");
2251 for (x = 0; x < 7; x++) {
2252 sprintf(tbuf, "\t%ld", hd->cmd_cnt[x]);
2253 strcat(bp, tbuf);
2254 }
2255 strcat(bp, "\ndisconnects allowed:");
2256 for (x = 0; x < 7; x++) {
2257 sprintf(tbuf, "\t%ld", hd->disc_allowed_cnt[x]);
2258 strcat(bp, tbuf);
2259 }
2260 strcat(bp, "\ndisconnects done: ");
2261 for (x = 0; x < 7; x++) {
2262 sprintf(tbuf, "\t%ld", hd->disc_done_cnt[x]);
2263 strcat(bp, tbuf);
2264 }
2265 sprintf(tbuf, "\ninterrupts: \t%ld", hd->int_cnt);
2266 strcat(bp, tbuf);
2267 }
2268#endif
2269 if (hd->proc & PR_CONNECTED) {
2270 strcat(bp, "\nconnected: ");
2271 if (hd->connected) {
2272 cmd = (Scsi_Cmnd *) hd->connected;
Matthew Wilcox12a44162007-09-18 19:54:43 -06002273 sprintf(tbuf, " %ld-%d:%d(%02x)", cmd->serial_number, cmd->device->id, cmd->device->lun, cmd->cmnd[0]);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002274 strcat(bp, tbuf);
2275 }
2276 }
2277 if (hd->proc & PR_INPUTQ) {
2278 strcat(bp, "\ninput_Q: ");
2279 cmd = (Scsi_Cmnd *) hd->input_Q;
2280 while (cmd) {
Matthew Wilcox12a44162007-09-18 19:54:43 -06002281 sprintf(tbuf, " %ld-%d:%d(%02x)", cmd->serial_number, cmd->device->id, cmd->device->lun, cmd->cmnd[0]);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002282 strcat(bp, tbuf);
2283 cmd = (Scsi_Cmnd *) cmd->host_scribble;
2284 }
2285 }
2286 if (hd->proc & PR_DISCQ) {
2287 strcat(bp, "\ndisconnected_Q:");
2288 cmd = (Scsi_Cmnd *) hd->disconnected_Q;
2289 while (cmd) {
Matthew Wilcox12a44162007-09-18 19:54:43 -06002290 sprintf(tbuf, " %ld-%d:%d(%02x)", cmd->serial_number, cmd->device->id, cmd->device->lun, cmd->cmnd[0]);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002291 strcat(bp, tbuf);
2292 cmd = (Scsi_Cmnd *) cmd->host_scribble;
2293 }
2294 }
2295 if (hd->proc & PR_TEST) {
2296 ; /* insert your own custom function here */
2297 }
2298 strcat(bp, "\n");
2299 spin_unlock_irqrestore(instance->host_lock, flags);
2300 *start = buf;
2301 if (stop) {
2302 stop = 0;
2303 return 0; /* return 0 to signal end-of-file */
2304 }
2305 if (off > 0x40000) /* ALWAYS stop after 256k bytes have been read */
2306 stop = 1;
2307 if (hd->proc & PR_STOP) /* stop every other time */
2308 stop = 1;
2309 return strlen(bp);
2310
2311#else /* PROC_INTERFACE */
2312
2313 return 0;
2314
2315#endif /* PROC_INTERFACE */
2316
2317}
2318
2319MODULE_LICENSE("GPL");
2320
2321
Christoph Hellwigd0be4a7d2005-10-31 18:31:40 +01002322static struct scsi_host_template driver_template = {
Linus Torvalds1da177e2005-04-16 15:20:36 -07002323 .proc_name = "in2000",
2324 .proc_info = in2000_proc_info,
2325 .name = "Always IN2000",
2326 .detect = in2000_detect,
2327 .release = in2000_release,
2328 .queuecommand = in2000_queuecommand,
2329 .eh_abort_handler = in2000_abort,
2330 .eh_bus_reset_handler = in2000_bus_reset,
Linus Torvalds1da177e2005-04-16 15:20:36 -07002331 .bios_param = in2000_biosparam,
2332 .can_queue = IN2000_CAN_Q,
2333 .this_id = IN2000_HOST_ID,
2334 .sg_tablesize = IN2000_SG,
2335 .cmd_per_lun = IN2000_CPL,
2336 .use_clustering = DISABLE_CLUSTERING,
2337};
2338#include "scsi_module.c"