Ben Hutchings | 8ceee66 | 2008-04-27 12:55:59 +0100 | [diff] [blame] | 1 | /**************************************************************************** |
| 2 | * Driver for Solarflare Solarstorm network controllers and boards |
| 3 | * Copyright 2005-2006 Fen Systems Ltd. |
| 4 | * Copyright 2005-2008 Solarflare Communications Inc. |
| 5 | * |
| 6 | * This program is free software; you can redistribute it and/or modify it |
| 7 | * under the terms of the GNU General Public License version 2 as published |
| 8 | * by the Free Software Foundation, incorporated herein by reference. |
| 9 | */ |
| 10 | |
| 11 | #include <linux/module.h> |
| 12 | #include <linux/pci.h> |
| 13 | #include <linux/netdevice.h> |
| 14 | #include <linux/etherdevice.h> |
| 15 | #include <linux/delay.h> |
| 16 | #include <linux/notifier.h> |
| 17 | #include <linux/ip.h> |
| 18 | #include <linux/tcp.h> |
| 19 | #include <linux/in.h> |
| 20 | #include <linux/crc32.h> |
| 21 | #include <linux/ethtool.h> |
| 22 | #include "net_driver.h" |
| 23 | #include "gmii.h" |
| 24 | #include "ethtool.h" |
| 25 | #include "tx.h" |
| 26 | #include "rx.h" |
| 27 | #include "efx.h" |
| 28 | #include "mdio_10g.h" |
| 29 | #include "falcon.h" |
| 30 | #include "workarounds.h" |
| 31 | #include "mac.h" |
| 32 | |
| 33 | #define EFX_MAX_MTU (9 * 1024) |
| 34 | |
| 35 | /* RX slow fill workqueue. If memory allocation fails in the fast path, |
| 36 | * a work item is pushed onto this work queue to retry the allocation later, |
| 37 | * to avoid the NIC being starved of RX buffers. Since this is a per cpu |
| 38 | * workqueue, there is nothing to be gained in making it per NIC |
| 39 | */ |
| 40 | static struct workqueue_struct *refill_workqueue; |
| 41 | |
| 42 | /************************************************************************** |
| 43 | * |
| 44 | * Configurable values |
| 45 | * |
| 46 | *************************************************************************/ |
| 47 | |
| 48 | /* |
| 49 | * Enable large receive offload (LRO) aka soft segment reassembly (SSR) |
| 50 | * |
| 51 | * This sets the default for new devices. It can be controlled later |
| 52 | * using ethtool. |
| 53 | */ |
| 54 | static int lro = 1; |
| 55 | module_param(lro, int, 0644); |
| 56 | MODULE_PARM_DESC(lro, "Large receive offload acceleration"); |
| 57 | |
| 58 | /* |
| 59 | * Use separate channels for TX and RX events |
| 60 | * |
| 61 | * Set this to 1 to use separate channels for TX and RX. It allows us to |
| 62 | * apply a higher level of interrupt moderation to TX events. |
| 63 | * |
| 64 | * This is forced to 0 for MSI interrupt mode as the interrupt vector |
| 65 | * is not written |
| 66 | */ |
| 67 | static unsigned int separate_tx_and_rx_channels = 1; |
| 68 | |
| 69 | /* This is the weight assigned to each of the (per-channel) virtual |
| 70 | * NAPI devices. |
| 71 | */ |
| 72 | static int napi_weight = 64; |
| 73 | |
| 74 | /* This is the time (in jiffies) between invocations of the hardware |
| 75 | * monitor, which checks for known hardware bugs and resets the |
| 76 | * hardware and driver as necessary. |
| 77 | */ |
| 78 | unsigned int efx_monitor_interval = 1 * HZ; |
| 79 | |
| 80 | /* This controls whether or not the hardware monitor will trigger a |
| 81 | * reset when it detects an error condition. |
| 82 | */ |
| 83 | static unsigned int monitor_reset = 1; |
| 84 | |
| 85 | /* This controls whether or not the driver will initialise devices |
| 86 | * with invalid MAC addresses stored in the EEPROM or flash. If true, |
| 87 | * such devices will be initialised with a random locally-generated |
| 88 | * MAC address. This allows for loading the sfc_mtd driver to |
| 89 | * reprogram the flash, even if the flash contents (including the MAC |
| 90 | * address) have previously been erased. |
| 91 | */ |
| 92 | static unsigned int allow_bad_hwaddr; |
| 93 | |
| 94 | /* Initial interrupt moderation settings. They can be modified after |
| 95 | * module load with ethtool. |
| 96 | * |
| 97 | * The default for RX should strike a balance between increasing the |
| 98 | * round-trip latency and reducing overhead. |
| 99 | */ |
| 100 | static unsigned int rx_irq_mod_usec = 60; |
| 101 | |
| 102 | /* Initial interrupt moderation settings. They can be modified after |
| 103 | * module load with ethtool. |
| 104 | * |
| 105 | * This default is chosen to ensure that a 10G link does not go idle |
| 106 | * while a TX queue is stopped after it has become full. A queue is |
| 107 | * restarted when it drops below half full. The time this takes (assuming |
| 108 | * worst case 3 descriptors per packet and 1024 descriptors) is |
| 109 | * 512 / 3 * 1.2 = 205 usec. |
| 110 | */ |
| 111 | static unsigned int tx_irq_mod_usec = 150; |
| 112 | |
| 113 | /* This is the first interrupt mode to try out of: |
| 114 | * 0 => MSI-X |
| 115 | * 1 => MSI |
| 116 | * 2 => legacy |
| 117 | */ |
| 118 | static unsigned int interrupt_mode; |
| 119 | |
| 120 | /* This is the requested number of CPUs to use for Receive-Side Scaling (RSS), |
| 121 | * i.e. the number of CPUs among which we may distribute simultaneous |
| 122 | * interrupt handling. |
| 123 | * |
| 124 | * Cards without MSI-X will only target one CPU via legacy or MSI interrupt. |
| 125 | * The default (0) means to assign an interrupt to each package (level II cache) |
| 126 | */ |
| 127 | static unsigned int rss_cpus; |
| 128 | module_param(rss_cpus, uint, 0444); |
| 129 | MODULE_PARM_DESC(rss_cpus, "Number of CPUs to use for Receive-Side Scaling"); |
| 130 | |
| 131 | /************************************************************************** |
| 132 | * |
| 133 | * Utility functions and prototypes |
| 134 | * |
| 135 | *************************************************************************/ |
| 136 | static void efx_remove_channel(struct efx_channel *channel); |
| 137 | static void efx_remove_port(struct efx_nic *efx); |
| 138 | static void efx_fini_napi(struct efx_nic *efx); |
| 139 | static void efx_fini_channels(struct efx_nic *efx); |
| 140 | |
| 141 | #define EFX_ASSERT_RESET_SERIALISED(efx) \ |
| 142 | do { \ |
| 143 | if ((efx->state == STATE_RUNNING) || \ |
| 144 | (efx->state == STATE_RESETTING)) \ |
| 145 | ASSERT_RTNL(); \ |
| 146 | } while (0) |
| 147 | |
| 148 | /************************************************************************** |
| 149 | * |
| 150 | * Event queue processing |
| 151 | * |
| 152 | *************************************************************************/ |
| 153 | |
| 154 | /* Process channel's event queue |
| 155 | * |
| 156 | * This function is responsible for processing the event queue of a |
| 157 | * single channel. The caller must guarantee that this function will |
| 158 | * never be concurrently called more than once on the same channel, |
| 159 | * though different channels may be being processed concurrently. |
| 160 | */ |
| 161 | static inline int efx_process_channel(struct efx_channel *channel, int rx_quota) |
| 162 | { |
| 163 | int rxdmaqs; |
| 164 | struct efx_rx_queue *rx_queue; |
| 165 | |
| 166 | if (unlikely(channel->efx->reset_pending != RESET_TYPE_NONE || |
| 167 | !channel->enabled)) |
| 168 | return rx_quota; |
| 169 | |
| 170 | rxdmaqs = falcon_process_eventq(channel, &rx_quota); |
| 171 | |
| 172 | /* Deliver last RX packet. */ |
| 173 | if (channel->rx_pkt) { |
| 174 | __efx_rx_packet(channel, channel->rx_pkt, |
| 175 | channel->rx_pkt_csummed); |
| 176 | channel->rx_pkt = NULL; |
| 177 | } |
| 178 | |
| 179 | efx_flush_lro(channel); |
| 180 | efx_rx_strategy(channel); |
| 181 | |
| 182 | /* Refill descriptor rings as necessary */ |
| 183 | rx_queue = &channel->efx->rx_queue[0]; |
| 184 | while (rxdmaqs) { |
| 185 | if (rxdmaqs & 0x01) |
| 186 | efx_fast_push_rx_descriptors(rx_queue); |
| 187 | rx_queue++; |
| 188 | rxdmaqs >>= 1; |
| 189 | } |
| 190 | |
| 191 | return rx_quota; |
| 192 | } |
| 193 | |
| 194 | /* Mark channel as finished processing |
| 195 | * |
| 196 | * Note that since we will not receive further interrupts for this |
| 197 | * channel before we finish processing and call the eventq_read_ack() |
| 198 | * method, there is no need to use the interrupt hold-off timers. |
| 199 | */ |
| 200 | static inline void efx_channel_processed(struct efx_channel *channel) |
| 201 | { |
| 202 | /* Write to EVQ_RPTR_REG. If a new event arrived in a race |
| 203 | * with finishing processing, a new interrupt will be raised. |
| 204 | */ |
| 205 | channel->work_pending = 0; |
| 206 | smp_wmb(); /* Ensure channel updated before any new interrupt. */ |
| 207 | falcon_eventq_read_ack(channel); |
| 208 | } |
| 209 | |
| 210 | /* NAPI poll handler |
| 211 | * |
| 212 | * NAPI guarantees serialisation of polls of the same device, which |
| 213 | * provides the guarantee required by efx_process_channel(). |
| 214 | */ |
| 215 | static int efx_poll(struct napi_struct *napi, int budget) |
| 216 | { |
| 217 | struct efx_channel *channel = |
| 218 | container_of(napi, struct efx_channel, napi_str); |
| 219 | struct net_device *napi_dev = channel->napi_dev; |
| 220 | int unused; |
| 221 | int rx_packets; |
| 222 | |
| 223 | EFX_TRACE(channel->efx, "channel %d NAPI poll executing on CPU %d\n", |
| 224 | channel->channel, raw_smp_processor_id()); |
| 225 | |
| 226 | unused = efx_process_channel(channel, budget); |
| 227 | rx_packets = (budget - unused); |
| 228 | |
| 229 | if (rx_packets < budget) { |
| 230 | /* There is no race here; although napi_disable() will |
| 231 | * only wait for netif_rx_complete(), this isn't a problem |
| 232 | * since efx_channel_processed() will have no effect if |
| 233 | * interrupts have already been disabled. |
| 234 | */ |
| 235 | netif_rx_complete(napi_dev, napi); |
| 236 | efx_channel_processed(channel); |
| 237 | } |
| 238 | |
| 239 | return rx_packets; |
| 240 | } |
| 241 | |
| 242 | /* Process the eventq of the specified channel immediately on this CPU |
| 243 | * |
| 244 | * Disable hardware generated interrupts, wait for any existing |
| 245 | * processing to finish, then directly poll (and ack ) the eventq. |
| 246 | * Finally reenable NAPI and interrupts. |
| 247 | * |
| 248 | * Since we are touching interrupts the caller should hold the suspend lock |
| 249 | */ |
| 250 | void efx_process_channel_now(struct efx_channel *channel) |
| 251 | { |
| 252 | struct efx_nic *efx = channel->efx; |
| 253 | |
| 254 | BUG_ON(!channel->used_flags); |
| 255 | BUG_ON(!channel->enabled); |
| 256 | |
| 257 | /* Disable interrupts and wait for ISRs to complete */ |
| 258 | falcon_disable_interrupts(efx); |
| 259 | if (efx->legacy_irq) |
| 260 | synchronize_irq(efx->legacy_irq); |
| 261 | if (channel->has_interrupt && channel->irq) |
| 262 | synchronize_irq(channel->irq); |
| 263 | |
| 264 | /* Wait for any NAPI processing to complete */ |
| 265 | napi_disable(&channel->napi_str); |
| 266 | |
| 267 | /* Poll the channel */ |
Ben Hutchings | 91ad757 | 2008-05-16 21:14:27 +0100 | [diff] [blame] | 268 | efx_process_channel(channel, efx->type->evq_size); |
Ben Hutchings | 8ceee66 | 2008-04-27 12:55:59 +0100 | [diff] [blame] | 269 | |
| 270 | /* Ack the eventq. This may cause an interrupt to be generated |
| 271 | * when they are reenabled */ |
| 272 | efx_channel_processed(channel); |
| 273 | |
| 274 | napi_enable(&channel->napi_str); |
| 275 | falcon_enable_interrupts(efx); |
| 276 | } |
| 277 | |
| 278 | /* Create event queue |
| 279 | * Event queue memory allocations are done only once. If the channel |
| 280 | * is reset, the memory buffer will be reused; this guards against |
| 281 | * errors during channel reset and also simplifies interrupt handling. |
| 282 | */ |
| 283 | static int efx_probe_eventq(struct efx_channel *channel) |
| 284 | { |
| 285 | EFX_LOG(channel->efx, "chan %d create event queue\n", channel->channel); |
| 286 | |
| 287 | return falcon_probe_eventq(channel); |
| 288 | } |
| 289 | |
| 290 | /* Prepare channel's event queue */ |
| 291 | static int efx_init_eventq(struct efx_channel *channel) |
| 292 | { |
| 293 | EFX_LOG(channel->efx, "chan %d init event queue\n", channel->channel); |
| 294 | |
| 295 | channel->eventq_read_ptr = 0; |
| 296 | |
| 297 | return falcon_init_eventq(channel); |
| 298 | } |
| 299 | |
| 300 | static void efx_fini_eventq(struct efx_channel *channel) |
| 301 | { |
| 302 | EFX_LOG(channel->efx, "chan %d fini event queue\n", channel->channel); |
| 303 | |
| 304 | falcon_fini_eventq(channel); |
| 305 | } |
| 306 | |
| 307 | static void efx_remove_eventq(struct efx_channel *channel) |
| 308 | { |
| 309 | EFX_LOG(channel->efx, "chan %d remove event queue\n", channel->channel); |
| 310 | |
| 311 | falcon_remove_eventq(channel); |
| 312 | } |
| 313 | |
| 314 | /************************************************************************** |
| 315 | * |
| 316 | * Channel handling |
| 317 | * |
| 318 | *************************************************************************/ |
| 319 | |
Ben Hutchings | 8ceee66 | 2008-04-27 12:55:59 +0100 | [diff] [blame] | 320 | static int efx_probe_channel(struct efx_channel *channel) |
| 321 | { |
| 322 | struct efx_tx_queue *tx_queue; |
| 323 | struct efx_rx_queue *rx_queue; |
| 324 | int rc; |
| 325 | |
| 326 | EFX_LOG(channel->efx, "creating channel %d\n", channel->channel); |
| 327 | |
| 328 | rc = efx_probe_eventq(channel); |
| 329 | if (rc) |
| 330 | goto fail1; |
| 331 | |
| 332 | efx_for_each_channel_tx_queue(tx_queue, channel) { |
| 333 | rc = efx_probe_tx_queue(tx_queue); |
| 334 | if (rc) |
| 335 | goto fail2; |
| 336 | } |
| 337 | |
| 338 | efx_for_each_channel_rx_queue(rx_queue, channel) { |
| 339 | rc = efx_probe_rx_queue(rx_queue); |
| 340 | if (rc) |
| 341 | goto fail3; |
| 342 | } |
| 343 | |
| 344 | channel->n_rx_frm_trunc = 0; |
| 345 | |
| 346 | return 0; |
| 347 | |
| 348 | fail3: |
| 349 | efx_for_each_channel_rx_queue(rx_queue, channel) |
| 350 | efx_remove_rx_queue(rx_queue); |
| 351 | fail2: |
| 352 | efx_for_each_channel_tx_queue(tx_queue, channel) |
| 353 | efx_remove_tx_queue(tx_queue); |
| 354 | fail1: |
| 355 | return rc; |
| 356 | } |
| 357 | |
| 358 | |
| 359 | /* Channels are shutdown and reinitialised whilst the NIC is running |
| 360 | * to propagate configuration changes (mtu, checksum offload), or |
| 361 | * to clear hardware error conditions |
| 362 | */ |
| 363 | static int efx_init_channels(struct efx_nic *efx) |
| 364 | { |
| 365 | struct efx_tx_queue *tx_queue; |
| 366 | struct efx_rx_queue *rx_queue; |
| 367 | struct efx_channel *channel; |
| 368 | int rc = 0; |
| 369 | |
Ben Hutchings | f7f13b0 | 2008-05-16 21:15:06 +0100 | [diff] [blame^] | 370 | /* Calculate the rx buffer allocation parameters required to |
| 371 | * support the current MTU, including padding for header |
| 372 | * alignment and overruns. |
| 373 | */ |
| 374 | efx->rx_buffer_len = (max(EFX_PAGE_IP_ALIGN, NET_IP_ALIGN) + |
| 375 | EFX_MAX_FRAME_LEN(efx->net_dev->mtu) + |
| 376 | efx->type->rx_buffer_padding); |
| 377 | efx->rx_buffer_order = get_order(efx->rx_buffer_len); |
Ben Hutchings | 8ceee66 | 2008-04-27 12:55:59 +0100 | [diff] [blame] | 378 | |
| 379 | /* Initialise the channels */ |
| 380 | efx_for_each_channel(channel, efx) { |
| 381 | EFX_LOG(channel->efx, "init chan %d\n", channel->channel); |
| 382 | |
| 383 | rc = efx_init_eventq(channel); |
| 384 | if (rc) |
| 385 | goto err; |
| 386 | |
| 387 | efx_for_each_channel_tx_queue(tx_queue, channel) { |
| 388 | rc = efx_init_tx_queue(tx_queue); |
| 389 | if (rc) |
| 390 | goto err; |
| 391 | } |
| 392 | |
| 393 | /* The rx buffer allocation strategy is MTU dependent */ |
| 394 | efx_rx_strategy(channel); |
| 395 | |
| 396 | efx_for_each_channel_rx_queue(rx_queue, channel) { |
| 397 | rc = efx_init_rx_queue(rx_queue); |
| 398 | if (rc) |
| 399 | goto err; |
| 400 | } |
| 401 | |
| 402 | WARN_ON(channel->rx_pkt != NULL); |
| 403 | efx_rx_strategy(channel); |
| 404 | } |
| 405 | |
| 406 | return 0; |
| 407 | |
| 408 | err: |
| 409 | EFX_ERR(efx, "failed to initialise channel %d\n", |
| 410 | channel ? channel->channel : -1); |
| 411 | efx_fini_channels(efx); |
| 412 | return rc; |
| 413 | } |
| 414 | |
| 415 | /* This enables event queue processing and packet transmission. |
| 416 | * |
| 417 | * Note that this function is not allowed to fail, since that would |
| 418 | * introduce too much complexity into the suspend/resume path. |
| 419 | */ |
| 420 | static void efx_start_channel(struct efx_channel *channel) |
| 421 | { |
| 422 | struct efx_rx_queue *rx_queue; |
| 423 | |
| 424 | EFX_LOG(channel->efx, "starting chan %d\n", channel->channel); |
| 425 | |
| 426 | if (!(channel->efx->net_dev->flags & IFF_UP)) |
| 427 | netif_napi_add(channel->napi_dev, &channel->napi_str, |
| 428 | efx_poll, napi_weight); |
| 429 | |
| 430 | channel->work_pending = 0; |
| 431 | channel->enabled = 1; |
| 432 | smp_wmb(); /* ensure channel updated before first interrupt */ |
| 433 | |
| 434 | napi_enable(&channel->napi_str); |
| 435 | |
| 436 | /* Load up RX descriptors */ |
| 437 | efx_for_each_channel_rx_queue(rx_queue, channel) |
| 438 | efx_fast_push_rx_descriptors(rx_queue); |
| 439 | } |
| 440 | |
| 441 | /* This disables event queue processing and packet transmission. |
| 442 | * This function does not guarantee that all queue processing |
| 443 | * (e.g. RX refill) is complete. |
| 444 | */ |
| 445 | static void efx_stop_channel(struct efx_channel *channel) |
| 446 | { |
| 447 | struct efx_rx_queue *rx_queue; |
| 448 | |
| 449 | if (!channel->enabled) |
| 450 | return; |
| 451 | |
| 452 | EFX_LOG(channel->efx, "stop chan %d\n", channel->channel); |
| 453 | |
| 454 | channel->enabled = 0; |
| 455 | napi_disable(&channel->napi_str); |
| 456 | |
| 457 | /* Ensure that any worker threads have exited or will be no-ops */ |
| 458 | efx_for_each_channel_rx_queue(rx_queue, channel) { |
| 459 | spin_lock_bh(&rx_queue->add_lock); |
| 460 | spin_unlock_bh(&rx_queue->add_lock); |
| 461 | } |
| 462 | } |
| 463 | |
| 464 | static void efx_fini_channels(struct efx_nic *efx) |
| 465 | { |
| 466 | struct efx_channel *channel; |
| 467 | struct efx_tx_queue *tx_queue; |
| 468 | struct efx_rx_queue *rx_queue; |
| 469 | |
| 470 | EFX_ASSERT_RESET_SERIALISED(efx); |
| 471 | BUG_ON(efx->port_enabled); |
| 472 | |
| 473 | efx_for_each_channel(channel, efx) { |
| 474 | EFX_LOG(channel->efx, "shut down chan %d\n", channel->channel); |
| 475 | |
| 476 | efx_for_each_channel_rx_queue(rx_queue, channel) |
| 477 | efx_fini_rx_queue(rx_queue); |
| 478 | efx_for_each_channel_tx_queue(tx_queue, channel) |
| 479 | efx_fini_tx_queue(tx_queue); |
| 480 | } |
| 481 | |
| 482 | /* Do the event queues last so that we can handle flush events |
| 483 | * for all DMA queues. */ |
| 484 | efx_for_each_channel(channel, efx) { |
| 485 | EFX_LOG(channel->efx, "shut down evq %d\n", channel->channel); |
| 486 | |
| 487 | efx_fini_eventq(channel); |
| 488 | } |
| 489 | } |
| 490 | |
| 491 | static void efx_remove_channel(struct efx_channel *channel) |
| 492 | { |
| 493 | struct efx_tx_queue *tx_queue; |
| 494 | struct efx_rx_queue *rx_queue; |
| 495 | |
| 496 | EFX_LOG(channel->efx, "destroy chan %d\n", channel->channel); |
| 497 | |
| 498 | efx_for_each_channel_rx_queue(rx_queue, channel) |
| 499 | efx_remove_rx_queue(rx_queue); |
| 500 | efx_for_each_channel_tx_queue(tx_queue, channel) |
| 501 | efx_remove_tx_queue(tx_queue); |
| 502 | efx_remove_eventq(channel); |
| 503 | |
| 504 | channel->used_flags = 0; |
| 505 | } |
| 506 | |
| 507 | void efx_schedule_slow_fill(struct efx_rx_queue *rx_queue, int delay) |
| 508 | { |
| 509 | queue_delayed_work(refill_workqueue, &rx_queue->work, delay); |
| 510 | } |
| 511 | |
| 512 | /************************************************************************** |
| 513 | * |
| 514 | * Port handling |
| 515 | * |
| 516 | **************************************************************************/ |
| 517 | |
| 518 | /* This ensures that the kernel is kept informed (via |
| 519 | * netif_carrier_on/off) of the link status, and also maintains the |
| 520 | * link status's stop on the port's TX queue. |
| 521 | */ |
| 522 | static void efx_link_status_changed(struct efx_nic *efx) |
| 523 | { |
| 524 | int carrier_ok; |
| 525 | |
| 526 | /* SFC Bug 5356: A net_dev notifier is registered, so we must ensure |
| 527 | * that no events are triggered between unregister_netdev() and the |
| 528 | * driver unloading. A more general condition is that NETDEV_CHANGE |
| 529 | * can only be generated between NETDEV_UP and NETDEV_DOWN */ |
| 530 | if (!netif_running(efx->net_dev)) |
| 531 | return; |
| 532 | |
| 533 | carrier_ok = netif_carrier_ok(efx->net_dev) ? 1 : 0; |
| 534 | if (efx->link_up != carrier_ok) { |
| 535 | efx->n_link_state_changes++; |
| 536 | |
| 537 | if (efx->link_up) |
| 538 | netif_carrier_on(efx->net_dev); |
| 539 | else |
| 540 | netif_carrier_off(efx->net_dev); |
| 541 | } |
| 542 | |
| 543 | /* Status message for kernel log */ |
| 544 | if (efx->link_up) { |
| 545 | struct mii_if_info *gmii = &efx->mii; |
| 546 | unsigned adv, lpa; |
| 547 | /* NONE here means direct XAUI from the controller, with no |
| 548 | * MDIO-attached device we can query. */ |
| 549 | if (efx->phy_type != PHY_TYPE_NONE) { |
| 550 | adv = gmii_advertised(gmii); |
| 551 | lpa = gmii_lpa(gmii); |
| 552 | } else { |
| 553 | lpa = GM_LPA_10000 | LPA_DUPLEX; |
| 554 | adv = lpa; |
| 555 | } |
| 556 | EFX_INFO(efx, "link up at %dMbps %s-duplex " |
| 557 | "(adv %04x lpa %04x) (MTU %d)%s\n", |
| 558 | (efx->link_options & GM_LPA_10000 ? 10000 : |
| 559 | (efx->link_options & GM_LPA_1000 ? 1000 : |
| 560 | (efx->link_options & GM_LPA_100 ? 100 : |
| 561 | 10))), |
| 562 | (efx->link_options & GM_LPA_DUPLEX ? |
| 563 | "full" : "half"), |
| 564 | adv, lpa, |
| 565 | efx->net_dev->mtu, |
| 566 | (efx->promiscuous ? " [PROMISC]" : "")); |
| 567 | } else { |
| 568 | EFX_INFO(efx, "link down\n"); |
| 569 | } |
| 570 | |
| 571 | } |
| 572 | |
| 573 | /* This call reinitialises the MAC to pick up new PHY settings. The |
| 574 | * caller must hold the mac_lock */ |
| 575 | static void __efx_reconfigure_port(struct efx_nic *efx) |
| 576 | { |
| 577 | WARN_ON(!mutex_is_locked(&efx->mac_lock)); |
| 578 | |
| 579 | EFX_LOG(efx, "reconfiguring MAC from PHY settings on CPU %d\n", |
| 580 | raw_smp_processor_id()); |
| 581 | |
| 582 | falcon_reconfigure_xmac(efx); |
| 583 | |
| 584 | /* Inform kernel of loss/gain of carrier */ |
| 585 | efx_link_status_changed(efx); |
| 586 | } |
| 587 | |
| 588 | /* Reinitialise the MAC to pick up new PHY settings, even if the port is |
| 589 | * disabled. */ |
| 590 | void efx_reconfigure_port(struct efx_nic *efx) |
| 591 | { |
| 592 | EFX_ASSERT_RESET_SERIALISED(efx); |
| 593 | |
| 594 | mutex_lock(&efx->mac_lock); |
| 595 | __efx_reconfigure_port(efx); |
| 596 | mutex_unlock(&efx->mac_lock); |
| 597 | } |
| 598 | |
| 599 | /* Asynchronous efx_reconfigure_port work item. To speed up efx_flush_all() |
| 600 | * we don't efx_reconfigure_port() if the port is disabled. Care is taken |
| 601 | * in efx_stop_all() and efx_start_port() to prevent PHY events being lost */ |
| 602 | static void efx_reconfigure_work(struct work_struct *data) |
| 603 | { |
| 604 | struct efx_nic *efx = container_of(data, struct efx_nic, |
| 605 | reconfigure_work); |
| 606 | |
| 607 | mutex_lock(&efx->mac_lock); |
| 608 | if (efx->port_enabled) |
| 609 | __efx_reconfigure_port(efx); |
| 610 | mutex_unlock(&efx->mac_lock); |
| 611 | } |
| 612 | |
| 613 | static int efx_probe_port(struct efx_nic *efx) |
| 614 | { |
| 615 | int rc; |
| 616 | |
| 617 | EFX_LOG(efx, "create port\n"); |
| 618 | |
| 619 | /* Connect up MAC/PHY operations table and read MAC address */ |
| 620 | rc = falcon_probe_port(efx); |
| 621 | if (rc) |
| 622 | goto err; |
| 623 | |
| 624 | /* Sanity check MAC address */ |
| 625 | if (is_valid_ether_addr(efx->mac_address)) { |
| 626 | memcpy(efx->net_dev->dev_addr, efx->mac_address, ETH_ALEN); |
| 627 | } else { |
| 628 | DECLARE_MAC_BUF(mac); |
| 629 | |
| 630 | EFX_ERR(efx, "invalid MAC address %s\n", |
| 631 | print_mac(mac, efx->mac_address)); |
| 632 | if (!allow_bad_hwaddr) { |
| 633 | rc = -EINVAL; |
| 634 | goto err; |
| 635 | } |
| 636 | random_ether_addr(efx->net_dev->dev_addr); |
| 637 | EFX_INFO(efx, "using locally-generated MAC %s\n", |
| 638 | print_mac(mac, efx->net_dev->dev_addr)); |
| 639 | } |
| 640 | |
| 641 | return 0; |
| 642 | |
| 643 | err: |
| 644 | efx_remove_port(efx); |
| 645 | return rc; |
| 646 | } |
| 647 | |
| 648 | static int efx_init_port(struct efx_nic *efx) |
| 649 | { |
| 650 | int rc; |
| 651 | |
| 652 | EFX_LOG(efx, "init port\n"); |
| 653 | |
| 654 | /* Initialise the MAC and PHY */ |
| 655 | rc = falcon_init_xmac(efx); |
| 656 | if (rc) |
| 657 | return rc; |
| 658 | |
| 659 | efx->port_initialized = 1; |
| 660 | |
| 661 | /* Reconfigure port to program MAC registers */ |
| 662 | falcon_reconfigure_xmac(efx); |
| 663 | |
| 664 | return 0; |
| 665 | } |
| 666 | |
| 667 | /* Allow efx_reconfigure_port() to be scheduled, and close the window |
| 668 | * between efx_stop_port and efx_flush_all whereby a previously scheduled |
| 669 | * efx_reconfigure_port() may have been cancelled */ |
| 670 | static void efx_start_port(struct efx_nic *efx) |
| 671 | { |
| 672 | EFX_LOG(efx, "start port\n"); |
| 673 | BUG_ON(efx->port_enabled); |
| 674 | |
| 675 | mutex_lock(&efx->mac_lock); |
| 676 | efx->port_enabled = 1; |
| 677 | __efx_reconfigure_port(efx); |
| 678 | mutex_unlock(&efx->mac_lock); |
| 679 | } |
| 680 | |
| 681 | /* Prevent efx_reconfigure_work and efx_monitor() from executing, and |
| 682 | * efx_set_multicast_list() from scheduling efx_reconfigure_work. |
| 683 | * efx_reconfigure_work can still be scheduled via NAPI processing |
| 684 | * until efx_flush_all() is called */ |
| 685 | static void efx_stop_port(struct efx_nic *efx) |
| 686 | { |
| 687 | EFX_LOG(efx, "stop port\n"); |
| 688 | |
| 689 | mutex_lock(&efx->mac_lock); |
| 690 | efx->port_enabled = 0; |
| 691 | mutex_unlock(&efx->mac_lock); |
| 692 | |
| 693 | /* Serialise against efx_set_multicast_list() */ |
| 694 | if (NET_DEV_REGISTERED(efx)) { |
| 695 | netif_tx_lock_bh(efx->net_dev); |
| 696 | netif_tx_unlock_bh(efx->net_dev); |
| 697 | } |
| 698 | } |
| 699 | |
| 700 | static void efx_fini_port(struct efx_nic *efx) |
| 701 | { |
| 702 | EFX_LOG(efx, "shut down port\n"); |
| 703 | |
| 704 | if (!efx->port_initialized) |
| 705 | return; |
| 706 | |
| 707 | falcon_fini_xmac(efx); |
| 708 | efx->port_initialized = 0; |
| 709 | |
| 710 | efx->link_up = 0; |
| 711 | efx_link_status_changed(efx); |
| 712 | } |
| 713 | |
| 714 | static void efx_remove_port(struct efx_nic *efx) |
| 715 | { |
| 716 | EFX_LOG(efx, "destroying port\n"); |
| 717 | |
| 718 | falcon_remove_port(efx); |
| 719 | } |
| 720 | |
| 721 | /************************************************************************** |
| 722 | * |
| 723 | * NIC handling |
| 724 | * |
| 725 | **************************************************************************/ |
| 726 | |
| 727 | /* This configures the PCI device to enable I/O and DMA. */ |
| 728 | static int efx_init_io(struct efx_nic *efx) |
| 729 | { |
| 730 | struct pci_dev *pci_dev = efx->pci_dev; |
| 731 | dma_addr_t dma_mask = efx->type->max_dma_mask; |
| 732 | int rc; |
| 733 | |
| 734 | EFX_LOG(efx, "initialising I/O\n"); |
| 735 | |
| 736 | rc = pci_enable_device(pci_dev); |
| 737 | if (rc) { |
| 738 | EFX_ERR(efx, "failed to enable PCI device\n"); |
| 739 | goto fail1; |
| 740 | } |
| 741 | |
| 742 | pci_set_master(pci_dev); |
| 743 | |
| 744 | /* Set the PCI DMA mask. Try all possibilities from our |
| 745 | * genuine mask down to 32 bits, because some architectures |
| 746 | * (e.g. x86_64 with iommu_sac_force set) will allow 40 bit |
| 747 | * masks event though they reject 46 bit masks. |
| 748 | */ |
| 749 | while (dma_mask > 0x7fffffffUL) { |
| 750 | if (pci_dma_supported(pci_dev, dma_mask) && |
| 751 | ((rc = pci_set_dma_mask(pci_dev, dma_mask)) == 0)) |
| 752 | break; |
| 753 | dma_mask >>= 1; |
| 754 | } |
| 755 | if (rc) { |
| 756 | EFX_ERR(efx, "could not find a suitable DMA mask\n"); |
| 757 | goto fail2; |
| 758 | } |
| 759 | EFX_LOG(efx, "using DMA mask %llx\n", (unsigned long long) dma_mask); |
| 760 | rc = pci_set_consistent_dma_mask(pci_dev, dma_mask); |
| 761 | if (rc) { |
| 762 | /* pci_set_consistent_dma_mask() is not *allowed* to |
| 763 | * fail with a mask that pci_set_dma_mask() accepted, |
| 764 | * but just in case... |
| 765 | */ |
| 766 | EFX_ERR(efx, "failed to set consistent DMA mask\n"); |
| 767 | goto fail2; |
| 768 | } |
| 769 | |
| 770 | efx->membase_phys = pci_resource_start(efx->pci_dev, |
| 771 | efx->type->mem_bar); |
| 772 | rc = pci_request_region(pci_dev, efx->type->mem_bar, "sfc"); |
| 773 | if (rc) { |
| 774 | EFX_ERR(efx, "request for memory BAR failed\n"); |
| 775 | rc = -EIO; |
| 776 | goto fail3; |
| 777 | } |
| 778 | efx->membase = ioremap_nocache(efx->membase_phys, |
| 779 | efx->type->mem_map_size); |
| 780 | if (!efx->membase) { |
| 781 | EFX_ERR(efx, "could not map memory BAR %d at %lx+%x\n", |
| 782 | efx->type->mem_bar, efx->membase_phys, |
| 783 | efx->type->mem_map_size); |
| 784 | rc = -ENOMEM; |
| 785 | goto fail4; |
| 786 | } |
| 787 | EFX_LOG(efx, "memory BAR %u at %lx+%x (virtual %p)\n", |
| 788 | efx->type->mem_bar, efx->membase_phys, efx->type->mem_map_size, |
| 789 | efx->membase); |
| 790 | |
| 791 | return 0; |
| 792 | |
| 793 | fail4: |
| 794 | release_mem_region(efx->membase_phys, efx->type->mem_map_size); |
| 795 | fail3: |
| 796 | efx->membase_phys = 0UL; |
| 797 | fail2: |
| 798 | pci_disable_device(efx->pci_dev); |
| 799 | fail1: |
| 800 | return rc; |
| 801 | } |
| 802 | |
| 803 | static void efx_fini_io(struct efx_nic *efx) |
| 804 | { |
| 805 | EFX_LOG(efx, "shutting down I/O\n"); |
| 806 | |
| 807 | if (efx->membase) { |
| 808 | iounmap(efx->membase); |
| 809 | efx->membase = NULL; |
| 810 | } |
| 811 | |
| 812 | if (efx->membase_phys) { |
| 813 | pci_release_region(efx->pci_dev, efx->type->mem_bar); |
| 814 | efx->membase_phys = 0UL; |
| 815 | } |
| 816 | |
| 817 | pci_disable_device(efx->pci_dev); |
| 818 | } |
| 819 | |
| 820 | /* Probe the number and type of interrupts we are able to obtain. */ |
| 821 | static void efx_probe_interrupts(struct efx_nic *efx) |
| 822 | { |
| 823 | int max_channel = efx->type->phys_addr_channels - 1; |
| 824 | struct msix_entry xentries[EFX_MAX_CHANNELS]; |
| 825 | int rc, i; |
| 826 | |
| 827 | if (efx->interrupt_mode == EFX_INT_MODE_MSIX) { |
| 828 | BUG_ON(!pci_find_capability(efx->pci_dev, PCI_CAP_ID_MSIX)); |
| 829 | |
| 830 | efx->rss_queues = rss_cpus ? rss_cpus : num_online_cpus(); |
| 831 | efx->rss_queues = min(efx->rss_queues, max_channel + 1); |
| 832 | efx->rss_queues = min(efx->rss_queues, EFX_MAX_CHANNELS); |
| 833 | |
| 834 | /* Request maximum number of MSI interrupts, and fill out |
| 835 | * the channel interrupt information the allowed allocation */ |
| 836 | for (i = 0; i < efx->rss_queues; i++) |
| 837 | xentries[i].entry = i; |
| 838 | rc = pci_enable_msix(efx->pci_dev, xentries, efx->rss_queues); |
| 839 | if (rc > 0) { |
| 840 | EFX_BUG_ON_PARANOID(rc >= efx->rss_queues); |
| 841 | efx->rss_queues = rc; |
| 842 | rc = pci_enable_msix(efx->pci_dev, xentries, |
| 843 | efx->rss_queues); |
| 844 | } |
| 845 | |
| 846 | if (rc == 0) { |
| 847 | for (i = 0; i < efx->rss_queues; i++) { |
| 848 | efx->channel[i].has_interrupt = 1; |
| 849 | efx->channel[i].irq = xentries[i].vector; |
| 850 | } |
| 851 | } else { |
| 852 | /* Fall back to single channel MSI */ |
| 853 | efx->interrupt_mode = EFX_INT_MODE_MSI; |
| 854 | EFX_ERR(efx, "could not enable MSI-X\n"); |
| 855 | } |
| 856 | } |
| 857 | |
| 858 | /* Try single interrupt MSI */ |
| 859 | if (efx->interrupt_mode == EFX_INT_MODE_MSI) { |
| 860 | efx->rss_queues = 1; |
| 861 | rc = pci_enable_msi(efx->pci_dev); |
| 862 | if (rc == 0) { |
| 863 | efx->channel[0].irq = efx->pci_dev->irq; |
| 864 | efx->channel[0].has_interrupt = 1; |
| 865 | } else { |
| 866 | EFX_ERR(efx, "could not enable MSI\n"); |
| 867 | efx->interrupt_mode = EFX_INT_MODE_LEGACY; |
| 868 | } |
| 869 | } |
| 870 | |
| 871 | /* Assume legacy interrupts */ |
| 872 | if (efx->interrupt_mode == EFX_INT_MODE_LEGACY) { |
| 873 | efx->rss_queues = 1; |
| 874 | /* Every channel is interruptible */ |
| 875 | for (i = 0; i < EFX_MAX_CHANNELS; i++) |
| 876 | efx->channel[i].has_interrupt = 1; |
| 877 | efx->legacy_irq = efx->pci_dev->irq; |
| 878 | } |
| 879 | } |
| 880 | |
| 881 | static void efx_remove_interrupts(struct efx_nic *efx) |
| 882 | { |
| 883 | struct efx_channel *channel; |
| 884 | |
| 885 | /* Remove MSI/MSI-X interrupts */ |
| 886 | efx_for_each_channel_with_interrupt(channel, efx) |
| 887 | channel->irq = 0; |
| 888 | pci_disable_msi(efx->pci_dev); |
| 889 | pci_disable_msix(efx->pci_dev); |
| 890 | |
| 891 | /* Remove legacy interrupt */ |
| 892 | efx->legacy_irq = 0; |
| 893 | } |
| 894 | |
| 895 | /* Select number of used resources |
| 896 | * Should be called after probe_interrupts() |
| 897 | */ |
| 898 | static void efx_select_used(struct efx_nic *efx) |
| 899 | { |
| 900 | struct efx_tx_queue *tx_queue; |
| 901 | struct efx_rx_queue *rx_queue; |
| 902 | int i; |
| 903 | |
| 904 | /* TX queues. One per port per channel with TX capability |
| 905 | * (more than one per port won't work on Linux, due to out |
| 906 | * of order issues... but will be fine on Solaris) |
| 907 | */ |
| 908 | tx_queue = &efx->tx_queue[0]; |
| 909 | |
| 910 | /* Perform this for each channel with TX capabilities. |
| 911 | * At the moment, we only support a single TX queue |
| 912 | */ |
| 913 | tx_queue->used = 1; |
| 914 | if ((!EFX_INT_MODE_USE_MSI(efx)) && separate_tx_and_rx_channels) |
| 915 | tx_queue->channel = &efx->channel[1]; |
| 916 | else |
| 917 | tx_queue->channel = &efx->channel[0]; |
| 918 | tx_queue->channel->used_flags |= EFX_USED_BY_TX; |
| 919 | tx_queue++; |
| 920 | |
| 921 | /* RX queues. Each has a dedicated channel. */ |
| 922 | for (i = 0; i < EFX_MAX_RX_QUEUES; i++) { |
| 923 | rx_queue = &efx->rx_queue[i]; |
| 924 | |
| 925 | if (i < efx->rss_queues) { |
| 926 | rx_queue->used = 1; |
| 927 | /* If we allow multiple RX queues per channel |
| 928 | * we need to decide that here |
| 929 | */ |
| 930 | rx_queue->channel = &efx->channel[rx_queue->queue]; |
| 931 | rx_queue->channel->used_flags |= EFX_USED_BY_RX; |
| 932 | rx_queue++; |
| 933 | } |
| 934 | } |
| 935 | } |
| 936 | |
| 937 | static int efx_probe_nic(struct efx_nic *efx) |
| 938 | { |
| 939 | int rc; |
| 940 | |
| 941 | EFX_LOG(efx, "creating NIC\n"); |
| 942 | |
| 943 | /* Carry out hardware-type specific initialisation */ |
| 944 | rc = falcon_probe_nic(efx); |
| 945 | if (rc) |
| 946 | return rc; |
| 947 | |
| 948 | /* Determine the number of channels and RX queues by trying to hook |
| 949 | * in MSI-X interrupts. */ |
| 950 | efx_probe_interrupts(efx); |
| 951 | |
| 952 | /* Determine number of RX queues and TX queues */ |
| 953 | efx_select_used(efx); |
| 954 | |
| 955 | /* Initialise the interrupt moderation settings */ |
| 956 | efx_init_irq_moderation(efx, tx_irq_mod_usec, rx_irq_mod_usec); |
| 957 | |
| 958 | return 0; |
| 959 | } |
| 960 | |
| 961 | static void efx_remove_nic(struct efx_nic *efx) |
| 962 | { |
| 963 | EFX_LOG(efx, "destroying NIC\n"); |
| 964 | |
| 965 | efx_remove_interrupts(efx); |
| 966 | falcon_remove_nic(efx); |
| 967 | } |
| 968 | |
| 969 | /************************************************************************** |
| 970 | * |
| 971 | * NIC startup/shutdown |
| 972 | * |
| 973 | *************************************************************************/ |
| 974 | |
| 975 | static int efx_probe_all(struct efx_nic *efx) |
| 976 | { |
| 977 | struct efx_channel *channel; |
| 978 | int rc; |
| 979 | |
| 980 | /* Create NIC */ |
| 981 | rc = efx_probe_nic(efx); |
| 982 | if (rc) { |
| 983 | EFX_ERR(efx, "failed to create NIC\n"); |
| 984 | goto fail1; |
| 985 | } |
| 986 | |
| 987 | /* Create port */ |
| 988 | rc = efx_probe_port(efx); |
| 989 | if (rc) { |
| 990 | EFX_ERR(efx, "failed to create port\n"); |
| 991 | goto fail2; |
| 992 | } |
| 993 | |
| 994 | /* Create channels */ |
| 995 | efx_for_each_channel(channel, efx) { |
| 996 | rc = efx_probe_channel(channel); |
| 997 | if (rc) { |
| 998 | EFX_ERR(efx, "failed to create channel %d\n", |
| 999 | channel->channel); |
| 1000 | goto fail3; |
| 1001 | } |
| 1002 | } |
| 1003 | |
| 1004 | return 0; |
| 1005 | |
| 1006 | fail3: |
| 1007 | efx_for_each_channel(channel, efx) |
| 1008 | efx_remove_channel(channel); |
| 1009 | efx_remove_port(efx); |
| 1010 | fail2: |
| 1011 | efx_remove_nic(efx); |
| 1012 | fail1: |
| 1013 | return rc; |
| 1014 | } |
| 1015 | |
| 1016 | /* Called after previous invocation(s) of efx_stop_all, restarts the |
| 1017 | * port, kernel transmit queue, NAPI processing and hardware interrupts, |
| 1018 | * and ensures that the port is scheduled to be reconfigured. |
| 1019 | * This function is safe to call multiple times when the NIC is in any |
| 1020 | * state. */ |
| 1021 | static void efx_start_all(struct efx_nic *efx) |
| 1022 | { |
| 1023 | struct efx_channel *channel; |
| 1024 | |
| 1025 | EFX_ASSERT_RESET_SERIALISED(efx); |
| 1026 | |
| 1027 | /* Check that it is appropriate to restart the interface. All |
| 1028 | * of these flags are safe to read under just the rtnl lock */ |
| 1029 | if (efx->port_enabled) |
| 1030 | return; |
| 1031 | if ((efx->state != STATE_RUNNING) && (efx->state != STATE_INIT)) |
| 1032 | return; |
| 1033 | if (NET_DEV_REGISTERED(efx) && !netif_running(efx->net_dev)) |
| 1034 | return; |
| 1035 | |
| 1036 | /* Mark the port as enabled so port reconfigurations can start, then |
| 1037 | * restart the transmit interface early so the watchdog timer stops */ |
| 1038 | efx_start_port(efx); |
| 1039 | efx_wake_queue(efx); |
| 1040 | |
| 1041 | efx_for_each_channel(channel, efx) |
| 1042 | efx_start_channel(channel); |
| 1043 | |
| 1044 | falcon_enable_interrupts(efx); |
| 1045 | |
| 1046 | /* Start hardware monitor if we're in RUNNING */ |
| 1047 | if (efx->state == STATE_RUNNING) |
| 1048 | queue_delayed_work(efx->workqueue, &efx->monitor_work, |
| 1049 | efx_monitor_interval); |
| 1050 | } |
| 1051 | |
| 1052 | /* Flush all delayed work. Should only be called when no more delayed work |
| 1053 | * will be scheduled. This doesn't flush pending online resets (efx_reset), |
| 1054 | * since we're holding the rtnl_lock at this point. */ |
| 1055 | static void efx_flush_all(struct efx_nic *efx) |
| 1056 | { |
| 1057 | struct efx_rx_queue *rx_queue; |
| 1058 | |
| 1059 | /* Make sure the hardware monitor is stopped */ |
| 1060 | cancel_delayed_work_sync(&efx->monitor_work); |
| 1061 | |
| 1062 | /* Ensure that all RX slow refills are complete. */ |
| 1063 | efx_for_each_rx_queue(rx_queue, efx) { |
| 1064 | cancel_delayed_work_sync(&rx_queue->work); |
| 1065 | } |
| 1066 | |
| 1067 | /* Stop scheduled port reconfigurations */ |
| 1068 | cancel_work_sync(&efx->reconfigure_work); |
| 1069 | |
| 1070 | } |
| 1071 | |
| 1072 | /* Quiesce hardware and software without bringing the link down. |
| 1073 | * Safe to call multiple times, when the nic and interface is in any |
| 1074 | * state. The caller is guaranteed to subsequently be in a position |
| 1075 | * to modify any hardware and software state they see fit without |
| 1076 | * taking locks. */ |
| 1077 | static void efx_stop_all(struct efx_nic *efx) |
| 1078 | { |
| 1079 | struct efx_channel *channel; |
| 1080 | |
| 1081 | EFX_ASSERT_RESET_SERIALISED(efx); |
| 1082 | |
| 1083 | /* port_enabled can be read safely under the rtnl lock */ |
| 1084 | if (!efx->port_enabled) |
| 1085 | return; |
| 1086 | |
| 1087 | /* Disable interrupts and wait for ISR to complete */ |
| 1088 | falcon_disable_interrupts(efx); |
| 1089 | if (efx->legacy_irq) |
| 1090 | synchronize_irq(efx->legacy_irq); |
| 1091 | efx_for_each_channel_with_interrupt(channel, efx) |
| 1092 | if (channel->irq) |
| 1093 | synchronize_irq(channel->irq); |
| 1094 | |
| 1095 | /* Stop all NAPI processing and synchronous rx refills */ |
| 1096 | efx_for_each_channel(channel, efx) |
| 1097 | efx_stop_channel(channel); |
| 1098 | |
| 1099 | /* Stop all asynchronous port reconfigurations. Since all |
| 1100 | * event processing has already been stopped, there is no |
| 1101 | * window to loose phy events */ |
| 1102 | efx_stop_port(efx); |
| 1103 | |
| 1104 | /* Flush reconfigure_work, refill_workqueue, monitor_work */ |
| 1105 | efx_flush_all(efx); |
| 1106 | |
| 1107 | /* Isolate the MAC from the TX and RX engines, so that queue |
| 1108 | * flushes will complete in a timely fashion. */ |
| 1109 | falcon_deconfigure_mac_wrapper(efx); |
| 1110 | falcon_drain_tx_fifo(efx); |
| 1111 | |
| 1112 | /* Stop the kernel transmit interface late, so the watchdog |
| 1113 | * timer isn't ticking over the flush */ |
| 1114 | efx_stop_queue(efx); |
| 1115 | if (NET_DEV_REGISTERED(efx)) { |
| 1116 | netif_tx_lock_bh(efx->net_dev); |
| 1117 | netif_tx_unlock_bh(efx->net_dev); |
| 1118 | } |
| 1119 | } |
| 1120 | |
| 1121 | static void efx_remove_all(struct efx_nic *efx) |
| 1122 | { |
| 1123 | struct efx_channel *channel; |
| 1124 | |
| 1125 | efx_for_each_channel(channel, efx) |
| 1126 | efx_remove_channel(channel); |
| 1127 | efx_remove_port(efx); |
| 1128 | efx_remove_nic(efx); |
| 1129 | } |
| 1130 | |
| 1131 | /* A convinience function to safely flush all the queues */ |
| 1132 | int efx_flush_queues(struct efx_nic *efx) |
| 1133 | { |
| 1134 | int rc; |
| 1135 | |
| 1136 | EFX_ASSERT_RESET_SERIALISED(efx); |
| 1137 | |
| 1138 | efx_stop_all(efx); |
| 1139 | |
| 1140 | efx_fini_channels(efx); |
| 1141 | rc = efx_init_channels(efx); |
| 1142 | if (rc) { |
| 1143 | efx_schedule_reset(efx, RESET_TYPE_DISABLE); |
| 1144 | return rc; |
| 1145 | } |
| 1146 | |
| 1147 | efx_start_all(efx); |
| 1148 | |
| 1149 | return 0; |
| 1150 | } |
| 1151 | |
| 1152 | /************************************************************************** |
| 1153 | * |
| 1154 | * Interrupt moderation |
| 1155 | * |
| 1156 | **************************************************************************/ |
| 1157 | |
| 1158 | /* Set interrupt moderation parameters */ |
| 1159 | void efx_init_irq_moderation(struct efx_nic *efx, int tx_usecs, int rx_usecs) |
| 1160 | { |
| 1161 | struct efx_tx_queue *tx_queue; |
| 1162 | struct efx_rx_queue *rx_queue; |
| 1163 | |
| 1164 | EFX_ASSERT_RESET_SERIALISED(efx); |
| 1165 | |
| 1166 | efx_for_each_tx_queue(tx_queue, efx) |
| 1167 | tx_queue->channel->irq_moderation = tx_usecs; |
| 1168 | |
| 1169 | efx_for_each_rx_queue(rx_queue, efx) |
| 1170 | rx_queue->channel->irq_moderation = rx_usecs; |
| 1171 | } |
| 1172 | |
| 1173 | /************************************************************************** |
| 1174 | * |
| 1175 | * Hardware monitor |
| 1176 | * |
| 1177 | **************************************************************************/ |
| 1178 | |
| 1179 | /* Run periodically off the general workqueue. Serialised against |
| 1180 | * efx_reconfigure_port via the mac_lock */ |
| 1181 | static void efx_monitor(struct work_struct *data) |
| 1182 | { |
| 1183 | struct efx_nic *efx = container_of(data, struct efx_nic, |
| 1184 | monitor_work.work); |
| 1185 | int rc = 0; |
| 1186 | |
| 1187 | EFX_TRACE(efx, "hardware monitor executing on CPU %d\n", |
| 1188 | raw_smp_processor_id()); |
| 1189 | |
| 1190 | |
| 1191 | /* If the mac_lock is already held then it is likely a port |
| 1192 | * reconfiguration is already in place, which will likely do |
| 1193 | * most of the work of check_hw() anyway. */ |
| 1194 | if (!mutex_trylock(&efx->mac_lock)) { |
| 1195 | queue_delayed_work(efx->workqueue, &efx->monitor_work, |
| 1196 | efx_monitor_interval); |
| 1197 | return; |
| 1198 | } |
| 1199 | |
| 1200 | if (efx->port_enabled) |
| 1201 | rc = falcon_check_xmac(efx); |
| 1202 | mutex_unlock(&efx->mac_lock); |
| 1203 | |
| 1204 | if (rc) { |
| 1205 | if (monitor_reset) { |
| 1206 | EFX_ERR(efx, "hardware monitor detected a fault: " |
| 1207 | "triggering reset\n"); |
| 1208 | efx_schedule_reset(efx, RESET_TYPE_MONITOR); |
| 1209 | } else { |
| 1210 | EFX_ERR(efx, "hardware monitor detected a fault, " |
| 1211 | "skipping reset\n"); |
| 1212 | } |
| 1213 | } |
| 1214 | |
| 1215 | queue_delayed_work(efx->workqueue, &efx->monitor_work, |
| 1216 | efx_monitor_interval); |
| 1217 | } |
| 1218 | |
| 1219 | /************************************************************************** |
| 1220 | * |
| 1221 | * ioctls |
| 1222 | * |
| 1223 | *************************************************************************/ |
| 1224 | |
| 1225 | /* Net device ioctl |
| 1226 | * Context: process, rtnl_lock() held. |
| 1227 | */ |
| 1228 | static int efx_ioctl(struct net_device *net_dev, struct ifreq *ifr, int cmd) |
| 1229 | { |
| 1230 | struct efx_nic *efx = net_dev->priv; |
| 1231 | |
| 1232 | EFX_ASSERT_RESET_SERIALISED(efx); |
| 1233 | |
| 1234 | return generic_mii_ioctl(&efx->mii, if_mii(ifr), cmd, NULL); |
| 1235 | } |
| 1236 | |
| 1237 | /************************************************************************** |
| 1238 | * |
| 1239 | * NAPI interface |
| 1240 | * |
| 1241 | **************************************************************************/ |
| 1242 | |
| 1243 | static int efx_init_napi(struct efx_nic *efx) |
| 1244 | { |
| 1245 | struct efx_channel *channel; |
| 1246 | int rc; |
| 1247 | |
| 1248 | efx_for_each_channel(channel, efx) { |
| 1249 | channel->napi_dev = efx->net_dev; |
| 1250 | rc = efx_lro_init(&channel->lro_mgr, efx); |
| 1251 | if (rc) |
| 1252 | goto err; |
| 1253 | } |
| 1254 | return 0; |
| 1255 | err: |
| 1256 | efx_fini_napi(efx); |
| 1257 | return rc; |
| 1258 | } |
| 1259 | |
| 1260 | static void efx_fini_napi(struct efx_nic *efx) |
| 1261 | { |
| 1262 | struct efx_channel *channel; |
| 1263 | |
| 1264 | efx_for_each_channel(channel, efx) { |
| 1265 | efx_lro_fini(&channel->lro_mgr); |
| 1266 | channel->napi_dev = NULL; |
| 1267 | } |
| 1268 | } |
| 1269 | |
| 1270 | /************************************************************************** |
| 1271 | * |
| 1272 | * Kernel netpoll interface |
| 1273 | * |
| 1274 | *************************************************************************/ |
| 1275 | |
| 1276 | #ifdef CONFIG_NET_POLL_CONTROLLER |
| 1277 | |
| 1278 | /* Although in the common case interrupts will be disabled, this is not |
| 1279 | * guaranteed. However, all our work happens inside the NAPI callback, |
| 1280 | * so no locking is required. |
| 1281 | */ |
| 1282 | static void efx_netpoll(struct net_device *net_dev) |
| 1283 | { |
| 1284 | struct efx_nic *efx = net_dev->priv; |
| 1285 | struct efx_channel *channel; |
| 1286 | |
| 1287 | efx_for_each_channel_with_interrupt(channel, efx) |
| 1288 | efx_schedule_channel(channel); |
| 1289 | } |
| 1290 | |
| 1291 | #endif |
| 1292 | |
| 1293 | /************************************************************************** |
| 1294 | * |
| 1295 | * Kernel net device interface |
| 1296 | * |
| 1297 | *************************************************************************/ |
| 1298 | |
| 1299 | /* Context: process, rtnl_lock() held. */ |
| 1300 | static int efx_net_open(struct net_device *net_dev) |
| 1301 | { |
| 1302 | struct efx_nic *efx = net_dev->priv; |
| 1303 | EFX_ASSERT_RESET_SERIALISED(efx); |
| 1304 | |
| 1305 | EFX_LOG(efx, "opening device %s on CPU %d\n", net_dev->name, |
| 1306 | raw_smp_processor_id()); |
| 1307 | |
| 1308 | efx_start_all(efx); |
| 1309 | return 0; |
| 1310 | } |
| 1311 | |
| 1312 | /* Context: process, rtnl_lock() held. |
| 1313 | * Note that the kernel will ignore our return code; this method |
| 1314 | * should really be a void. |
| 1315 | */ |
| 1316 | static int efx_net_stop(struct net_device *net_dev) |
| 1317 | { |
| 1318 | struct efx_nic *efx = net_dev->priv; |
| 1319 | int rc; |
| 1320 | |
| 1321 | EFX_LOG(efx, "closing %s on CPU %d\n", net_dev->name, |
| 1322 | raw_smp_processor_id()); |
| 1323 | |
| 1324 | /* Stop the device and flush all the channels */ |
| 1325 | efx_stop_all(efx); |
| 1326 | efx_fini_channels(efx); |
| 1327 | rc = efx_init_channels(efx); |
| 1328 | if (rc) |
| 1329 | efx_schedule_reset(efx, RESET_TYPE_DISABLE); |
| 1330 | |
| 1331 | return 0; |
| 1332 | } |
| 1333 | |
| 1334 | /* Context: process, dev_base_lock held, non-blocking. */ |
| 1335 | static struct net_device_stats *efx_net_stats(struct net_device *net_dev) |
| 1336 | { |
| 1337 | struct efx_nic *efx = net_dev->priv; |
| 1338 | struct efx_mac_stats *mac_stats = &efx->mac_stats; |
| 1339 | struct net_device_stats *stats = &net_dev->stats; |
| 1340 | |
| 1341 | if (!spin_trylock(&efx->stats_lock)) |
| 1342 | return stats; |
| 1343 | if (efx->state == STATE_RUNNING) { |
| 1344 | falcon_update_stats_xmac(efx); |
| 1345 | falcon_update_nic_stats(efx); |
| 1346 | } |
| 1347 | spin_unlock(&efx->stats_lock); |
| 1348 | |
| 1349 | stats->rx_packets = mac_stats->rx_packets; |
| 1350 | stats->tx_packets = mac_stats->tx_packets; |
| 1351 | stats->rx_bytes = mac_stats->rx_bytes; |
| 1352 | stats->tx_bytes = mac_stats->tx_bytes; |
| 1353 | stats->multicast = mac_stats->rx_multicast; |
| 1354 | stats->collisions = mac_stats->tx_collision; |
| 1355 | stats->rx_length_errors = (mac_stats->rx_gtjumbo + |
| 1356 | mac_stats->rx_length_error); |
| 1357 | stats->rx_over_errors = efx->n_rx_nodesc_drop_cnt; |
| 1358 | stats->rx_crc_errors = mac_stats->rx_bad; |
| 1359 | stats->rx_frame_errors = mac_stats->rx_align_error; |
| 1360 | stats->rx_fifo_errors = mac_stats->rx_overflow; |
| 1361 | stats->rx_missed_errors = mac_stats->rx_missed; |
| 1362 | stats->tx_window_errors = mac_stats->tx_late_collision; |
| 1363 | |
| 1364 | stats->rx_errors = (stats->rx_length_errors + |
| 1365 | stats->rx_over_errors + |
| 1366 | stats->rx_crc_errors + |
| 1367 | stats->rx_frame_errors + |
| 1368 | stats->rx_fifo_errors + |
| 1369 | stats->rx_missed_errors + |
| 1370 | mac_stats->rx_symbol_error); |
| 1371 | stats->tx_errors = (stats->tx_window_errors + |
| 1372 | mac_stats->tx_bad); |
| 1373 | |
| 1374 | return stats; |
| 1375 | } |
| 1376 | |
| 1377 | /* Context: netif_tx_lock held, BHs disabled. */ |
| 1378 | static void efx_watchdog(struct net_device *net_dev) |
| 1379 | { |
| 1380 | struct efx_nic *efx = net_dev->priv; |
| 1381 | |
| 1382 | EFX_ERR(efx, "TX stuck with stop_count=%d port_enabled=%d: %s\n", |
| 1383 | atomic_read(&efx->netif_stop_count), efx->port_enabled, |
| 1384 | monitor_reset ? "resetting channels" : "skipping reset"); |
| 1385 | |
| 1386 | if (monitor_reset) |
| 1387 | efx_schedule_reset(efx, RESET_TYPE_MONITOR); |
| 1388 | } |
| 1389 | |
| 1390 | |
| 1391 | /* Context: process, rtnl_lock() held. */ |
| 1392 | static int efx_change_mtu(struct net_device *net_dev, int new_mtu) |
| 1393 | { |
| 1394 | struct efx_nic *efx = net_dev->priv; |
| 1395 | int rc = 0; |
| 1396 | |
| 1397 | EFX_ASSERT_RESET_SERIALISED(efx); |
| 1398 | |
| 1399 | if (new_mtu > EFX_MAX_MTU) |
| 1400 | return -EINVAL; |
| 1401 | |
| 1402 | efx_stop_all(efx); |
| 1403 | |
| 1404 | EFX_LOG(efx, "changing MTU to %d\n", new_mtu); |
| 1405 | |
| 1406 | efx_fini_channels(efx); |
| 1407 | net_dev->mtu = new_mtu; |
| 1408 | rc = efx_init_channels(efx); |
| 1409 | if (rc) |
| 1410 | goto fail; |
| 1411 | |
| 1412 | efx_start_all(efx); |
| 1413 | return rc; |
| 1414 | |
| 1415 | fail: |
| 1416 | efx_schedule_reset(efx, RESET_TYPE_DISABLE); |
| 1417 | return rc; |
| 1418 | } |
| 1419 | |
| 1420 | static int efx_set_mac_address(struct net_device *net_dev, void *data) |
| 1421 | { |
| 1422 | struct efx_nic *efx = net_dev->priv; |
| 1423 | struct sockaddr *addr = data; |
| 1424 | char *new_addr = addr->sa_data; |
| 1425 | |
| 1426 | EFX_ASSERT_RESET_SERIALISED(efx); |
| 1427 | |
| 1428 | if (!is_valid_ether_addr(new_addr)) { |
| 1429 | DECLARE_MAC_BUF(mac); |
| 1430 | EFX_ERR(efx, "invalid ethernet MAC address requested: %s\n", |
| 1431 | print_mac(mac, new_addr)); |
| 1432 | return -EINVAL; |
| 1433 | } |
| 1434 | |
| 1435 | memcpy(net_dev->dev_addr, new_addr, net_dev->addr_len); |
| 1436 | |
| 1437 | /* Reconfigure the MAC */ |
| 1438 | efx_reconfigure_port(efx); |
| 1439 | |
| 1440 | return 0; |
| 1441 | } |
| 1442 | |
| 1443 | /* Context: netif_tx_lock held, BHs disabled. */ |
| 1444 | static void efx_set_multicast_list(struct net_device *net_dev) |
| 1445 | { |
| 1446 | struct efx_nic *efx = net_dev->priv; |
| 1447 | struct dev_mc_list *mc_list = net_dev->mc_list; |
| 1448 | union efx_multicast_hash *mc_hash = &efx->multicast_hash; |
| 1449 | int promiscuous; |
| 1450 | u32 crc; |
| 1451 | int bit; |
| 1452 | int i; |
| 1453 | |
| 1454 | /* Set per-MAC promiscuity flag and reconfigure MAC if necessary */ |
| 1455 | promiscuous = (net_dev->flags & IFF_PROMISC) ? 1 : 0; |
| 1456 | if (efx->promiscuous != promiscuous) { |
| 1457 | efx->promiscuous = promiscuous; |
| 1458 | /* Close the window between efx_stop_port() and efx_flush_all() |
| 1459 | * by only queuing work when the port is enabled. */ |
| 1460 | if (efx->port_enabled) |
| 1461 | queue_work(efx->workqueue, &efx->reconfigure_work); |
| 1462 | } |
| 1463 | |
| 1464 | /* Build multicast hash table */ |
| 1465 | if (promiscuous || (net_dev->flags & IFF_ALLMULTI)) { |
| 1466 | memset(mc_hash, 0xff, sizeof(*mc_hash)); |
| 1467 | } else { |
| 1468 | memset(mc_hash, 0x00, sizeof(*mc_hash)); |
| 1469 | for (i = 0; i < net_dev->mc_count; i++) { |
| 1470 | crc = ether_crc_le(ETH_ALEN, mc_list->dmi_addr); |
| 1471 | bit = crc & (EFX_MCAST_HASH_ENTRIES - 1); |
| 1472 | set_bit_le(bit, mc_hash->byte); |
| 1473 | mc_list = mc_list->next; |
| 1474 | } |
| 1475 | } |
| 1476 | |
| 1477 | /* Create and activate new global multicast hash table */ |
| 1478 | falcon_set_multicast_hash(efx); |
| 1479 | } |
| 1480 | |
| 1481 | static int efx_netdev_event(struct notifier_block *this, |
| 1482 | unsigned long event, void *ptr) |
| 1483 | { |
| 1484 | struct net_device *net_dev = (struct net_device *)ptr; |
| 1485 | |
| 1486 | if (net_dev->open == efx_net_open && event == NETDEV_CHANGENAME) { |
| 1487 | struct efx_nic *efx = net_dev->priv; |
| 1488 | |
| 1489 | strcpy(efx->name, net_dev->name); |
| 1490 | } |
| 1491 | |
| 1492 | return NOTIFY_DONE; |
| 1493 | } |
| 1494 | |
| 1495 | static struct notifier_block efx_netdev_notifier = { |
| 1496 | .notifier_call = efx_netdev_event, |
| 1497 | }; |
| 1498 | |
| 1499 | static int efx_register_netdev(struct efx_nic *efx) |
| 1500 | { |
| 1501 | struct net_device *net_dev = efx->net_dev; |
| 1502 | int rc; |
| 1503 | |
| 1504 | net_dev->watchdog_timeo = 5 * HZ; |
| 1505 | net_dev->irq = efx->pci_dev->irq; |
| 1506 | net_dev->open = efx_net_open; |
| 1507 | net_dev->stop = efx_net_stop; |
| 1508 | net_dev->get_stats = efx_net_stats; |
| 1509 | net_dev->tx_timeout = &efx_watchdog; |
| 1510 | net_dev->hard_start_xmit = efx_hard_start_xmit; |
| 1511 | net_dev->do_ioctl = efx_ioctl; |
| 1512 | net_dev->change_mtu = efx_change_mtu; |
| 1513 | net_dev->set_mac_address = efx_set_mac_address; |
| 1514 | net_dev->set_multicast_list = efx_set_multicast_list; |
| 1515 | #ifdef CONFIG_NET_POLL_CONTROLLER |
| 1516 | net_dev->poll_controller = efx_netpoll; |
| 1517 | #endif |
| 1518 | SET_NETDEV_DEV(net_dev, &efx->pci_dev->dev); |
| 1519 | SET_ETHTOOL_OPS(net_dev, &efx_ethtool_ops); |
| 1520 | |
| 1521 | /* Always start with carrier off; PHY events will detect the link */ |
| 1522 | netif_carrier_off(efx->net_dev); |
| 1523 | |
| 1524 | /* Clear MAC statistics */ |
| 1525 | falcon_update_stats_xmac(efx); |
| 1526 | memset(&efx->mac_stats, 0, sizeof(efx->mac_stats)); |
| 1527 | |
| 1528 | rc = register_netdev(net_dev); |
| 1529 | if (rc) { |
| 1530 | EFX_ERR(efx, "could not register net dev\n"); |
| 1531 | return rc; |
| 1532 | } |
| 1533 | strcpy(efx->name, net_dev->name); |
| 1534 | |
| 1535 | return 0; |
| 1536 | } |
| 1537 | |
| 1538 | static void efx_unregister_netdev(struct efx_nic *efx) |
| 1539 | { |
| 1540 | struct efx_tx_queue *tx_queue; |
| 1541 | |
| 1542 | if (!efx->net_dev) |
| 1543 | return; |
| 1544 | |
| 1545 | BUG_ON(efx->net_dev->priv != efx); |
| 1546 | |
| 1547 | /* Free up any skbs still remaining. This has to happen before |
| 1548 | * we try to unregister the netdev as running their destructors |
| 1549 | * may be needed to get the device ref. count to 0. */ |
| 1550 | efx_for_each_tx_queue(tx_queue, efx) |
| 1551 | efx_release_tx_buffers(tx_queue); |
| 1552 | |
| 1553 | if (NET_DEV_REGISTERED(efx)) { |
| 1554 | strlcpy(efx->name, pci_name(efx->pci_dev), sizeof(efx->name)); |
| 1555 | unregister_netdev(efx->net_dev); |
| 1556 | } |
| 1557 | } |
| 1558 | |
| 1559 | /************************************************************************** |
| 1560 | * |
| 1561 | * Device reset and suspend |
| 1562 | * |
| 1563 | **************************************************************************/ |
| 1564 | |
| 1565 | /* The final hardware and software finalisation before reset. */ |
| 1566 | static int efx_reset_down(struct efx_nic *efx, struct ethtool_cmd *ecmd) |
| 1567 | { |
| 1568 | int rc; |
| 1569 | |
| 1570 | EFX_ASSERT_RESET_SERIALISED(efx); |
| 1571 | |
| 1572 | rc = falcon_xmac_get_settings(efx, ecmd); |
| 1573 | if (rc) { |
| 1574 | EFX_ERR(efx, "could not back up PHY settings\n"); |
| 1575 | goto fail; |
| 1576 | } |
| 1577 | |
| 1578 | efx_fini_channels(efx); |
| 1579 | return 0; |
| 1580 | |
| 1581 | fail: |
| 1582 | return rc; |
| 1583 | } |
| 1584 | |
| 1585 | /* The first part of software initialisation after a hardware reset |
| 1586 | * This function does not handle serialisation with the kernel, it |
| 1587 | * assumes the caller has done this */ |
| 1588 | static int efx_reset_up(struct efx_nic *efx, struct ethtool_cmd *ecmd) |
| 1589 | { |
| 1590 | int rc; |
| 1591 | |
| 1592 | rc = efx_init_channels(efx); |
| 1593 | if (rc) |
| 1594 | goto fail1; |
| 1595 | |
| 1596 | /* Restore MAC and PHY settings. */ |
| 1597 | rc = falcon_xmac_set_settings(efx, ecmd); |
| 1598 | if (rc) { |
| 1599 | EFX_ERR(efx, "could not restore PHY settings\n"); |
| 1600 | goto fail2; |
| 1601 | } |
| 1602 | |
| 1603 | return 0; |
| 1604 | |
| 1605 | fail2: |
| 1606 | efx_fini_channels(efx); |
| 1607 | fail1: |
| 1608 | return rc; |
| 1609 | } |
| 1610 | |
| 1611 | /* Reset the NIC as transparently as possible. Do not reset the PHY |
| 1612 | * Note that the reset may fail, in which case the card will be left |
| 1613 | * in a most-probably-unusable state. |
| 1614 | * |
| 1615 | * This function will sleep. You cannot reset from within an atomic |
| 1616 | * state; use efx_schedule_reset() instead. |
| 1617 | * |
| 1618 | * Grabs the rtnl_lock. |
| 1619 | */ |
| 1620 | static int efx_reset(struct efx_nic *efx) |
| 1621 | { |
| 1622 | struct ethtool_cmd ecmd; |
| 1623 | enum reset_type method = efx->reset_pending; |
| 1624 | int rc; |
| 1625 | |
| 1626 | /* Serialise with kernel interfaces */ |
| 1627 | rtnl_lock(); |
| 1628 | |
| 1629 | /* If we're not RUNNING then don't reset. Leave the reset_pending |
| 1630 | * flag set so that efx_pci_probe_main will be retried */ |
| 1631 | if (efx->state != STATE_RUNNING) { |
| 1632 | EFX_INFO(efx, "scheduled reset quenched. NIC not RUNNING\n"); |
| 1633 | goto unlock_rtnl; |
| 1634 | } |
| 1635 | |
| 1636 | efx->state = STATE_RESETTING; |
| 1637 | EFX_INFO(efx, "resetting (%d)\n", method); |
| 1638 | |
| 1639 | /* The net_dev->get_stats handler is quite slow, and will fail |
| 1640 | * if a fetch is pending over reset. Serialise against it. */ |
| 1641 | spin_lock(&efx->stats_lock); |
| 1642 | spin_unlock(&efx->stats_lock); |
| 1643 | |
| 1644 | efx_stop_all(efx); |
| 1645 | mutex_lock(&efx->mac_lock); |
| 1646 | |
| 1647 | rc = efx_reset_down(efx, &ecmd); |
| 1648 | if (rc) |
| 1649 | goto fail1; |
| 1650 | |
| 1651 | rc = falcon_reset_hw(efx, method); |
| 1652 | if (rc) { |
| 1653 | EFX_ERR(efx, "failed to reset hardware\n"); |
| 1654 | goto fail2; |
| 1655 | } |
| 1656 | |
| 1657 | /* Allow resets to be rescheduled. */ |
| 1658 | efx->reset_pending = RESET_TYPE_NONE; |
| 1659 | |
| 1660 | /* Reinitialise bus-mastering, which may have been turned off before |
| 1661 | * the reset was scheduled. This is still appropriate, even in the |
| 1662 | * RESET_TYPE_DISABLE since this driver generally assumes the hardware |
| 1663 | * can respond to requests. */ |
| 1664 | pci_set_master(efx->pci_dev); |
| 1665 | |
| 1666 | /* Reinitialise device. This is appropriate in the RESET_TYPE_DISABLE |
| 1667 | * case so the driver can talk to external SRAM */ |
| 1668 | rc = falcon_init_nic(efx); |
| 1669 | if (rc) { |
| 1670 | EFX_ERR(efx, "failed to initialise NIC\n"); |
| 1671 | goto fail3; |
| 1672 | } |
| 1673 | |
| 1674 | /* Leave device stopped if necessary */ |
| 1675 | if (method == RESET_TYPE_DISABLE) { |
| 1676 | /* Reinitialise the device anyway so the driver unload sequence |
| 1677 | * can talk to the external SRAM */ |
Ben Hutchings | 91ad757 | 2008-05-16 21:14:27 +0100 | [diff] [blame] | 1678 | falcon_init_nic(efx); |
Ben Hutchings | 8ceee66 | 2008-04-27 12:55:59 +0100 | [diff] [blame] | 1679 | rc = -EIO; |
| 1680 | goto fail4; |
| 1681 | } |
| 1682 | |
| 1683 | rc = efx_reset_up(efx, &ecmd); |
| 1684 | if (rc) |
| 1685 | goto fail5; |
| 1686 | |
| 1687 | mutex_unlock(&efx->mac_lock); |
| 1688 | EFX_LOG(efx, "reset complete\n"); |
| 1689 | |
| 1690 | efx->state = STATE_RUNNING; |
| 1691 | efx_start_all(efx); |
| 1692 | |
| 1693 | unlock_rtnl: |
| 1694 | rtnl_unlock(); |
| 1695 | return 0; |
| 1696 | |
| 1697 | fail5: |
| 1698 | fail4: |
| 1699 | fail3: |
| 1700 | fail2: |
| 1701 | fail1: |
| 1702 | EFX_ERR(efx, "has been disabled\n"); |
| 1703 | efx->state = STATE_DISABLED; |
| 1704 | |
| 1705 | mutex_unlock(&efx->mac_lock); |
| 1706 | rtnl_unlock(); |
| 1707 | efx_unregister_netdev(efx); |
| 1708 | efx_fini_port(efx); |
| 1709 | return rc; |
| 1710 | } |
| 1711 | |
| 1712 | /* The worker thread exists so that code that cannot sleep can |
| 1713 | * schedule a reset for later. |
| 1714 | */ |
| 1715 | static void efx_reset_work(struct work_struct *data) |
| 1716 | { |
| 1717 | struct efx_nic *nic = container_of(data, struct efx_nic, reset_work); |
| 1718 | |
| 1719 | efx_reset(nic); |
| 1720 | } |
| 1721 | |
| 1722 | void efx_schedule_reset(struct efx_nic *efx, enum reset_type type) |
| 1723 | { |
| 1724 | enum reset_type method; |
| 1725 | |
| 1726 | if (efx->reset_pending != RESET_TYPE_NONE) { |
| 1727 | EFX_INFO(efx, "quenching already scheduled reset\n"); |
| 1728 | return; |
| 1729 | } |
| 1730 | |
| 1731 | switch (type) { |
| 1732 | case RESET_TYPE_INVISIBLE: |
| 1733 | case RESET_TYPE_ALL: |
| 1734 | case RESET_TYPE_WORLD: |
| 1735 | case RESET_TYPE_DISABLE: |
| 1736 | method = type; |
| 1737 | break; |
| 1738 | case RESET_TYPE_RX_RECOVERY: |
| 1739 | case RESET_TYPE_RX_DESC_FETCH: |
| 1740 | case RESET_TYPE_TX_DESC_FETCH: |
| 1741 | case RESET_TYPE_TX_SKIP: |
| 1742 | method = RESET_TYPE_INVISIBLE; |
| 1743 | break; |
| 1744 | default: |
| 1745 | method = RESET_TYPE_ALL; |
| 1746 | break; |
| 1747 | } |
| 1748 | |
| 1749 | if (method != type) |
| 1750 | EFX_LOG(efx, "scheduling reset (%d:%d)\n", type, method); |
| 1751 | else |
| 1752 | EFX_LOG(efx, "scheduling reset (%d)\n", method); |
| 1753 | |
| 1754 | efx->reset_pending = method; |
| 1755 | |
| 1756 | queue_work(efx->workqueue, &efx->reset_work); |
| 1757 | } |
| 1758 | |
| 1759 | /************************************************************************** |
| 1760 | * |
| 1761 | * List of NICs we support |
| 1762 | * |
| 1763 | **************************************************************************/ |
| 1764 | |
| 1765 | /* PCI device ID table */ |
| 1766 | static struct pci_device_id efx_pci_table[] __devinitdata = { |
| 1767 | {PCI_DEVICE(EFX_VENDID_SFC, FALCON_A_P_DEVID), |
| 1768 | .driver_data = (unsigned long) &falcon_a_nic_type}, |
| 1769 | {PCI_DEVICE(EFX_VENDID_SFC, FALCON_B_P_DEVID), |
| 1770 | .driver_data = (unsigned long) &falcon_b_nic_type}, |
| 1771 | {0} /* end of list */ |
| 1772 | }; |
| 1773 | |
| 1774 | /************************************************************************** |
| 1775 | * |
| 1776 | * Dummy PHY/MAC/Board operations |
| 1777 | * |
| 1778 | * Can be used where the MAC does not implement this operation |
| 1779 | * Needed so all function pointers are valid and do not have to be tested |
| 1780 | * before use |
| 1781 | * |
| 1782 | **************************************************************************/ |
| 1783 | int efx_port_dummy_op_int(struct efx_nic *efx) |
| 1784 | { |
| 1785 | return 0; |
| 1786 | } |
| 1787 | void efx_port_dummy_op_void(struct efx_nic *efx) {} |
| 1788 | void efx_port_dummy_op_blink(struct efx_nic *efx, int blink) {} |
| 1789 | |
| 1790 | static struct efx_phy_operations efx_dummy_phy_operations = { |
| 1791 | .init = efx_port_dummy_op_int, |
| 1792 | .reconfigure = efx_port_dummy_op_void, |
| 1793 | .check_hw = efx_port_dummy_op_int, |
| 1794 | .fini = efx_port_dummy_op_void, |
| 1795 | .clear_interrupt = efx_port_dummy_op_void, |
| 1796 | .reset_xaui = efx_port_dummy_op_void, |
| 1797 | }; |
| 1798 | |
| 1799 | /* Dummy board operations */ |
| 1800 | static int efx_nic_dummy_op_int(struct efx_nic *nic) |
| 1801 | { |
| 1802 | return 0; |
| 1803 | } |
| 1804 | |
| 1805 | static struct efx_board efx_dummy_board_info = { |
| 1806 | .init = efx_nic_dummy_op_int, |
| 1807 | .init_leds = efx_port_dummy_op_int, |
| 1808 | .set_fault_led = efx_port_dummy_op_blink, |
| 1809 | }; |
| 1810 | |
| 1811 | /************************************************************************** |
| 1812 | * |
| 1813 | * Data housekeeping |
| 1814 | * |
| 1815 | **************************************************************************/ |
| 1816 | |
| 1817 | /* This zeroes out and then fills in the invariants in a struct |
| 1818 | * efx_nic (including all sub-structures). |
| 1819 | */ |
| 1820 | static int efx_init_struct(struct efx_nic *efx, struct efx_nic_type *type, |
| 1821 | struct pci_dev *pci_dev, struct net_device *net_dev) |
| 1822 | { |
| 1823 | struct efx_channel *channel; |
| 1824 | struct efx_tx_queue *tx_queue; |
| 1825 | struct efx_rx_queue *rx_queue; |
| 1826 | int i, rc; |
| 1827 | |
| 1828 | /* Initialise common structures */ |
| 1829 | memset(efx, 0, sizeof(*efx)); |
| 1830 | spin_lock_init(&efx->biu_lock); |
| 1831 | spin_lock_init(&efx->phy_lock); |
| 1832 | INIT_WORK(&efx->reset_work, efx_reset_work); |
| 1833 | INIT_DELAYED_WORK(&efx->monitor_work, efx_monitor); |
| 1834 | efx->pci_dev = pci_dev; |
| 1835 | efx->state = STATE_INIT; |
| 1836 | efx->reset_pending = RESET_TYPE_NONE; |
| 1837 | strlcpy(efx->name, pci_name(pci_dev), sizeof(efx->name)); |
| 1838 | efx->board_info = efx_dummy_board_info; |
| 1839 | |
| 1840 | efx->net_dev = net_dev; |
| 1841 | efx->rx_checksum_enabled = 1; |
| 1842 | spin_lock_init(&efx->netif_stop_lock); |
| 1843 | spin_lock_init(&efx->stats_lock); |
| 1844 | mutex_init(&efx->mac_lock); |
| 1845 | efx->phy_op = &efx_dummy_phy_operations; |
| 1846 | efx->mii.dev = net_dev; |
| 1847 | INIT_WORK(&efx->reconfigure_work, efx_reconfigure_work); |
| 1848 | atomic_set(&efx->netif_stop_count, 1); |
| 1849 | |
| 1850 | for (i = 0; i < EFX_MAX_CHANNELS; i++) { |
| 1851 | channel = &efx->channel[i]; |
| 1852 | channel->efx = efx; |
| 1853 | channel->channel = i; |
| 1854 | channel->evqnum = i; |
| 1855 | channel->work_pending = 0; |
| 1856 | } |
| 1857 | for (i = 0; i < EFX_MAX_TX_QUEUES; i++) { |
| 1858 | tx_queue = &efx->tx_queue[i]; |
| 1859 | tx_queue->efx = efx; |
| 1860 | tx_queue->queue = i; |
| 1861 | tx_queue->buffer = NULL; |
| 1862 | tx_queue->channel = &efx->channel[0]; /* for safety */ |
Ben Hutchings | b9b39b6 | 2008-05-07 12:51:12 +0100 | [diff] [blame] | 1863 | tx_queue->tso_headers_free = NULL; |
Ben Hutchings | 8ceee66 | 2008-04-27 12:55:59 +0100 | [diff] [blame] | 1864 | } |
| 1865 | for (i = 0; i < EFX_MAX_RX_QUEUES; i++) { |
| 1866 | rx_queue = &efx->rx_queue[i]; |
| 1867 | rx_queue->efx = efx; |
| 1868 | rx_queue->queue = i; |
| 1869 | rx_queue->channel = &efx->channel[0]; /* for safety */ |
| 1870 | rx_queue->buffer = NULL; |
| 1871 | spin_lock_init(&rx_queue->add_lock); |
| 1872 | INIT_DELAYED_WORK(&rx_queue->work, efx_rx_work); |
| 1873 | } |
| 1874 | |
| 1875 | efx->type = type; |
| 1876 | |
| 1877 | /* Sanity-check NIC type */ |
| 1878 | EFX_BUG_ON_PARANOID(efx->type->txd_ring_mask & |
| 1879 | (efx->type->txd_ring_mask + 1)); |
| 1880 | EFX_BUG_ON_PARANOID(efx->type->rxd_ring_mask & |
| 1881 | (efx->type->rxd_ring_mask + 1)); |
| 1882 | EFX_BUG_ON_PARANOID(efx->type->evq_size & |
| 1883 | (efx->type->evq_size - 1)); |
| 1884 | /* As close as we can get to guaranteeing that we don't overflow */ |
| 1885 | EFX_BUG_ON_PARANOID(efx->type->evq_size < |
| 1886 | (efx->type->txd_ring_mask + 1 + |
| 1887 | efx->type->rxd_ring_mask + 1)); |
| 1888 | EFX_BUG_ON_PARANOID(efx->type->phys_addr_channels > EFX_MAX_CHANNELS); |
| 1889 | |
| 1890 | /* Higher numbered interrupt modes are less capable! */ |
| 1891 | efx->interrupt_mode = max(efx->type->max_interrupt_mode, |
| 1892 | interrupt_mode); |
| 1893 | |
| 1894 | efx->workqueue = create_singlethread_workqueue("sfc_work"); |
| 1895 | if (!efx->workqueue) { |
| 1896 | rc = -ENOMEM; |
| 1897 | goto fail1; |
| 1898 | } |
| 1899 | |
| 1900 | return 0; |
| 1901 | |
| 1902 | fail1: |
| 1903 | return rc; |
| 1904 | } |
| 1905 | |
| 1906 | static void efx_fini_struct(struct efx_nic *efx) |
| 1907 | { |
| 1908 | if (efx->workqueue) { |
| 1909 | destroy_workqueue(efx->workqueue); |
| 1910 | efx->workqueue = NULL; |
| 1911 | } |
| 1912 | } |
| 1913 | |
| 1914 | /************************************************************************** |
| 1915 | * |
| 1916 | * PCI interface |
| 1917 | * |
| 1918 | **************************************************************************/ |
| 1919 | |
| 1920 | /* Main body of final NIC shutdown code |
| 1921 | * This is called only at module unload (or hotplug removal). |
| 1922 | */ |
| 1923 | static void efx_pci_remove_main(struct efx_nic *efx) |
| 1924 | { |
| 1925 | EFX_ASSERT_RESET_SERIALISED(efx); |
| 1926 | |
| 1927 | /* Skip everything if we never obtained a valid membase */ |
| 1928 | if (!efx->membase) |
| 1929 | return; |
| 1930 | |
| 1931 | efx_fini_channels(efx); |
| 1932 | efx_fini_port(efx); |
| 1933 | |
| 1934 | /* Shutdown the board, then the NIC and board state */ |
| 1935 | falcon_fini_interrupt(efx); |
| 1936 | |
| 1937 | efx_fini_napi(efx); |
| 1938 | efx_remove_all(efx); |
| 1939 | } |
| 1940 | |
| 1941 | /* Final NIC shutdown |
| 1942 | * This is called only at module unload (or hotplug removal). |
| 1943 | */ |
| 1944 | static void efx_pci_remove(struct pci_dev *pci_dev) |
| 1945 | { |
| 1946 | struct efx_nic *efx; |
| 1947 | |
| 1948 | efx = pci_get_drvdata(pci_dev); |
| 1949 | if (!efx) |
| 1950 | return; |
| 1951 | |
| 1952 | /* Mark the NIC as fini, then stop the interface */ |
| 1953 | rtnl_lock(); |
| 1954 | efx->state = STATE_FINI; |
| 1955 | dev_close(efx->net_dev); |
| 1956 | |
| 1957 | /* Allow any queued efx_resets() to complete */ |
| 1958 | rtnl_unlock(); |
| 1959 | |
| 1960 | if (efx->membase == NULL) |
| 1961 | goto out; |
| 1962 | |
| 1963 | efx_unregister_netdev(efx); |
| 1964 | |
| 1965 | /* Wait for any scheduled resets to complete. No more will be |
| 1966 | * scheduled from this point because efx_stop_all() has been |
| 1967 | * called, we are no longer registered with driverlink, and |
| 1968 | * the net_device's have been removed. */ |
| 1969 | flush_workqueue(efx->workqueue); |
| 1970 | |
| 1971 | efx_pci_remove_main(efx); |
| 1972 | |
| 1973 | out: |
| 1974 | efx_fini_io(efx); |
| 1975 | EFX_LOG(efx, "shutdown successful\n"); |
| 1976 | |
| 1977 | pci_set_drvdata(pci_dev, NULL); |
| 1978 | efx_fini_struct(efx); |
| 1979 | free_netdev(efx->net_dev); |
| 1980 | }; |
| 1981 | |
| 1982 | /* Main body of NIC initialisation |
| 1983 | * This is called at module load (or hotplug insertion, theoretically). |
| 1984 | */ |
| 1985 | static int efx_pci_probe_main(struct efx_nic *efx) |
| 1986 | { |
| 1987 | int rc; |
| 1988 | |
| 1989 | /* Do start-of-day initialisation */ |
| 1990 | rc = efx_probe_all(efx); |
| 1991 | if (rc) |
| 1992 | goto fail1; |
| 1993 | |
| 1994 | rc = efx_init_napi(efx); |
| 1995 | if (rc) |
| 1996 | goto fail2; |
| 1997 | |
| 1998 | /* Initialise the board */ |
| 1999 | rc = efx->board_info.init(efx); |
| 2000 | if (rc) { |
| 2001 | EFX_ERR(efx, "failed to initialise board\n"); |
| 2002 | goto fail3; |
| 2003 | } |
| 2004 | |
| 2005 | rc = falcon_init_nic(efx); |
| 2006 | if (rc) { |
| 2007 | EFX_ERR(efx, "failed to initialise NIC\n"); |
| 2008 | goto fail4; |
| 2009 | } |
| 2010 | |
| 2011 | rc = efx_init_port(efx); |
| 2012 | if (rc) { |
| 2013 | EFX_ERR(efx, "failed to initialise port\n"); |
| 2014 | goto fail5; |
| 2015 | } |
| 2016 | |
| 2017 | rc = efx_init_channels(efx); |
| 2018 | if (rc) |
| 2019 | goto fail6; |
| 2020 | |
| 2021 | rc = falcon_init_interrupt(efx); |
| 2022 | if (rc) |
| 2023 | goto fail7; |
| 2024 | |
| 2025 | return 0; |
| 2026 | |
| 2027 | fail7: |
| 2028 | efx_fini_channels(efx); |
| 2029 | fail6: |
| 2030 | efx_fini_port(efx); |
| 2031 | fail5: |
| 2032 | fail4: |
| 2033 | fail3: |
| 2034 | efx_fini_napi(efx); |
| 2035 | fail2: |
| 2036 | efx_remove_all(efx); |
| 2037 | fail1: |
| 2038 | return rc; |
| 2039 | } |
| 2040 | |
| 2041 | /* NIC initialisation |
| 2042 | * |
| 2043 | * This is called at module load (or hotplug insertion, |
| 2044 | * theoretically). It sets up PCI mappings, tests and resets the NIC, |
| 2045 | * sets up and registers the network devices with the kernel and hooks |
| 2046 | * the interrupt service routine. It does not prepare the device for |
| 2047 | * transmission; this is left to the first time one of the network |
| 2048 | * interfaces is brought up (i.e. efx_net_open). |
| 2049 | */ |
| 2050 | static int __devinit efx_pci_probe(struct pci_dev *pci_dev, |
| 2051 | const struct pci_device_id *entry) |
| 2052 | { |
| 2053 | struct efx_nic_type *type = (struct efx_nic_type *) entry->driver_data; |
| 2054 | struct net_device *net_dev; |
| 2055 | struct efx_nic *efx; |
| 2056 | int i, rc; |
| 2057 | |
| 2058 | /* Allocate and initialise a struct net_device and struct efx_nic */ |
| 2059 | net_dev = alloc_etherdev(sizeof(*efx)); |
| 2060 | if (!net_dev) |
| 2061 | return -ENOMEM; |
Ben Hutchings | b9b39b6 | 2008-05-07 12:51:12 +0100 | [diff] [blame] | 2062 | net_dev->features |= (NETIF_F_IP_CSUM | NETIF_F_SG | |
| 2063 | NETIF_F_HIGHDMA | NETIF_F_TSO); |
Ben Hutchings | 8ceee66 | 2008-04-27 12:55:59 +0100 | [diff] [blame] | 2064 | if (lro) |
| 2065 | net_dev->features |= NETIF_F_LRO; |
| 2066 | efx = net_dev->priv; |
| 2067 | pci_set_drvdata(pci_dev, efx); |
| 2068 | rc = efx_init_struct(efx, type, pci_dev, net_dev); |
| 2069 | if (rc) |
| 2070 | goto fail1; |
| 2071 | |
| 2072 | EFX_INFO(efx, "Solarflare Communications NIC detected\n"); |
| 2073 | |
| 2074 | /* Set up basic I/O (BAR mappings etc) */ |
| 2075 | rc = efx_init_io(efx); |
| 2076 | if (rc) |
| 2077 | goto fail2; |
| 2078 | |
| 2079 | /* No serialisation is required with the reset path because |
| 2080 | * we're in STATE_INIT. */ |
| 2081 | for (i = 0; i < 5; i++) { |
| 2082 | rc = efx_pci_probe_main(efx); |
| 2083 | if (rc == 0) |
| 2084 | break; |
| 2085 | |
| 2086 | /* Serialise against efx_reset(). No more resets will be |
| 2087 | * scheduled since efx_stop_all() has been called, and we |
| 2088 | * have not and never have been registered with either |
| 2089 | * the rtnetlink or driverlink layers. */ |
| 2090 | cancel_work_sync(&efx->reset_work); |
| 2091 | |
| 2092 | /* Retry if a recoverably reset event has been scheduled */ |
| 2093 | if ((efx->reset_pending != RESET_TYPE_INVISIBLE) && |
| 2094 | (efx->reset_pending != RESET_TYPE_ALL)) |
| 2095 | goto fail3; |
| 2096 | |
| 2097 | efx->reset_pending = RESET_TYPE_NONE; |
| 2098 | } |
| 2099 | |
| 2100 | if (rc) { |
| 2101 | EFX_ERR(efx, "Could not reset NIC\n"); |
| 2102 | goto fail4; |
| 2103 | } |
| 2104 | |
| 2105 | /* Switch to the running state before we expose the device to |
| 2106 | * the OS. This is to ensure that the initial gathering of |
| 2107 | * MAC stats succeeds. */ |
| 2108 | rtnl_lock(); |
| 2109 | efx->state = STATE_RUNNING; |
| 2110 | rtnl_unlock(); |
| 2111 | |
| 2112 | rc = efx_register_netdev(efx); |
| 2113 | if (rc) |
| 2114 | goto fail5; |
| 2115 | |
| 2116 | EFX_LOG(efx, "initialisation successful\n"); |
| 2117 | |
| 2118 | return 0; |
| 2119 | |
| 2120 | fail5: |
| 2121 | efx_pci_remove_main(efx); |
| 2122 | fail4: |
| 2123 | fail3: |
| 2124 | efx_fini_io(efx); |
| 2125 | fail2: |
| 2126 | efx_fini_struct(efx); |
| 2127 | fail1: |
| 2128 | EFX_LOG(efx, "initialisation failed. rc=%d\n", rc); |
| 2129 | free_netdev(net_dev); |
| 2130 | return rc; |
| 2131 | } |
| 2132 | |
| 2133 | static struct pci_driver efx_pci_driver = { |
| 2134 | .name = EFX_DRIVER_NAME, |
| 2135 | .id_table = efx_pci_table, |
| 2136 | .probe = efx_pci_probe, |
| 2137 | .remove = efx_pci_remove, |
| 2138 | }; |
| 2139 | |
| 2140 | /************************************************************************** |
| 2141 | * |
| 2142 | * Kernel module interface |
| 2143 | * |
| 2144 | *************************************************************************/ |
| 2145 | |
| 2146 | module_param(interrupt_mode, uint, 0444); |
| 2147 | MODULE_PARM_DESC(interrupt_mode, |
| 2148 | "Interrupt mode (0=>MSIX 1=>MSI 2=>legacy)"); |
| 2149 | |
| 2150 | static int __init efx_init_module(void) |
| 2151 | { |
| 2152 | int rc; |
| 2153 | |
| 2154 | printk(KERN_INFO "Solarflare NET driver v" EFX_DRIVER_VERSION "\n"); |
| 2155 | |
| 2156 | rc = register_netdevice_notifier(&efx_netdev_notifier); |
| 2157 | if (rc) |
| 2158 | goto err_notifier; |
| 2159 | |
| 2160 | refill_workqueue = create_workqueue("sfc_refill"); |
| 2161 | if (!refill_workqueue) { |
| 2162 | rc = -ENOMEM; |
| 2163 | goto err_refill; |
| 2164 | } |
| 2165 | |
| 2166 | rc = pci_register_driver(&efx_pci_driver); |
| 2167 | if (rc < 0) |
| 2168 | goto err_pci; |
| 2169 | |
| 2170 | return 0; |
| 2171 | |
| 2172 | err_pci: |
| 2173 | destroy_workqueue(refill_workqueue); |
| 2174 | err_refill: |
| 2175 | unregister_netdevice_notifier(&efx_netdev_notifier); |
| 2176 | err_notifier: |
| 2177 | return rc; |
| 2178 | } |
| 2179 | |
| 2180 | static void __exit efx_exit_module(void) |
| 2181 | { |
| 2182 | printk(KERN_INFO "Solarflare NET driver unloading\n"); |
| 2183 | |
| 2184 | pci_unregister_driver(&efx_pci_driver); |
| 2185 | destroy_workqueue(refill_workqueue); |
| 2186 | unregister_netdevice_notifier(&efx_netdev_notifier); |
| 2187 | |
| 2188 | } |
| 2189 | |
| 2190 | module_init(efx_init_module); |
| 2191 | module_exit(efx_exit_module); |
| 2192 | |
| 2193 | MODULE_AUTHOR("Michael Brown <mbrown@fensystems.co.uk> and " |
| 2194 | "Solarflare Communications"); |
| 2195 | MODULE_DESCRIPTION("Solarflare Communications network driver"); |
| 2196 | MODULE_LICENSE("GPL"); |
| 2197 | MODULE_DEVICE_TABLE(pci, efx_pci_table); |