Avi Kivity | 6aa8b73 | 2006-12-10 02:21:36 -0800 | [diff] [blame] | 1 | /* |
| 2 | * Kernel-based Virtual Machine driver for Linux |
| 3 | * |
| 4 | * This module enables machines with Intel VT-x extensions to run virtual |
| 5 | * machines without emulation or binary translation. |
| 6 | * |
| 7 | * MMU support |
| 8 | * |
| 9 | * Copyright (C) 2006 Qumranet, Inc. |
| 10 | * |
| 11 | * Authors: |
| 12 | * Yaniv Kamay <yaniv@qumranet.com> |
| 13 | * Avi Kivity <avi@qumranet.com> |
| 14 | * |
| 15 | * This work is licensed under the terms of the GNU GPL, version 2. See |
| 16 | * the COPYING file in the top-level directory. |
| 17 | * |
| 18 | */ |
| 19 | |
| 20 | /* |
| 21 | * We need the mmu code to access both 32-bit and 64-bit guest ptes, |
| 22 | * so the code in this file is compiled twice, once per pte size. |
| 23 | */ |
| 24 | |
| 25 | #if PTTYPE == 64 |
| 26 | #define pt_element_t u64 |
| 27 | #define guest_walker guest_walker64 |
| 28 | #define FNAME(name) paging##64_##name |
| 29 | #define PT_BASE_ADDR_MASK PT64_BASE_ADDR_MASK |
| 30 | #define PT_DIR_BASE_ADDR_MASK PT64_DIR_BASE_ADDR_MASK |
| 31 | #define PT_INDEX(addr, level) PT64_INDEX(addr, level) |
| 32 | #define SHADOW_PT_INDEX(addr, level) PT64_INDEX(addr, level) |
| 33 | #define PT_LEVEL_MASK(level) PT64_LEVEL_MASK(level) |
| 34 | #define PT_PTE_COPY_MASK PT64_PTE_COPY_MASK |
| 35 | #define PT_NON_PTE_COPY_MASK PT64_NON_PTE_COPY_MASK |
| 36 | #elif PTTYPE == 32 |
| 37 | #define pt_element_t u32 |
| 38 | #define guest_walker guest_walker32 |
| 39 | #define FNAME(name) paging##32_##name |
| 40 | #define PT_BASE_ADDR_MASK PT32_BASE_ADDR_MASK |
| 41 | #define PT_DIR_BASE_ADDR_MASK PT32_DIR_BASE_ADDR_MASK |
| 42 | #define PT_INDEX(addr, level) PT32_INDEX(addr, level) |
| 43 | #define SHADOW_PT_INDEX(addr, level) PT64_INDEX(addr, level) |
| 44 | #define PT_LEVEL_MASK(level) PT32_LEVEL_MASK(level) |
| 45 | #define PT_PTE_COPY_MASK PT32_PTE_COPY_MASK |
| 46 | #define PT_NON_PTE_COPY_MASK PT32_NON_PTE_COPY_MASK |
| 47 | #else |
| 48 | #error Invalid PTTYPE value |
| 49 | #endif |
| 50 | |
| 51 | /* |
| 52 | * The guest_walker structure emulates the behavior of the hardware page |
| 53 | * table walker. |
| 54 | */ |
| 55 | struct guest_walker { |
| 56 | int level; |
| 57 | pt_element_t *table; |
| 58 | pt_element_t inherited_ar; |
| 59 | }; |
| 60 | |
| 61 | static void FNAME(init_walker)(struct guest_walker *walker, |
| 62 | struct kvm_vcpu *vcpu) |
| 63 | { |
| 64 | hpa_t hpa; |
| 65 | struct kvm_memory_slot *slot; |
| 66 | |
| 67 | walker->level = vcpu->mmu.root_level; |
| 68 | slot = gfn_to_memslot(vcpu->kvm, |
| 69 | (vcpu->cr3 & PT64_BASE_ADDR_MASK) >> PAGE_SHIFT); |
| 70 | hpa = safe_gpa_to_hpa(vcpu, vcpu->cr3 & PT64_BASE_ADDR_MASK); |
| 71 | walker->table = kmap_atomic(pfn_to_page(hpa >> PAGE_SHIFT), KM_USER0); |
| 72 | |
| 73 | ASSERT((!kvm_arch_ops->is_long_mode(vcpu) && is_pae(vcpu)) || |
| 74 | (vcpu->cr3 & ~(PAGE_MASK | CR3_FLAGS_MASK)) == 0); |
| 75 | |
| 76 | walker->table = (pt_element_t *)( (unsigned long)walker->table | |
| 77 | (unsigned long)(vcpu->cr3 & ~(PAGE_MASK | CR3_FLAGS_MASK)) ); |
| 78 | walker->inherited_ar = PT_USER_MASK | PT_WRITABLE_MASK; |
| 79 | } |
| 80 | |
| 81 | static void FNAME(release_walker)(struct guest_walker *walker) |
| 82 | { |
| 83 | kunmap_atomic(walker->table, KM_USER0); |
| 84 | } |
| 85 | |
| 86 | static void FNAME(set_pte)(struct kvm_vcpu *vcpu, u64 guest_pte, |
| 87 | u64 *shadow_pte, u64 access_bits) |
| 88 | { |
| 89 | ASSERT(*shadow_pte == 0); |
| 90 | access_bits &= guest_pte; |
| 91 | *shadow_pte = (guest_pte & PT_PTE_COPY_MASK); |
| 92 | set_pte_common(vcpu, shadow_pte, guest_pte & PT_BASE_ADDR_MASK, |
| 93 | guest_pte & PT_DIRTY_MASK, access_bits); |
| 94 | } |
| 95 | |
| 96 | static void FNAME(set_pde)(struct kvm_vcpu *vcpu, u64 guest_pde, |
| 97 | u64 *shadow_pte, u64 access_bits, |
| 98 | int index) |
| 99 | { |
| 100 | gpa_t gaddr; |
| 101 | |
| 102 | ASSERT(*shadow_pte == 0); |
| 103 | access_bits &= guest_pde; |
| 104 | gaddr = (guest_pde & PT_DIR_BASE_ADDR_MASK) + PAGE_SIZE * index; |
| 105 | if (PTTYPE == 32 && is_cpuid_PSE36()) |
| 106 | gaddr |= (guest_pde & PT32_DIR_PSE36_MASK) << |
| 107 | (32 - PT32_DIR_PSE36_SHIFT); |
| 108 | *shadow_pte = (guest_pde & (PT_NON_PTE_COPY_MASK | PT_GLOBAL_MASK)) | |
| 109 | ((guest_pde & PT_DIR_PAT_MASK) >> |
| 110 | (PT_DIR_PAT_SHIFT - PT_PAT_SHIFT)); |
| 111 | set_pte_common(vcpu, shadow_pte, gaddr, |
| 112 | guest_pde & PT_DIRTY_MASK, access_bits); |
| 113 | } |
| 114 | |
| 115 | /* |
| 116 | * Fetch a guest pte from a specific level in the paging hierarchy. |
| 117 | */ |
| 118 | static pt_element_t *FNAME(fetch_guest)(struct kvm_vcpu *vcpu, |
| 119 | struct guest_walker *walker, |
| 120 | int level, |
| 121 | gva_t addr) |
| 122 | { |
| 123 | |
| 124 | ASSERT(level > 0 && level <= walker->level); |
| 125 | |
| 126 | for (;;) { |
| 127 | int index = PT_INDEX(addr, walker->level); |
| 128 | hpa_t paddr; |
| 129 | |
| 130 | ASSERT(((unsigned long)walker->table & PAGE_MASK) == |
| 131 | ((unsigned long)&walker->table[index] & PAGE_MASK)); |
| 132 | if (level == walker->level || |
| 133 | !is_present_pte(walker->table[index]) || |
| 134 | (walker->level == PT_DIRECTORY_LEVEL && |
| 135 | (walker->table[index] & PT_PAGE_SIZE_MASK) && |
| 136 | (PTTYPE == 64 || is_pse(vcpu)))) |
| 137 | return &walker->table[index]; |
| 138 | if (walker->level != 3 || kvm_arch_ops->is_long_mode(vcpu)) |
| 139 | walker->inherited_ar &= walker->table[index]; |
| 140 | paddr = safe_gpa_to_hpa(vcpu, walker->table[index] & PT_BASE_ADDR_MASK); |
| 141 | kunmap_atomic(walker->table, KM_USER0); |
| 142 | walker->table = kmap_atomic(pfn_to_page(paddr >> PAGE_SHIFT), |
| 143 | KM_USER0); |
| 144 | --walker->level; |
| 145 | } |
| 146 | } |
| 147 | |
| 148 | /* |
| 149 | * Fetch a shadow pte for a specific level in the paging hierarchy. |
| 150 | */ |
| 151 | static u64 *FNAME(fetch)(struct kvm_vcpu *vcpu, gva_t addr, |
| 152 | struct guest_walker *walker) |
| 153 | { |
| 154 | hpa_t shadow_addr; |
| 155 | int level; |
| 156 | u64 *prev_shadow_ent = NULL; |
| 157 | |
| 158 | shadow_addr = vcpu->mmu.root_hpa; |
| 159 | level = vcpu->mmu.shadow_root_level; |
| 160 | |
| 161 | for (; ; level--) { |
| 162 | u32 index = SHADOW_PT_INDEX(addr, level); |
| 163 | u64 *shadow_ent = ((u64 *)__va(shadow_addr)) + index; |
| 164 | pt_element_t *guest_ent; |
| 165 | |
| 166 | if (is_present_pte(*shadow_ent) || is_io_pte(*shadow_ent)) { |
| 167 | if (level == PT_PAGE_TABLE_LEVEL) |
| 168 | return shadow_ent; |
| 169 | shadow_addr = *shadow_ent & PT64_BASE_ADDR_MASK; |
| 170 | prev_shadow_ent = shadow_ent; |
| 171 | continue; |
| 172 | } |
| 173 | |
| 174 | if (PTTYPE == 32 && level > PT32_ROOT_LEVEL) { |
| 175 | ASSERT(level == PT32E_ROOT_LEVEL); |
| 176 | guest_ent = FNAME(fetch_guest)(vcpu, walker, |
| 177 | PT32_ROOT_LEVEL, addr); |
| 178 | } else |
| 179 | guest_ent = FNAME(fetch_guest)(vcpu, walker, |
| 180 | level, addr); |
| 181 | |
| 182 | if (!is_present_pte(*guest_ent)) |
| 183 | return NULL; |
| 184 | |
| 185 | /* Don't set accessed bit on PAE PDPTRs */ |
| 186 | if (vcpu->mmu.root_level != 3 || walker->level != 3) |
| 187 | *guest_ent |= PT_ACCESSED_MASK; |
| 188 | |
| 189 | if (level == PT_PAGE_TABLE_LEVEL) { |
| 190 | |
| 191 | if (walker->level == PT_DIRECTORY_LEVEL) { |
| 192 | if (prev_shadow_ent) |
| 193 | *prev_shadow_ent |= PT_SHADOW_PS_MARK; |
| 194 | FNAME(set_pde)(vcpu, *guest_ent, shadow_ent, |
| 195 | walker->inherited_ar, |
| 196 | PT_INDEX(addr, PT_PAGE_TABLE_LEVEL)); |
| 197 | } else { |
| 198 | ASSERT(walker->level == PT_PAGE_TABLE_LEVEL); |
| 199 | FNAME(set_pte)(vcpu, *guest_ent, shadow_ent, walker->inherited_ar); |
| 200 | } |
| 201 | return shadow_ent; |
| 202 | } |
| 203 | |
| 204 | shadow_addr = kvm_mmu_alloc_page(vcpu, shadow_ent); |
| 205 | if (!VALID_PAGE(shadow_addr)) |
| 206 | return ERR_PTR(-ENOMEM); |
| 207 | if (!kvm_arch_ops->is_long_mode(vcpu) && level == 3) |
| 208 | *shadow_ent = shadow_addr | |
| 209 | (*guest_ent & (PT_PRESENT_MASK | PT_PWT_MASK | PT_PCD_MASK)); |
| 210 | else { |
| 211 | *shadow_ent = shadow_addr | |
| 212 | (*guest_ent & PT_NON_PTE_COPY_MASK); |
| 213 | *shadow_ent |= (PT_WRITABLE_MASK | PT_USER_MASK); |
| 214 | } |
| 215 | prev_shadow_ent = shadow_ent; |
| 216 | } |
| 217 | } |
| 218 | |
| 219 | /* |
| 220 | * The guest faulted for write. We need to |
| 221 | * |
| 222 | * - check write permissions |
| 223 | * - update the guest pte dirty bit |
| 224 | * - update our own dirty page tracking structures |
| 225 | */ |
| 226 | static int FNAME(fix_write_pf)(struct kvm_vcpu *vcpu, |
| 227 | u64 *shadow_ent, |
| 228 | struct guest_walker *walker, |
| 229 | gva_t addr, |
| 230 | int user) |
| 231 | { |
| 232 | pt_element_t *guest_ent; |
| 233 | int writable_shadow; |
| 234 | gfn_t gfn; |
| 235 | |
| 236 | if (is_writeble_pte(*shadow_ent)) |
| 237 | return 0; |
| 238 | |
| 239 | writable_shadow = *shadow_ent & PT_SHADOW_WRITABLE_MASK; |
| 240 | if (user) { |
| 241 | /* |
| 242 | * User mode access. Fail if it's a kernel page or a read-only |
| 243 | * page. |
| 244 | */ |
| 245 | if (!(*shadow_ent & PT_SHADOW_USER_MASK) || !writable_shadow) |
| 246 | return 0; |
| 247 | ASSERT(*shadow_ent & PT_USER_MASK); |
| 248 | } else |
| 249 | /* |
| 250 | * Kernel mode access. Fail if it's a read-only page and |
| 251 | * supervisor write protection is enabled. |
| 252 | */ |
| 253 | if (!writable_shadow) { |
| 254 | if (is_write_protection(vcpu)) |
| 255 | return 0; |
| 256 | *shadow_ent &= ~PT_USER_MASK; |
| 257 | } |
| 258 | |
| 259 | guest_ent = FNAME(fetch_guest)(vcpu, walker, PT_PAGE_TABLE_LEVEL, addr); |
| 260 | |
| 261 | if (!is_present_pte(*guest_ent)) { |
| 262 | *shadow_ent = 0; |
| 263 | return 0; |
| 264 | } |
| 265 | |
| 266 | gfn = (*guest_ent & PT64_BASE_ADDR_MASK) >> PAGE_SHIFT; |
| 267 | mark_page_dirty(vcpu->kvm, gfn); |
| 268 | *shadow_ent |= PT_WRITABLE_MASK; |
| 269 | *guest_ent |= PT_DIRTY_MASK; |
| 270 | |
| 271 | return 1; |
| 272 | } |
| 273 | |
| 274 | /* |
| 275 | * Page fault handler. There are several causes for a page fault: |
| 276 | * - there is no shadow pte for the guest pte |
| 277 | * - write access through a shadow pte marked read only so that we can set |
| 278 | * the dirty bit |
| 279 | * - write access to a shadow pte marked read only so we can update the page |
| 280 | * dirty bitmap, when userspace requests it |
| 281 | * - mmio access; in this case we will never install a present shadow pte |
| 282 | * - normal guest page fault due to the guest pte marked not present, not |
| 283 | * writable, or not executable |
| 284 | * |
| 285 | * Returns: 1 if we need to emulate the instruction, 0 otherwise |
| 286 | */ |
| 287 | static int FNAME(page_fault)(struct kvm_vcpu *vcpu, gva_t addr, |
| 288 | u32 error_code) |
| 289 | { |
| 290 | int write_fault = error_code & PFERR_WRITE_MASK; |
| 291 | int pte_present = error_code & PFERR_PRESENT_MASK; |
| 292 | int user_fault = error_code & PFERR_USER_MASK; |
| 293 | struct guest_walker walker; |
| 294 | u64 *shadow_pte; |
| 295 | int fixed; |
| 296 | |
| 297 | /* |
| 298 | * Look up the shadow pte for the faulting address. |
| 299 | */ |
| 300 | for (;;) { |
| 301 | FNAME(init_walker)(&walker, vcpu); |
| 302 | shadow_pte = FNAME(fetch)(vcpu, addr, &walker); |
| 303 | if (IS_ERR(shadow_pte)) { /* must be -ENOMEM */ |
| 304 | nonpaging_flush(vcpu); |
| 305 | FNAME(release_walker)(&walker); |
| 306 | continue; |
| 307 | } |
| 308 | break; |
| 309 | } |
| 310 | |
| 311 | /* |
| 312 | * The page is not mapped by the guest. Let the guest handle it. |
| 313 | */ |
| 314 | if (!shadow_pte) { |
| 315 | inject_page_fault(vcpu, addr, error_code); |
| 316 | FNAME(release_walker)(&walker); |
| 317 | return 0; |
| 318 | } |
| 319 | |
| 320 | /* |
| 321 | * Update the shadow pte. |
| 322 | */ |
| 323 | if (write_fault) |
| 324 | fixed = FNAME(fix_write_pf)(vcpu, shadow_pte, &walker, addr, |
| 325 | user_fault); |
| 326 | else |
| 327 | fixed = fix_read_pf(shadow_pte); |
| 328 | |
| 329 | FNAME(release_walker)(&walker); |
| 330 | |
| 331 | /* |
| 332 | * mmio: emulate if accessible, otherwise its a guest fault. |
| 333 | */ |
| 334 | if (is_io_pte(*shadow_pte)) { |
| 335 | if (may_access(*shadow_pte, write_fault, user_fault)) |
| 336 | return 1; |
| 337 | pgprintk("%s: io work, no access\n", __FUNCTION__); |
| 338 | inject_page_fault(vcpu, addr, |
| 339 | error_code | PFERR_PRESENT_MASK); |
| 340 | return 0; |
| 341 | } |
| 342 | |
| 343 | /* |
| 344 | * pte not present, guest page fault. |
| 345 | */ |
| 346 | if (pte_present && !fixed) { |
| 347 | inject_page_fault(vcpu, addr, error_code); |
| 348 | return 0; |
| 349 | } |
| 350 | |
| 351 | ++kvm_stat.pf_fixed; |
| 352 | |
| 353 | return 0; |
| 354 | } |
| 355 | |
| 356 | static gpa_t FNAME(gva_to_gpa)(struct kvm_vcpu *vcpu, gva_t vaddr) |
| 357 | { |
| 358 | struct guest_walker walker; |
| 359 | pt_element_t guest_pte; |
| 360 | gpa_t gpa; |
| 361 | |
| 362 | FNAME(init_walker)(&walker, vcpu); |
| 363 | guest_pte = *FNAME(fetch_guest)(vcpu, &walker, PT_PAGE_TABLE_LEVEL, |
| 364 | vaddr); |
| 365 | FNAME(release_walker)(&walker); |
| 366 | |
| 367 | if (!is_present_pte(guest_pte)) |
| 368 | return UNMAPPED_GVA; |
| 369 | |
| 370 | if (walker.level == PT_DIRECTORY_LEVEL) { |
| 371 | ASSERT((guest_pte & PT_PAGE_SIZE_MASK)); |
| 372 | ASSERT(PTTYPE == 64 || is_pse(vcpu)); |
| 373 | |
| 374 | gpa = (guest_pte & PT_DIR_BASE_ADDR_MASK) | (vaddr & |
| 375 | (PT_LEVEL_MASK(PT_PAGE_TABLE_LEVEL) | ~PAGE_MASK)); |
| 376 | |
| 377 | if (PTTYPE == 32 && is_cpuid_PSE36()) |
| 378 | gpa |= (guest_pte & PT32_DIR_PSE36_MASK) << |
| 379 | (32 - PT32_DIR_PSE36_SHIFT); |
| 380 | } else { |
| 381 | gpa = (guest_pte & PT_BASE_ADDR_MASK); |
| 382 | gpa |= (vaddr & ~PAGE_MASK); |
| 383 | } |
| 384 | |
| 385 | return gpa; |
| 386 | } |
| 387 | |
| 388 | #undef pt_element_t |
| 389 | #undef guest_walker |
| 390 | #undef FNAME |
| 391 | #undef PT_BASE_ADDR_MASK |
| 392 | #undef PT_INDEX |
| 393 | #undef SHADOW_PT_INDEX |
| 394 | #undef PT_LEVEL_MASK |
| 395 | #undef PT_PTE_COPY_MASK |
| 396 | #undef PT_NON_PTE_COPY_MASK |
| 397 | #undef PT_DIR_BASE_ADDR_MASK |