Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 1 | /** |
| 2 | * attrib.c - NTFS attribute operations. Part of the Linux-NTFS project. |
| 3 | * |
| 4 | * Copyright (c) 2001-2004 Anton Altaparmakov |
| 5 | * Copyright (c) 2002 Richard Russon |
| 6 | * |
| 7 | * This program/include file is free software; you can redistribute it and/or |
| 8 | * modify it under the terms of the GNU General Public License as published |
| 9 | * by the Free Software Foundation; either version 2 of the License, or |
| 10 | * (at your option) any later version. |
| 11 | * |
| 12 | * This program/include file is distributed in the hope that it will be |
| 13 | * useful, but WITHOUT ANY WARRANTY; without even the implied warranty |
| 14 | * of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
| 15 | * GNU General Public License for more details. |
| 16 | * |
| 17 | * You should have received a copy of the GNU General Public License |
| 18 | * along with this program (in the main directory of the Linux-NTFS |
| 19 | * distribution in the file COPYING); if not, write to the Free Software |
| 20 | * Foundation,Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA |
| 21 | */ |
| 22 | |
| 23 | #include <linux/buffer_head.h> |
| 24 | |
| 25 | #include "attrib.h" |
| 26 | #include "debug.h" |
| 27 | #include "layout.h" |
| 28 | #include "mft.h" |
| 29 | #include "ntfs.h" |
| 30 | #include "types.h" |
| 31 | |
| 32 | /** |
| 33 | * ntfs_map_runlist - map (a part of) a runlist of an ntfs inode |
| 34 | * @ni: ntfs inode for which to map (part of) a runlist |
| 35 | * @vcn: map runlist part containing this vcn |
| 36 | * |
| 37 | * Map the part of a runlist containing the @vcn of the ntfs inode @ni. |
| 38 | * |
| 39 | * Return 0 on success and -errno on error. |
| 40 | * |
| 41 | * Locking: - The runlist must be unlocked on entry and is unlocked on return. |
| 42 | * - This function takes the lock for writing and modifies the runlist. |
| 43 | */ |
| 44 | int ntfs_map_runlist(ntfs_inode *ni, VCN vcn) |
| 45 | { |
| 46 | ntfs_inode *base_ni; |
| 47 | ntfs_attr_search_ctx *ctx; |
| 48 | MFT_RECORD *mrec; |
| 49 | int err = 0; |
| 50 | |
| 51 | ntfs_debug("Mapping runlist part containing vcn 0x%llx.", |
| 52 | (unsigned long long)vcn); |
| 53 | |
| 54 | if (!NInoAttr(ni)) |
| 55 | base_ni = ni; |
| 56 | else |
| 57 | base_ni = ni->ext.base_ntfs_ino; |
| 58 | |
| 59 | mrec = map_mft_record(base_ni); |
| 60 | if (IS_ERR(mrec)) |
| 61 | return PTR_ERR(mrec); |
| 62 | ctx = ntfs_attr_get_search_ctx(base_ni, mrec); |
| 63 | if (unlikely(!ctx)) { |
| 64 | err = -ENOMEM; |
| 65 | goto err_out; |
| 66 | } |
| 67 | err = ntfs_attr_lookup(ni->type, ni->name, ni->name_len, |
| 68 | CASE_SENSITIVE, vcn, NULL, 0, ctx); |
| 69 | if (unlikely(err)) |
| 70 | goto put_err_out; |
| 71 | |
| 72 | down_write(&ni->runlist.lock); |
| 73 | /* Make sure someone else didn't do the work while we were sleeping. */ |
| 74 | if (likely(ntfs_rl_vcn_to_lcn(ni->runlist.rl, vcn) <= |
| 75 | LCN_RL_NOT_MAPPED)) { |
| 76 | runlist_element *rl; |
| 77 | |
| 78 | rl = ntfs_mapping_pairs_decompress(ni->vol, ctx->attr, |
| 79 | ni->runlist.rl); |
| 80 | if (IS_ERR(rl)) |
| 81 | err = PTR_ERR(rl); |
| 82 | else |
| 83 | ni->runlist.rl = rl; |
| 84 | } |
| 85 | up_write(&ni->runlist.lock); |
| 86 | |
| 87 | put_err_out: |
| 88 | ntfs_attr_put_search_ctx(ctx); |
| 89 | err_out: |
| 90 | unmap_mft_record(base_ni); |
| 91 | return err; |
| 92 | } |
| 93 | |
| 94 | /** |
| 95 | * ntfs_find_vcn - find a vcn in the runlist described by an ntfs inode |
| 96 | * @ni: ntfs inode describing the runlist to search |
| 97 | * @vcn: vcn to find |
| 98 | * @need_write: if false, lock for reading and if true, lock for writing |
| 99 | * |
| 100 | * Find the virtual cluster number @vcn in the runlist described by the ntfs |
| 101 | * inode @ni and return the address of the runlist element containing the @vcn. |
| 102 | * The runlist is left locked and the caller has to unlock it. If @need_write |
| 103 | * is true, the runlist is locked for writing and if @need_write is false, the |
| 104 | * runlist is locked for reading. In the error case, the runlist is not left |
| 105 | * locked. |
| 106 | * |
| 107 | * Note you need to distinguish between the lcn of the returned runlist element |
| 108 | * being >= 0 and LCN_HOLE. In the later case you have to return zeroes on |
| 109 | * read and allocate clusters on write. |
| 110 | * |
| 111 | * Return the runlist element containing the @vcn on success and |
| 112 | * ERR_PTR(-errno) on error. You need to test the return value with IS_ERR() |
| 113 | * to decide if the return is success or failure and PTR_ERR() to get to the |
| 114 | * error code if IS_ERR() is true. |
| 115 | * |
| 116 | * The possible error return codes are: |
| 117 | * -ENOENT - No such vcn in the runlist, i.e. @vcn is out of bounds. |
| 118 | * -ENOMEM - Not enough memory to map runlist. |
| 119 | * -EIO - Critical error (runlist/file is corrupt, i/o error, etc). |
| 120 | * |
| 121 | * Locking: - The runlist must be unlocked on entry. |
| 122 | * - On failing return, the runlist is unlocked. |
| 123 | * - On successful return, the runlist is locked. If @need_write us |
| 124 | * true, it is locked for writing. Otherwise is is locked for |
| 125 | * reading. |
| 126 | */ |
| 127 | runlist_element *ntfs_find_vcn(ntfs_inode *ni, const VCN vcn, |
| 128 | const BOOL need_write) |
| 129 | { |
| 130 | runlist_element *rl; |
| 131 | int err = 0; |
| 132 | BOOL is_retry = FALSE; |
| 133 | |
| 134 | ntfs_debug("Entering for i_ino 0x%lx, vcn 0x%llx, lock for %sing.", |
| 135 | ni->mft_no, (unsigned long long)vcn, |
| 136 | !need_write ? "read" : "writ"); |
| 137 | BUG_ON(!ni); |
| 138 | BUG_ON(!NInoNonResident(ni)); |
| 139 | BUG_ON(vcn < 0); |
| 140 | lock_retry_remap: |
| 141 | if (!need_write) |
| 142 | down_read(&ni->runlist.lock); |
| 143 | else |
| 144 | down_write(&ni->runlist.lock); |
| 145 | rl = ni->runlist.rl; |
| 146 | if (likely(rl && vcn >= rl[0].vcn)) { |
| 147 | while (likely(rl->length)) { |
| 148 | if (likely(vcn < rl[1].vcn)) { |
| 149 | if (likely(rl->lcn >= LCN_HOLE)) { |
| 150 | ntfs_debug("Done."); |
| 151 | return rl; |
| 152 | } |
| 153 | break; |
| 154 | } |
| 155 | rl++; |
| 156 | } |
| 157 | if (likely(rl->lcn != LCN_RL_NOT_MAPPED)) { |
| 158 | if (likely(rl->lcn == LCN_ENOENT)) |
| 159 | err = -ENOENT; |
| 160 | else |
| 161 | err = -EIO; |
| 162 | } |
| 163 | } |
| 164 | if (!need_write) |
| 165 | up_read(&ni->runlist.lock); |
| 166 | else |
| 167 | up_write(&ni->runlist.lock); |
| 168 | if (!err && !is_retry) { |
| 169 | /* |
| 170 | * The @vcn is in an unmapped region, map the runlist and |
| 171 | * retry. |
| 172 | */ |
| 173 | err = ntfs_map_runlist(ni, vcn); |
| 174 | if (likely(!err)) { |
| 175 | is_retry = TRUE; |
| 176 | goto lock_retry_remap; |
| 177 | } |
| 178 | /* |
| 179 | * -EINVAL and -ENOENT coming from a failed mapping attempt are |
| 180 | * equivalent to i/o errors for us as they should not happen in |
| 181 | * our code paths. |
| 182 | */ |
| 183 | if (err == -EINVAL || err == -ENOENT) |
| 184 | err = -EIO; |
| 185 | } else if (!err) |
| 186 | err = -EIO; |
| 187 | ntfs_error(ni->vol->sb, "Failed with error code %i.", err); |
| 188 | return ERR_PTR(err); |
| 189 | } |
| 190 | |
| 191 | /** |
| 192 | * ntfs_attr_find - find (next) attribute in mft record |
| 193 | * @type: attribute type to find |
| 194 | * @name: attribute name to find (optional, i.e. NULL means don't care) |
| 195 | * @name_len: attribute name length (only needed if @name present) |
| 196 | * @ic: IGNORE_CASE or CASE_SENSITIVE (ignored if @name not present) |
| 197 | * @val: attribute value to find (optional, resident attributes only) |
| 198 | * @val_len: attribute value length |
| 199 | * @ctx: search context with mft record and attribute to search from |
| 200 | * |
| 201 | * You should not need to call this function directly. Use ntfs_attr_lookup() |
| 202 | * instead. |
| 203 | * |
| 204 | * ntfs_attr_find() takes a search context @ctx as parameter and searches the |
| 205 | * mft record specified by @ctx->mrec, beginning at @ctx->attr, for an |
| 206 | * attribute of @type, optionally @name and @val. |
| 207 | * |
| 208 | * If the attribute is found, ntfs_attr_find() returns 0 and @ctx->attr will |
| 209 | * point to the found attribute. |
| 210 | * |
| 211 | * If the attribute is not found, ntfs_attr_find() returns -ENOENT and |
| 212 | * @ctx->attr will point to the attribute before which the attribute being |
| 213 | * searched for would need to be inserted if such an action were to be desired. |
| 214 | * |
| 215 | * On actual error, ntfs_attr_find() returns -EIO. In this case @ctx->attr is |
| 216 | * undefined and in particular do not rely on it not changing. |
| 217 | * |
| 218 | * If @ctx->is_first is TRUE, the search begins with @ctx->attr itself. If it |
| 219 | * is FALSE, the search begins after @ctx->attr. |
| 220 | * |
| 221 | * If @ic is IGNORE_CASE, the @name comparisson is not case sensitive and |
| 222 | * @ctx->ntfs_ino must be set to the ntfs inode to which the mft record |
| 223 | * @ctx->mrec belongs. This is so we can get at the ntfs volume and hence at |
| 224 | * the upcase table. If @ic is CASE_SENSITIVE, the comparison is case |
| 225 | * sensitive. When @name is present, @name_len is the @name length in Unicode |
| 226 | * characters. |
| 227 | * |
| 228 | * If @name is not present (NULL), we assume that the unnamed attribute is |
| 229 | * being searched for. |
| 230 | * |
| 231 | * Finally, the resident attribute value @val is looked for, if present. If |
| 232 | * @val is not present (NULL), @val_len is ignored. |
| 233 | * |
| 234 | * ntfs_attr_find() only searches the specified mft record and it ignores the |
| 235 | * presence of an attribute list attribute (unless it is the one being searched |
| 236 | * for, obviously). If you need to take attribute lists into consideration, |
| 237 | * use ntfs_attr_lookup() instead (see below). This also means that you cannot |
| 238 | * use ntfs_attr_find() to search for extent records of non-resident |
| 239 | * attributes, as extents with lowest_vcn != 0 are usually described by the |
| 240 | * attribute list attribute only. - Note that it is possible that the first |
| 241 | * extent is only in the attribute list while the last extent is in the base |
| 242 | * mft record, so do not rely on being able to find the first extent in the |
| 243 | * base mft record. |
| 244 | * |
| 245 | * Warning: Never use @val when looking for attribute types which can be |
| 246 | * non-resident as this most likely will result in a crash! |
| 247 | */ |
| 248 | static int ntfs_attr_find(const ATTR_TYPE type, const ntfschar *name, |
| 249 | const u32 name_len, const IGNORE_CASE_BOOL ic, |
| 250 | const u8 *val, const u32 val_len, ntfs_attr_search_ctx *ctx) |
| 251 | { |
| 252 | ATTR_RECORD *a; |
| 253 | ntfs_volume *vol = ctx->ntfs_ino->vol; |
| 254 | ntfschar *upcase = vol->upcase; |
| 255 | u32 upcase_len = vol->upcase_len; |
| 256 | |
| 257 | /* |
| 258 | * Iterate over attributes in mft record starting at @ctx->attr, or the |
| 259 | * attribute following that, if @ctx->is_first is TRUE. |
| 260 | */ |
| 261 | if (ctx->is_first) { |
| 262 | a = ctx->attr; |
| 263 | ctx->is_first = FALSE; |
| 264 | } else |
| 265 | a = (ATTR_RECORD*)((u8*)ctx->attr + |
| 266 | le32_to_cpu(ctx->attr->length)); |
| 267 | for (;; a = (ATTR_RECORD*)((u8*)a + le32_to_cpu(a->length))) { |
| 268 | if ((u8*)a < (u8*)ctx->mrec || (u8*)a > (u8*)ctx->mrec + |
| 269 | le32_to_cpu(ctx->mrec->bytes_allocated)) |
| 270 | break; |
| 271 | ctx->attr = a; |
| 272 | if (unlikely(le32_to_cpu(a->type) > le32_to_cpu(type) || |
| 273 | a->type == AT_END)) |
| 274 | return -ENOENT; |
| 275 | if (unlikely(!a->length)) |
| 276 | break; |
| 277 | if (a->type != type) |
| 278 | continue; |
| 279 | /* |
| 280 | * If @name is present, compare the two names. If @name is |
| 281 | * missing, assume we want an unnamed attribute. |
| 282 | */ |
| 283 | if (!name) { |
| 284 | /* The search failed if the found attribute is named. */ |
| 285 | if (a->name_length) |
| 286 | return -ENOENT; |
| 287 | } else if (!ntfs_are_names_equal(name, name_len, |
| 288 | (ntfschar*)((u8*)a + le16_to_cpu(a->name_offset)), |
| 289 | a->name_length, ic, upcase, upcase_len)) { |
| 290 | register int rc; |
| 291 | |
| 292 | rc = ntfs_collate_names(name, name_len, |
| 293 | (ntfschar*)((u8*)a + |
| 294 | le16_to_cpu(a->name_offset)), |
| 295 | a->name_length, 1, IGNORE_CASE, |
| 296 | upcase, upcase_len); |
| 297 | /* |
| 298 | * If @name collates before a->name, there is no |
| 299 | * matching attribute. |
| 300 | */ |
| 301 | if (rc == -1) |
| 302 | return -ENOENT; |
| 303 | /* If the strings are not equal, continue search. */ |
| 304 | if (rc) |
| 305 | continue; |
| 306 | rc = ntfs_collate_names(name, name_len, |
| 307 | (ntfschar*)((u8*)a + |
| 308 | le16_to_cpu(a->name_offset)), |
| 309 | a->name_length, 1, CASE_SENSITIVE, |
| 310 | upcase, upcase_len); |
| 311 | if (rc == -1) |
| 312 | return -ENOENT; |
| 313 | if (rc) |
| 314 | continue; |
| 315 | } |
| 316 | /* |
| 317 | * The names match or @name not present and attribute is |
| 318 | * unnamed. If no @val specified, we have found the attribute |
| 319 | * and are done. |
| 320 | */ |
| 321 | if (!val) |
| 322 | return 0; |
| 323 | /* @val is present; compare values. */ |
| 324 | else { |
| 325 | register int rc; |
| 326 | |
| 327 | rc = memcmp(val, (u8*)a + le16_to_cpu( |
| 328 | a->data.resident.value_offset), |
| 329 | min_t(u32, val_len, le32_to_cpu( |
| 330 | a->data.resident.value_length))); |
| 331 | /* |
| 332 | * If @val collates before the current attribute's |
| 333 | * value, there is no matching attribute. |
| 334 | */ |
| 335 | if (!rc) { |
| 336 | register u32 avl; |
| 337 | |
| 338 | avl = le32_to_cpu( |
| 339 | a->data.resident.value_length); |
| 340 | if (val_len == avl) |
| 341 | return 0; |
| 342 | if (val_len < avl) |
| 343 | return -ENOENT; |
| 344 | } else if (rc < 0) |
| 345 | return -ENOENT; |
| 346 | } |
| 347 | } |
| 348 | ntfs_error(vol->sb, "Inode is corrupt. Run chkdsk."); |
| 349 | NVolSetErrors(vol); |
| 350 | return -EIO; |
| 351 | } |
| 352 | |
| 353 | /** |
| 354 | * load_attribute_list - load an attribute list into memory |
| 355 | * @vol: ntfs volume from which to read |
| 356 | * @runlist: runlist of the attribute list |
| 357 | * @al_start: destination buffer |
| 358 | * @size: size of the destination buffer in bytes |
| 359 | * @initialized_size: initialized size of the attribute list |
| 360 | * |
| 361 | * Walk the runlist @runlist and load all clusters from it copying them into |
| 362 | * the linear buffer @al. The maximum number of bytes copied to @al is @size |
| 363 | * bytes. Note, @size does not need to be a multiple of the cluster size. If |
| 364 | * @initialized_size is less than @size, the region in @al between |
| 365 | * @initialized_size and @size will be zeroed and not read from disk. |
| 366 | * |
| 367 | * Return 0 on success or -errno on error. |
| 368 | */ |
| 369 | int load_attribute_list(ntfs_volume *vol, runlist *runlist, u8 *al_start, |
| 370 | const s64 size, const s64 initialized_size) |
| 371 | { |
| 372 | LCN lcn; |
| 373 | u8 *al = al_start; |
| 374 | u8 *al_end = al + initialized_size; |
| 375 | runlist_element *rl; |
| 376 | struct buffer_head *bh; |
| 377 | struct super_block *sb; |
| 378 | unsigned long block_size; |
| 379 | unsigned long block, max_block; |
| 380 | int err = 0; |
| 381 | unsigned char block_size_bits; |
| 382 | |
| 383 | ntfs_debug("Entering."); |
| 384 | if (!vol || !runlist || !al || size <= 0 || initialized_size < 0 || |
| 385 | initialized_size > size) |
| 386 | return -EINVAL; |
| 387 | if (!initialized_size) { |
| 388 | memset(al, 0, size); |
| 389 | return 0; |
| 390 | } |
| 391 | sb = vol->sb; |
| 392 | block_size = sb->s_blocksize; |
| 393 | block_size_bits = sb->s_blocksize_bits; |
| 394 | down_read(&runlist->lock); |
| 395 | rl = runlist->rl; |
| 396 | /* Read all clusters specified by the runlist one run at a time. */ |
| 397 | while (rl->length) { |
| 398 | lcn = ntfs_rl_vcn_to_lcn(rl, rl->vcn); |
| 399 | ntfs_debug("Reading vcn = 0x%llx, lcn = 0x%llx.", |
| 400 | (unsigned long long)rl->vcn, |
| 401 | (unsigned long long)lcn); |
| 402 | /* The attribute list cannot be sparse. */ |
| 403 | if (lcn < 0) { |
| 404 | ntfs_error(sb, "ntfs_rl_vcn_to_lcn() failed. Cannot " |
| 405 | "read attribute list."); |
| 406 | goto err_out; |
| 407 | } |
| 408 | block = lcn << vol->cluster_size_bits >> block_size_bits; |
| 409 | /* Read the run from device in chunks of block_size bytes. */ |
| 410 | max_block = block + (rl->length << vol->cluster_size_bits >> |
| 411 | block_size_bits); |
| 412 | ntfs_debug("max_block = 0x%lx.", max_block); |
| 413 | do { |
| 414 | ntfs_debug("Reading block = 0x%lx.", block); |
| 415 | bh = sb_bread(sb, block); |
| 416 | if (!bh) { |
| 417 | ntfs_error(sb, "sb_bread() failed. Cannot " |
| 418 | "read attribute list."); |
| 419 | goto err_out; |
| 420 | } |
| 421 | if (al + block_size >= al_end) |
| 422 | goto do_final; |
| 423 | memcpy(al, bh->b_data, block_size); |
| 424 | brelse(bh); |
| 425 | al += block_size; |
| 426 | } while (++block < max_block); |
| 427 | rl++; |
| 428 | } |
| 429 | if (initialized_size < size) { |
| 430 | initialize: |
| 431 | memset(al_start + initialized_size, 0, size - initialized_size); |
| 432 | } |
| 433 | done: |
| 434 | up_read(&runlist->lock); |
| 435 | return err; |
| 436 | do_final: |
| 437 | if (al < al_end) { |
| 438 | /* |
| 439 | * Partial block. |
| 440 | * |
| 441 | * Note: The attribute list can be smaller than its allocation |
| 442 | * by multiple clusters. This has been encountered by at least |
| 443 | * two people running Windows XP, thus we cannot do any |
| 444 | * truncation sanity checking here. (AIA) |
| 445 | */ |
| 446 | memcpy(al, bh->b_data, al_end - al); |
| 447 | brelse(bh); |
| 448 | if (initialized_size < size) |
| 449 | goto initialize; |
| 450 | goto done; |
| 451 | } |
| 452 | brelse(bh); |
| 453 | /* Real overflow! */ |
| 454 | ntfs_error(sb, "Attribute list buffer overflow. Read attribute list " |
| 455 | "is truncated."); |
| 456 | err_out: |
| 457 | err = -EIO; |
| 458 | goto done; |
| 459 | } |
| 460 | |
| 461 | /** |
| 462 | * ntfs_external_attr_find - find an attribute in the attribute list of an inode |
| 463 | * @type: attribute type to find |
| 464 | * @name: attribute name to find (optional, i.e. NULL means don't care) |
| 465 | * @name_len: attribute name length (only needed if @name present) |
| 466 | * @ic: IGNORE_CASE or CASE_SENSITIVE (ignored if @name not present) |
| 467 | * @lowest_vcn: lowest vcn to find (optional, non-resident attributes only) |
| 468 | * @val: attribute value to find (optional, resident attributes only) |
| 469 | * @val_len: attribute value length |
| 470 | * @ctx: search context with mft record and attribute to search from |
| 471 | * |
| 472 | * You should not need to call this function directly. Use ntfs_attr_lookup() |
| 473 | * instead. |
| 474 | * |
| 475 | * Find an attribute by searching the attribute list for the corresponding |
| 476 | * attribute list entry. Having found the entry, map the mft record if the |
| 477 | * attribute is in a different mft record/inode, ntfs_attr_find() the attribute |
| 478 | * in there and return it. |
| 479 | * |
| 480 | * On first search @ctx->ntfs_ino must be the base mft record and @ctx must |
| 481 | * have been obtained from a call to ntfs_attr_get_search_ctx(). On subsequent |
| 482 | * calls @ctx->ntfs_ino can be any extent inode, too (@ctx->base_ntfs_ino is |
| 483 | * then the base inode). |
| 484 | * |
| 485 | * After finishing with the attribute/mft record you need to call |
| 486 | * ntfs_attr_put_search_ctx() to cleanup the search context (unmapping any |
| 487 | * mapped inodes, etc). |
| 488 | * |
| 489 | * If the attribute is found, ntfs_external_attr_find() returns 0 and |
| 490 | * @ctx->attr will point to the found attribute. @ctx->mrec will point to the |
| 491 | * mft record in which @ctx->attr is located and @ctx->al_entry will point to |
| 492 | * the attribute list entry for the attribute. |
| 493 | * |
| 494 | * If the attribute is not found, ntfs_external_attr_find() returns -ENOENT and |
| 495 | * @ctx->attr will point to the attribute in the base mft record before which |
| 496 | * the attribute being searched for would need to be inserted if such an action |
| 497 | * were to be desired. @ctx->mrec will point to the mft record in which |
| 498 | * @ctx->attr is located and @ctx->al_entry will point to the attribute list |
| 499 | * entry of the attribute before which the attribute being searched for would |
| 500 | * need to be inserted if such an action were to be desired. |
| 501 | * |
| 502 | * Thus to insert the not found attribute, one wants to add the attribute to |
| 503 | * @ctx->mrec (the base mft record) and if there is not enough space, the |
| 504 | * attribute should be placed in a newly allocated extent mft record. The |
| 505 | * attribute list entry for the inserted attribute should be inserted in the |
| 506 | * attribute list attribute at @ctx->al_entry. |
| 507 | * |
| 508 | * On actual error, ntfs_external_attr_find() returns -EIO. In this case |
| 509 | * @ctx->attr is undefined and in particular do not rely on it not changing. |
| 510 | */ |
| 511 | static int ntfs_external_attr_find(const ATTR_TYPE type, |
| 512 | const ntfschar *name, const u32 name_len, |
| 513 | const IGNORE_CASE_BOOL ic, const VCN lowest_vcn, |
| 514 | const u8 *val, const u32 val_len, ntfs_attr_search_ctx *ctx) |
| 515 | { |
| 516 | ntfs_inode *base_ni, *ni; |
| 517 | ntfs_volume *vol; |
| 518 | ATTR_LIST_ENTRY *al_entry, *next_al_entry; |
| 519 | u8 *al_start, *al_end; |
| 520 | ATTR_RECORD *a; |
| 521 | ntfschar *al_name; |
| 522 | u32 al_name_len; |
| 523 | int err = 0; |
| 524 | static const char *es = " Unmount and run chkdsk."; |
| 525 | |
| 526 | ni = ctx->ntfs_ino; |
| 527 | base_ni = ctx->base_ntfs_ino; |
| 528 | ntfs_debug("Entering for inode 0x%lx, type 0x%x.", ni->mft_no, type); |
| 529 | if (!base_ni) { |
| 530 | /* First call happens with the base mft record. */ |
| 531 | base_ni = ctx->base_ntfs_ino = ctx->ntfs_ino; |
| 532 | ctx->base_mrec = ctx->mrec; |
| 533 | } |
| 534 | if (ni == base_ni) |
| 535 | ctx->base_attr = ctx->attr; |
| 536 | if (type == AT_END) |
| 537 | goto not_found; |
| 538 | vol = base_ni->vol; |
| 539 | al_start = base_ni->attr_list; |
| 540 | al_end = al_start + base_ni->attr_list_size; |
| 541 | if (!ctx->al_entry) |
| 542 | ctx->al_entry = (ATTR_LIST_ENTRY*)al_start; |
| 543 | /* |
| 544 | * Iterate over entries in attribute list starting at @ctx->al_entry, |
| 545 | * or the entry following that, if @ctx->is_first is TRUE. |
| 546 | */ |
| 547 | if (ctx->is_first) { |
| 548 | al_entry = ctx->al_entry; |
| 549 | ctx->is_first = FALSE; |
| 550 | } else |
| 551 | al_entry = (ATTR_LIST_ENTRY*)((u8*)ctx->al_entry + |
| 552 | le16_to_cpu(ctx->al_entry->length)); |
| 553 | for (;; al_entry = next_al_entry) { |
| 554 | /* Out of bounds check. */ |
| 555 | if ((u8*)al_entry < base_ni->attr_list || |
| 556 | (u8*)al_entry > al_end) |
| 557 | break; /* Inode is corrupt. */ |
| 558 | ctx->al_entry = al_entry; |
| 559 | /* Catch the end of the attribute list. */ |
| 560 | if ((u8*)al_entry == al_end) |
| 561 | goto not_found; |
| 562 | if (!al_entry->length) |
| 563 | break; |
| 564 | if ((u8*)al_entry + 6 > al_end || (u8*)al_entry + |
| 565 | le16_to_cpu(al_entry->length) > al_end) |
| 566 | break; |
| 567 | next_al_entry = (ATTR_LIST_ENTRY*)((u8*)al_entry + |
| 568 | le16_to_cpu(al_entry->length)); |
| 569 | if (le32_to_cpu(al_entry->type) > le32_to_cpu(type)) |
| 570 | goto not_found; |
| 571 | if (type != al_entry->type) |
| 572 | continue; |
| 573 | /* |
| 574 | * If @name is present, compare the two names. If @name is |
| 575 | * missing, assume we want an unnamed attribute. |
| 576 | */ |
| 577 | al_name_len = al_entry->name_length; |
| 578 | al_name = (ntfschar*)((u8*)al_entry + al_entry->name_offset); |
| 579 | if (!name) { |
| 580 | if (al_name_len) |
| 581 | goto not_found; |
| 582 | } else if (!ntfs_are_names_equal(al_name, al_name_len, name, |
| 583 | name_len, ic, vol->upcase, vol->upcase_len)) { |
| 584 | register int rc; |
| 585 | |
| 586 | rc = ntfs_collate_names(name, name_len, al_name, |
| 587 | al_name_len, 1, IGNORE_CASE, |
| 588 | vol->upcase, vol->upcase_len); |
| 589 | /* |
| 590 | * If @name collates before al_name, there is no |
| 591 | * matching attribute. |
| 592 | */ |
| 593 | if (rc == -1) |
| 594 | goto not_found; |
| 595 | /* If the strings are not equal, continue search. */ |
| 596 | if (rc) |
| 597 | continue; |
| 598 | /* |
| 599 | * FIXME: Reverse engineering showed 0, IGNORE_CASE but |
| 600 | * that is inconsistent with ntfs_attr_find(). The |
| 601 | * subsequent rc checks were also different. Perhaps I |
| 602 | * made a mistake in one of the two. Need to recheck |
| 603 | * which is correct or at least see what is going on... |
| 604 | * (AIA) |
| 605 | */ |
| 606 | rc = ntfs_collate_names(name, name_len, al_name, |
| 607 | al_name_len, 1, CASE_SENSITIVE, |
| 608 | vol->upcase, vol->upcase_len); |
| 609 | if (rc == -1) |
| 610 | goto not_found; |
| 611 | if (rc) |
| 612 | continue; |
| 613 | } |
| 614 | /* |
| 615 | * The names match or @name not present and attribute is |
| 616 | * unnamed. Now check @lowest_vcn. Continue search if the |
| 617 | * next attribute list entry still fits @lowest_vcn. Otherwise |
| 618 | * we have reached the right one or the search has failed. |
| 619 | */ |
| 620 | if (lowest_vcn && (u8*)next_al_entry >= al_start && |
| 621 | (u8*)next_al_entry + 6 < al_end && |
| 622 | (u8*)next_al_entry + le16_to_cpu( |
| 623 | next_al_entry->length) <= al_end && |
| 624 | sle64_to_cpu(next_al_entry->lowest_vcn) <= |
| 625 | lowest_vcn && |
| 626 | next_al_entry->type == al_entry->type && |
| 627 | next_al_entry->name_length == al_name_len && |
| 628 | ntfs_are_names_equal((ntfschar*)((u8*) |
| 629 | next_al_entry + |
| 630 | next_al_entry->name_offset), |
| 631 | next_al_entry->name_length, |
| 632 | al_name, al_name_len, CASE_SENSITIVE, |
| 633 | vol->upcase, vol->upcase_len)) |
| 634 | continue; |
| 635 | if (MREF_LE(al_entry->mft_reference) == ni->mft_no) { |
| 636 | if (MSEQNO_LE(al_entry->mft_reference) != ni->seq_no) { |
| 637 | ntfs_error(vol->sb, "Found stale mft " |
| 638 | "reference in attribute list " |
| 639 | "of base inode 0x%lx.%s", |
| 640 | base_ni->mft_no, es); |
| 641 | err = -EIO; |
| 642 | break; |
| 643 | } |
| 644 | } else { /* Mft references do not match. */ |
| 645 | /* If there is a mapped record unmap it first. */ |
| 646 | if (ni != base_ni) |
| 647 | unmap_extent_mft_record(ni); |
| 648 | /* Do we want the base record back? */ |
| 649 | if (MREF_LE(al_entry->mft_reference) == |
| 650 | base_ni->mft_no) { |
| 651 | ni = ctx->ntfs_ino = base_ni; |
| 652 | ctx->mrec = ctx->base_mrec; |
| 653 | } else { |
| 654 | /* We want an extent record. */ |
| 655 | ctx->mrec = map_extent_mft_record(base_ni, |
| 656 | le64_to_cpu( |
| 657 | al_entry->mft_reference), &ni); |
| 658 | if (IS_ERR(ctx->mrec)) { |
| 659 | ntfs_error(vol->sb, "Failed to map " |
| 660 | "extent mft record " |
| 661 | "0x%lx of base inode " |
| 662 | "0x%lx.%s", |
| 663 | MREF_LE(al_entry-> |
| 664 | mft_reference), |
| 665 | base_ni->mft_no, es); |
| 666 | err = PTR_ERR(ctx->mrec); |
| 667 | if (err == -ENOENT) |
| 668 | err = -EIO; |
| 669 | /* Cause @ctx to be sanitized below. */ |
| 670 | ni = NULL; |
| 671 | break; |
| 672 | } |
| 673 | ctx->ntfs_ino = ni; |
| 674 | } |
| 675 | ctx->attr = (ATTR_RECORD*)((u8*)ctx->mrec + |
| 676 | le16_to_cpu(ctx->mrec->attrs_offset)); |
| 677 | } |
| 678 | /* |
| 679 | * ctx->vfs_ino, ctx->mrec, and ctx->attr now point to the |
| 680 | * mft record containing the attribute represented by the |
| 681 | * current al_entry. |
| 682 | */ |
| 683 | /* |
| 684 | * We could call into ntfs_attr_find() to find the right |
| 685 | * attribute in this mft record but this would be less |
| 686 | * efficient and not quite accurate as ntfs_attr_find() ignores |
| 687 | * the attribute instance numbers for example which become |
| 688 | * important when one plays with attribute lists. Also, |
| 689 | * because a proper match has been found in the attribute list |
| 690 | * entry above, the comparison can now be optimized. So it is |
| 691 | * worth re-implementing a simplified ntfs_attr_find() here. |
| 692 | */ |
| 693 | a = ctx->attr; |
| 694 | /* |
| 695 | * Use a manual loop so we can still use break and continue |
| 696 | * with the same meanings as above. |
| 697 | */ |
| 698 | do_next_attr_loop: |
| 699 | if ((u8*)a < (u8*)ctx->mrec || (u8*)a > (u8*)ctx->mrec + |
| 700 | le32_to_cpu(ctx->mrec->bytes_allocated)) |
| 701 | break; |
| 702 | if (a->type == AT_END) |
| 703 | continue; |
| 704 | if (!a->length) |
| 705 | break; |
| 706 | if (al_entry->instance != a->instance) |
| 707 | goto do_next_attr; |
| 708 | /* |
| 709 | * If the type and/or the name are mismatched between the |
| 710 | * attribute list entry and the attribute record, there is |
| 711 | * corruption so we break and return error EIO. |
| 712 | */ |
| 713 | if (al_entry->type != a->type) |
| 714 | break; |
| 715 | if (!ntfs_are_names_equal((ntfschar*)((u8*)a + |
| 716 | le16_to_cpu(a->name_offset)), a->name_length, |
| 717 | al_name, al_name_len, CASE_SENSITIVE, |
| 718 | vol->upcase, vol->upcase_len)) |
| 719 | break; |
| 720 | ctx->attr = a; |
| 721 | /* |
| 722 | * If no @val specified or @val specified and it matches, we |
| 723 | * have found it! |
| 724 | */ |
| 725 | if (!val || (!a->non_resident && le32_to_cpu( |
| 726 | a->data.resident.value_length) == val_len && |
| 727 | !memcmp((u8*)a + |
| 728 | le16_to_cpu(a->data.resident.value_offset), |
| 729 | val, val_len))) { |
| 730 | ntfs_debug("Done, found."); |
| 731 | return 0; |
| 732 | } |
| 733 | do_next_attr: |
| 734 | /* Proceed to the next attribute in the current mft record. */ |
| 735 | a = (ATTR_RECORD*)((u8*)a + le32_to_cpu(a->length)); |
| 736 | goto do_next_attr_loop; |
| 737 | } |
| 738 | if (!err) { |
| 739 | ntfs_error(vol->sb, "Base inode 0x%lx contains corrupt " |
| 740 | "attribute list attribute.%s", base_ni->mft_no, |
| 741 | es); |
| 742 | err = -EIO; |
| 743 | } |
| 744 | if (ni != base_ni) { |
| 745 | if (ni) |
| 746 | unmap_extent_mft_record(ni); |
| 747 | ctx->ntfs_ino = base_ni; |
| 748 | ctx->mrec = ctx->base_mrec; |
| 749 | ctx->attr = ctx->base_attr; |
| 750 | } |
| 751 | if (err != -ENOMEM) |
| 752 | NVolSetErrors(vol); |
| 753 | return err; |
| 754 | not_found: |
| 755 | /* |
| 756 | * If we were looking for AT_END, we reset the search context @ctx and |
| 757 | * use ntfs_attr_find() to seek to the end of the base mft record. |
| 758 | */ |
| 759 | if (type == AT_END) { |
| 760 | ntfs_attr_reinit_search_ctx(ctx); |
| 761 | return ntfs_attr_find(AT_END, name, name_len, ic, val, val_len, |
| 762 | ctx); |
| 763 | } |
| 764 | /* |
| 765 | * The attribute was not found. Before we return, we want to ensure |
| 766 | * @ctx->mrec and @ctx->attr indicate the position at which the |
| 767 | * attribute should be inserted in the base mft record. Since we also |
| 768 | * want to preserve @ctx->al_entry we cannot reinitialize the search |
| 769 | * context using ntfs_attr_reinit_search_ctx() as this would set |
| 770 | * @ctx->al_entry to NULL. Thus we do the necessary bits manually (see |
| 771 | * ntfs_attr_init_search_ctx() below). Note, we _only_ preserve |
| 772 | * @ctx->al_entry as the remaining fields (base_*) are identical to |
| 773 | * their non base_ counterparts and we cannot set @ctx->base_attr |
| 774 | * correctly yet as we do not know what @ctx->attr will be set to by |
| 775 | * the call to ntfs_attr_find() below. |
| 776 | */ |
| 777 | if (ni != base_ni) |
| 778 | unmap_extent_mft_record(ni); |
| 779 | ctx->mrec = ctx->base_mrec; |
| 780 | ctx->attr = (ATTR_RECORD*)((u8*)ctx->mrec + |
| 781 | le16_to_cpu(ctx->mrec->attrs_offset)); |
| 782 | ctx->is_first = TRUE; |
| 783 | ctx->ntfs_ino = base_ni; |
| 784 | ctx->base_ntfs_ino = NULL; |
| 785 | ctx->base_mrec = NULL; |
| 786 | ctx->base_attr = NULL; |
| 787 | /* |
| 788 | * In case there are multiple matches in the base mft record, need to |
| 789 | * keep enumerating until we get an attribute not found response (or |
| 790 | * another error), otherwise we would keep returning the same attribute |
| 791 | * over and over again and all programs using us for enumeration would |
| 792 | * lock up in a tight loop. |
| 793 | */ |
| 794 | do { |
| 795 | err = ntfs_attr_find(type, name, name_len, ic, val, val_len, |
| 796 | ctx); |
| 797 | } while (!err); |
| 798 | ntfs_debug("Done, not found."); |
| 799 | return err; |
| 800 | } |
| 801 | |
| 802 | /** |
| 803 | * ntfs_attr_lookup - find an attribute in an ntfs inode |
| 804 | * @type: attribute type to find |
| 805 | * @name: attribute name to find (optional, i.e. NULL means don't care) |
| 806 | * @name_len: attribute name length (only needed if @name present) |
| 807 | * @ic: IGNORE_CASE or CASE_SENSITIVE (ignored if @name not present) |
| 808 | * @lowest_vcn: lowest vcn to find (optional, non-resident attributes only) |
| 809 | * @val: attribute value to find (optional, resident attributes only) |
| 810 | * @val_len: attribute value length |
| 811 | * @ctx: search context with mft record and attribute to search from |
| 812 | * |
| 813 | * Find an attribute in an ntfs inode. On first search @ctx->ntfs_ino must |
| 814 | * be the base mft record and @ctx must have been obtained from a call to |
| 815 | * ntfs_attr_get_search_ctx(). |
| 816 | * |
| 817 | * This function transparently handles attribute lists and @ctx is used to |
| 818 | * continue searches where they were left off at. |
| 819 | * |
| 820 | * After finishing with the attribute/mft record you need to call |
| 821 | * ntfs_attr_put_search_ctx() to cleanup the search context (unmapping any |
| 822 | * mapped inodes, etc). |
| 823 | * |
| 824 | * Return 0 if the search was successful and -errno if not. |
| 825 | * |
| 826 | * When 0, @ctx->attr is the found attribute and it is in mft record |
| 827 | * @ctx->mrec. If an attribute list attribute is present, @ctx->al_entry is |
| 828 | * the attribute list entry of the found attribute. |
| 829 | * |
| 830 | * When -ENOENT, @ctx->attr is the attribute which collates just after the |
| 831 | * attribute being searched for, i.e. if one wants to add the attribute to the |
| 832 | * mft record this is the correct place to insert it into. If an attribute |
| 833 | * list attribute is present, @ctx->al_entry is the attribute list entry which |
| 834 | * collates just after the attribute list entry of the attribute being searched |
| 835 | * for, i.e. if one wants to add the attribute to the mft record this is the |
| 836 | * correct place to insert its attribute list entry into. |
| 837 | * |
| 838 | * When -errno != -ENOENT, an error occured during the lookup. @ctx->attr is |
| 839 | * then undefined and in particular you should not rely on it not changing. |
| 840 | */ |
| 841 | int ntfs_attr_lookup(const ATTR_TYPE type, const ntfschar *name, |
| 842 | const u32 name_len, const IGNORE_CASE_BOOL ic, |
| 843 | const VCN lowest_vcn, const u8 *val, const u32 val_len, |
| 844 | ntfs_attr_search_ctx *ctx) |
| 845 | { |
| 846 | ntfs_inode *base_ni; |
| 847 | |
| 848 | ntfs_debug("Entering."); |
| 849 | if (ctx->base_ntfs_ino) |
| 850 | base_ni = ctx->base_ntfs_ino; |
| 851 | else |
| 852 | base_ni = ctx->ntfs_ino; |
| 853 | /* Sanity check, just for debugging really. */ |
| 854 | BUG_ON(!base_ni); |
| 855 | if (!NInoAttrList(base_ni) || type == AT_ATTRIBUTE_LIST) |
| 856 | return ntfs_attr_find(type, name, name_len, ic, val, val_len, |
| 857 | ctx); |
| 858 | return ntfs_external_attr_find(type, name, name_len, ic, lowest_vcn, |
| 859 | val, val_len, ctx); |
| 860 | } |
| 861 | |
| 862 | /** |
| 863 | * ntfs_attr_init_search_ctx - initialize an attribute search context |
| 864 | * @ctx: attribute search context to initialize |
| 865 | * @ni: ntfs inode with which to initialize the search context |
| 866 | * @mrec: mft record with which to initialize the search context |
| 867 | * |
| 868 | * Initialize the attribute search context @ctx with @ni and @mrec. |
| 869 | */ |
| 870 | static inline void ntfs_attr_init_search_ctx(ntfs_attr_search_ctx *ctx, |
| 871 | ntfs_inode *ni, MFT_RECORD *mrec) |
| 872 | { |
| 873 | ctx->mrec = mrec; |
| 874 | /* Sanity checks are performed elsewhere. */ |
| 875 | ctx->attr = (ATTR_RECORD*)((u8*)mrec + le16_to_cpu(mrec->attrs_offset)); |
| 876 | ctx->is_first = TRUE; |
| 877 | ctx->ntfs_ino = ni; |
| 878 | ctx->al_entry = NULL; |
| 879 | ctx->base_ntfs_ino = NULL; |
| 880 | ctx->base_mrec = NULL; |
| 881 | ctx->base_attr = NULL; |
| 882 | } |
| 883 | |
| 884 | /** |
| 885 | * ntfs_attr_reinit_search_ctx - reinitialize an attribute search context |
| 886 | * @ctx: attribute search context to reinitialize |
| 887 | * |
| 888 | * Reinitialize the attribute search context @ctx, unmapping an associated |
| 889 | * extent mft record if present, and initialize the search context again. |
| 890 | * |
| 891 | * This is used when a search for a new attribute is being started to reset |
| 892 | * the search context to the beginning. |
| 893 | */ |
| 894 | void ntfs_attr_reinit_search_ctx(ntfs_attr_search_ctx *ctx) |
| 895 | { |
| 896 | if (likely(!ctx->base_ntfs_ino)) { |
| 897 | /* No attribute list. */ |
| 898 | ctx->is_first = TRUE; |
| 899 | /* Sanity checks are performed elsewhere. */ |
| 900 | ctx->attr = (ATTR_RECORD*)((u8*)ctx->mrec + |
| 901 | le16_to_cpu(ctx->mrec->attrs_offset)); |
| 902 | /* |
| 903 | * This needs resetting due to ntfs_external_attr_find() which |
| 904 | * can leave it set despite having zeroed ctx->base_ntfs_ino. |
| 905 | */ |
| 906 | ctx->al_entry = NULL; |
| 907 | return; |
| 908 | } /* Attribute list. */ |
| 909 | if (ctx->ntfs_ino != ctx->base_ntfs_ino) |
| 910 | unmap_extent_mft_record(ctx->ntfs_ino); |
| 911 | ntfs_attr_init_search_ctx(ctx, ctx->base_ntfs_ino, ctx->base_mrec); |
| 912 | return; |
| 913 | } |
| 914 | |
| 915 | /** |
| 916 | * ntfs_attr_get_search_ctx - allocate/initialize a new attribute search context |
| 917 | * @ni: ntfs inode with which to initialize the search context |
| 918 | * @mrec: mft record with which to initialize the search context |
| 919 | * |
| 920 | * Allocate a new attribute search context, initialize it with @ni and @mrec, |
| 921 | * and return it. Return NULL if allocation failed. |
| 922 | */ |
| 923 | ntfs_attr_search_ctx *ntfs_attr_get_search_ctx(ntfs_inode *ni, MFT_RECORD *mrec) |
| 924 | { |
| 925 | ntfs_attr_search_ctx *ctx; |
| 926 | |
| 927 | ctx = kmem_cache_alloc(ntfs_attr_ctx_cache, SLAB_NOFS); |
| 928 | if (ctx) |
| 929 | ntfs_attr_init_search_ctx(ctx, ni, mrec); |
| 930 | return ctx; |
| 931 | } |
| 932 | |
| 933 | /** |
| 934 | * ntfs_attr_put_search_ctx - release an attribute search context |
| 935 | * @ctx: attribute search context to free |
| 936 | * |
| 937 | * Release the attribute search context @ctx, unmapping an associated extent |
| 938 | * mft record if present. |
| 939 | */ |
| 940 | void ntfs_attr_put_search_ctx(ntfs_attr_search_ctx *ctx) |
| 941 | { |
| 942 | if (ctx->base_ntfs_ino && ctx->ntfs_ino != ctx->base_ntfs_ino) |
| 943 | unmap_extent_mft_record(ctx->ntfs_ino); |
| 944 | kmem_cache_free(ntfs_attr_ctx_cache, ctx); |
| 945 | return; |
| 946 | } |
| 947 | |
| 948 | /** |
| 949 | * ntfs_attr_find_in_attrdef - find an attribute in the $AttrDef system file |
| 950 | * @vol: ntfs volume to which the attribute belongs |
| 951 | * @type: attribute type which to find |
| 952 | * |
| 953 | * Search for the attribute definition record corresponding to the attribute |
| 954 | * @type in the $AttrDef system file. |
| 955 | * |
| 956 | * Return the attribute type definition record if found and NULL if not found. |
| 957 | */ |
| 958 | static ATTR_DEF *ntfs_attr_find_in_attrdef(const ntfs_volume *vol, |
| 959 | const ATTR_TYPE type) |
| 960 | { |
| 961 | ATTR_DEF *ad; |
| 962 | |
| 963 | BUG_ON(!vol->attrdef); |
| 964 | BUG_ON(!type); |
| 965 | for (ad = vol->attrdef; (u8*)ad - (u8*)vol->attrdef < |
| 966 | vol->attrdef_size && ad->type; ++ad) { |
| 967 | /* We have not found it yet, carry on searching. */ |
| 968 | if (likely(le32_to_cpu(ad->type) < le32_to_cpu(type))) |
| 969 | continue; |
| 970 | /* We found the attribute; return it. */ |
| 971 | if (likely(ad->type == type)) |
| 972 | return ad; |
| 973 | /* We have gone too far already. No point in continuing. */ |
| 974 | break; |
| 975 | } |
| 976 | /* Attribute not found. */ |
| 977 | ntfs_debug("Attribute type 0x%x not found in $AttrDef.", |
| 978 | le32_to_cpu(type)); |
| 979 | return NULL; |
| 980 | } |
| 981 | |
| 982 | /** |
| 983 | * ntfs_attr_size_bounds_check - check a size of an attribute type for validity |
| 984 | * @vol: ntfs volume to which the attribute belongs |
| 985 | * @type: attribute type which to check |
| 986 | * @size: size which to check |
| 987 | * |
| 988 | * Check whether the @size in bytes is valid for an attribute of @type on the |
| 989 | * ntfs volume @vol. This information is obtained from $AttrDef system file. |
| 990 | * |
| 991 | * Return 0 if valid, -ERANGE if not valid, or -ENOENT if the attribute is not |
| 992 | * listed in $AttrDef. |
| 993 | */ |
| 994 | int ntfs_attr_size_bounds_check(const ntfs_volume *vol, const ATTR_TYPE type, |
| 995 | const s64 size) |
| 996 | { |
| 997 | ATTR_DEF *ad; |
| 998 | |
| 999 | BUG_ON(size < 0); |
| 1000 | /* |
| 1001 | * $ATTRIBUTE_LIST has a maximum size of 256kiB, but this is not |
| 1002 | * listed in $AttrDef. |
| 1003 | */ |
| 1004 | if (unlikely(type == AT_ATTRIBUTE_LIST && size > 256 * 1024)) |
| 1005 | return -ERANGE; |
| 1006 | /* Get the $AttrDef entry for the attribute @type. */ |
| 1007 | ad = ntfs_attr_find_in_attrdef(vol, type); |
| 1008 | if (unlikely(!ad)) |
| 1009 | return -ENOENT; |
| 1010 | /* Do the bounds check. */ |
| 1011 | if (((sle64_to_cpu(ad->min_size) > 0) && |
| 1012 | size < sle64_to_cpu(ad->min_size)) || |
| 1013 | ((sle64_to_cpu(ad->max_size) > 0) && size > |
| 1014 | sle64_to_cpu(ad->max_size))) |
| 1015 | return -ERANGE; |
| 1016 | return 0; |
| 1017 | } |
| 1018 | |
| 1019 | /** |
| 1020 | * ntfs_attr_can_be_non_resident - check if an attribute can be non-resident |
| 1021 | * @vol: ntfs volume to which the attribute belongs |
| 1022 | * @type: attribute type which to check |
| 1023 | * |
| 1024 | * Check whether the attribute of @type on the ntfs volume @vol is allowed to |
| 1025 | * be non-resident. This information is obtained from $AttrDef system file. |
| 1026 | * |
| 1027 | * Return 0 if the attribute is allowed to be non-resident, -EPERM if not, or |
| 1028 | * -ENOENT if the attribute is not listed in $AttrDef. |
| 1029 | */ |
| 1030 | int ntfs_attr_can_be_non_resident(const ntfs_volume *vol, const ATTR_TYPE type) |
| 1031 | { |
| 1032 | ATTR_DEF *ad; |
| 1033 | |
| 1034 | /* |
| 1035 | * $DATA is always allowed to be non-resident even if $AttrDef does not |
| 1036 | * specify this in the flags of the $DATA attribute definition record. |
| 1037 | */ |
| 1038 | if (type == AT_DATA) |
| 1039 | return 0; |
| 1040 | /* Find the attribute definition record in $AttrDef. */ |
| 1041 | ad = ntfs_attr_find_in_attrdef(vol, type); |
| 1042 | if (unlikely(!ad)) |
| 1043 | return -ENOENT; |
| 1044 | /* Check the flags and return the result. */ |
| 1045 | if (ad->flags & CAN_BE_NON_RESIDENT) |
| 1046 | return 0; |
| 1047 | return -EPERM; |
| 1048 | } |
| 1049 | |
| 1050 | /** |
| 1051 | * ntfs_attr_can_be_resident - check if an attribute can be resident |
| 1052 | * @vol: ntfs volume to which the attribute belongs |
| 1053 | * @type: attribute type which to check |
| 1054 | * |
| 1055 | * Check whether the attribute of @type on the ntfs volume @vol is allowed to |
| 1056 | * be resident. This information is derived from our ntfs knowledge and may |
| 1057 | * not be completely accurate, especially when user defined attributes are |
| 1058 | * present. Basically we allow everything to be resident except for index |
| 1059 | * allocation and $EA attributes. |
| 1060 | * |
| 1061 | * Return 0 if the attribute is allowed to be non-resident and -EPERM if not. |
| 1062 | * |
| 1063 | * Warning: In the system file $MFT the attribute $Bitmap must be non-resident |
| 1064 | * otherwise windows will not boot (blue screen of death)! We cannot |
| 1065 | * check for this here as we do not know which inode's $Bitmap is |
| 1066 | * being asked about so the caller needs to special case this. |
| 1067 | */ |
| 1068 | int ntfs_attr_can_be_resident(const ntfs_volume *vol, const ATTR_TYPE type) |
| 1069 | { |
| 1070 | if (type != AT_INDEX_ALLOCATION && type != AT_EA) |
| 1071 | return 0; |
| 1072 | return -EPERM; |
| 1073 | } |
| 1074 | |
| 1075 | /** |
| 1076 | * ntfs_attr_record_resize - resize an attribute record |
| 1077 | * @m: mft record containing attribute record |
| 1078 | * @a: attribute record to resize |
| 1079 | * @new_size: new size in bytes to which to resize the attribute record @a |
| 1080 | * |
| 1081 | * Resize the attribute record @a, i.e. the resident part of the attribute, in |
| 1082 | * the mft record @m to @new_size bytes. |
| 1083 | * |
| 1084 | * Return 0 on success and -errno on error. The following error codes are |
| 1085 | * defined: |
| 1086 | * -ENOSPC - Not enough space in the mft record @m to perform the resize. |
| 1087 | * |
| 1088 | * Note: On error, no modifications have been performed whatsoever. |
| 1089 | * |
| 1090 | * Warning: If you make a record smaller without having copied all the data you |
| 1091 | * are interested in the data may be overwritten. |
| 1092 | */ |
| 1093 | int ntfs_attr_record_resize(MFT_RECORD *m, ATTR_RECORD *a, u32 new_size) |
| 1094 | { |
| 1095 | ntfs_debug("Entering for new_size %u.", new_size); |
| 1096 | /* Align to 8 bytes if it is not already done. */ |
| 1097 | if (new_size & 7) |
| 1098 | new_size = (new_size + 7) & ~7; |
| 1099 | /* If the actual attribute length has changed, move things around. */ |
| 1100 | if (new_size != le32_to_cpu(a->length)) { |
| 1101 | u32 new_muse = le32_to_cpu(m->bytes_in_use) - |
| 1102 | le32_to_cpu(a->length) + new_size; |
| 1103 | /* Not enough space in this mft record. */ |
| 1104 | if (new_muse > le32_to_cpu(m->bytes_allocated)) |
| 1105 | return -ENOSPC; |
| 1106 | /* Move attributes following @a to their new location. */ |
| 1107 | memmove((u8*)a + new_size, (u8*)a + le32_to_cpu(a->length), |
| 1108 | le32_to_cpu(m->bytes_in_use) - ((u8*)a - |
| 1109 | (u8*)m) - le32_to_cpu(a->length)); |
| 1110 | /* Adjust @m to reflect the change in used space. */ |
| 1111 | m->bytes_in_use = cpu_to_le32(new_muse); |
| 1112 | /* Adjust @a to reflect the new size. */ |
| 1113 | if (new_size >= offsetof(ATTR_REC, length) + sizeof(a->length)) |
| 1114 | a->length = cpu_to_le32(new_size); |
| 1115 | } |
| 1116 | return 0; |
| 1117 | } |
| 1118 | |
| 1119 | /** |
| 1120 | * ntfs_attr_set - fill (a part of) an attribute with a byte |
| 1121 | * @ni: ntfs inode describing the attribute to fill |
| 1122 | * @ofs: offset inside the attribute at which to start to fill |
| 1123 | * @cnt: number of bytes to fill |
| 1124 | * @val: the unsigned 8-bit value with which to fill the attribute |
| 1125 | * |
| 1126 | * Fill @cnt bytes of the attribute described by the ntfs inode @ni starting at |
| 1127 | * byte offset @ofs inside the attribute with the constant byte @val. |
| 1128 | * |
| 1129 | * This function is effectively like memset() applied to an ntfs attribute. |
| 1130 | * |
| 1131 | * Return 0 on success and -errno on error. An error code of -ESPIPE means |
| 1132 | * that @ofs + @cnt were outside the end of the attribute and no write was |
| 1133 | * performed. |
| 1134 | */ |
| 1135 | int ntfs_attr_set(ntfs_inode *ni, const s64 ofs, const s64 cnt, const u8 val) |
| 1136 | { |
| 1137 | ntfs_volume *vol = ni->vol; |
| 1138 | struct address_space *mapping; |
| 1139 | struct page *page; |
| 1140 | u8 *kaddr; |
| 1141 | pgoff_t idx, end; |
| 1142 | unsigned int start_ofs, end_ofs, size; |
| 1143 | |
| 1144 | ntfs_debug("Entering for ofs 0x%llx, cnt 0x%llx, val 0x%hx.", |
| 1145 | (long long)ofs, (long long)cnt, val); |
| 1146 | BUG_ON(ofs < 0); |
| 1147 | BUG_ON(cnt < 0); |
| 1148 | if (!cnt) |
| 1149 | goto done; |
| 1150 | mapping = VFS_I(ni)->i_mapping; |
| 1151 | /* Work out the starting index and page offset. */ |
| 1152 | idx = ofs >> PAGE_CACHE_SHIFT; |
| 1153 | start_ofs = ofs & ~PAGE_CACHE_MASK; |
| 1154 | /* Work out the ending index and page offset. */ |
| 1155 | end = ofs + cnt; |
| 1156 | end_ofs = end & ~PAGE_CACHE_MASK; |
| 1157 | /* If the end is outside the inode size return -ESPIPE. */ |
| 1158 | if (unlikely(end > VFS_I(ni)->i_size)) { |
| 1159 | ntfs_error(vol->sb, "Request exceeds end of attribute."); |
| 1160 | return -ESPIPE; |
| 1161 | } |
| 1162 | end >>= PAGE_CACHE_SHIFT; |
| 1163 | /* If there is a first partial page, need to do it the slow way. */ |
| 1164 | if (start_ofs) { |
| 1165 | page = read_cache_page(mapping, idx, |
| 1166 | (filler_t*)mapping->a_ops->readpage, NULL); |
| 1167 | if (IS_ERR(page)) { |
| 1168 | ntfs_error(vol->sb, "Failed to read first partial " |
| 1169 | "page (sync error, index 0x%lx).", idx); |
| 1170 | return PTR_ERR(page); |
| 1171 | } |
| 1172 | wait_on_page_locked(page); |
| 1173 | if (unlikely(!PageUptodate(page))) { |
| 1174 | ntfs_error(vol->sb, "Failed to read first partial page " |
| 1175 | "(async error, index 0x%lx).", idx); |
| 1176 | page_cache_release(page); |
| 1177 | return PTR_ERR(page); |
| 1178 | } |
| 1179 | /* |
| 1180 | * If the last page is the same as the first page, need to |
| 1181 | * limit the write to the end offset. |
| 1182 | */ |
| 1183 | size = PAGE_CACHE_SIZE; |
| 1184 | if (idx == end) |
| 1185 | size = end_ofs; |
| 1186 | kaddr = kmap_atomic(page, KM_USER0); |
| 1187 | memset(kaddr + start_ofs, val, size - start_ofs); |
| 1188 | flush_dcache_page(page); |
| 1189 | kunmap_atomic(kaddr, KM_USER0); |
| 1190 | set_page_dirty(page); |
| 1191 | page_cache_release(page); |
| 1192 | if (idx == end) |
| 1193 | goto done; |
| 1194 | idx++; |
| 1195 | } |
| 1196 | /* Do the whole pages the fast way. */ |
| 1197 | for (; idx < end; idx++) { |
| 1198 | /* Find or create the current page. (The page is locked.) */ |
| 1199 | page = grab_cache_page(mapping, idx); |
| 1200 | if (unlikely(!page)) { |
| 1201 | ntfs_error(vol->sb, "Insufficient memory to grab " |
| 1202 | "page (index 0x%lx).", idx); |
| 1203 | return -ENOMEM; |
| 1204 | } |
| 1205 | kaddr = kmap_atomic(page, KM_USER0); |
| 1206 | memset(kaddr, val, PAGE_CACHE_SIZE); |
| 1207 | flush_dcache_page(page); |
| 1208 | kunmap_atomic(kaddr, KM_USER0); |
| 1209 | /* |
| 1210 | * If the page has buffers, mark them uptodate since buffer |
| 1211 | * state and not page state is definitive in 2.6 kernels. |
| 1212 | */ |
| 1213 | if (page_has_buffers(page)) { |
| 1214 | struct buffer_head *bh, *head; |
| 1215 | |
| 1216 | bh = head = page_buffers(page); |
| 1217 | do { |
| 1218 | set_buffer_uptodate(bh); |
| 1219 | } while ((bh = bh->b_this_page) != head); |
| 1220 | } |
| 1221 | /* Now that buffers are uptodate, set the page uptodate, too. */ |
| 1222 | SetPageUptodate(page); |
| 1223 | /* |
| 1224 | * Set the page and all its buffers dirty and mark the inode |
| 1225 | * dirty, too. The VM will write the page later on. |
| 1226 | */ |
| 1227 | set_page_dirty(page); |
| 1228 | /* Finally unlock and release the page. */ |
| 1229 | unlock_page(page); |
| 1230 | page_cache_release(page); |
| 1231 | } |
| 1232 | /* If there is a last partial page, need to do it the slow way. */ |
| 1233 | if (end_ofs) { |
| 1234 | page = read_cache_page(mapping, idx, |
| 1235 | (filler_t*)mapping->a_ops->readpage, NULL); |
| 1236 | if (IS_ERR(page)) { |
| 1237 | ntfs_error(vol->sb, "Failed to read last partial page " |
| 1238 | "(sync error, index 0x%lx).", idx); |
| 1239 | return PTR_ERR(page); |
| 1240 | } |
| 1241 | wait_on_page_locked(page); |
| 1242 | if (unlikely(!PageUptodate(page))) { |
| 1243 | ntfs_error(vol->sb, "Failed to read last partial page " |
| 1244 | "(async error, index 0x%lx).", idx); |
| 1245 | page_cache_release(page); |
| 1246 | return PTR_ERR(page); |
| 1247 | } |
| 1248 | kaddr = kmap_atomic(page, KM_USER0); |
| 1249 | memset(kaddr, val, end_ofs); |
| 1250 | flush_dcache_page(page); |
| 1251 | kunmap_atomic(kaddr, KM_USER0); |
| 1252 | set_page_dirty(page); |
| 1253 | page_cache_release(page); |
| 1254 | } |
| 1255 | done: |
| 1256 | ntfs_debug("Done."); |
| 1257 | return 0; |
| 1258 | } |