Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 1 | /* bitops.h: bit operations for the Fujitsu FR-V CPUs |
| 2 | * |
| 3 | * For an explanation of how atomic ops work in this arch, see: |
| 4 | * Documentation/fujitsu/frv/atomic-ops.txt |
| 5 | * |
| 6 | * Copyright (C) 2004 Red Hat, Inc. All Rights Reserved. |
| 7 | * Written by David Howells (dhowells@redhat.com) |
| 8 | * |
| 9 | * This program is free software; you can redistribute it and/or |
| 10 | * modify it under the terms of the GNU General Public License |
| 11 | * as published by the Free Software Foundation; either version |
| 12 | * 2 of the License, or (at your option) any later version. |
| 13 | */ |
| 14 | #ifndef _ASM_BITOPS_H |
| 15 | #define _ASM_BITOPS_H |
| 16 | |
| 17 | #include <linux/config.h> |
| 18 | #include <linux/compiler.h> |
| 19 | #include <asm/byteorder.h> |
| 20 | #include <asm/system.h> |
| 21 | #include <asm/atomic.h> |
| 22 | |
| 23 | #ifdef __KERNEL__ |
| 24 | |
| 25 | /* |
| 26 | * ffz = Find First Zero in word. Undefined if no zero exists, |
| 27 | * so code should check against ~0UL first.. |
| 28 | */ |
| 29 | static inline unsigned long ffz(unsigned long word) |
| 30 | { |
| 31 | unsigned long result = 0; |
| 32 | |
| 33 | while (word & 1) { |
| 34 | result++; |
| 35 | word >>= 1; |
| 36 | } |
| 37 | return result; |
| 38 | } |
| 39 | |
| 40 | /* |
| 41 | * clear_bit() doesn't provide any barrier for the compiler. |
| 42 | */ |
| 43 | #define smp_mb__before_clear_bit() barrier() |
| 44 | #define smp_mb__after_clear_bit() barrier() |
| 45 | |
| 46 | static inline int test_and_clear_bit(int nr, volatile void *addr) |
| 47 | { |
| 48 | volatile unsigned long *ptr = addr; |
| 49 | unsigned long mask = 1UL << (nr & 31); |
| 50 | ptr += nr >> 5; |
| 51 | return (atomic_test_and_ANDNOT_mask(mask, ptr) & mask) != 0; |
| 52 | } |
| 53 | |
| 54 | static inline int test_and_set_bit(int nr, volatile void *addr) |
| 55 | { |
| 56 | volatile unsigned long *ptr = addr; |
| 57 | unsigned long mask = 1UL << (nr & 31); |
| 58 | ptr += nr >> 5; |
| 59 | return (atomic_test_and_OR_mask(mask, ptr) & mask) != 0; |
| 60 | } |
| 61 | |
| 62 | static inline int test_and_change_bit(int nr, volatile void *addr) |
| 63 | { |
| 64 | volatile unsigned long *ptr = addr; |
| 65 | unsigned long mask = 1UL << (nr & 31); |
| 66 | ptr += nr >> 5; |
| 67 | return (atomic_test_and_XOR_mask(mask, ptr) & mask) != 0; |
| 68 | } |
| 69 | |
| 70 | static inline void clear_bit(int nr, volatile void *addr) |
| 71 | { |
| 72 | test_and_clear_bit(nr, addr); |
| 73 | } |
| 74 | |
| 75 | static inline void set_bit(int nr, volatile void *addr) |
| 76 | { |
| 77 | test_and_set_bit(nr, addr); |
| 78 | } |
| 79 | |
| 80 | static inline void change_bit(int nr, volatile void * addr) |
| 81 | { |
| 82 | test_and_change_bit(nr, addr); |
| 83 | } |
| 84 | |
| 85 | static inline void __clear_bit(int nr, volatile void * addr) |
| 86 | { |
| 87 | volatile unsigned long *a = addr; |
| 88 | int mask; |
| 89 | |
| 90 | a += nr >> 5; |
| 91 | mask = 1 << (nr & 31); |
| 92 | *a &= ~mask; |
| 93 | } |
| 94 | |
| 95 | static inline void __set_bit(int nr, volatile void * addr) |
| 96 | { |
| 97 | volatile unsigned long *a = addr; |
| 98 | int mask; |
| 99 | |
| 100 | a += nr >> 5; |
| 101 | mask = 1 << (nr & 31); |
| 102 | *a |= mask; |
| 103 | } |
| 104 | |
| 105 | static inline void __change_bit(int nr, volatile void *addr) |
| 106 | { |
| 107 | volatile unsigned long *a = addr; |
| 108 | int mask; |
| 109 | |
| 110 | a += nr >> 5; |
| 111 | mask = 1 << (nr & 31); |
| 112 | *a ^= mask; |
| 113 | } |
| 114 | |
| 115 | static inline int __test_and_clear_bit(int nr, volatile void * addr) |
| 116 | { |
| 117 | volatile unsigned long *a = addr; |
| 118 | int mask, retval; |
| 119 | |
| 120 | a += nr >> 5; |
| 121 | mask = 1 << (nr & 31); |
| 122 | retval = (mask & *a) != 0; |
| 123 | *a &= ~mask; |
| 124 | return retval; |
| 125 | } |
| 126 | |
| 127 | static inline int __test_and_set_bit(int nr, volatile void * addr) |
| 128 | { |
| 129 | volatile unsigned long *a = addr; |
| 130 | int mask, retval; |
| 131 | |
| 132 | a += nr >> 5; |
| 133 | mask = 1 << (nr & 31); |
| 134 | retval = (mask & *a) != 0; |
| 135 | *a |= mask; |
| 136 | return retval; |
| 137 | } |
| 138 | |
| 139 | static inline int __test_and_change_bit(int nr, volatile void * addr) |
| 140 | { |
| 141 | volatile unsigned long *a = addr; |
| 142 | int mask, retval; |
| 143 | |
| 144 | a += nr >> 5; |
| 145 | mask = 1 << (nr & 31); |
| 146 | retval = (mask & *a) != 0; |
| 147 | *a ^= mask; |
| 148 | return retval; |
| 149 | } |
| 150 | |
| 151 | /* |
| 152 | * This routine doesn't need to be atomic. |
| 153 | */ |
| 154 | static inline int __constant_test_bit(int nr, const volatile void * addr) |
| 155 | { |
| 156 | return ((1UL << (nr & 31)) & (((const volatile unsigned int *) addr)[nr >> 5])) != 0; |
| 157 | } |
| 158 | |
| 159 | static inline int __test_bit(int nr, const volatile void * addr) |
| 160 | { |
| 161 | int * a = (int *) addr; |
| 162 | int mask; |
| 163 | |
| 164 | a += nr >> 5; |
| 165 | mask = 1 << (nr & 0x1f); |
| 166 | return ((mask & *a) != 0); |
| 167 | } |
| 168 | |
| 169 | #define test_bit(nr,addr) \ |
| 170 | (__builtin_constant_p(nr) ? \ |
| 171 | __constant_test_bit((nr),(addr)) : \ |
| 172 | __test_bit((nr),(addr))) |
| 173 | |
| 174 | extern int find_next_bit(const unsigned long *addr, int size, int offset); |
| 175 | |
| 176 | #define find_first_bit(addr, size) find_next_bit(addr, size, 0) |
| 177 | |
| 178 | #define find_first_zero_bit(addr, size) \ |
| 179 | find_next_zero_bit((addr), (size), 0) |
| 180 | |
| 181 | static inline int find_next_zero_bit(const void *addr, int size, int offset) |
| 182 | { |
| 183 | const unsigned long *p = ((const unsigned long *) addr) + (offset >> 5); |
| 184 | unsigned long result = offset & ~31UL; |
| 185 | unsigned long tmp; |
| 186 | |
| 187 | if (offset >= size) |
| 188 | return size; |
| 189 | size -= result; |
| 190 | offset &= 31UL; |
| 191 | if (offset) { |
| 192 | tmp = *(p++); |
| 193 | tmp |= ~0UL >> (32-offset); |
| 194 | if (size < 32) |
| 195 | goto found_first; |
| 196 | if (~tmp) |
| 197 | goto found_middle; |
| 198 | size -= 32; |
| 199 | result += 32; |
| 200 | } |
| 201 | while (size & ~31UL) { |
| 202 | if (~(tmp = *(p++))) |
| 203 | goto found_middle; |
| 204 | result += 32; |
| 205 | size -= 32; |
| 206 | } |
| 207 | if (!size) |
| 208 | return result; |
| 209 | tmp = *p; |
| 210 | |
| 211 | found_first: |
Alexey Dobriyan | bcc68b8 | 2006-02-03 03:03:54 -0800 | [diff] [blame] | 212 | tmp |= ~0UL << size; |
Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 213 | found_middle: |
| 214 | return result + ffz(tmp); |
| 215 | } |
| 216 | |
| 217 | #define ffs(x) generic_ffs(x) |
| 218 | #define __ffs(x) (ffs(x) - 1) |
| 219 | |
| 220 | /* |
| 221 | * fls: find last bit set. |
| 222 | */ |
| 223 | #define fls(x) \ |
| 224 | ({ \ |
| 225 | int bit; \ |
| 226 | \ |
| 227 | asm("scan %1,gr0,%0" : "=r"(bit) : "r"(x)); \ |
| 228 | \ |
| 229 | bit ? 33 - bit : bit; \ |
| 230 | }) |
Stephen Hemminger | 3821af2 | 2005-12-21 19:30:53 -0800 | [diff] [blame] | 231 | #define fls64(x) generic_fls64(x) |
Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 232 | |
| 233 | /* |
| 234 | * Every architecture must define this function. It's the fastest |
| 235 | * way of searching a 140-bit bitmap where the first 100 bits are |
| 236 | * unlikely to be set. It's guaranteed that at least one of the 140 |
| 237 | * bits is cleared. |
| 238 | */ |
| 239 | static inline int sched_find_first_bit(const unsigned long *b) |
| 240 | { |
| 241 | if (unlikely(b[0])) |
| 242 | return __ffs(b[0]); |
| 243 | if (unlikely(b[1])) |
| 244 | return __ffs(b[1]) + 32; |
| 245 | if (unlikely(b[2])) |
| 246 | return __ffs(b[2]) + 64; |
| 247 | if (b[3]) |
| 248 | return __ffs(b[3]) + 96; |
| 249 | return __ffs(b[4]) + 128; |
| 250 | } |
| 251 | |
| 252 | |
| 253 | /* |
| 254 | * hweightN: returns the hamming weight (i.e. the number |
| 255 | * of bits set) of a N-bit word |
| 256 | */ |
| 257 | |
| 258 | #define hweight32(x) generic_hweight32(x) |
| 259 | #define hweight16(x) generic_hweight16(x) |
| 260 | #define hweight8(x) generic_hweight8(x) |
| 261 | |
| 262 | #define ext2_set_bit(nr, addr) test_and_set_bit ((nr) ^ 0x18, (addr)) |
| 263 | #define ext2_clear_bit(nr, addr) test_and_clear_bit((nr) ^ 0x18, (addr)) |
| 264 | |
| 265 | #define ext2_set_bit_atomic(lock,nr,addr) ext2_set_bit((nr), addr) |
| 266 | #define ext2_clear_bit_atomic(lock,nr,addr) ext2_clear_bit((nr), addr) |
| 267 | |
| 268 | static inline int ext2_test_bit(int nr, const volatile void * addr) |
| 269 | { |
| 270 | const volatile unsigned char *ADDR = (const unsigned char *) addr; |
| 271 | int mask; |
| 272 | |
| 273 | ADDR += nr >> 3; |
| 274 | mask = 1 << (nr & 0x07); |
| 275 | return ((mask & *ADDR) != 0); |
| 276 | } |
| 277 | |
| 278 | #define ext2_find_first_zero_bit(addr, size) \ |
| 279 | ext2_find_next_zero_bit((addr), (size), 0) |
| 280 | |
| 281 | static inline unsigned long ext2_find_next_zero_bit(const void *addr, |
| 282 | unsigned long size, |
| 283 | unsigned long offset) |
| 284 | { |
| 285 | const unsigned long *p = ((const unsigned long *) addr) + (offset >> 5); |
| 286 | unsigned long result = offset & ~31UL; |
| 287 | unsigned long tmp; |
| 288 | |
| 289 | if (offset >= size) |
| 290 | return size; |
| 291 | size -= result; |
| 292 | offset &= 31UL; |
| 293 | if(offset) { |
| 294 | /* We hold the little endian value in tmp, but then the |
| 295 | * shift is illegal. So we could keep a big endian value |
| 296 | * in tmp, like this: |
| 297 | * |
| 298 | * tmp = __swab32(*(p++)); |
| 299 | * tmp |= ~0UL >> (32-offset); |
| 300 | * |
| 301 | * but this would decrease preformance, so we change the |
| 302 | * shift: |
| 303 | */ |
| 304 | tmp = *(p++); |
| 305 | tmp |= __swab32(~0UL >> (32-offset)); |
| 306 | if(size < 32) |
| 307 | goto found_first; |
| 308 | if(~tmp) |
| 309 | goto found_middle; |
| 310 | size -= 32; |
| 311 | result += 32; |
| 312 | } |
| 313 | while(size & ~31UL) { |
| 314 | if(~(tmp = *(p++))) |
| 315 | goto found_middle; |
| 316 | result += 32; |
| 317 | size -= 32; |
| 318 | } |
| 319 | if(!size) |
| 320 | return result; |
| 321 | tmp = *p; |
| 322 | |
| 323 | found_first: |
| 324 | /* tmp is little endian, so we would have to swab the shift, |
| 325 | * see above. But then we have to swab tmp below for ffz, so |
| 326 | * we might as well do this here. |
| 327 | */ |
| 328 | return result + ffz(__swab32(tmp) | (~0UL << size)); |
| 329 | found_middle: |
| 330 | return result + ffz(__swab32(tmp)); |
| 331 | } |
| 332 | |
| 333 | /* Bitmap functions for the minix filesystem. */ |
| 334 | #define minix_test_and_set_bit(nr,addr) ext2_set_bit(nr,addr) |
| 335 | #define minix_set_bit(nr,addr) ext2_set_bit(nr,addr) |
| 336 | #define minix_test_and_clear_bit(nr,addr) ext2_clear_bit(nr,addr) |
| 337 | #define minix_test_bit(nr,addr) ext2_test_bit(nr,addr) |
| 338 | #define minix_find_first_zero_bit(addr,size) ext2_find_first_zero_bit(addr,size) |
| 339 | |
| 340 | #endif /* __KERNEL__ */ |
| 341 | |
| 342 | #endif /* _ASM_BITOPS_H */ |