Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 1 | #ifndef _ASM_M32R_BITOPS_H |
| 2 | #define _ASM_M32R_BITOPS_H |
| 3 | |
| 4 | /* |
| 5 | * linux/include/asm-m32r/bitops.h |
| 6 | * |
| 7 | * Copyright 1992, Linus Torvalds. |
| 8 | * |
| 9 | * M32R version: |
| 10 | * Copyright (C) 2001, 2002 Hitoshi Yamamoto |
| 11 | * Copyright (C) 2004 Hirokazu Takata <takata at linux-m32r.org> |
| 12 | */ |
| 13 | |
| 14 | #include <linux/config.h> |
| 15 | #include <linux/compiler.h> |
| 16 | #include <asm/assembler.h> |
| 17 | #include <asm/system.h> |
| 18 | #include <asm/byteorder.h> |
| 19 | #include <asm/types.h> |
| 20 | |
| 21 | /* |
| 22 | * These have to be done with inline assembly: that way the bit-setting |
| 23 | * is guaranteed to be atomic. All bit operations return 0 if the bit |
| 24 | * was cleared before the operation and != 0 if it was not. |
| 25 | * |
| 26 | * bit 0 is the LSB of addr; bit 32 is the LSB of (addr+1). |
| 27 | */ |
| 28 | |
| 29 | /** |
| 30 | * set_bit - Atomically set a bit in memory |
| 31 | * @nr: the bit to set |
| 32 | * @addr: the address to start counting from |
| 33 | * |
| 34 | * This function is atomic and may not be reordered. See __set_bit() |
| 35 | * if you do not require the atomic guarantees. |
| 36 | * Note that @nr may be almost arbitrarily large; this function is not |
| 37 | * restricted to acting on a single-word quantity. |
| 38 | */ |
| 39 | static __inline__ void set_bit(int nr, volatile void * addr) |
| 40 | { |
| 41 | __u32 mask; |
| 42 | volatile __u32 *a = addr; |
| 43 | unsigned long flags; |
| 44 | unsigned long tmp; |
| 45 | |
| 46 | a += (nr >> 5); |
| 47 | mask = (1 << (nr & 0x1F)); |
| 48 | |
| 49 | local_irq_save(flags); |
| 50 | __asm__ __volatile__ ( |
| 51 | DCACHE_CLEAR("%0", "r6", "%1") |
| 52 | M32R_LOCK" %0, @%1; \n\t" |
| 53 | "or %0, %2; \n\t" |
| 54 | M32R_UNLOCK" %0, @%1; \n\t" |
| 55 | : "=&r" (tmp) |
| 56 | : "r" (a), "r" (mask) |
| 57 | : "memory" |
| 58 | #ifdef CONFIG_CHIP_M32700_TS1 |
| 59 | , "r6" |
| 60 | #endif /* CONFIG_CHIP_M32700_TS1 */ |
| 61 | ); |
| 62 | local_irq_restore(flags); |
| 63 | } |
| 64 | |
| 65 | /** |
| 66 | * __set_bit - Set a bit in memory |
| 67 | * @nr: the bit to set |
| 68 | * @addr: the address to start counting from |
| 69 | * |
| 70 | * Unlike set_bit(), this function is non-atomic and may be reordered. |
| 71 | * If it's called on the same region of memory simultaneously, the effect |
| 72 | * may be that only one operation succeeds. |
| 73 | */ |
| 74 | static __inline__ void __set_bit(int nr, volatile void * addr) |
| 75 | { |
| 76 | __u32 mask; |
| 77 | volatile __u32 *a = addr; |
| 78 | |
| 79 | a += (nr >> 5); |
| 80 | mask = (1 << (nr & 0x1F)); |
| 81 | *a |= mask; |
| 82 | } |
| 83 | |
| 84 | /** |
| 85 | * clear_bit - Clears a bit in memory |
| 86 | * @nr: Bit to clear |
| 87 | * @addr: Address to start counting from |
| 88 | * |
| 89 | * clear_bit() is atomic and may not be reordered. However, it does |
| 90 | * not contain a memory barrier, so if it is used for locking purposes, |
| 91 | * you should call smp_mb__before_clear_bit() and/or smp_mb__after_clear_bit() |
| 92 | * in order to ensure changes are visible on other processors. |
| 93 | */ |
| 94 | static __inline__ void clear_bit(int nr, volatile void * addr) |
| 95 | { |
| 96 | __u32 mask; |
| 97 | volatile __u32 *a = addr; |
| 98 | unsigned long flags; |
| 99 | unsigned long tmp; |
| 100 | |
| 101 | a += (nr >> 5); |
| 102 | mask = (1 << (nr & 0x1F)); |
| 103 | |
| 104 | local_irq_save(flags); |
| 105 | |
| 106 | __asm__ __volatile__ ( |
| 107 | DCACHE_CLEAR("%0", "r6", "%1") |
| 108 | M32R_LOCK" %0, @%1; \n\t" |
| 109 | "and %0, %2; \n\t" |
| 110 | M32R_UNLOCK" %0, @%1; \n\t" |
| 111 | : "=&r" (tmp) |
| 112 | : "r" (a), "r" (~mask) |
| 113 | : "memory" |
| 114 | #ifdef CONFIG_CHIP_M32700_TS1 |
| 115 | , "r6" |
| 116 | #endif /* CONFIG_CHIP_M32700_TS1 */ |
| 117 | ); |
| 118 | local_irq_restore(flags); |
| 119 | } |
| 120 | |
| 121 | static __inline__ void __clear_bit(int nr, volatile unsigned long * addr) |
| 122 | { |
| 123 | unsigned long mask; |
| 124 | volatile unsigned long *a = addr; |
| 125 | |
| 126 | a += (nr >> 5); |
| 127 | mask = (1 << (nr & 0x1F)); |
| 128 | *a &= ~mask; |
| 129 | } |
| 130 | |
| 131 | #define smp_mb__before_clear_bit() barrier() |
| 132 | #define smp_mb__after_clear_bit() barrier() |
| 133 | |
| 134 | /** |
| 135 | * __change_bit - Toggle a bit in memory |
| 136 | * @nr: the bit to set |
| 137 | * @addr: the address to start counting from |
| 138 | * |
| 139 | * Unlike change_bit(), this function is non-atomic and may be reordered. |
| 140 | * If it's called on the same region of memory simultaneously, the effect |
| 141 | * may be that only one operation succeeds. |
| 142 | */ |
| 143 | static __inline__ void __change_bit(int nr, volatile void * addr) |
| 144 | { |
| 145 | __u32 mask; |
| 146 | volatile __u32 *a = addr; |
| 147 | |
| 148 | a += (nr >> 5); |
| 149 | mask = (1 << (nr & 0x1F)); |
| 150 | *a ^= mask; |
| 151 | } |
| 152 | |
| 153 | /** |
| 154 | * change_bit - Toggle a bit in memory |
| 155 | * @nr: Bit to clear |
| 156 | * @addr: Address to start counting from |
| 157 | * |
| 158 | * change_bit() is atomic and may not be reordered. |
| 159 | * Note that @nr may be almost arbitrarily large; this function is not |
| 160 | * restricted to acting on a single-word quantity. |
| 161 | */ |
| 162 | static __inline__ void change_bit(int nr, volatile void * addr) |
| 163 | { |
| 164 | __u32 mask; |
| 165 | volatile __u32 *a = addr; |
| 166 | unsigned long flags; |
| 167 | unsigned long tmp; |
| 168 | |
| 169 | a += (nr >> 5); |
| 170 | mask = (1 << (nr & 0x1F)); |
| 171 | |
| 172 | local_irq_save(flags); |
| 173 | __asm__ __volatile__ ( |
| 174 | DCACHE_CLEAR("%0", "r6", "%1") |
| 175 | M32R_LOCK" %0, @%1; \n\t" |
| 176 | "xor %0, %2; \n\t" |
| 177 | M32R_UNLOCK" %0, @%1; \n\t" |
| 178 | : "=&r" (tmp) |
| 179 | : "r" (a), "r" (mask) |
| 180 | : "memory" |
| 181 | #ifdef CONFIG_CHIP_M32700_TS1 |
| 182 | , "r6" |
| 183 | #endif /* CONFIG_CHIP_M32700_TS1 */ |
| 184 | ); |
| 185 | local_irq_restore(flags); |
| 186 | } |
| 187 | |
| 188 | /** |
| 189 | * test_and_set_bit - Set a bit and return its old value |
| 190 | * @nr: Bit to set |
| 191 | * @addr: Address to count from |
| 192 | * |
| 193 | * This operation is atomic and cannot be reordered. |
| 194 | * It also implies a memory barrier. |
| 195 | */ |
| 196 | static __inline__ int test_and_set_bit(int nr, volatile void * addr) |
| 197 | { |
| 198 | __u32 mask, oldbit; |
| 199 | volatile __u32 *a = addr; |
| 200 | unsigned long flags; |
| 201 | unsigned long tmp; |
| 202 | |
| 203 | a += (nr >> 5); |
| 204 | mask = (1 << (nr & 0x1F)); |
| 205 | |
| 206 | local_irq_save(flags); |
| 207 | __asm__ __volatile__ ( |
| 208 | DCACHE_CLEAR("%0", "%1", "%2") |
| 209 | M32R_LOCK" %0, @%2; \n\t" |
| 210 | "mv %1, %0; \n\t" |
| 211 | "and %0, %3; \n\t" |
| 212 | "or %1, %3; \n\t" |
| 213 | M32R_UNLOCK" %1, @%2; \n\t" |
| 214 | : "=&r" (oldbit), "=&r" (tmp) |
| 215 | : "r" (a), "r" (mask) |
| 216 | : "memory" |
| 217 | ); |
| 218 | local_irq_restore(flags); |
| 219 | |
| 220 | return (oldbit != 0); |
| 221 | } |
| 222 | |
| 223 | /** |
| 224 | * __test_and_set_bit - Set a bit and return its old value |
| 225 | * @nr: Bit to set |
| 226 | * @addr: Address to count from |
| 227 | * |
| 228 | * This operation is non-atomic and can be reordered. |
| 229 | * If two examples of this operation race, one can appear to succeed |
| 230 | * but actually fail. You must protect multiple accesses with a lock. |
| 231 | */ |
| 232 | static __inline__ int __test_and_set_bit(int nr, volatile void * addr) |
| 233 | { |
| 234 | __u32 mask, oldbit; |
| 235 | volatile __u32 *a = addr; |
| 236 | |
| 237 | a += (nr >> 5); |
| 238 | mask = (1 << (nr & 0x1F)); |
| 239 | oldbit = (*a & mask); |
| 240 | *a |= mask; |
| 241 | |
| 242 | return (oldbit != 0); |
| 243 | } |
| 244 | |
| 245 | /** |
| 246 | * test_and_clear_bit - Clear a bit and return its old value |
| 247 | * @nr: Bit to set |
| 248 | * @addr: Address to count from |
| 249 | * |
| 250 | * This operation is atomic and cannot be reordered. |
| 251 | * It also implies a memory barrier. |
| 252 | */ |
| 253 | static __inline__ int test_and_clear_bit(int nr, volatile void * addr) |
| 254 | { |
| 255 | __u32 mask, oldbit; |
| 256 | volatile __u32 *a = addr; |
| 257 | unsigned long flags; |
| 258 | unsigned long tmp; |
| 259 | |
| 260 | a += (nr >> 5); |
| 261 | mask = (1 << (nr & 0x1F)); |
| 262 | |
| 263 | local_irq_save(flags); |
| 264 | |
| 265 | __asm__ __volatile__ ( |
| 266 | DCACHE_CLEAR("%0", "%1", "%3") |
| 267 | M32R_LOCK" %0, @%3; \n\t" |
| 268 | "mv %1, %0; \n\t" |
| 269 | "and %0, %2; \n\t" |
| 270 | "not %2, %2; \n\t" |
| 271 | "and %1, %2; \n\t" |
| 272 | M32R_UNLOCK" %1, @%3; \n\t" |
| 273 | : "=&r" (oldbit), "=&r" (tmp), "+r" (mask) |
| 274 | : "r" (a) |
| 275 | : "memory" |
| 276 | ); |
| 277 | local_irq_restore(flags); |
| 278 | |
| 279 | return (oldbit != 0); |
| 280 | } |
| 281 | |
| 282 | /** |
| 283 | * __test_and_clear_bit - Clear a bit and return its old value |
| 284 | * @nr: Bit to set |
| 285 | * @addr: Address to count from |
| 286 | * |
| 287 | * This operation is non-atomic and can be reordered. |
| 288 | * If two examples of this operation race, one can appear to succeed |
| 289 | * but actually fail. You must protect multiple accesses with a lock. |
| 290 | */ |
| 291 | static __inline__ int __test_and_clear_bit(int nr, volatile void * addr) |
| 292 | { |
| 293 | __u32 mask, oldbit; |
| 294 | volatile __u32 *a = addr; |
| 295 | |
| 296 | a += (nr >> 5); |
| 297 | mask = (1 << (nr & 0x1F)); |
| 298 | oldbit = (*a & mask); |
| 299 | *a &= ~mask; |
| 300 | |
| 301 | return (oldbit != 0); |
| 302 | } |
| 303 | |
| 304 | /* WARNING: non atomic and it can be reordered! */ |
| 305 | static __inline__ int __test_and_change_bit(int nr, volatile void * addr) |
| 306 | { |
| 307 | __u32 mask, oldbit; |
| 308 | volatile __u32 *a = addr; |
| 309 | |
| 310 | a += (nr >> 5); |
| 311 | mask = (1 << (nr & 0x1F)); |
| 312 | oldbit = (*a & mask); |
| 313 | *a ^= mask; |
| 314 | |
| 315 | return (oldbit != 0); |
| 316 | } |
| 317 | |
| 318 | /** |
| 319 | * test_and_change_bit - Change a bit and return its old value |
| 320 | * @nr: Bit to set |
| 321 | * @addr: Address to count from |
| 322 | * |
| 323 | * This operation is atomic and cannot be reordered. |
| 324 | * It also implies a memory barrier. |
| 325 | */ |
| 326 | static __inline__ int test_and_change_bit(int nr, volatile void * addr) |
| 327 | { |
| 328 | __u32 mask, oldbit; |
| 329 | volatile __u32 *a = addr; |
| 330 | unsigned long flags; |
| 331 | unsigned long tmp; |
| 332 | |
| 333 | a += (nr >> 5); |
| 334 | mask = (1 << (nr & 0x1F)); |
| 335 | |
| 336 | local_irq_save(flags); |
| 337 | __asm__ __volatile__ ( |
| 338 | DCACHE_CLEAR("%0", "%1", "%2") |
| 339 | M32R_LOCK" %0, @%2; \n\t" |
| 340 | "mv %1, %0; \n\t" |
| 341 | "and %0, %3; \n\t" |
| 342 | "xor %1, %3; \n\t" |
| 343 | M32R_UNLOCK" %1, @%2; \n\t" |
| 344 | : "=&r" (oldbit), "=&r" (tmp) |
| 345 | : "r" (a), "r" (mask) |
| 346 | : "memory" |
| 347 | ); |
| 348 | local_irq_restore(flags); |
| 349 | |
| 350 | return (oldbit != 0); |
| 351 | } |
| 352 | |
| 353 | /** |
| 354 | * test_bit - Determine whether a bit is set |
| 355 | * @nr: bit number to test |
| 356 | * @addr: Address to start counting from |
| 357 | */ |
| 358 | static __inline__ int test_bit(int nr, const volatile void * addr) |
| 359 | { |
| 360 | __u32 mask; |
| 361 | const volatile __u32 *a = addr; |
| 362 | |
| 363 | a += (nr >> 5); |
| 364 | mask = (1 << (nr & 0x1F)); |
| 365 | |
| 366 | return ((*a & mask) != 0); |
| 367 | } |
| 368 | |
| 369 | /** |
| 370 | * ffz - find first zero in word. |
| 371 | * @word: The word to search |
| 372 | * |
| 373 | * Undefined if no zero exists, so code should check against ~0UL first. |
| 374 | */ |
| 375 | static __inline__ unsigned long ffz(unsigned long word) |
| 376 | { |
| 377 | int k; |
| 378 | |
| 379 | word = ~word; |
| 380 | k = 0; |
| 381 | if (!(word & 0x0000ffff)) { k += 16; word >>= 16; } |
| 382 | if (!(word & 0x000000ff)) { k += 8; word >>= 8; } |
| 383 | if (!(word & 0x0000000f)) { k += 4; word >>= 4; } |
| 384 | if (!(word & 0x00000003)) { k += 2; word >>= 2; } |
| 385 | if (!(word & 0x00000001)) { k += 1; } |
| 386 | |
| 387 | return k; |
| 388 | } |
| 389 | |
| 390 | /** |
| 391 | * find_first_zero_bit - find the first zero bit in a memory region |
| 392 | * @addr: The address to start the search at |
| 393 | * @size: The maximum size to search |
| 394 | * |
| 395 | * Returns the bit-number of the first zero bit, not the number of the byte |
| 396 | * containing a bit. |
| 397 | */ |
| 398 | |
| 399 | #define find_first_zero_bit(addr, size) \ |
| 400 | find_next_zero_bit((addr), (size), 0) |
| 401 | |
| 402 | /** |
| 403 | * find_next_zero_bit - find the first zero bit in a memory region |
| 404 | * @addr: The address to base the search on |
| 405 | * @offset: The bitnumber to start searching at |
| 406 | * @size: The maximum size to search |
| 407 | */ |
| 408 | static __inline__ int find_next_zero_bit(const unsigned long *addr, |
| 409 | int size, int offset) |
| 410 | { |
| 411 | const unsigned long *p = addr + (offset >> 5); |
| 412 | unsigned long result = offset & ~31UL; |
| 413 | unsigned long tmp; |
| 414 | |
| 415 | if (offset >= size) |
| 416 | return size; |
| 417 | size -= result; |
| 418 | offset &= 31UL; |
| 419 | if (offset) { |
| 420 | tmp = *(p++); |
| 421 | tmp |= ~0UL >> (32-offset); |
| 422 | if (size < 32) |
| 423 | goto found_first; |
| 424 | if (~tmp) |
| 425 | goto found_middle; |
| 426 | size -= 32; |
| 427 | result += 32; |
| 428 | } |
| 429 | while (size & ~31UL) { |
| 430 | if (~(tmp = *(p++))) |
| 431 | goto found_middle; |
| 432 | result += 32; |
| 433 | size -= 32; |
| 434 | } |
| 435 | if (!size) |
| 436 | return result; |
| 437 | tmp = *p; |
| 438 | |
| 439 | found_first: |
| 440 | tmp |= ~0UL << size; |
| 441 | found_middle: |
| 442 | return result + ffz(tmp); |
| 443 | } |
| 444 | |
| 445 | /** |
| 446 | * __ffs - find first bit in word. |
| 447 | * @word: The word to search |
| 448 | * |
| 449 | * Undefined if no bit exists, so code should check against 0 first. |
| 450 | */ |
| 451 | static __inline__ unsigned long __ffs(unsigned long word) |
| 452 | { |
| 453 | int k = 0; |
| 454 | |
| 455 | if (!(word & 0x0000ffff)) { k += 16; word >>= 16; } |
| 456 | if (!(word & 0x000000ff)) { k += 8; word >>= 8; } |
| 457 | if (!(word & 0x0000000f)) { k += 4; word >>= 4; } |
| 458 | if (!(word & 0x00000003)) { k += 2; word >>= 2; } |
| 459 | if (!(word & 0x00000001)) { k += 1;} |
| 460 | |
| 461 | return k; |
| 462 | } |
| 463 | |
| 464 | /* |
| 465 | * fls: find last bit set. |
| 466 | */ |
| 467 | #define fls(x) generic_fls(x) |
| 468 | |
| 469 | #ifdef __KERNEL__ |
| 470 | |
| 471 | /* |
| 472 | * Every architecture must define this function. It's the fastest |
| 473 | * way of searching a 140-bit bitmap where the first 100 bits are |
| 474 | * unlikely to be set. It's guaranteed that at least one of the 140 |
| 475 | * bits is cleared. |
| 476 | */ |
| 477 | static inline int sched_find_first_bit(unsigned long *b) |
| 478 | { |
| 479 | if (unlikely(b[0])) |
| 480 | return __ffs(b[0]); |
| 481 | if (unlikely(b[1])) |
| 482 | return __ffs(b[1]) + 32; |
| 483 | if (unlikely(b[2])) |
| 484 | return __ffs(b[2]) + 64; |
| 485 | if (b[3]) |
| 486 | return __ffs(b[3]) + 96; |
| 487 | return __ffs(b[4]) + 128; |
| 488 | } |
| 489 | |
| 490 | /** |
| 491 | * find_next_bit - find the first set bit in a memory region |
| 492 | * @addr: The address to base the search on |
| 493 | * @offset: The bitnumber to start searching at |
| 494 | * @size: The maximum size to search |
| 495 | */ |
| 496 | static inline unsigned long find_next_bit(const unsigned long *addr, |
| 497 | unsigned long size, unsigned long offset) |
| 498 | { |
| 499 | unsigned int *p = ((unsigned int *) addr) + (offset >> 5); |
| 500 | unsigned int result = offset & ~31UL; |
| 501 | unsigned int tmp; |
| 502 | |
| 503 | if (offset >= size) |
| 504 | return size; |
| 505 | size -= result; |
| 506 | offset &= 31UL; |
| 507 | if (offset) { |
| 508 | tmp = *p++; |
| 509 | tmp &= ~0UL << offset; |
| 510 | if (size < 32) |
| 511 | goto found_first; |
| 512 | if (tmp) |
| 513 | goto found_middle; |
| 514 | size -= 32; |
| 515 | result += 32; |
| 516 | } |
| 517 | while (size >= 32) { |
| 518 | if ((tmp = *p++) != 0) |
| 519 | goto found_middle; |
| 520 | result += 32; |
| 521 | size -= 32; |
| 522 | } |
| 523 | if (!size) |
| 524 | return result; |
| 525 | tmp = *p; |
| 526 | |
| 527 | found_first: |
| 528 | tmp &= ~0UL >> (32 - size); |
| 529 | if (tmp == 0UL) /* Are any bits set? */ |
| 530 | return result + size; /* Nope. */ |
| 531 | found_middle: |
| 532 | return result + __ffs(tmp); |
| 533 | } |
| 534 | |
| 535 | /** |
| 536 | * find_first_bit - find the first set bit in a memory region |
| 537 | * @addr: The address to start the search at |
| 538 | * @size: The maximum size to search |
| 539 | * |
| 540 | * Returns the bit-number of the first set bit, not the number of the byte |
| 541 | * containing a bit. |
| 542 | */ |
| 543 | #define find_first_bit(addr, size) \ |
| 544 | find_next_bit((addr), (size), 0) |
| 545 | |
| 546 | /** |
| 547 | * ffs - find first bit set |
| 548 | * @x: the word to search |
| 549 | * |
| 550 | * This is defined the same way as |
| 551 | * the libc and compiler builtin ffs routines, therefore |
| 552 | * differs in spirit from the above ffz (man ffs). |
| 553 | */ |
| 554 | #define ffs(x) generic_ffs(x) |
| 555 | |
| 556 | /** |
| 557 | * hweightN - returns the hamming weight of a N-bit word |
| 558 | * @x: the word to weigh |
| 559 | * |
| 560 | * The Hamming Weight of a number is the total number of bits set in it. |
| 561 | */ |
| 562 | |
| 563 | #define hweight32(x) generic_hweight32(x) |
| 564 | #define hweight16(x) generic_hweight16(x) |
| 565 | #define hweight8(x) generic_hweight8(x) |
| 566 | |
| 567 | #endif /* __KERNEL__ */ |
| 568 | |
| 569 | #ifdef __KERNEL__ |
| 570 | |
| 571 | /* |
| 572 | * ext2_XXXX function |
| 573 | * orig: include/asm-sh/bitops.h |
| 574 | */ |
| 575 | |
| 576 | #ifdef __LITTLE_ENDIAN__ |
| 577 | #define ext2_set_bit test_and_set_bit |
| 578 | #define ext2_clear_bit __test_and_clear_bit |
| 579 | #define ext2_test_bit test_bit |
| 580 | #define ext2_find_first_zero_bit find_first_zero_bit |
| 581 | #define ext2_find_next_zero_bit find_next_zero_bit |
| 582 | #else |
| 583 | static inline int ext2_set_bit(int nr, volatile void * addr) |
| 584 | { |
| 585 | __u8 mask, oldbit; |
| 586 | volatile __u8 *a = addr; |
| 587 | |
| 588 | a += (nr >> 3); |
| 589 | mask = (1 << (nr & 0x07)); |
| 590 | oldbit = (*a & mask); |
| 591 | *a |= mask; |
| 592 | |
| 593 | return (oldbit != 0); |
| 594 | } |
| 595 | |
| 596 | static inline int ext2_clear_bit(int nr, volatile void * addr) |
| 597 | { |
| 598 | __u8 mask, oldbit; |
| 599 | volatile __u8 *a = addr; |
| 600 | |
| 601 | a += (nr >> 3); |
| 602 | mask = (1 << (nr & 0x07)); |
| 603 | oldbit = (*a & mask); |
| 604 | *a &= ~mask; |
| 605 | |
| 606 | return (oldbit != 0); |
| 607 | } |
| 608 | |
| 609 | static inline int ext2_test_bit(int nr, const volatile void * addr) |
| 610 | { |
| 611 | __u32 mask; |
| 612 | const volatile __u8 *a = addr; |
| 613 | |
| 614 | a += (nr >> 3); |
| 615 | mask = (1 << (nr & 0x07)); |
| 616 | |
| 617 | return ((mask & *a) != 0); |
| 618 | } |
| 619 | |
| 620 | #define ext2_find_first_zero_bit(addr, size) \ |
| 621 | ext2_find_next_zero_bit((addr), (size), 0) |
| 622 | |
| 623 | static inline unsigned long ext2_find_next_zero_bit(void *addr, |
| 624 | unsigned long size, unsigned long offset) |
| 625 | { |
| 626 | unsigned long *p = ((unsigned long *) addr) + (offset >> 5); |
| 627 | unsigned long result = offset & ~31UL; |
| 628 | unsigned long tmp; |
| 629 | |
| 630 | if (offset >= size) |
| 631 | return size; |
| 632 | size -= result; |
| 633 | offset &= 31UL; |
| 634 | if(offset) { |
| 635 | /* We hold the little endian value in tmp, but then the |
| 636 | * shift is illegal. So we could keep a big endian value |
| 637 | * in tmp, like this: |
| 638 | * |
| 639 | * tmp = __swab32(*(p++)); |
| 640 | * tmp |= ~0UL >> (32-offset); |
| 641 | * |
| 642 | * but this would decrease preformance, so we change the |
| 643 | * shift: |
| 644 | */ |
| 645 | tmp = *(p++); |
| 646 | tmp |= __swab32(~0UL >> (32-offset)); |
| 647 | if(size < 32) |
| 648 | goto found_first; |
| 649 | if(~tmp) |
| 650 | goto found_middle; |
| 651 | size -= 32; |
| 652 | result += 32; |
| 653 | } |
| 654 | while(size & ~31UL) { |
| 655 | if(~(tmp = *(p++))) |
| 656 | goto found_middle; |
| 657 | result += 32; |
| 658 | size -= 32; |
| 659 | } |
| 660 | if(!size) |
| 661 | return result; |
| 662 | tmp = *p; |
| 663 | |
| 664 | found_first: |
| 665 | /* tmp is little endian, so we would have to swab the shift, |
| 666 | * see above. But then we have to swab tmp below for ffz, so |
| 667 | * we might as well do this here. |
| 668 | */ |
| 669 | return result + ffz(__swab32(tmp) | (~0UL << size)); |
| 670 | found_middle: |
| 671 | return result + ffz(__swab32(tmp)); |
| 672 | } |
| 673 | #endif |
| 674 | |
| 675 | #define ext2_set_bit_atomic(lock, nr, addr) \ |
| 676 | ({ \ |
| 677 | int ret; \ |
| 678 | spin_lock(lock); \ |
| 679 | ret = ext2_set_bit((nr), (addr)); \ |
| 680 | spin_unlock(lock); \ |
| 681 | ret; \ |
| 682 | }) |
| 683 | |
| 684 | #define ext2_clear_bit_atomic(lock, nr, addr) \ |
| 685 | ({ \ |
| 686 | int ret; \ |
| 687 | spin_lock(lock); \ |
| 688 | ret = ext2_clear_bit((nr), (addr)); \ |
| 689 | spin_unlock(lock); \ |
| 690 | ret; \ |
| 691 | }) |
| 692 | |
| 693 | /* Bitmap functions for the minix filesystem. */ |
| 694 | #define minix_test_and_set_bit(nr,addr) __test_and_set_bit(nr,addr) |
| 695 | #define minix_set_bit(nr,addr) __set_bit(nr,addr) |
| 696 | #define minix_test_and_clear_bit(nr,addr) __test_and_clear_bit(nr,addr) |
| 697 | #define minix_test_bit(nr,addr) test_bit(nr,addr) |
| 698 | #define minix_find_first_zero_bit(addr,size) find_first_zero_bit(addr,size) |
| 699 | |
| 700 | #endif /* __KERNEL__ */ |
| 701 | |
| 702 | #endif /* _ASM_M32R_BITOPS_H */ |