blob: a5e8dc23190c4a90068ab3e8aa288eb5df8d7e7c [file] [log] [blame]
Linus Torvalds1da177e2005-04-16 15:20:36 -07001/*
Uwe Zeisbergerf30c2262006-10-03 23:01:26 +02002 * mm/page-writeback.c
Linus Torvalds1da177e2005-04-16 15:20:36 -07003 *
4 * Copyright (C) 2002, Linus Torvalds.
Peter Zijlstra04fbfdc2007-10-16 23:25:50 -07005 * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
Linus Torvalds1da177e2005-04-16 15:20:36 -07006 *
7 * Contains functions related to writing back dirty pages at the
8 * address_space level.
9 *
Francois Camie1f8e872008-10-15 22:01:59 -070010 * 10Apr2002 Andrew Morton
Linus Torvalds1da177e2005-04-16 15:20:36 -070011 * Initial version
12 */
13
14#include <linux/kernel.h>
Paul Gortmakerb95f1b312011-10-16 02:01:52 -040015#include <linux/export.h>
Linus Torvalds1da177e2005-04-16 15:20:36 -070016#include <linux/spinlock.h>
17#include <linux/fs.h>
18#include <linux/mm.h>
19#include <linux/swap.h>
20#include <linux/slab.h>
21#include <linux/pagemap.h>
22#include <linux/writeback.h>
23#include <linux/init.h>
24#include <linux/backing-dev.h>
Andrew Morton55e829a2006-12-10 02:19:27 -080025#include <linux/task_io_accounting_ops.h>
Linus Torvalds1da177e2005-04-16 15:20:36 -070026#include <linux/blkdev.h>
27#include <linux/mpage.h>
Peter Zijlstrad08b3852006-09-25 23:30:57 -070028#include <linux/rmap.h>
Linus Torvalds1da177e2005-04-16 15:20:36 -070029#include <linux/percpu.h>
30#include <linux/notifier.h>
31#include <linux/smp.h>
32#include <linux/sysctl.h>
33#include <linux/cpu.h>
34#include <linux/syscalls.h>
Al Viroff01bb42011-09-16 02:31:11 -040035#include <linux/buffer_head.h> /* __set_page_dirty_buffers */
David Howells811d7362006-08-29 19:06:09 +010036#include <linux/pagevec.h>
Lisa Due0935212013-09-11 14:22:36 -070037#include <linux/mm_inline.h>
Dave Chinner028c2dd2010-07-07 13:24:07 +100038#include <trace/events/writeback.h>
Linus Torvalds1da177e2005-04-16 15:20:36 -070039
Lisa Due0935212013-09-11 14:22:36 -070040#include "internal.h"
41
Linus Torvalds1da177e2005-04-16 15:20:36 -070042/*
Wu Fengguangffd1f602011-06-19 22:18:42 -060043 * Sleep at most 200ms at a time in balance_dirty_pages().
44 */
45#define MAX_PAUSE max(HZ/5, 1)
46
47/*
Wu Fengguang5b9b3572011-12-06 13:17:17 -060048 * Try to keep balance_dirty_pages() call intervals higher than this many pages
49 * by raising pause time to max_pause when falls below it.
50 */
51#define DIRTY_POLL_THRESH (128 >> (PAGE_SHIFT - 10))
52
53/*
Wu Fengguange98be2d2010-08-29 11:22:30 -060054 * Estimate write bandwidth at 200ms intervals.
55 */
56#define BANDWIDTH_INTERVAL max(HZ/5, 1)
57
Wu Fengguang6c14ae12011-03-02 16:04:18 -060058#define RATELIMIT_CALC_SHIFT 10
59
Wu Fengguange98be2d2010-08-29 11:22:30 -060060/*
Linus Torvalds1da177e2005-04-16 15:20:36 -070061 * After a CPU has dirtied this many pages, balance_dirty_pages_ratelimited
62 * will look to see if it needs to force writeback or throttling.
63 */
64static long ratelimit_pages = 32;
65
Linus Torvalds1da177e2005-04-16 15:20:36 -070066/* The following parameters are exported via /proc/sys/vm */
67
68/*
Jens Axboe5b0830c2009-09-23 19:37:09 +020069 * Start background writeback (via writeback threads) at this percentage
Linus Torvalds1da177e2005-04-16 15:20:36 -070070 */
Wu Fengguang1b5e62b2009-03-23 08:57:38 +080071int dirty_background_ratio = 10;
Linus Torvalds1da177e2005-04-16 15:20:36 -070072
73/*
David Rientjes2da02992009-01-06 14:39:31 -080074 * dirty_background_bytes starts at 0 (disabled) so that it is a function of
75 * dirty_background_ratio * the amount of dirtyable memory
76 */
77unsigned long dirty_background_bytes;
78
79/*
Bron Gondwana195cf452008-02-04 22:29:20 -080080 * free highmem will not be subtracted from the total free memory
81 * for calculating free ratios if vm_highmem_is_dirtyable is true
82 */
83int vm_highmem_is_dirtyable;
84
85/*
Linus Torvalds1da177e2005-04-16 15:20:36 -070086 * The generator of dirty data starts writeback at this percentage
87 */
Wu Fengguang1b5e62b2009-03-23 08:57:38 +080088int vm_dirty_ratio = 20;
Linus Torvalds1da177e2005-04-16 15:20:36 -070089
90/*
David Rientjes2da02992009-01-06 14:39:31 -080091 * vm_dirty_bytes starts at 0 (disabled) so that it is a function of
92 * vm_dirty_ratio * the amount of dirtyable memory
93 */
94unsigned long vm_dirty_bytes;
95
96/*
Alexey Dobriyan704503d2009-03-31 15:23:18 -070097 * The interval between `kupdate'-style writebacks
Linus Torvalds1da177e2005-04-16 15:20:36 -070098 */
Toshiyuki Okajima22ef37e2009-05-16 22:56:28 -070099unsigned int dirty_writeback_interval = 5 * 100; /* centiseconds */
Linus Torvalds1da177e2005-04-16 15:20:36 -0700100
Artem Bityutskiy91913a22012-03-21 22:33:00 -0400101EXPORT_SYMBOL_GPL(dirty_writeback_interval);
102
Linus Torvalds1da177e2005-04-16 15:20:36 -0700103/*
Alexey Dobriyan704503d2009-03-31 15:23:18 -0700104 * The longest time for which data is allowed to remain dirty
Linus Torvalds1da177e2005-04-16 15:20:36 -0700105 */
Toshiyuki Okajima22ef37e2009-05-16 22:56:28 -0700106unsigned int dirty_expire_interval = 30 * 100; /* centiseconds */
Linus Torvalds1da177e2005-04-16 15:20:36 -0700107
108/*
109 * Flag that makes the machine dump writes/reads and block dirtyings.
110 */
111int block_dump;
112
113/*
Bart Samweled5b43f2006-03-24 03:15:49 -0800114 * Flag that puts the machine in "laptop mode". Doubles as a timeout in jiffies:
115 * a full sync is triggered after this time elapses without any disk activity.
Linus Torvalds1da177e2005-04-16 15:20:36 -0700116 */
117int laptop_mode;
118
119EXPORT_SYMBOL(laptop_mode);
120
121/* End of sysctl-exported parameters */
122
Wu Fengguangc42843f2011-03-02 15:54:09 -0600123unsigned long global_dirty_limit;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700124
Linus Torvalds1da177e2005-04-16 15:20:36 -0700125/*
Peter Zijlstra04fbfdc2007-10-16 23:25:50 -0700126 * Scale the writeback cache size proportional to the relative writeout speeds.
127 *
128 * We do this by keeping a floating proportion between BDIs, based on page
129 * writeback completions [end_page_writeback()]. Those devices that write out
130 * pages fastest will get the larger share, while the slower will get a smaller
131 * share.
132 *
133 * We use page writeout completions because we are interested in getting rid of
134 * dirty pages. Having them written out is the primary goal.
135 *
136 * We introduce a concept of time, a period over which we measure these events,
137 * because demand can/will vary over time. The length of this period itself is
138 * measured in page writeback completions.
139 *
140 */
141static struct prop_descriptor vm_completions;
142
Peter Zijlstra04fbfdc2007-10-16 23:25:50 -0700143/*
Johannes Weiner1edf2232012-01-10 15:06:57 -0800144 * Work out the current dirty-memory clamping and background writeout
145 * thresholds.
146 *
147 * The main aim here is to lower them aggressively if there is a lot of mapped
148 * memory around. To avoid stressing page reclaim with lots of unreclaimable
149 * pages. It is better to clamp down on writers than to start swapping, and
150 * performing lots of scanning.
151 *
152 * We only allow 1/2 of the currently-unmapped memory to be dirtied.
153 *
154 * We don't permit the clamping level to fall below 5% - that is getting rather
155 * excessive.
156 *
157 * We make sure that the background writeout level is below the adjusted
158 * clamping level.
159 */
Johannes Weinerccafa282012-01-10 15:07:44 -0800160
Johannes Weinera756cf52012-01-10 15:07:49 -0800161/*
162 * In a memory zone, there is a certain amount of pages we consider
163 * available for the page cache, which is essentially the number of
164 * free and reclaimable pages, minus some zone reserves to protect
165 * lowmem and the ability to uphold the zone's watermarks without
166 * requiring writeback.
167 *
168 * This number of dirtyable pages is the base value of which the
169 * user-configurable dirty ratio is the effictive number of pages that
170 * are allowed to be actually dirtied. Per individual zone, or
171 * globally by using the sum of dirtyable pages over all zones.
172 *
173 * Because the user is allowed to specify the dirty limit globally as
174 * absolute number of bytes, calculating the per-zone dirty limit can
175 * require translating the configured limit into a percentage of
176 * global dirtyable memory first.
177 */
178
Johannes Weiner1edf2232012-01-10 15:06:57 -0800179static unsigned long highmem_dirtyable_memory(unsigned long total)
180{
181#ifdef CONFIG_HIGHMEM
182 int node;
183 unsigned long x = 0;
184
185 for_each_node_state(node, N_HIGH_MEMORY) {
186 struct zone *z =
187 &NODE_DATA(node)->node_zones[ZONE_HIGHMEM];
188
189 x += zone_page_state(z, NR_FREE_PAGES) +
Johannes Weinerab8fabd2012-01-10 15:07:42 -0800190 zone_reclaimable_pages(z) - z->dirty_balance_reserve;
Johannes Weiner1edf2232012-01-10 15:06:57 -0800191 }
192 /*
193 * Make sure that the number of highmem pages is never larger
194 * than the number of the total dirtyable memory. This can only
195 * occur in very strange VM situations but we want to make sure
196 * that this does not occur.
197 */
198 return min(x, total);
199#else
200 return 0;
201#endif
202}
203
204/**
Johannes Weinerccafa282012-01-10 15:07:44 -0800205 * global_dirtyable_memory - number of globally dirtyable pages
Johannes Weiner1edf2232012-01-10 15:06:57 -0800206 *
Johannes Weinerccafa282012-01-10 15:07:44 -0800207 * Returns the global number of pages potentially available for dirty
208 * page cache. This is the base value for the global dirty limits.
Johannes Weiner1edf2232012-01-10 15:06:57 -0800209 */
Johannes Weinerccafa282012-01-10 15:07:44 -0800210unsigned long global_dirtyable_memory(void)
Johannes Weiner1edf2232012-01-10 15:06:57 -0800211{
212 unsigned long x;
213
Johannes Weinerab8fabd2012-01-10 15:07:42 -0800214 x = global_page_state(NR_FREE_PAGES) + global_reclaimable_pages() -
215 dirty_balance_reserve;
Johannes Weiner1edf2232012-01-10 15:06:57 -0800216
217 if (!vm_highmem_is_dirtyable)
218 x -= highmem_dirtyable_memory(x);
219
220 return x + 1; /* Ensure that we never return 0 */
221}
222
223/*
Johannes Weinerccafa282012-01-10 15:07:44 -0800224 * global_dirty_limits - background-writeback and dirty-throttling thresholds
225 *
226 * Calculate the dirty thresholds based on sysctl parameters
227 * - vm.dirty_background_ratio or vm.dirty_background_bytes
228 * - vm.dirty_ratio or vm.dirty_bytes
229 * The dirty limits will be lifted by 1/4 for PF_LESS_THROTTLE (ie. nfsd) and
230 * real-time tasks.
231 */
232void global_dirty_limits(unsigned long *pbackground, unsigned long *pdirty)
233{
234 unsigned long background;
235 unsigned long dirty;
236 unsigned long uninitialized_var(available_memory);
237 struct task_struct *tsk;
238
239 if (!vm_dirty_bytes || !dirty_background_bytes)
240 available_memory = global_dirtyable_memory();
241
242 if (vm_dirty_bytes)
243 dirty = DIV_ROUND_UP(vm_dirty_bytes, PAGE_SIZE);
244 else
245 dirty = (vm_dirty_ratio * available_memory) / 100;
246
247 if (dirty_background_bytes)
248 background = DIV_ROUND_UP(dirty_background_bytes, PAGE_SIZE);
249 else
250 background = (dirty_background_ratio * available_memory) / 100;
251
252 if (background >= dirty)
253 background = dirty / 2;
254 tsk = current;
255 if (tsk->flags & PF_LESS_THROTTLE || rt_task(tsk)) {
256 background += background / 4;
257 dirty += dirty / 4;
258 }
259 *pbackground = background;
260 *pdirty = dirty;
261 trace_global_dirty_state(background, dirty);
262}
263
Johannes Weinera756cf52012-01-10 15:07:49 -0800264/**
265 * zone_dirtyable_memory - number of dirtyable pages in a zone
266 * @zone: the zone
267 *
268 * Returns the zone's number of pages potentially available for dirty
269 * page cache. This is the base value for the per-zone dirty limits.
270 */
271static unsigned long zone_dirtyable_memory(struct zone *zone)
272{
273 /*
274 * The effective global number of dirtyable pages may exclude
275 * highmem as a big-picture measure to keep the ratio between
276 * dirty memory and lowmem reasonable.
277 *
278 * But this function is purely about the individual zone and a
279 * highmem zone can hold its share of dirty pages, so we don't
280 * care about vm_highmem_is_dirtyable here.
281 */
282 return zone_page_state(zone, NR_FREE_PAGES) +
283 zone_reclaimable_pages(zone) -
284 zone->dirty_balance_reserve;
285}
286
287/**
288 * zone_dirty_limit - maximum number of dirty pages allowed in a zone
289 * @zone: the zone
290 *
291 * Returns the maximum number of dirty pages allowed in a zone, based
292 * on the zone's dirtyable memory.
293 */
294static unsigned long zone_dirty_limit(struct zone *zone)
295{
296 unsigned long zone_memory = zone_dirtyable_memory(zone);
297 struct task_struct *tsk = current;
298 unsigned long dirty;
299
300 if (vm_dirty_bytes)
301 dirty = DIV_ROUND_UP(vm_dirty_bytes, PAGE_SIZE) *
302 zone_memory / global_dirtyable_memory();
303 else
304 dirty = vm_dirty_ratio * zone_memory / 100;
305
306 if (tsk->flags & PF_LESS_THROTTLE || rt_task(tsk))
307 dirty += dirty / 4;
308
309 return dirty;
310}
311
312/**
313 * zone_dirty_ok - tells whether a zone is within its dirty limits
314 * @zone: the zone to check
315 *
316 * Returns %true when the dirty pages in @zone are within the zone's
317 * dirty limit, %false if the limit is exceeded.
318 */
319bool zone_dirty_ok(struct zone *zone)
320{
321 unsigned long limit = zone_dirty_limit(zone);
322
323 return zone_page_state(zone, NR_FILE_DIRTY) +
324 zone_page_state(zone, NR_UNSTABLE_NFS) +
325 zone_page_state(zone, NR_WRITEBACK) <= limit;
326}
327
Johannes Weinerccafa282012-01-10 15:07:44 -0800328/*
Peter Zijlstra04fbfdc2007-10-16 23:25:50 -0700329 * couple the period to the dirty_ratio:
330 *
331 * period/2 ~ roundup_pow_of_two(dirty limit)
332 */
333static int calc_period_shift(void)
334{
335 unsigned long dirty_total;
336
David Rientjes2da02992009-01-06 14:39:31 -0800337 if (vm_dirty_bytes)
338 dirty_total = vm_dirty_bytes / PAGE_SIZE;
339 else
Johannes Weinerccafa282012-01-10 15:07:44 -0800340 dirty_total = (vm_dirty_ratio * global_dirtyable_memory()) /
David Rientjes2da02992009-01-06 14:39:31 -0800341 100;
Peter Zijlstra04fbfdc2007-10-16 23:25:50 -0700342 return 2 + ilog2(dirty_total - 1);
343}
344
345/*
David Rientjes2da02992009-01-06 14:39:31 -0800346 * update the period when the dirty threshold changes.
Peter Zijlstra04fbfdc2007-10-16 23:25:50 -0700347 */
David Rientjes2da02992009-01-06 14:39:31 -0800348static void update_completion_period(void)
349{
350 int shift = calc_period_shift();
351 prop_change_shift(&vm_completions, shift);
Wu Fengguang9d823e82011-06-11 18:10:12 -0600352
353 writeback_set_ratelimit();
David Rientjes2da02992009-01-06 14:39:31 -0800354}
355
356int dirty_background_ratio_handler(struct ctl_table *table, int write,
Alexey Dobriyan8d65af72009-09-23 15:57:19 -0700357 void __user *buffer, size_t *lenp,
David Rientjes2da02992009-01-06 14:39:31 -0800358 loff_t *ppos)
359{
360 int ret;
361
Alexey Dobriyan8d65af72009-09-23 15:57:19 -0700362 ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
David Rientjes2da02992009-01-06 14:39:31 -0800363 if (ret == 0 && write)
364 dirty_background_bytes = 0;
365 return ret;
366}
367
368int dirty_background_bytes_handler(struct ctl_table *table, int write,
Alexey Dobriyan8d65af72009-09-23 15:57:19 -0700369 void __user *buffer, size_t *lenp,
David Rientjes2da02992009-01-06 14:39:31 -0800370 loff_t *ppos)
371{
372 int ret;
373
Alexey Dobriyan8d65af72009-09-23 15:57:19 -0700374 ret = proc_doulongvec_minmax(table, write, buffer, lenp, ppos);
David Rientjes2da02992009-01-06 14:39:31 -0800375 if (ret == 0 && write)
376 dirty_background_ratio = 0;
377 return ret;
378}
379
Peter Zijlstra04fbfdc2007-10-16 23:25:50 -0700380int dirty_ratio_handler(struct ctl_table *table, int write,
Alexey Dobriyan8d65af72009-09-23 15:57:19 -0700381 void __user *buffer, size_t *lenp,
Peter Zijlstra04fbfdc2007-10-16 23:25:50 -0700382 loff_t *ppos)
383{
384 int old_ratio = vm_dirty_ratio;
David Rientjes2da02992009-01-06 14:39:31 -0800385 int ret;
386
Alexey Dobriyan8d65af72009-09-23 15:57:19 -0700387 ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
Peter Zijlstra04fbfdc2007-10-16 23:25:50 -0700388 if (ret == 0 && write && vm_dirty_ratio != old_ratio) {
David Rientjes2da02992009-01-06 14:39:31 -0800389 update_completion_period();
390 vm_dirty_bytes = 0;
391 }
392 return ret;
393}
394
David Rientjes2da02992009-01-06 14:39:31 -0800395int dirty_bytes_handler(struct ctl_table *table, int write,
Alexey Dobriyan8d65af72009-09-23 15:57:19 -0700396 void __user *buffer, size_t *lenp,
David Rientjes2da02992009-01-06 14:39:31 -0800397 loff_t *ppos)
398{
Sven Wegenerfc3501d2009-02-11 13:04:23 -0800399 unsigned long old_bytes = vm_dirty_bytes;
David Rientjes2da02992009-01-06 14:39:31 -0800400 int ret;
401
Alexey Dobriyan8d65af72009-09-23 15:57:19 -0700402 ret = proc_doulongvec_minmax(table, write, buffer, lenp, ppos);
David Rientjes2da02992009-01-06 14:39:31 -0800403 if (ret == 0 && write && vm_dirty_bytes != old_bytes) {
404 update_completion_period();
405 vm_dirty_ratio = 0;
Peter Zijlstra04fbfdc2007-10-16 23:25:50 -0700406 }
407 return ret;
408}
409
410/*
411 * Increment the BDI's writeout completion count and the global writeout
412 * completion count. Called from test_clear_page_writeback().
413 */
414static inline void __bdi_writeout_inc(struct backing_dev_info *bdi)
415{
Jan Karaf7d2b1e2010-12-08 22:44:24 -0600416 __inc_bdi_stat(bdi, BDI_WRITTEN);
Peter Zijlstraa42dde02008-04-30 00:54:36 -0700417 __prop_inc_percpu_max(&vm_completions, &bdi->completions,
418 bdi->max_prop_frac);
Peter Zijlstra04fbfdc2007-10-16 23:25:50 -0700419}
420
Miklos Szeredidd5656e2008-04-30 00:54:37 -0700421void bdi_writeout_inc(struct backing_dev_info *bdi)
422{
423 unsigned long flags;
424
425 local_irq_save(flags);
426 __bdi_writeout_inc(bdi);
427 local_irq_restore(flags);
428}
429EXPORT_SYMBOL_GPL(bdi_writeout_inc);
430
Peter Zijlstra04fbfdc2007-10-16 23:25:50 -0700431/*
432 * Obtain an accurate fraction of the BDI's portion.
433 */
434static void bdi_writeout_fraction(struct backing_dev_info *bdi,
435 long *numerator, long *denominator)
436{
Wu Fengguang3efaf0f2010-12-16 22:22:00 -0600437 prop_fraction_percpu(&vm_completions, &bdi->completions,
Peter Zijlstra04fbfdc2007-10-16 23:25:50 -0700438 numerator, denominator);
Peter Zijlstra04fbfdc2007-10-16 23:25:50 -0700439}
440
Peter Zijlstra04fbfdc2007-10-16 23:25:50 -0700441/*
Johannes Weinerd08c4292011-10-31 17:07:05 -0700442 * bdi_min_ratio keeps the sum of the minimum dirty shares of all
443 * registered backing devices, which, for obvious reasons, can not
444 * exceed 100%.
Peter Zijlstra189d3c42008-04-30 00:54:35 -0700445 */
Peter Zijlstra189d3c42008-04-30 00:54:35 -0700446static unsigned int bdi_min_ratio;
447
448int bdi_set_min_ratio(struct backing_dev_info *bdi, unsigned int min_ratio)
449{
450 int ret = 0;
Peter Zijlstra189d3c42008-04-30 00:54:35 -0700451
Jens Axboecfc4ba52009-09-14 13:12:40 +0200452 spin_lock_bh(&bdi_lock);
Peter Zijlstraa42dde02008-04-30 00:54:36 -0700453 if (min_ratio > bdi->max_ratio) {
Peter Zijlstra189d3c42008-04-30 00:54:35 -0700454 ret = -EINVAL;
Peter Zijlstraa42dde02008-04-30 00:54:36 -0700455 } else {
456 min_ratio -= bdi->min_ratio;
457 if (bdi_min_ratio + min_ratio < 100) {
458 bdi_min_ratio += min_ratio;
459 bdi->min_ratio += min_ratio;
460 } else {
461 ret = -EINVAL;
462 }
463 }
Jens Axboecfc4ba52009-09-14 13:12:40 +0200464 spin_unlock_bh(&bdi_lock);
Peter Zijlstra189d3c42008-04-30 00:54:35 -0700465
466 return ret;
467}
468
Peter Zijlstraa42dde02008-04-30 00:54:36 -0700469int bdi_set_max_ratio(struct backing_dev_info *bdi, unsigned max_ratio)
470{
Peter Zijlstraa42dde02008-04-30 00:54:36 -0700471 int ret = 0;
472
473 if (max_ratio > 100)
474 return -EINVAL;
475
Jens Axboecfc4ba52009-09-14 13:12:40 +0200476 spin_lock_bh(&bdi_lock);
Peter Zijlstraa42dde02008-04-30 00:54:36 -0700477 if (bdi->min_ratio > max_ratio) {
478 ret = -EINVAL;
479 } else {
480 bdi->max_ratio = max_ratio;
481 bdi->max_prop_frac = (PROP_FRAC_BASE * max_ratio) / 100;
482 }
Jens Axboecfc4ba52009-09-14 13:12:40 +0200483 spin_unlock_bh(&bdi_lock);
Peter Zijlstraa42dde02008-04-30 00:54:36 -0700484
485 return ret;
486}
487EXPORT_SYMBOL(bdi_set_max_ratio);
488
Wu Fengguang6c14ae12011-03-02 16:04:18 -0600489static unsigned long dirty_freerun_ceiling(unsigned long thresh,
490 unsigned long bg_thresh)
491{
492 return (thresh + bg_thresh) / 2;
493}
494
Wu Fengguangffd1f602011-06-19 22:18:42 -0600495static unsigned long hard_dirty_limit(unsigned long thresh)
496{
497 return max(thresh, global_dirty_limit);
498}
499
Wu Fengguang6f718652011-03-02 17:14:34 -0600500/**
Wu Fengguang1babe182010-08-11 14:17:40 -0700501 * bdi_dirty_limit - @bdi's share of dirty throttling threshold
Wu Fengguang6f718652011-03-02 17:14:34 -0600502 * @bdi: the backing_dev_info to query
503 * @dirty: global dirty limit in pages
Wu Fengguang1babe182010-08-11 14:17:40 -0700504 *
Wu Fengguang6f718652011-03-02 17:14:34 -0600505 * Returns @bdi's dirty limit in pages. The term "dirty" in the context of
506 * dirty balancing includes all PG_dirty, PG_writeback and NFS unstable pages.
Wu Fengguangaed21ad2011-11-23 11:44:41 -0600507 *
508 * Note that balance_dirty_pages() will only seriously take it as a hard limit
509 * when sleeping max_pause per page is not enough to keep the dirty pages under
510 * control. For example, when the device is completely stalled due to some error
511 * conditions, or when there are 1000 dd tasks writing to a slow 10MB/s USB key.
512 * In the other normal situations, it acts more gently by throttling the tasks
513 * more (rather than completely block them) when the bdi dirty pages go high.
Wu Fengguang6f718652011-03-02 17:14:34 -0600514 *
515 * It allocates high/low dirty limits to fast/slow devices, in order to prevent
Wu Fengguang1babe182010-08-11 14:17:40 -0700516 * - starving fast devices
517 * - piling up dirty pages (that will take long time to sync) on slow devices
518 *
519 * The bdi's share of dirty limit will be adapting to its throughput and
520 * bounded by the bdi->min_ratio and/or bdi->max_ratio parameters, if set.
521 */
522unsigned long bdi_dirty_limit(struct backing_dev_info *bdi, unsigned long dirty)
Wu Fengguang16c40422010-08-11 14:17:39 -0700523{
524 u64 bdi_dirty;
525 long numerator, denominator;
Peter Zijlstra04fbfdc2007-10-16 23:25:50 -0700526
Wu Fengguang16c40422010-08-11 14:17:39 -0700527 /*
528 * Calculate this BDI's share of the dirty ratio.
529 */
530 bdi_writeout_fraction(bdi, &numerator, &denominator);
Peter Zijlstra04fbfdc2007-10-16 23:25:50 -0700531
Wu Fengguang16c40422010-08-11 14:17:39 -0700532 bdi_dirty = (dirty * (100 - bdi_min_ratio)) / 100;
533 bdi_dirty *= numerator;
534 do_div(bdi_dirty, denominator);
Peter Zijlstra04fbfdc2007-10-16 23:25:50 -0700535
Wu Fengguang16c40422010-08-11 14:17:39 -0700536 bdi_dirty += (dirty * bdi->min_ratio) / 100;
537 if (bdi_dirty > (dirty * bdi->max_ratio) / 100)
538 bdi_dirty = dirty * bdi->max_ratio / 100;
539
540 return bdi_dirty;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700541}
542
Wu Fengguang6c14ae12011-03-02 16:04:18 -0600543/*
544 * Dirty position control.
545 *
546 * (o) global/bdi setpoints
547 *
548 * We want the dirty pages be balanced around the global/bdi setpoints.
549 * When the number of dirty pages is higher/lower than the setpoint, the
550 * dirty position control ratio (and hence task dirty ratelimit) will be
551 * decreased/increased to bring the dirty pages back to the setpoint.
552 *
553 * pos_ratio = 1 << RATELIMIT_CALC_SHIFT
554 *
555 * if (dirty < setpoint) scale up pos_ratio
556 * if (dirty > setpoint) scale down pos_ratio
557 *
558 * if (bdi_dirty < bdi_setpoint) scale up pos_ratio
559 * if (bdi_dirty > bdi_setpoint) scale down pos_ratio
560 *
561 * task_ratelimit = dirty_ratelimit * pos_ratio >> RATELIMIT_CALC_SHIFT
562 *
563 * (o) global control line
564 *
565 * ^ pos_ratio
566 * |
567 * | |<===== global dirty control scope ======>|
568 * 2.0 .............*
569 * | .*
570 * | . *
571 * | . *
572 * | . *
573 * | . *
574 * | . *
575 * 1.0 ................................*
576 * | . . *
577 * | . . *
578 * | . . *
579 * | . . *
580 * | . . *
581 * 0 +------------.------------------.----------------------*------------->
582 * freerun^ setpoint^ limit^ dirty pages
583 *
584 * (o) bdi control line
585 *
586 * ^ pos_ratio
587 * |
588 * | *
589 * | *
590 * | *
591 * | *
592 * | * |<=========== span ============>|
593 * 1.0 .......................*
594 * | . *
595 * | . *
596 * | . *
597 * | . *
598 * | . *
599 * | . *
600 * | . *
601 * | . *
602 * | . *
603 * | . *
604 * | . *
605 * 1/4 ...............................................* * * * * * * * * * * *
606 * | . .
607 * | . .
608 * | . .
609 * 0 +----------------------.-------------------------------.------------->
610 * bdi_setpoint^ x_intercept^
611 *
612 * The bdi control line won't drop below pos_ratio=1/4, so that bdi_dirty can
613 * be smoothly throttled down to normal if it starts high in situations like
614 * - start writing to a slow SD card and a fast disk at the same time. The SD
615 * card's bdi_dirty may rush to many times higher than bdi_setpoint.
616 * - the bdi dirty thresh drops quickly due to change of JBOD workload
617 */
618static unsigned long bdi_position_ratio(struct backing_dev_info *bdi,
619 unsigned long thresh,
620 unsigned long bg_thresh,
621 unsigned long dirty,
622 unsigned long bdi_thresh,
623 unsigned long bdi_dirty)
624{
625 unsigned long write_bw = bdi->avg_write_bandwidth;
626 unsigned long freerun = dirty_freerun_ceiling(thresh, bg_thresh);
627 unsigned long limit = hard_dirty_limit(thresh);
628 unsigned long x_intercept;
629 unsigned long setpoint; /* dirty pages' target balance point */
630 unsigned long bdi_setpoint;
631 unsigned long span;
632 long long pos_ratio; /* for scaling up/down the rate limit */
633 long x;
634
635 if (unlikely(dirty >= limit))
636 return 0;
637
638 /*
639 * global setpoint
640 *
641 * setpoint - dirty 3
642 * f(dirty) := 1.0 + (----------------)
643 * limit - setpoint
644 *
645 * it's a 3rd order polynomial that subjects to
646 *
647 * (1) f(freerun) = 2.0 => rampup dirty_ratelimit reasonably fast
648 * (2) f(setpoint) = 1.0 => the balance point
649 * (3) f(limit) = 0 => the hard limit
650 * (4) df/dx <= 0 => negative feedback control
651 * (5) the closer to setpoint, the smaller |df/dx| (and the reverse)
652 * => fast response on large errors; small oscillation near setpoint
653 */
654 setpoint = (freerun + limit) / 2;
655 x = div_s64((setpoint - dirty) << RATELIMIT_CALC_SHIFT,
656 limit - setpoint + 1);
657 pos_ratio = x;
658 pos_ratio = pos_ratio * x >> RATELIMIT_CALC_SHIFT;
659 pos_ratio = pos_ratio * x >> RATELIMIT_CALC_SHIFT;
660 pos_ratio += 1 << RATELIMIT_CALC_SHIFT;
661
662 /*
663 * We have computed basic pos_ratio above based on global situation. If
664 * the bdi is over/under its share of dirty pages, we want to scale
665 * pos_ratio further down/up. That is done by the following mechanism.
666 */
667
668 /*
669 * bdi setpoint
670 *
671 * f(bdi_dirty) := 1.0 + k * (bdi_dirty - bdi_setpoint)
672 *
673 * x_intercept - bdi_dirty
674 * := --------------------------
675 * x_intercept - bdi_setpoint
676 *
677 * The main bdi control line is a linear function that subjects to
678 *
679 * (1) f(bdi_setpoint) = 1.0
680 * (2) k = - 1 / (8 * write_bw) (in single bdi case)
681 * or equally: x_intercept = bdi_setpoint + 8 * write_bw
682 *
683 * For single bdi case, the dirty pages are observed to fluctuate
684 * regularly within range
685 * [bdi_setpoint - write_bw/2, bdi_setpoint + write_bw/2]
686 * for various filesystems, where (2) can yield in a reasonable 12.5%
687 * fluctuation range for pos_ratio.
688 *
689 * For JBOD case, bdi_thresh (not bdi_dirty!) could fluctuate up to its
690 * own size, so move the slope over accordingly and choose a slope that
691 * yields 100% pos_ratio fluctuation on suddenly doubled bdi_thresh.
692 */
693 if (unlikely(bdi_thresh > thresh))
694 bdi_thresh = thresh;
Wu Fengguangaed21ad2011-11-23 11:44:41 -0600695 /*
696 * It's very possible that bdi_thresh is close to 0 not because the
697 * device is slow, but that it has remained inactive for long time.
698 * Honour such devices a reasonable good (hopefully IO efficient)
699 * threshold, so that the occasional writes won't be blocked and active
700 * writes can rampup the threshold quickly.
701 */
Wu Fengguang8927f662011-08-04 22:16:46 -0600702 bdi_thresh = max(bdi_thresh, (limit - dirty) / 8);
Wu Fengguang6c14ae12011-03-02 16:04:18 -0600703 /*
704 * scale global setpoint to bdi's:
705 * bdi_setpoint = setpoint * bdi_thresh / thresh
706 */
707 x = div_u64((u64)bdi_thresh << 16, thresh + 1);
708 bdi_setpoint = setpoint * (u64)x >> 16;
709 /*
710 * Use span=(8*write_bw) in single bdi case as indicated by
711 * (thresh - bdi_thresh ~= 0) and transit to bdi_thresh in JBOD case.
712 *
713 * bdi_thresh thresh - bdi_thresh
714 * span = ---------- * (8 * write_bw) + ------------------- * bdi_thresh
715 * thresh thresh
716 */
717 span = (thresh - bdi_thresh + 8 * write_bw) * (u64)x >> 16;
718 x_intercept = bdi_setpoint + span;
719
720 if (bdi_dirty < x_intercept - span / 4) {
Wu Fengguang50657fc2011-10-11 17:06:33 -0600721 pos_ratio = div_u64(pos_ratio * (x_intercept - bdi_dirty),
722 x_intercept - bdi_setpoint + 1);
Wu Fengguang6c14ae12011-03-02 16:04:18 -0600723 } else
724 pos_ratio /= 4;
725
Wu Fengguang8927f662011-08-04 22:16:46 -0600726 /*
727 * bdi reserve area, safeguard against dirty pool underrun and disk idle
728 * It may push the desired control point of global dirty pages higher
729 * than setpoint.
730 */
731 x_intercept = bdi_thresh / 2;
732 if (bdi_dirty < x_intercept) {
Wu Fengguang50657fc2011-10-11 17:06:33 -0600733 if (bdi_dirty > x_intercept / 8)
734 pos_ratio = div_u64(pos_ratio * x_intercept, bdi_dirty);
735 else
Wu Fengguang8927f662011-08-04 22:16:46 -0600736 pos_ratio *= 8;
737 }
738
Wu Fengguang6c14ae12011-03-02 16:04:18 -0600739 return pos_ratio;
740}
741
Wu Fengguange98be2d2010-08-29 11:22:30 -0600742static void bdi_update_write_bandwidth(struct backing_dev_info *bdi,
743 unsigned long elapsed,
744 unsigned long written)
745{
746 const unsigned long period = roundup_pow_of_two(3 * HZ);
747 unsigned long avg = bdi->avg_write_bandwidth;
748 unsigned long old = bdi->write_bandwidth;
749 u64 bw;
750
751 /*
752 * bw = written * HZ / elapsed
753 *
754 * bw * elapsed + write_bandwidth * (period - elapsed)
755 * write_bandwidth = ---------------------------------------------------
756 * period
757 */
758 bw = written - bdi->written_stamp;
759 bw *= HZ;
760 if (unlikely(elapsed > period)) {
761 do_div(bw, elapsed);
762 avg = bw;
763 goto out;
764 }
765 bw += (u64)bdi->write_bandwidth * (period - elapsed);
766 bw >>= ilog2(period);
767
768 /*
769 * one more level of smoothing, for filtering out sudden spikes
770 */
771 if (avg > old && old >= (unsigned long)bw)
772 avg -= (avg - old) >> 3;
773
774 if (avg < old && old <= (unsigned long)bw)
775 avg += (old - avg) >> 3;
776
777out:
778 bdi->write_bandwidth = bw;
779 bdi->avg_write_bandwidth = avg;
780}
781
Wu Fengguangc42843f2011-03-02 15:54:09 -0600782/*
783 * The global dirtyable memory and dirty threshold could be suddenly knocked
784 * down by a large amount (eg. on the startup of KVM in a swapless system).
785 * This may throw the system into deep dirty exceeded state and throttle
786 * heavy/light dirtiers alike. To retain good responsiveness, maintain
787 * global_dirty_limit for tracking slowly down to the knocked down dirty
788 * threshold.
789 */
790static void update_dirty_limit(unsigned long thresh, unsigned long dirty)
791{
792 unsigned long limit = global_dirty_limit;
793
794 /*
795 * Follow up in one step.
796 */
797 if (limit < thresh) {
798 limit = thresh;
799 goto update;
800 }
801
802 /*
803 * Follow down slowly. Use the higher one as the target, because thresh
804 * may drop below dirty. This is exactly the reason to introduce
805 * global_dirty_limit which is guaranteed to lie above the dirty pages.
806 */
807 thresh = max(thresh, dirty);
808 if (limit > thresh) {
809 limit -= (limit - thresh) >> 5;
810 goto update;
811 }
812 return;
813update:
814 global_dirty_limit = limit;
815}
816
817static void global_update_bandwidth(unsigned long thresh,
818 unsigned long dirty,
819 unsigned long now)
820{
821 static DEFINE_SPINLOCK(dirty_lock);
822 static unsigned long update_time;
823
824 /*
825 * check locklessly first to optimize away locking for the most time
826 */
827 if (time_before(now, update_time + BANDWIDTH_INTERVAL))
828 return;
829
830 spin_lock(&dirty_lock);
831 if (time_after_eq(now, update_time + BANDWIDTH_INTERVAL)) {
832 update_dirty_limit(thresh, dirty);
833 update_time = now;
834 }
835 spin_unlock(&dirty_lock);
836}
837
Wu Fengguangbe3ffa22011-06-12 10:51:31 -0600838/*
839 * Maintain bdi->dirty_ratelimit, the base dirty throttle rate.
840 *
841 * Normal bdi tasks will be curbed at or below it in long term.
842 * Obviously it should be around (write_bw / N) when there are N dd tasks.
843 */
844static void bdi_update_dirty_ratelimit(struct backing_dev_info *bdi,
845 unsigned long thresh,
846 unsigned long bg_thresh,
847 unsigned long dirty,
848 unsigned long bdi_thresh,
849 unsigned long bdi_dirty,
850 unsigned long dirtied,
851 unsigned long elapsed)
852{
Wu Fengguang73811312011-08-26 15:53:24 -0600853 unsigned long freerun = dirty_freerun_ceiling(thresh, bg_thresh);
854 unsigned long limit = hard_dirty_limit(thresh);
855 unsigned long setpoint = (freerun + limit) / 2;
Wu Fengguangbe3ffa22011-06-12 10:51:31 -0600856 unsigned long write_bw = bdi->avg_write_bandwidth;
857 unsigned long dirty_ratelimit = bdi->dirty_ratelimit;
858 unsigned long dirty_rate;
859 unsigned long task_ratelimit;
860 unsigned long balanced_dirty_ratelimit;
861 unsigned long pos_ratio;
Wu Fengguang73811312011-08-26 15:53:24 -0600862 unsigned long step;
863 unsigned long x;
Wu Fengguangbe3ffa22011-06-12 10:51:31 -0600864
865 /*
866 * The dirty rate will match the writeout rate in long term, except
867 * when dirty pages are truncated by userspace or re-dirtied by FS.
868 */
869 dirty_rate = (dirtied - bdi->dirtied_stamp) * HZ / elapsed;
870
871 pos_ratio = bdi_position_ratio(bdi, thresh, bg_thresh, dirty,
872 bdi_thresh, bdi_dirty);
873 /*
874 * task_ratelimit reflects each dd's dirty rate for the past 200ms.
875 */
876 task_ratelimit = (u64)dirty_ratelimit *
877 pos_ratio >> RATELIMIT_CALC_SHIFT;
878 task_ratelimit++; /* it helps rampup dirty_ratelimit from tiny values */
879
880 /*
881 * A linear estimation of the "balanced" throttle rate. The theory is,
882 * if there are N dd tasks, each throttled at task_ratelimit, the bdi's
883 * dirty_rate will be measured to be (N * task_ratelimit). So the below
884 * formula will yield the balanced rate limit (write_bw / N).
885 *
886 * Note that the expanded form is not a pure rate feedback:
887 * rate_(i+1) = rate_(i) * (write_bw / dirty_rate) (1)
888 * but also takes pos_ratio into account:
889 * rate_(i+1) = rate_(i) * (write_bw / dirty_rate) * pos_ratio (2)
890 *
891 * (1) is not realistic because pos_ratio also takes part in balancing
892 * the dirty rate. Consider the state
893 * pos_ratio = 0.5 (3)
894 * rate = 2 * (write_bw / N) (4)
895 * If (1) is used, it will stuck in that state! Because each dd will
896 * be throttled at
897 * task_ratelimit = pos_ratio * rate = (write_bw / N) (5)
898 * yielding
899 * dirty_rate = N * task_ratelimit = write_bw (6)
900 * put (6) into (1) we get
901 * rate_(i+1) = rate_(i) (7)
902 *
903 * So we end up using (2) to always keep
904 * rate_(i+1) ~= (write_bw / N) (8)
905 * regardless of the value of pos_ratio. As long as (8) is satisfied,
906 * pos_ratio is able to drive itself to 1.0, which is not only where
907 * the dirty count meet the setpoint, but also where the slope of
908 * pos_ratio is most flat and hence task_ratelimit is least fluctuated.
909 */
910 balanced_dirty_ratelimit = div_u64((u64)task_ratelimit * write_bw,
911 dirty_rate | 1);
Wu Fengguangbdaac492011-08-03 14:30:36 -0600912 /*
913 * balanced_dirty_ratelimit ~= (write_bw / N) <= write_bw
914 */
915 if (unlikely(balanced_dirty_ratelimit > write_bw))
916 balanced_dirty_ratelimit = write_bw;
Wu Fengguangbe3ffa22011-06-12 10:51:31 -0600917
Wu Fengguang73811312011-08-26 15:53:24 -0600918 /*
919 * We could safely do this and return immediately:
920 *
921 * bdi->dirty_ratelimit = balanced_dirty_ratelimit;
922 *
923 * However to get a more stable dirty_ratelimit, the below elaborated
924 * code makes use of task_ratelimit to filter out sigular points and
925 * limit the step size.
926 *
927 * The below code essentially only uses the relative value of
928 *
929 * task_ratelimit - dirty_ratelimit
930 * = (pos_ratio - 1) * dirty_ratelimit
931 *
932 * which reflects the direction and size of dirty position error.
933 */
934
935 /*
936 * dirty_ratelimit will follow balanced_dirty_ratelimit iff
937 * task_ratelimit is on the same side of dirty_ratelimit, too.
938 * For example, when
939 * - dirty_ratelimit > balanced_dirty_ratelimit
940 * - dirty_ratelimit > task_ratelimit (dirty pages are above setpoint)
941 * lowering dirty_ratelimit will help meet both the position and rate
942 * control targets. Otherwise, don't update dirty_ratelimit if it will
943 * only help meet the rate target. After all, what the users ultimately
944 * feel and care are stable dirty rate and small position error.
945 *
946 * |task_ratelimit - dirty_ratelimit| is used to limit the step size
947 * and filter out the sigular points of balanced_dirty_ratelimit. Which
948 * keeps jumping around randomly and can even leap far away at times
949 * due to the small 200ms estimation period of dirty_rate (we want to
950 * keep that period small to reduce time lags).
951 */
952 step = 0;
953 if (dirty < setpoint) {
954 x = min(bdi->balanced_dirty_ratelimit,
955 min(balanced_dirty_ratelimit, task_ratelimit));
956 if (dirty_ratelimit < x)
957 step = x - dirty_ratelimit;
958 } else {
959 x = max(bdi->balanced_dirty_ratelimit,
960 max(balanced_dirty_ratelimit, task_ratelimit));
961 if (dirty_ratelimit > x)
962 step = dirty_ratelimit - x;
963 }
964
965 /*
966 * Don't pursue 100% rate matching. It's impossible since the balanced
967 * rate itself is constantly fluctuating. So decrease the track speed
968 * when it gets close to the target. Helps eliminate pointless tremors.
969 */
970 step >>= dirty_ratelimit / (2 * step + 1);
971 /*
972 * Limit the tracking speed to avoid overshooting.
973 */
974 step = (step + 7) / 8;
975
976 if (dirty_ratelimit < balanced_dirty_ratelimit)
977 dirty_ratelimit += step;
978 else
979 dirty_ratelimit -= step;
980
981 bdi->dirty_ratelimit = max(dirty_ratelimit, 1UL);
982 bdi->balanced_dirty_ratelimit = balanced_dirty_ratelimit;
Wu Fengguangb48c1042011-03-02 17:22:49 -0600983
984 trace_bdi_dirty_ratelimit(bdi, dirty_rate, task_ratelimit);
Wu Fengguangbe3ffa22011-06-12 10:51:31 -0600985}
986
Wu Fengguange98be2d2010-08-29 11:22:30 -0600987void __bdi_update_bandwidth(struct backing_dev_info *bdi,
Wu Fengguangc42843f2011-03-02 15:54:09 -0600988 unsigned long thresh,
Wu Fengguangaf6a3112011-10-03 20:46:17 -0600989 unsigned long bg_thresh,
Wu Fengguangc42843f2011-03-02 15:54:09 -0600990 unsigned long dirty,
991 unsigned long bdi_thresh,
992 unsigned long bdi_dirty,
Wu Fengguange98be2d2010-08-29 11:22:30 -0600993 unsigned long start_time)
994{
995 unsigned long now = jiffies;
996 unsigned long elapsed = now - bdi->bw_time_stamp;
Wu Fengguangbe3ffa22011-06-12 10:51:31 -0600997 unsigned long dirtied;
Wu Fengguange98be2d2010-08-29 11:22:30 -0600998 unsigned long written;
999
1000 /*
1001 * rate-limit, only update once every 200ms.
1002 */
1003 if (elapsed < BANDWIDTH_INTERVAL)
1004 return;
1005
Wu Fengguangbe3ffa22011-06-12 10:51:31 -06001006 dirtied = percpu_counter_read(&bdi->bdi_stat[BDI_DIRTIED]);
Wu Fengguange98be2d2010-08-29 11:22:30 -06001007 written = percpu_counter_read(&bdi->bdi_stat[BDI_WRITTEN]);
1008
1009 /*
1010 * Skip quiet periods when disk bandwidth is under-utilized.
1011 * (at least 1s idle time between two flusher runs)
1012 */
1013 if (elapsed > HZ && time_before(bdi->bw_time_stamp, start_time))
1014 goto snapshot;
1015
Wu Fengguangbe3ffa22011-06-12 10:51:31 -06001016 if (thresh) {
Wu Fengguangc42843f2011-03-02 15:54:09 -06001017 global_update_bandwidth(thresh, dirty, now);
Wu Fengguangbe3ffa22011-06-12 10:51:31 -06001018 bdi_update_dirty_ratelimit(bdi, thresh, bg_thresh, dirty,
1019 bdi_thresh, bdi_dirty,
1020 dirtied, elapsed);
1021 }
Wu Fengguange98be2d2010-08-29 11:22:30 -06001022 bdi_update_write_bandwidth(bdi, elapsed, written);
1023
1024snapshot:
Wu Fengguangbe3ffa22011-06-12 10:51:31 -06001025 bdi->dirtied_stamp = dirtied;
Wu Fengguange98be2d2010-08-29 11:22:30 -06001026 bdi->written_stamp = written;
1027 bdi->bw_time_stamp = now;
1028}
1029
1030static void bdi_update_bandwidth(struct backing_dev_info *bdi,
Wu Fengguangc42843f2011-03-02 15:54:09 -06001031 unsigned long thresh,
Wu Fengguangaf6a3112011-10-03 20:46:17 -06001032 unsigned long bg_thresh,
Wu Fengguangc42843f2011-03-02 15:54:09 -06001033 unsigned long dirty,
1034 unsigned long bdi_thresh,
1035 unsigned long bdi_dirty,
Wu Fengguange98be2d2010-08-29 11:22:30 -06001036 unsigned long start_time)
1037{
1038 if (time_is_after_eq_jiffies(bdi->bw_time_stamp + BANDWIDTH_INTERVAL))
1039 return;
1040 spin_lock(&bdi->wb.list_lock);
Wu Fengguangaf6a3112011-10-03 20:46:17 -06001041 __bdi_update_bandwidth(bdi, thresh, bg_thresh, dirty,
1042 bdi_thresh, bdi_dirty, start_time);
Wu Fengguange98be2d2010-08-29 11:22:30 -06001043 spin_unlock(&bdi->wb.list_lock);
1044}
1045
Linus Torvalds1da177e2005-04-16 15:20:36 -07001046/*
Wu Fengguang9d823e82011-06-11 18:10:12 -06001047 * After a task dirtied this many pages, balance_dirty_pages_ratelimited_nr()
1048 * will look to see if it needs to start dirty throttling.
1049 *
1050 * If dirty_poll_interval is too low, big NUMA machines will call the expensive
1051 * global_page_state() too often. So scale it near-sqrt to the safety margin
1052 * (the number of pages we may dirty without exceeding the dirty limits).
1053 */
1054static unsigned long dirty_poll_interval(unsigned long dirty,
1055 unsigned long thresh)
1056{
1057 if (thresh > dirty)
1058 return 1UL << (ilog2(thresh - dirty) >> 1);
1059
1060 return 1;
1061}
1062
Wu Fengguang7ccb9ad2011-11-30 11:08:55 -06001063static long bdi_max_pause(struct backing_dev_info *bdi,
1064 unsigned long bdi_dirty)
Wu Fengguangc8462cc2011-06-11 19:21:43 -06001065{
Wu Fengguang7ccb9ad2011-11-30 11:08:55 -06001066 long bw = bdi->avg_write_bandwidth;
1067 long t;
Wu Fengguangc8462cc2011-06-11 19:21:43 -06001068
1069 /*
1070 * Limit pause time for small memory systems. If sleeping for too long
1071 * time, a small pool of dirty/writeback pages may go empty and disk go
1072 * idle.
1073 *
1074 * 8 serves as the safety ratio.
1075 */
Wu Fengguang7ccb9ad2011-11-30 11:08:55 -06001076 t = bdi_dirty / (1 + bw / roundup_pow_of_two(1 + HZ / 8));
1077 t++;
1078
1079 return min_t(long, t, MAX_PAUSE);
1080}
1081
1082static long bdi_min_pause(struct backing_dev_info *bdi,
1083 long max_pause,
1084 unsigned long task_ratelimit,
1085 unsigned long dirty_ratelimit,
1086 int *nr_dirtied_pause)
1087{
1088 long hi = ilog2(bdi->avg_write_bandwidth);
1089 long lo = ilog2(bdi->dirty_ratelimit);
1090 long t; /* target pause */
1091 long pause; /* estimated next pause */
1092 int pages; /* target nr_dirtied_pause */
1093
1094 /* target for 10ms pause on 1-dd case */
1095 t = max(1, HZ / 100);
Wu Fengguangc8462cc2011-06-11 19:21:43 -06001096
1097 /*
Wu Fengguang7ccb9ad2011-11-30 11:08:55 -06001098 * Scale up pause time for concurrent dirtiers in order to reduce CPU
1099 * overheads.
1100 *
1101 * (N * 10ms) on 2^N concurrent tasks.
Wu Fengguangc8462cc2011-06-11 19:21:43 -06001102 */
Wu Fengguang7ccb9ad2011-11-30 11:08:55 -06001103 if (hi > lo)
1104 t += (hi - lo) * (10 * HZ) / 1024;
1105
1106 /*
1107 * This is a bit convoluted. We try to base the next nr_dirtied_pause
1108 * on the much more stable dirty_ratelimit. However the next pause time
1109 * will be computed based on task_ratelimit and the two rate limits may
1110 * depart considerably at some time. Especially if task_ratelimit goes
1111 * below dirty_ratelimit/2 and the target pause is max_pause, the next
1112 * pause time will be max_pause*2 _trimmed down_ to max_pause. As a
1113 * result task_ratelimit won't be executed faithfully, which could
1114 * eventually bring down dirty_ratelimit.
1115 *
1116 * We apply two rules to fix it up:
1117 * 1) try to estimate the next pause time and if necessary, use a lower
1118 * nr_dirtied_pause so as not to exceed max_pause. When this happens,
1119 * nr_dirtied_pause will be "dancing" with task_ratelimit.
1120 * 2) limit the target pause time to max_pause/2, so that the normal
1121 * small fluctuations of task_ratelimit won't trigger rule (1) and
1122 * nr_dirtied_pause will remain as stable as dirty_ratelimit.
1123 */
1124 t = min(t, 1 + max_pause / 2);
1125 pages = dirty_ratelimit * t / roundup_pow_of_two(HZ);
1126
Wu Fengguang5b9b3572011-12-06 13:17:17 -06001127 /*
1128 * Tiny nr_dirtied_pause is found to hurt I/O performance in the test
1129 * case fio-mmap-randwrite-64k, which does 16*{sync read, async write}.
1130 * When the 16 consecutive reads are often interrupted by some dirty
1131 * throttling pause during the async writes, cfq will go into idles
1132 * (deadline is fine). So push nr_dirtied_pause as high as possible
1133 * until reaches DIRTY_POLL_THRESH=32 pages.
1134 */
1135 if (pages < DIRTY_POLL_THRESH) {
1136 t = max_pause;
1137 pages = dirty_ratelimit * t / roundup_pow_of_two(HZ);
1138 if (pages > DIRTY_POLL_THRESH) {
1139 pages = DIRTY_POLL_THRESH;
1140 t = HZ * DIRTY_POLL_THRESH / dirty_ratelimit;
1141 }
1142 }
1143
Wu Fengguang7ccb9ad2011-11-30 11:08:55 -06001144 pause = HZ * pages / (task_ratelimit + 1);
1145 if (pause > max_pause) {
1146 t = max_pause;
1147 pages = task_ratelimit * t / roundup_pow_of_two(HZ);
1148 }
1149
1150 *nr_dirtied_pause = pages;
1151 /*
1152 * The minimal pause time will normally be half the target pause time.
1153 */
Wu Fengguang5b9b3572011-12-06 13:17:17 -06001154 return pages >= DIRTY_POLL_THRESH ? 1 + t / 2 : t;
Wu Fengguangc8462cc2011-06-11 19:21:43 -06001155}
1156
Wu Fengguang9d823e82011-06-11 18:10:12 -06001157/*
Linus Torvalds1da177e2005-04-16 15:20:36 -07001158 * balance_dirty_pages() must be called by processes which are generating dirty
1159 * data. It looks at the number of dirty pages in the machine and will force
Wu Fengguang143dfe82010-08-27 18:45:12 -06001160 * the caller to wait once crossing the (background_thresh + dirty_thresh) / 2.
Jens Axboe5b0830c2009-09-23 19:37:09 +02001161 * If we're over `background_thresh' then the writeback threads are woken to
1162 * perform some writeout.
Linus Torvalds1da177e2005-04-16 15:20:36 -07001163 */
Wu Fengguang3a2e9a52009-09-23 21:56:00 +08001164static void balance_dirty_pages(struct address_space *mapping,
Wu Fengguang143dfe82010-08-27 18:45:12 -06001165 unsigned long pages_dirtied)
Linus Torvalds1da177e2005-04-16 15:20:36 -07001166{
Wu Fengguang143dfe82010-08-27 18:45:12 -06001167 unsigned long nr_reclaimable; /* = file_dirty + unstable_nfs */
1168 unsigned long bdi_reclaimable;
Wu Fengguang77627412010-09-12 13:34:05 -06001169 unsigned long nr_dirty; /* = file_dirty + writeback + unstable_nfs */
1170 unsigned long bdi_dirty;
Wu Fengguang6c14ae12011-03-02 16:04:18 -06001171 unsigned long freerun;
David Rientjes364aeb22009-01-06 14:39:29 -08001172 unsigned long background_thresh;
1173 unsigned long dirty_thresh;
1174 unsigned long bdi_thresh;
Wu Fengguang83712352011-06-11 19:25:42 -06001175 long period;
Wu Fengguang7ccb9ad2011-11-30 11:08:55 -06001176 long pause;
1177 long max_pause;
1178 long min_pause;
1179 int nr_dirtied_pause;
Wu Fengguange50e3722010-08-11 14:17:37 -07001180 bool dirty_exceeded = false;
Wu Fengguang143dfe82010-08-27 18:45:12 -06001181 unsigned long task_ratelimit;
Wu Fengguang7ccb9ad2011-11-30 11:08:55 -06001182 unsigned long dirty_ratelimit;
Wu Fengguang143dfe82010-08-27 18:45:12 -06001183 unsigned long pos_ratio;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001184 struct backing_dev_info *bdi = mapping->backing_dev_info;
Wu Fengguange98be2d2010-08-29 11:22:30 -06001185 unsigned long start_time = jiffies;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001186
1187 for (;;) {
Wu Fengguang83712352011-06-11 19:25:42 -06001188 unsigned long now = jiffies;
1189
Wu Fengguang143dfe82010-08-27 18:45:12 -06001190 /*
1191 * Unstable writes are a feature of certain networked
1192 * filesystems (i.e. NFS) in which data may have been
1193 * written to the server's write cache, but has not yet
1194 * been flushed to permanent storage.
1195 */
Peter Zijlstra5fce25a2007-11-14 16:59:15 -08001196 nr_reclaimable = global_page_state(NR_FILE_DIRTY) +
1197 global_page_state(NR_UNSTABLE_NFS);
Wu Fengguang77627412010-09-12 13:34:05 -06001198 nr_dirty = nr_reclaimable + global_page_state(NR_WRITEBACK);
Peter Zijlstra5fce25a2007-11-14 16:59:15 -08001199
Wu Fengguang16c40422010-08-11 14:17:39 -07001200 global_dirty_limits(&background_thresh, &dirty_thresh);
1201
1202 /*
1203 * Throttle it only when the background writeback cannot
1204 * catch-up. This avoids (excessively) small writeouts
1205 * when the bdi limits are ramping up.
1206 */
Wu Fengguang6c14ae12011-03-02 16:04:18 -06001207 freerun = dirty_freerun_ceiling(dirty_thresh,
1208 background_thresh);
Wu Fengguang83712352011-06-11 19:25:42 -06001209 if (nr_dirty <= freerun) {
1210 current->dirty_paused_when = now;
1211 current->nr_dirtied = 0;
Wu Fengguang7ccb9ad2011-11-30 11:08:55 -06001212 current->nr_dirtied_pause =
1213 dirty_poll_interval(nr_dirty, dirty_thresh);
Wu Fengguang16c40422010-08-11 14:17:39 -07001214 break;
Wu Fengguang83712352011-06-11 19:25:42 -06001215 }
Wu Fengguang16c40422010-08-11 14:17:39 -07001216
Wu Fengguang143dfe82010-08-27 18:45:12 -06001217 if (unlikely(!writeback_in_progress(bdi)))
1218 bdi_start_background_writeback(bdi);
1219
1220 /*
1221 * bdi_thresh is not treated as some limiting factor as
1222 * dirty_thresh, due to reasons
1223 * - in JBOD setup, bdi_thresh can fluctuate a lot
1224 * - in a system with HDD and USB key, the USB key may somehow
1225 * go into state (bdi_dirty >> bdi_thresh) either because
1226 * bdi_dirty starts high, or because bdi_thresh drops low.
1227 * In this case we don't want to hard throttle the USB key
1228 * dirtiers for 100 seconds until bdi_dirty drops under
1229 * bdi_thresh. Instead the auxiliary bdi control line in
1230 * bdi_position_ratio() will let the dirtier task progress
1231 * at some rate <= (write_bw / 2) for bringing down bdi_dirty.
1232 */
Wu Fengguang16c40422010-08-11 14:17:39 -07001233 bdi_thresh = bdi_dirty_limit(bdi, dirty_thresh);
Wu Fengguang16c40422010-08-11 14:17:39 -07001234
Wu Fengguange50e3722010-08-11 14:17:37 -07001235 /*
1236 * In order to avoid the stacked BDI deadlock we need
1237 * to ensure we accurately count the 'dirty' pages when
1238 * the threshold is low.
1239 *
1240 * Otherwise it would be possible to get thresh+n pages
1241 * reported dirty, even though there are thresh-m pages
1242 * actually dirty; with m+n sitting in the percpu
1243 * deltas.
1244 */
Wu Fengguang143dfe82010-08-27 18:45:12 -06001245 if (bdi_thresh < 2 * bdi_stat_error(bdi)) {
1246 bdi_reclaimable = bdi_stat_sum(bdi, BDI_RECLAIMABLE);
1247 bdi_dirty = bdi_reclaimable +
Wu Fengguang77627412010-09-12 13:34:05 -06001248 bdi_stat_sum(bdi, BDI_WRITEBACK);
Wu Fengguange50e3722010-08-11 14:17:37 -07001249 } else {
Wu Fengguang143dfe82010-08-27 18:45:12 -06001250 bdi_reclaimable = bdi_stat(bdi, BDI_RECLAIMABLE);
1251 bdi_dirty = bdi_reclaimable +
Wu Fengguang77627412010-09-12 13:34:05 -06001252 bdi_stat(bdi, BDI_WRITEBACK);
Wu Fengguange50e3722010-08-11 14:17:37 -07001253 }
Peter Zijlstra5fce25a2007-11-14 16:59:15 -08001254
Wu Fengguang82791942011-12-03 21:26:01 -06001255 dirty_exceeded = (bdi_dirty > bdi_thresh) &&
Wu Fengguang77627412010-09-12 13:34:05 -06001256 (nr_dirty > dirty_thresh);
Wu Fengguang143dfe82010-08-27 18:45:12 -06001257 if (dirty_exceeded && !bdi->dirty_exceeded)
Peter Zijlstra04fbfdc2007-10-16 23:25:50 -07001258 bdi->dirty_exceeded = 1;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001259
Wu Fengguangaf6a3112011-10-03 20:46:17 -06001260 bdi_update_bandwidth(bdi, dirty_thresh, background_thresh,
1261 nr_dirty, bdi_thresh, bdi_dirty,
1262 start_time);
Wu Fengguange98be2d2010-08-29 11:22:30 -06001263
Wu Fengguang143dfe82010-08-27 18:45:12 -06001264 dirty_ratelimit = bdi->dirty_ratelimit;
1265 pos_ratio = bdi_position_ratio(bdi, dirty_thresh,
1266 background_thresh, nr_dirty,
1267 bdi_thresh, bdi_dirty);
Wu Fengguang3a73dbb2011-11-07 19:19:28 +08001268 task_ratelimit = ((u64)dirty_ratelimit * pos_ratio) >>
1269 RATELIMIT_CALC_SHIFT;
Wu Fengguang7ccb9ad2011-11-30 11:08:55 -06001270 max_pause = bdi_max_pause(bdi, bdi_dirty);
1271 min_pause = bdi_min_pause(bdi, max_pause,
1272 task_ratelimit, dirty_ratelimit,
1273 &nr_dirtied_pause);
1274
Wu Fengguang3a73dbb2011-11-07 19:19:28 +08001275 if (unlikely(task_ratelimit == 0)) {
Wu Fengguang83712352011-06-11 19:25:42 -06001276 period = max_pause;
Wu Fengguangc8462cc2011-06-11 19:21:43 -06001277 pause = max_pause;
Wu Fengguang143dfe82010-08-27 18:45:12 -06001278 goto pause;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001279 }
Wu Fengguang83712352011-06-11 19:25:42 -06001280 period = HZ * pages_dirtied / task_ratelimit;
1281 pause = period;
1282 if (current->dirty_paused_when)
1283 pause -= now - current->dirty_paused_when;
1284 /*
1285 * For less than 1s think time (ext3/4 may block the dirtier
1286 * for up to 800ms from time to time on 1-HDD; so does xfs,
1287 * however at much less frequency), try to compensate it in
1288 * future periods by updating the virtual time; otherwise just
1289 * do a reset, as it may be a light dirtier.
1290 */
Wu Fengguang7ccb9ad2011-11-30 11:08:55 -06001291 if (pause < min_pause) {
Wu Fengguangece13ac2010-08-29 23:33:20 -06001292 trace_balance_dirty_pages(bdi,
1293 dirty_thresh,
1294 background_thresh,
1295 nr_dirty,
1296 bdi_thresh,
1297 bdi_dirty,
1298 dirty_ratelimit,
1299 task_ratelimit,
1300 pages_dirtied,
Wu Fengguang83712352011-06-11 19:25:42 -06001301 period,
Wu Fengguang7ccb9ad2011-11-30 11:08:55 -06001302 min(pause, 0L),
Wu Fengguangece13ac2010-08-29 23:33:20 -06001303 start_time);
Wu Fengguang83712352011-06-11 19:25:42 -06001304 if (pause < -HZ) {
1305 current->dirty_paused_when = now;
1306 current->nr_dirtied = 0;
1307 } else if (period) {
1308 current->dirty_paused_when += period;
1309 current->nr_dirtied = 0;
Wu Fengguang7ccb9ad2011-11-30 11:08:55 -06001310 } else if (current->nr_dirtied_pause <= pages_dirtied)
1311 current->nr_dirtied_pause += pages_dirtied;
Wu Fengguang57fc9782011-06-11 19:32:32 -06001312 break;
1313 }
Wu Fengguang7ccb9ad2011-11-30 11:08:55 -06001314 if (unlikely(pause > max_pause)) {
1315 /* for occasional dropped task_ratelimit */
1316 now += min(pause - max_pause, max_pause);
1317 pause = max_pause;
1318 }
Wu Fengguang143dfe82010-08-27 18:45:12 -06001319
1320pause:
Wu Fengguangece13ac2010-08-29 23:33:20 -06001321 trace_balance_dirty_pages(bdi,
1322 dirty_thresh,
1323 background_thresh,
1324 nr_dirty,
1325 bdi_thresh,
1326 bdi_dirty,
1327 dirty_ratelimit,
1328 task_ratelimit,
1329 pages_dirtied,
Wu Fengguang83712352011-06-11 19:25:42 -06001330 period,
Wu Fengguangece13ac2010-08-29 23:33:20 -06001331 pause,
1332 start_time);
Jan Kara499d05e2011-11-16 19:34:48 +08001333 __set_current_state(TASK_KILLABLE);
Wu Fengguangd25105e2009-10-09 12:40:42 +02001334 io_schedule_timeout(pause);
Jens Axboe87c6a9b2009-09-17 19:59:14 +02001335
Wu Fengguang83712352011-06-11 19:25:42 -06001336 current->dirty_paused_when = now + pause;
1337 current->nr_dirtied = 0;
Wu Fengguang7ccb9ad2011-11-30 11:08:55 -06001338 current->nr_dirtied_pause = nr_dirtied_pause;
Wu Fengguang83712352011-06-11 19:25:42 -06001339
Wu Fengguangffd1f602011-06-19 22:18:42 -06001340 /*
Wu Fengguang1df64712011-11-13 19:47:32 -06001341 * This is typically equal to (nr_dirty < dirty_thresh) and can
1342 * also keep "1000+ dd on a slow USB stick" under control.
Wu Fengguangffd1f602011-06-19 22:18:42 -06001343 */
Wu Fengguang1df64712011-11-13 19:47:32 -06001344 if (task_ratelimit)
Wu Fengguangffd1f602011-06-19 22:18:42 -06001345 break;
Jan Kara499d05e2011-11-16 19:34:48 +08001346
Wu Fengguangc5c63432011-12-02 10:21:33 -06001347 /*
1348 * In the case of an unresponding NFS server and the NFS dirty
1349 * pages exceeds dirty_thresh, give the other good bdi's a pipe
1350 * to go through, so that tasks on them still remain responsive.
1351 *
1352 * In theory 1 page is enough to keep the comsumer-producer
1353 * pipe going: the flusher cleans 1 page => the task dirties 1
1354 * more page. However bdi_dirty has accounting errors. So use
1355 * the larger and more IO friendly bdi_stat_error.
1356 */
1357 if (bdi_dirty <= bdi_stat_error(bdi))
1358 break;
1359
Jan Kara499d05e2011-11-16 19:34:48 +08001360 if (fatal_signal_pending(current))
1361 break;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001362 }
1363
Wu Fengguang143dfe82010-08-27 18:45:12 -06001364 if (!dirty_exceeded && bdi->dirty_exceeded)
Peter Zijlstra04fbfdc2007-10-16 23:25:50 -07001365 bdi->dirty_exceeded = 0;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001366
1367 if (writeback_in_progress(bdi))
Jens Axboe5b0830c2009-09-23 19:37:09 +02001368 return;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001369
1370 /*
1371 * In laptop mode, we wait until hitting the higher threshold before
1372 * starting background writeout, and then write out all the way down
1373 * to the lower threshold. So slow writers cause minimal disk activity.
1374 *
1375 * In normal mode, we start background writeout at the lower
1376 * background_thresh, to keep the amount of dirty memory low.
1377 */
Wu Fengguang143dfe82010-08-27 18:45:12 -06001378 if (laptop_mode)
1379 return;
1380
1381 if (nr_reclaimable > background_thresh)
Christoph Hellwigc5444192010-06-08 18:15:15 +02001382 bdi_start_background_writeback(bdi);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001383}
1384
Peter Zijlstraa200ee12007-10-08 18:54:37 +02001385void set_page_dirty_balance(struct page *page, int page_mkwrite)
Peter Zijlstraedc79b22006-09-25 23:30:58 -07001386{
Peter Zijlstraa200ee12007-10-08 18:54:37 +02001387 if (set_page_dirty(page) || page_mkwrite) {
Peter Zijlstraedc79b22006-09-25 23:30:58 -07001388 struct address_space *mapping = page_mapping(page);
1389
1390 if (mapping)
1391 balance_dirty_pages_ratelimited(mapping);
1392 }
1393}
1394
Wu Fengguang9d823e82011-06-11 18:10:12 -06001395static DEFINE_PER_CPU(int, bdp_ratelimits);
Tejun Heo245b2e72009-06-24 15:13:48 +09001396
Wu Fengguang54848d72011-04-05 13:21:19 -06001397/*
1398 * Normal tasks are throttled by
1399 * loop {
1400 * dirty tsk->nr_dirtied_pause pages;
1401 * take a snap in balance_dirty_pages();
1402 * }
1403 * However there is a worst case. If every task exit immediately when dirtied
1404 * (tsk->nr_dirtied_pause - 1) pages, balance_dirty_pages() will never be
1405 * called to throttle the page dirties. The solution is to save the not yet
1406 * throttled page dirties in dirty_throttle_leaks on task exit and charge them
1407 * randomly into the running tasks. This works well for the above worst case,
1408 * as the new task will pick up and accumulate the old task's leaked dirty
1409 * count and eventually get throttled.
1410 */
1411DEFINE_PER_CPU(int, dirty_throttle_leaks) = 0;
1412
Linus Torvalds1da177e2005-04-16 15:20:36 -07001413/**
Andrew Mortonfa5a7342006-03-24 03:18:10 -08001414 * balance_dirty_pages_ratelimited_nr - balance dirty memory state
Martin Waitz67be2dd2005-05-01 08:59:26 -07001415 * @mapping: address_space which was dirtied
Martin Waitza5802902006-04-02 13:59:55 +02001416 * @nr_pages_dirtied: number of pages which the caller has just dirtied
Linus Torvalds1da177e2005-04-16 15:20:36 -07001417 *
1418 * Processes which are dirtying memory should call in here once for each page
1419 * which was newly dirtied. The function will periodically check the system's
1420 * dirty state and will initiate writeback if needed.
1421 *
1422 * On really big machines, get_writeback_state is expensive, so try to avoid
1423 * calling it too often (ratelimiting). But once we're over the dirty memory
1424 * limit we decrease the ratelimiting by a lot, to prevent individual processes
1425 * from overshooting the limit by (ratelimit_pages) each.
1426 */
Andrew Mortonfa5a7342006-03-24 03:18:10 -08001427void balance_dirty_pages_ratelimited_nr(struct address_space *mapping,
1428 unsigned long nr_pages_dirtied)
Linus Torvalds1da177e2005-04-16 15:20:36 -07001429{
Wu Fengguang36715ce2011-06-11 17:53:57 -06001430 struct backing_dev_info *bdi = mapping->backing_dev_info;
Wu Fengguang9d823e82011-06-11 18:10:12 -06001431 int ratelimit;
1432 int *p;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001433
Wu Fengguang36715ce2011-06-11 17:53:57 -06001434 if (!bdi_cap_account_dirty(bdi))
1435 return;
1436
Wu Fengguang9d823e82011-06-11 18:10:12 -06001437 ratelimit = current->nr_dirtied_pause;
1438 if (bdi->dirty_exceeded)
1439 ratelimit = min(ratelimit, 32 >> (PAGE_SHIFT - 10));
Linus Torvalds1da177e2005-04-16 15:20:36 -07001440
Andrew Mortonfa5a7342006-03-24 03:18:10 -08001441 preempt_disable();
Wu Fengguang9d823e82011-06-11 18:10:12 -06001442 /*
1443 * This prevents one CPU to accumulate too many dirtied pages without
1444 * calling into balance_dirty_pages(), which can happen when there are
1445 * 1000+ tasks, all of them start dirtying pages at exactly the same
1446 * time, hence all honoured too large initial task->nr_dirtied_pause.
1447 */
Tejun Heo245b2e72009-06-24 15:13:48 +09001448 p = &__get_cpu_var(bdp_ratelimits);
Wu Fengguang9d823e82011-06-11 18:10:12 -06001449 if (unlikely(current->nr_dirtied >= ratelimit))
Andrew Mortonfa5a7342006-03-24 03:18:10 -08001450 *p = 0;
Wu Fengguangd3bc1fe2011-04-14 07:52:37 -06001451 else if (unlikely(*p >= ratelimit_pages)) {
1452 *p = 0;
1453 ratelimit = 0;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001454 }
Wu Fengguang54848d72011-04-05 13:21:19 -06001455 /*
1456 * Pick up the dirtied pages by the exited tasks. This avoids lots of
1457 * short-lived tasks (eg. gcc invocations in a kernel build) escaping
1458 * the dirty throttling and livelock other long-run dirtiers.
1459 */
1460 p = &__get_cpu_var(dirty_throttle_leaks);
1461 if (*p > 0 && current->nr_dirtied < ratelimit) {
1462 nr_pages_dirtied = min(*p, ratelimit - current->nr_dirtied);
1463 *p -= nr_pages_dirtied;
1464 current->nr_dirtied += nr_pages_dirtied;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001465 }
Andrew Mortonfa5a7342006-03-24 03:18:10 -08001466 preempt_enable();
Wu Fengguang9d823e82011-06-11 18:10:12 -06001467
1468 if (unlikely(current->nr_dirtied >= ratelimit))
1469 balance_dirty_pages(mapping, current->nr_dirtied);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001470}
Andrew Mortonfa5a7342006-03-24 03:18:10 -08001471EXPORT_SYMBOL(balance_dirty_pages_ratelimited_nr);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001472
Andrew Morton232ea4d2007-02-28 20:13:21 -08001473void throttle_vm_writeout(gfp_t gfp_mask)
Linus Torvalds1da177e2005-04-16 15:20:36 -07001474{
David Rientjes364aeb22009-01-06 14:39:29 -08001475 unsigned long background_thresh;
1476 unsigned long dirty_thresh;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001477
1478 for ( ; ; ) {
Wu Fengguang16c40422010-08-11 14:17:39 -07001479 global_dirty_limits(&background_thresh, &dirty_thresh);
Fengguang Wu47a13332012-03-21 16:34:09 -07001480 dirty_thresh = hard_dirty_limit(dirty_thresh);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001481
1482 /*
1483 * Boost the allowable dirty threshold a bit for page
1484 * allocators so they don't get DoS'ed by heavy writers
1485 */
1486 dirty_thresh += dirty_thresh / 10; /* wheeee... */
1487
Christoph Lameterc24f21b2006-06-30 01:55:42 -07001488 if (global_page_state(NR_UNSTABLE_NFS) +
1489 global_page_state(NR_WRITEBACK) <= dirty_thresh)
1490 break;
Jens Axboe8aa7e842009-07-09 14:52:32 +02001491 congestion_wait(BLK_RW_ASYNC, HZ/10);
Fengguang Wu369f2382007-10-16 23:30:45 -07001492
1493 /*
1494 * The caller might hold locks which can prevent IO completion
1495 * or progress in the filesystem. So we cannot just sit here
1496 * waiting for IO to complete.
1497 */
1498 if ((gfp_mask & (__GFP_FS|__GFP_IO)) != (__GFP_FS|__GFP_IO))
1499 break;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001500 }
1501}
1502
Linus Torvalds1da177e2005-04-16 15:20:36 -07001503/*
Linus Torvalds1da177e2005-04-16 15:20:36 -07001504 * sysctl handler for /proc/sys/vm/dirty_writeback_centisecs
1505 */
1506int dirty_writeback_centisecs_handler(ctl_table *table, int write,
Alexey Dobriyan8d65af72009-09-23 15:57:19 -07001507 void __user *buffer, size_t *length, loff_t *ppos)
Linus Torvalds1da177e2005-04-16 15:20:36 -07001508{
Alexey Dobriyan8d65af72009-09-23 15:57:19 -07001509 proc_dointvec(table, write, buffer, length, ppos);
Jens Axboe64231042010-05-21 20:00:35 +02001510 bdi_arm_supers_timer();
Linus Torvalds1da177e2005-04-16 15:20:36 -07001511 return 0;
1512}
1513
Jens Axboec2c49862010-05-20 09:18:47 +02001514#ifdef CONFIG_BLOCK
Matthew Garrett31373d02010-04-06 14:25:14 +02001515void laptop_mode_timer_fn(unsigned long data)
Linus Torvalds1da177e2005-04-16 15:20:36 -07001516{
Matthew Garrett31373d02010-04-06 14:25:14 +02001517 struct request_queue *q = (struct request_queue *)data;
1518 int nr_pages = global_page_state(NR_FILE_DIRTY) +
1519 global_page_state(NR_UNSTABLE_NFS);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001520
Matthew Garrett31373d02010-04-06 14:25:14 +02001521 /*
1522 * We want to write everything out, not just down to the dirty
1523 * threshold
1524 */
Matthew Garrett31373d02010-04-06 14:25:14 +02001525 if (bdi_has_dirty_io(&q->backing_dev_info))
Curt Wohlgemuth0e175a12011-10-07 21:54:10 -06001526 bdi_start_writeback(&q->backing_dev_info, nr_pages,
1527 WB_REASON_LAPTOP_TIMER);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001528}
1529
1530/*
1531 * We've spun up the disk and we're in laptop mode: schedule writeback
1532 * of all dirty data a few seconds from now. If the flush is already scheduled
1533 * then push it back - the user is still using the disk.
1534 */
Matthew Garrett31373d02010-04-06 14:25:14 +02001535void laptop_io_completion(struct backing_dev_info *info)
Linus Torvalds1da177e2005-04-16 15:20:36 -07001536{
Matthew Garrett31373d02010-04-06 14:25:14 +02001537 mod_timer(&info->laptop_mode_wb_timer, jiffies + laptop_mode);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001538}
1539
1540/*
1541 * We're in laptop mode and we've just synced. The sync's writes will have
1542 * caused another writeback to be scheduled by laptop_io_completion.
1543 * Nothing needs to be written back anymore, so we unschedule the writeback.
1544 */
1545void laptop_sync_completion(void)
1546{
Matthew Garrett31373d02010-04-06 14:25:14 +02001547 struct backing_dev_info *bdi;
1548
1549 rcu_read_lock();
1550
1551 list_for_each_entry_rcu(bdi, &bdi_list, bdi_list)
1552 del_timer(&bdi->laptop_mode_wb_timer);
1553
1554 rcu_read_unlock();
Linus Torvalds1da177e2005-04-16 15:20:36 -07001555}
Jens Axboec2c49862010-05-20 09:18:47 +02001556#endif
Linus Torvalds1da177e2005-04-16 15:20:36 -07001557
1558/*
1559 * If ratelimit_pages is too high then we can get into dirty-data overload
1560 * if a large number of processes all perform writes at the same time.
1561 * If it is too low then SMP machines will call the (expensive)
1562 * get_writeback_state too often.
1563 *
1564 * Here we set ratelimit_pages to a level which ensures that when all CPUs are
1565 * dirtying in parallel, we cannot go more than 3% (1/32) over the dirty memory
Wu Fengguang9d823e82011-06-11 18:10:12 -06001566 * thresholds.
Linus Torvalds1da177e2005-04-16 15:20:36 -07001567 */
1568
Chandra Seetharaman2d1d43f2006-09-29 02:01:25 -07001569void writeback_set_ratelimit(void)
Linus Torvalds1da177e2005-04-16 15:20:36 -07001570{
Wu Fengguang9d823e82011-06-11 18:10:12 -06001571 unsigned long background_thresh;
1572 unsigned long dirty_thresh;
1573 global_dirty_limits(&background_thresh, &dirty_thresh);
1574 ratelimit_pages = dirty_thresh / (num_online_cpus() * 32);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001575 if (ratelimit_pages < 16)
1576 ratelimit_pages = 16;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001577}
1578
Chandra Seetharaman26c21432006-06-27 02:54:10 -07001579static int __cpuinit
Linus Torvalds1da177e2005-04-16 15:20:36 -07001580ratelimit_handler(struct notifier_block *self, unsigned long u, void *v)
1581{
Chandra Seetharaman2d1d43f2006-09-29 02:01:25 -07001582 writeback_set_ratelimit();
Paul E. McKenneyaa0f0302007-02-10 01:46:37 -08001583 return NOTIFY_DONE;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001584}
1585
Chandra Seetharaman74b85f32006-06-27 02:54:09 -07001586static struct notifier_block __cpuinitdata ratelimit_nb = {
Linus Torvalds1da177e2005-04-16 15:20:36 -07001587 .notifier_call = ratelimit_handler,
1588 .next = NULL,
1589};
1590
1591/*
Linus Torvaldsdc6e29d2007-01-29 16:37:38 -08001592 * Called early on to tune the page writeback dirty limits.
1593 *
1594 * We used to scale dirty pages according to how total memory
1595 * related to pages that could be allocated for buffers (by
1596 * comparing nr_free_buffer_pages() to vm_total_pages.
1597 *
1598 * However, that was when we used "dirty_ratio" to scale with
1599 * all memory, and we don't do that any more. "dirty_ratio"
1600 * is now applied to total non-HIGHPAGE memory (by subtracting
1601 * totalhigh_pages from vm_total_pages), and as such we can't
1602 * get into the old insane situation any more where we had
1603 * large amounts of dirty pages compared to a small amount of
1604 * non-HIGHMEM memory.
1605 *
1606 * But we might still want to scale the dirty_ratio by how
1607 * much memory the box has..
Linus Torvalds1da177e2005-04-16 15:20:36 -07001608 */
1609void __init page_writeback_init(void)
1610{
Peter Zijlstra04fbfdc2007-10-16 23:25:50 -07001611 int shift;
1612
Chandra Seetharaman2d1d43f2006-09-29 02:01:25 -07001613 writeback_set_ratelimit();
Linus Torvalds1da177e2005-04-16 15:20:36 -07001614 register_cpu_notifier(&ratelimit_nb);
Peter Zijlstra04fbfdc2007-10-16 23:25:50 -07001615
1616 shift = calc_period_shift();
1617 prop_descriptor_init(&vm_completions, shift);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001618}
1619
David Howells811d7362006-08-29 19:06:09 +01001620/**
Jan Karaf446daa2010-08-09 17:19:12 -07001621 * tag_pages_for_writeback - tag pages to be written by write_cache_pages
1622 * @mapping: address space structure to write
1623 * @start: starting page index
1624 * @end: ending page index (inclusive)
1625 *
1626 * This function scans the page range from @start to @end (inclusive) and tags
1627 * all pages that have DIRTY tag set with a special TOWRITE tag. The idea is
1628 * that write_cache_pages (or whoever calls this function) will then use
1629 * TOWRITE tag to identify pages eligible for writeback. This mechanism is
1630 * used to avoid livelocking of writeback by a process steadily creating new
1631 * dirty pages in the file (thus it is important for this function to be quick
1632 * so that it can tag pages faster than a dirtying process can create them).
1633 */
1634/*
1635 * We tag pages in batches of WRITEBACK_TAG_BATCH to reduce tree_lock latency.
1636 */
Jan Karaf446daa2010-08-09 17:19:12 -07001637void tag_pages_for_writeback(struct address_space *mapping,
1638 pgoff_t start, pgoff_t end)
1639{
Randy Dunlap3c111a02010-08-11 14:17:30 -07001640#define WRITEBACK_TAG_BATCH 4096
Jan Karaf446daa2010-08-09 17:19:12 -07001641 unsigned long tagged;
1642
1643 do {
1644 spin_lock_irq(&mapping->tree_lock);
1645 tagged = radix_tree_range_tag_if_tagged(&mapping->page_tree,
1646 &start, end, WRITEBACK_TAG_BATCH,
1647 PAGECACHE_TAG_DIRTY, PAGECACHE_TAG_TOWRITE);
1648 spin_unlock_irq(&mapping->tree_lock);
1649 WARN_ON_ONCE(tagged > WRITEBACK_TAG_BATCH);
1650 cond_resched();
Jan Karad5ed3a42010-08-19 14:13:33 -07001651 /* We check 'start' to handle wrapping when end == ~0UL */
1652 } while (tagged >= WRITEBACK_TAG_BATCH && start);
Jan Karaf446daa2010-08-09 17:19:12 -07001653}
1654EXPORT_SYMBOL(tag_pages_for_writeback);
1655
1656/**
Miklos Szeredi0ea97182007-05-10 22:22:51 -07001657 * write_cache_pages - walk the list of dirty pages of the given address space and write all of them.
David Howells811d7362006-08-29 19:06:09 +01001658 * @mapping: address space structure to write
1659 * @wbc: subtract the number of written pages from *@wbc->nr_to_write
Miklos Szeredi0ea97182007-05-10 22:22:51 -07001660 * @writepage: function called for each page
1661 * @data: data passed to writepage function
David Howells811d7362006-08-29 19:06:09 +01001662 *
Miklos Szeredi0ea97182007-05-10 22:22:51 -07001663 * If a page is already under I/O, write_cache_pages() skips it, even
David Howells811d7362006-08-29 19:06:09 +01001664 * if it's dirty. This is desirable behaviour for memory-cleaning writeback,
1665 * but it is INCORRECT for data-integrity system calls such as fsync(). fsync()
1666 * and msync() need to guarantee that all the data which was dirty at the time
1667 * the call was made get new I/O started against them. If wbc->sync_mode is
1668 * WB_SYNC_ALL then we were called for data integrity and we must wait for
1669 * existing IO to complete.
Jan Karaf446daa2010-08-09 17:19:12 -07001670 *
1671 * To avoid livelocks (when other process dirties new pages), we first tag
1672 * pages which should be written back with TOWRITE tag and only then start
1673 * writing them. For data-integrity sync we have to be careful so that we do
1674 * not miss some pages (e.g., because some other process has cleared TOWRITE
1675 * tag we set). The rule we follow is that TOWRITE tag can be cleared only
1676 * by the process clearing the DIRTY tag (and submitting the page for IO).
David Howells811d7362006-08-29 19:06:09 +01001677 */
Miklos Szeredi0ea97182007-05-10 22:22:51 -07001678int write_cache_pages(struct address_space *mapping,
1679 struct writeback_control *wbc, writepage_t writepage,
1680 void *data)
David Howells811d7362006-08-29 19:06:09 +01001681{
David Howells811d7362006-08-29 19:06:09 +01001682 int ret = 0;
1683 int done = 0;
David Howells811d7362006-08-29 19:06:09 +01001684 struct pagevec pvec;
1685 int nr_pages;
Nick Piggin31a12662009-01-06 14:39:04 -08001686 pgoff_t uninitialized_var(writeback_index);
David Howells811d7362006-08-29 19:06:09 +01001687 pgoff_t index;
1688 pgoff_t end; /* Inclusive */
Nick Pigginbd19e012009-01-06 14:39:06 -08001689 pgoff_t done_index;
Nick Piggin31a12662009-01-06 14:39:04 -08001690 int cycled;
David Howells811d7362006-08-29 19:06:09 +01001691 int range_whole = 0;
Jan Karaf446daa2010-08-09 17:19:12 -07001692 int tag;
David Howells811d7362006-08-29 19:06:09 +01001693
David Howells811d7362006-08-29 19:06:09 +01001694 pagevec_init(&pvec, 0);
1695 if (wbc->range_cyclic) {
Nick Piggin31a12662009-01-06 14:39:04 -08001696 writeback_index = mapping->writeback_index; /* prev offset */
1697 index = writeback_index;
1698 if (index == 0)
1699 cycled = 1;
1700 else
1701 cycled = 0;
David Howells811d7362006-08-29 19:06:09 +01001702 end = -1;
1703 } else {
1704 index = wbc->range_start >> PAGE_CACHE_SHIFT;
1705 end = wbc->range_end >> PAGE_CACHE_SHIFT;
1706 if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
1707 range_whole = 1;
Nick Piggin31a12662009-01-06 14:39:04 -08001708 cycled = 1; /* ignore range_cyclic tests */
David Howells811d7362006-08-29 19:06:09 +01001709 }
Wu Fengguang6e6938b2010-06-06 10:38:15 -06001710 if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
Jan Karaf446daa2010-08-09 17:19:12 -07001711 tag = PAGECACHE_TAG_TOWRITE;
1712 else
1713 tag = PAGECACHE_TAG_DIRTY;
David Howells811d7362006-08-29 19:06:09 +01001714retry:
Wu Fengguang6e6938b2010-06-06 10:38:15 -06001715 if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
Jan Karaf446daa2010-08-09 17:19:12 -07001716 tag_pages_for_writeback(mapping, index, end);
Nick Pigginbd19e012009-01-06 14:39:06 -08001717 done_index = index;
Nick Piggin5a3d5c92009-01-06 14:39:09 -08001718 while (!done && (index <= end)) {
1719 int i;
1720
Jan Karaf446daa2010-08-09 17:19:12 -07001721 nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag,
Nick Piggin5a3d5c92009-01-06 14:39:09 -08001722 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1);
1723 if (nr_pages == 0)
1724 break;
David Howells811d7362006-08-29 19:06:09 +01001725
David Howells811d7362006-08-29 19:06:09 +01001726 for (i = 0; i < nr_pages; i++) {
1727 struct page *page = pvec.pages[i];
1728
Nick Piggind5482cd2009-01-06 14:39:11 -08001729 /*
1730 * At this point, the page may be truncated or
1731 * invalidated (changing page->mapping to NULL), or
1732 * even swizzled back from swapper_space to tmpfs file
1733 * mapping. However, page->index will not change
1734 * because we have a reference on the page.
1735 */
1736 if (page->index > end) {
1737 /*
1738 * can't be range_cyclic (1st pass) because
1739 * end == -1 in that case.
1740 */
1741 done = 1;
1742 break;
1743 }
1744
Jun'ichi Nomuracf15b072011-03-22 16:33:40 -07001745 done_index = page->index;
Nick Pigginbd19e012009-01-06 14:39:06 -08001746
David Howells811d7362006-08-29 19:06:09 +01001747 lock_page(page);
1748
Nick Piggin5a3d5c92009-01-06 14:39:09 -08001749 /*
1750 * Page truncated or invalidated. We can freely skip it
1751 * then, even for data integrity operations: the page
1752 * has disappeared concurrently, so there could be no
1753 * real expectation of this data interity operation
1754 * even if there is now a new, dirty page at the same
1755 * pagecache address.
1756 */
David Howells811d7362006-08-29 19:06:09 +01001757 if (unlikely(page->mapping != mapping)) {
Nick Piggin5a3d5c92009-01-06 14:39:09 -08001758continue_unlock:
David Howells811d7362006-08-29 19:06:09 +01001759 unlock_page(page);
1760 continue;
1761 }
1762
Nick Piggin515f4a02009-01-06 14:39:10 -08001763 if (!PageDirty(page)) {
1764 /* someone wrote it for us */
1765 goto continue_unlock;
1766 }
David Howells811d7362006-08-29 19:06:09 +01001767
Nick Piggin515f4a02009-01-06 14:39:10 -08001768 if (PageWriteback(page)) {
1769 if (wbc->sync_mode != WB_SYNC_NONE)
1770 wait_on_page_writeback(page);
1771 else
1772 goto continue_unlock;
1773 }
1774
1775 BUG_ON(PageWriteback(page));
1776 if (!clear_page_dirty_for_io(page))
Nick Piggin5a3d5c92009-01-06 14:39:09 -08001777 goto continue_unlock;
David Howells811d7362006-08-29 19:06:09 +01001778
Dave Chinner9e094382010-07-07 13:24:08 +10001779 trace_wbc_writepage(wbc, mapping->backing_dev_info);
Miklos Szeredi0ea97182007-05-10 22:22:51 -07001780 ret = (*writepage)(page, wbc, data);
Nick Piggin00266772009-01-06 14:39:06 -08001781 if (unlikely(ret)) {
1782 if (ret == AOP_WRITEPAGE_ACTIVATE) {
1783 unlock_page(page);
1784 ret = 0;
1785 } else {
1786 /*
1787 * done_index is set past this page,
1788 * so media errors will not choke
1789 * background writeout for the entire
1790 * file. This has consequences for
1791 * range_cyclic semantics (ie. it may
1792 * not be suitable for data integrity
1793 * writeout).
1794 */
Jun'ichi Nomuracf15b072011-03-22 16:33:40 -07001795 done_index = page->index + 1;
Nick Piggin00266772009-01-06 14:39:06 -08001796 done = 1;
1797 break;
1798 }
Dave Chinner0b564922010-06-09 10:37:18 +10001799 }
David Howells811d7362006-08-29 19:06:09 +01001800
Dave Chinner546a1922010-08-24 11:44:34 +10001801 /*
1802 * We stop writing back only if we are not doing
1803 * integrity sync. In case of integrity sync we have to
1804 * keep going until we have written all the pages
1805 * we tagged for writeback prior to entering this loop.
1806 */
1807 if (--wbc->nr_to_write <= 0 &&
1808 wbc->sync_mode == WB_SYNC_NONE) {
1809 done = 1;
1810 break;
Nick Piggin05fe4782009-01-06 14:39:08 -08001811 }
David Howells811d7362006-08-29 19:06:09 +01001812 }
1813 pagevec_release(&pvec);
1814 cond_resched();
1815 }
Nick Piggin3a4c6802009-02-12 04:34:23 +01001816 if (!cycled && !done) {
David Howells811d7362006-08-29 19:06:09 +01001817 /*
Nick Piggin31a12662009-01-06 14:39:04 -08001818 * range_cyclic:
David Howells811d7362006-08-29 19:06:09 +01001819 * We hit the last page and there is more work to be done: wrap
1820 * back to the start of the file
1821 */
Nick Piggin31a12662009-01-06 14:39:04 -08001822 cycled = 1;
David Howells811d7362006-08-29 19:06:09 +01001823 index = 0;
Nick Piggin31a12662009-01-06 14:39:04 -08001824 end = writeback_index - 1;
David Howells811d7362006-08-29 19:06:09 +01001825 goto retry;
1826 }
Dave Chinner0b564922010-06-09 10:37:18 +10001827 if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
1828 mapping->writeback_index = done_index;
Aneesh Kumar K.V06d6cf62008-07-11 19:27:31 -04001829
David Howells811d7362006-08-29 19:06:09 +01001830 return ret;
1831}
Miklos Szeredi0ea97182007-05-10 22:22:51 -07001832EXPORT_SYMBOL(write_cache_pages);
1833
1834/*
1835 * Function used by generic_writepages to call the real writepage
1836 * function and set the mapping flags on error
1837 */
1838static int __writepage(struct page *page, struct writeback_control *wbc,
1839 void *data)
1840{
1841 struct address_space *mapping = data;
1842 int ret = mapping->a_ops->writepage(page, wbc);
1843 mapping_set_error(mapping, ret);
1844 return ret;
1845}
1846
1847/**
1848 * generic_writepages - walk the list of dirty pages of the given address space and writepage() all of them.
1849 * @mapping: address space structure to write
1850 * @wbc: subtract the number of written pages from *@wbc->nr_to_write
1851 *
1852 * This is a library function, which implements the writepages()
1853 * address_space_operation.
1854 */
1855int generic_writepages(struct address_space *mapping,
1856 struct writeback_control *wbc)
1857{
Shaohua Li9b6096a2011-03-17 10:47:06 +01001858 struct blk_plug plug;
1859 int ret;
1860
Miklos Szeredi0ea97182007-05-10 22:22:51 -07001861 /* deal with chardevs and other special file */
1862 if (!mapping->a_ops->writepage)
1863 return 0;
1864
Shaohua Li9b6096a2011-03-17 10:47:06 +01001865 blk_start_plug(&plug);
1866 ret = write_cache_pages(mapping, wbc, __writepage, mapping);
1867 blk_finish_plug(&plug);
1868 return ret;
Miklos Szeredi0ea97182007-05-10 22:22:51 -07001869}
David Howells811d7362006-08-29 19:06:09 +01001870
1871EXPORT_SYMBOL(generic_writepages);
1872
Linus Torvalds1da177e2005-04-16 15:20:36 -07001873int do_writepages(struct address_space *mapping, struct writeback_control *wbc)
1874{
Andrew Morton22905f72005-11-16 15:07:01 -08001875 int ret;
1876
Linus Torvalds1da177e2005-04-16 15:20:36 -07001877 if (wbc->nr_to_write <= 0)
1878 return 0;
1879 if (mapping->a_ops->writepages)
Peter Zijlstrad08b3852006-09-25 23:30:57 -07001880 ret = mapping->a_ops->writepages(mapping, wbc);
Andrew Morton22905f72005-11-16 15:07:01 -08001881 else
1882 ret = generic_writepages(mapping, wbc);
Andrew Morton22905f72005-11-16 15:07:01 -08001883 return ret;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001884}
1885
1886/**
1887 * write_one_page - write out a single page and optionally wait on I/O
Martin Waitz67be2dd2005-05-01 08:59:26 -07001888 * @page: the page to write
1889 * @wait: if true, wait on writeout
Linus Torvalds1da177e2005-04-16 15:20:36 -07001890 *
1891 * The page must be locked by the caller and will be unlocked upon return.
1892 *
1893 * write_one_page() returns a negative error code if I/O failed.
1894 */
1895int write_one_page(struct page *page, int wait)
1896{
1897 struct address_space *mapping = page->mapping;
1898 int ret = 0;
1899 struct writeback_control wbc = {
1900 .sync_mode = WB_SYNC_ALL,
1901 .nr_to_write = 1,
1902 };
1903
1904 BUG_ON(!PageLocked(page));
1905
1906 if (wait)
1907 wait_on_page_writeback(page);
1908
1909 if (clear_page_dirty_for_io(page)) {
1910 page_cache_get(page);
1911 ret = mapping->a_ops->writepage(page, &wbc);
1912 if (ret == 0 && wait) {
1913 wait_on_page_writeback(page);
1914 if (PageError(page))
1915 ret = -EIO;
1916 }
1917 page_cache_release(page);
1918 } else {
1919 unlock_page(page);
1920 }
1921 return ret;
1922}
1923EXPORT_SYMBOL(write_one_page);
1924
1925/*
Ken Chen76719322007-02-10 01:43:15 -08001926 * For address_spaces which do not use buffers nor write back.
1927 */
1928int __set_page_dirty_no_writeback(struct page *page)
1929{
1930 if (!PageDirty(page))
Bob Liuc3f0da62011-01-13 15:45:49 -08001931 return !TestSetPageDirty(page);
Ken Chen76719322007-02-10 01:43:15 -08001932 return 0;
1933}
1934
1935/*
Edward Shishkine3a7cca2009-03-31 15:19:39 -07001936 * Helper function for set_page_dirty family.
1937 * NOTE: This relies on being atomic wrt interrupts.
1938 */
1939void account_page_dirtied(struct page *page, struct address_space *mapping)
1940{
1941 if (mapping_cap_account_dirty(mapping)) {
1942 __inc_zone_page_state(page, NR_FILE_DIRTY);
Michael Rubinea941f02010-10-26 14:21:35 -07001943 __inc_zone_page_state(page, NR_DIRTIED);
Edward Shishkine3a7cca2009-03-31 15:19:39 -07001944 __inc_bdi_stat(mapping->backing_dev_info, BDI_RECLAIMABLE);
Wu Fengguangc8e28ce2011-01-23 10:07:47 -06001945 __inc_bdi_stat(mapping->backing_dev_info, BDI_DIRTIED);
Edward Shishkine3a7cca2009-03-31 15:19:39 -07001946 task_io_account_write(PAGE_CACHE_SIZE);
Wu Fengguangd3bc1fe2011-04-14 07:52:37 -06001947 current->nr_dirtied++;
1948 this_cpu_inc(bdp_ratelimits);
Edward Shishkine3a7cca2009-03-31 15:19:39 -07001949 }
1950}
Michael Rubin679ceac2010-08-20 02:31:26 -07001951EXPORT_SYMBOL(account_page_dirtied);
Edward Shishkine3a7cca2009-03-31 15:19:39 -07001952
1953/*
Michael Rubinf629d1c2010-10-26 14:21:33 -07001954 * Helper function for set_page_writeback family.
1955 * NOTE: Unlike account_page_dirtied this does not rely on being atomic
1956 * wrt interrupts.
1957 */
1958void account_page_writeback(struct page *page)
1959{
1960 inc_zone_page_state(page, NR_WRITEBACK);
1961}
1962EXPORT_SYMBOL(account_page_writeback);
1963
1964/*
Linus Torvalds1da177e2005-04-16 15:20:36 -07001965 * For address_spaces which do not use buffers. Just tag the page as dirty in
1966 * its radix tree.
1967 *
1968 * This is also used when a single buffer is being dirtied: we want to set the
1969 * page dirty in that case, but not all the buffers. This is a "bottom-up"
1970 * dirtying, whereas __set_page_dirty_buffers() is a "top-down" dirtying.
1971 *
1972 * Most callers have locked the page, which pins the address_space in memory.
1973 * But zap_pte_range() does not lock the page, however in that case the
1974 * mapping is pinned by the vma's ->vm_file reference.
1975 *
1976 * We take care to handle the case where the page was truncated from the
Simon Arlott183ff222007-10-20 01:27:18 +02001977 * mapping by re-checking page_mapping() inside tree_lock.
Linus Torvalds1da177e2005-04-16 15:20:36 -07001978 */
1979int __set_page_dirty_nobuffers(struct page *page)
1980{
Linus Torvalds1da177e2005-04-16 15:20:36 -07001981 if (!TestSetPageDirty(page)) {
1982 struct address_space *mapping = page_mapping(page);
1983 struct address_space *mapping2;
1984
Andrew Morton8c085402006-12-10 02:19:24 -08001985 if (!mapping)
1986 return 1;
1987
Nick Piggin19fd6232008-07-25 19:45:32 -07001988 spin_lock_irq(&mapping->tree_lock);
Andrew Morton8c085402006-12-10 02:19:24 -08001989 mapping2 = page_mapping(page);
1990 if (mapping2) { /* Race with truncate? */
1991 BUG_ON(mapping2 != mapping);
Nick Piggin787d2212007-07-17 04:03:34 -07001992 WARN_ON_ONCE(!PagePrivate(page) && !PageUptodate(page));
Edward Shishkine3a7cca2009-03-31 15:19:39 -07001993 account_page_dirtied(page, mapping);
Andrew Morton8c085402006-12-10 02:19:24 -08001994 radix_tree_tag_set(&mapping->page_tree,
1995 page_index(page), PAGECACHE_TAG_DIRTY);
1996 }
Nick Piggin19fd6232008-07-25 19:45:32 -07001997 spin_unlock_irq(&mapping->tree_lock);
Andrew Morton8c085402006-12-10 02:19:24 -08001998 if (mapping->host) {
1999 /* !PageAnon && !swapper_space */
2000 __mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002001 }
Andrew Morton4741c9f2006-03-24 03:18:11 -08002002 return 1;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002003 }
Andrew Morton4741c9f2006-03-24 03:18:11 -08002004 return 0;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002005}
2006EXPORT_SYMBOL(__set_page_dirty_nobuffers);
2007
2008/*
Wu Fengguang2f800fb2011-08-08 15:22:00 -06002009 * Call this whenever redirtying a page, to de-account the dirty counters
2010 * (NR_DIRTIED, BDI_DIRTIED, tsk->nr_dirtied), so that they match the written
2011 * counters (NR_WRITTEN, BDI_WRITTEN) in long term. The mismatches will lead to
2012 * systematic errors in balanced_dirty_ratelimit and the dirty pages position
2013 * control.
2014 */
2015void account_page_redirty(struct page *page)
2016{
2017 struct address_space *mapping = page->mapping;
2018 if (mapping && mapping_cap_account_dirty(mapping)) {
2019 current->nr_dirtied--;
2020 dec_zone_page_state(page, NR_DIRTIED);
2021 dec_bdi_stat(mapping->backing_dev_info, BDI_DIRTIED);
2022 }
2023}
2024EXPORT_SYMBOL(account_page_redirty);
2025
2026/*
Linus Torvalds1da177e2005-04-16 15:20:36 -07002027 * When a writepage implementation decides that it doesn't want to write this
2028 * page for some reason, it should redirty the locked page via
2029 * redirty_page_for_writepage() and it should then unlock the page and return 0
2030 */
2031int redirty_page_for_writepage(struct writeback_control *wbc, struct page *page)
2032{
2033 wbc->pages_skipped++;
Wu Fengguang2f800fb2011-08-08 15:22:00 -06002034 account_page_redirty(page);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002035 return __set_page_dirty_nobuffers(page);
2036}
2037EXPORT_SYMBOL(redirty_page_for_writepage);
2038
2039/*
Wu Fengguang6746aff2009-09-16 11:50:14 +02002040 * Dirty a page.
2041 *
2042 * For pages with a mapping this should be done under the page lock
2043 * for the benefit of asynchronous memory errors who prefer a consistent
2044 * dirty state. This rule can be broken in some special cases,
2045 * but should be better not to.
2046 *
Linus Torvalds1da177e2005-04-16 15:20:36 -07002047 * If the mapping doesn't provide a set_page_dirty a_op, then
2048 * just fall through and assume that it wants buffer_heads.
2049 */
Nick Piggin1cf6e7d2009-02-18 14:48:18 -08002050int set_page_dirty(struct page *page)
Linus Torvalds1da177e2005-04-16 15:20:36 -07002051{
2052 struct address_space *mapping = page_mapping(page);
2053
2054 if (likely(mapping)) {
2055 int (*spd)(struct page *) = mapping->a_ops->set_page_dirty;
Minchan Kim278df9f2011-03-22 16:32:54 -07002056 /*
2057 * readahead/lru_deactivate_page could remain
2058 * PG_readahead/PG_reclaim due to race with end_page_writeback
2059 * About readahead, if the page is written, the flags would be
2060 * reset. So no problem.
2061 * About lru_deactivate_page, if the page is redirty, the flag
2062 * will be reset. So no problem. but if the page is used by readahead
2063 * it will confuse readahead and make it restart the size rampup
2064 * process. But it's a trivial problem.
2065 */
2066 ClearPageReclaim(page);
David Howells93614012006-09-30 20:45:40 +02002067#ifdef CONFIG_BLOCK
2068 if (!spd)
2069 spd = __set_page_dirty_buffers;
2070#endif
2071 return (*spd)(page);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002072 }
Andrew Morton4741c9f2006-03-24 03:18:11 -08002073 if (!PageDirty(page)) {
2074 if (!TestSetPageDirty(page))
2075 return 1;
2076 }
Linus Torvalds1da177e2005-04-16 15:20:36 -07002077 return 0;
2078}
2079EXPORT_SYMBOL(set_page_dirty);
2080
2081/*
2082 * set_page_dirty() is racy if the caller has no reference against
2083 * page->mapping->host, and if the page is unlocked. This is because another
2084 * CPU could truncate the page off the mapping and then free the mapping.
2085 *
2086 * Usually, the page _is_ locked, or the caller is a user-space process which
2087 * holds a reference on the inode by having an open file.
2088 *
2089 * In other cases, the page should be locked before running set_page_dirty().
2090 */
2091int set_page_dirty_lock(struct page *page)
2092{
2093 int ret;
2094
Jens Axboe7eaceac2011-03-10 08:52:07 +01002095 lock_page(page);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002096 ret = set_page_dirty(page);
2097 unlock_page(page);
2098 return ret;
2099}
2100EXPORT_SYMBOL(set_page_dirty_lock);
2101
2102/*
Linus Torvalds1da177e2005-04-16 15:20:36 -07002103 * Clear a page's dirty flag, while caring for dirty memory accounting.
2104 * Returns true if the page was previously dirty.
2105 *
2106 * This is for preparing to put the page under writeout. We leave the page
2107 * tagged as dirty in the radix tree so that a concurrent write-for-sync
2108 * can discover it via a PAGECACHE_TAG_DIRTY walk. The ->writepage
2109 * implementation will run either set_page_writeback() or set_page_dirty(),
2110 * at which stage we bring the page's dirty flag and radix-tree dirty tag
2111 * back into sync.
2112 *
2113 * This incoherency between the page's dirty flag and radix-tree tag is
2114 * unfortunate, but it only exists while the page is locked.
2115 */
2116int clear_page_dirty_for_io(struct page *page)
2117{
2118 struct address_space *mapping = page_mapping(page);
2119
Nick Piggin79352892007-07-19 01:47:22 -07002120 BUG_ON(!PageLocked(page));
2121
Linus Torvalds7658cc22006-12-29 10:00:58 -08002122 if (mapping && mapping_cap_account_dirty(mapping)) {
2123 /*
2124 * Yes, Virginia, this is indeed insane.
2125 *
2126 * We use this sequence to make sure that
2127 * (a) we account for dirty stats properly
2128 * (b) we tell the low-level filesystem to
2129 * mark the whole page dirty if it was
2130 * dirty in a pagetable. Only to then
2131 * (c) clean the page again and return 1 to
2132 * cause the writeback.
2133 *
2134 * This way we avoid all nasty races with the
2135 * dirty bit in multiple places and clearing
2136 * them concurrently from different threads.
2137 *
2138 * Note! Normally the "set_page_dirty(page)"
2139 * has no effect on the actual dirty bit - since
2140 * that will already usually be set. But we
2141 * need the side effects, and it can help us
2142 * avoid races.
2143 *
2144 * We basically use the page "master dirty bit"
2145 * as a serialization point for all the different
2146 * threads doing their things.
Linus Torvalds7658cc22006-12-29 10:00:58 -08002147 */
2148 if (page_mkclean(page))
2149 set_page_dirty(page);
Nick Piggin79352892007-07-19 01:47:22 -07002150 /*
2151 * We carefully synchronise fault handlers against
2152 * installing a dirty pte and marking the page dirty
2153 * at this point. We do this by having them hold the
2154 * page lock at some point after installing their
2155 * pte, but before marking the page dirty.
2156 * Pages are always locked coming in here, so we get
2157 * the desired exclusion. See mm/memory.c:do_wp_page()
2158 * for more comments.
2159 */
Linus Torvalds7658cc22006-12-29 10:00:58 -08002160 if (TestClearPageDirty(page)) {
Andrew Morton8c085402006-12-10 02:19:24 -08002161 dec_zone_page_state(page, NR_FILE_DIRTY);
Peter Zijlstrac9e51e42007-10-16 23:25:47 -07002162 dec_bdi_stat(mapping->backing_dev_info,
2163 BDI_RECLAIMABLE);
Linus Torvalds7658cc22006-12-29 10:00:58 -08002164 return 1;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002165 }
Linus Torvalds7658cc22006-12-29 10:00:58 -08002166 return 0;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002167 }
Linus Torvalds7658cc22006-12-29 10:00:58 -08002168 return TestClearPageDirty(page);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002169}
Hans Reiser58bb01a2005-11-18 01:10:53 -08002170EXPORT_SYMBOL(clear_page_dirty_for_io);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002171
2172int test_clear_page_writeback(struct page *page)
2173{
2174 struct address_space *mapping = page_mapping(page);
2175 int ret;
2176
2177 if (mapping) {
Peter Zijlstra69cb51d2007-10-16 23:25:48 -07002178 struct backing_dev_info *bdi = mapping->backing_dev_info;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002179 unsigned long flags;
2180
Nick Piggin19fd6232008-07-25 19:45:32 -07002181 spin_lock_irqsave(&mapping->tree_lock, flags);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002182 ret = TestClearPageWriteback(page);
Peter Zijlstra69cb51d2007-10-16 23:25:48 -07002183 if (ret) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07002184 radix_tree_tag_clear(&mapping->page_tree,
2185 page_index(page),
2186 PAGECACHE_TAG_WRITEBACK);
Miklos Szeredie4ad08f2008-04-30 00:54:37 -07002187 if (bdi_cap_account_writeback(bdi)) {
Peter Zijlstra69cb51d2007-10-16 23:25:48 -07002188 __dec_bdi_stat(bdi, BDI_WRITEBACK);
Peter Zijlstra04fbfdc2007-10-16 23:25:50 -07002189 __bdi_writeout_inc(bdi);
2190 }
Peter Zijlstra69cb51d2007-10-16 23:25:48 -07002191 }
Nick Piggin19fd6232008-07-25 19:45:32 -07002192 spin_unlock_irqrestore(&mapping->tree_lock, flags);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002193 } else {
2194 ret = TestClearPageWriteback(page);
2195 }
Wu Fengguang99b12e32011-07-25 17:12:37 -07002196 if (ret) {
Andrew Mortond688abf2007-07-19 01:49:17 -07002197 dec_zone_page_state(page, NR_WRITEBACK);
Wu Fengguang99b12e32011-07-25 17:12:37 -07002198 inc_zone_page_state(page, NR_WRITTEN);
2199 }
Linus Torvalds1da177e2005-04-16 15:20:36 -07002200 return ret;
2201}
2202
2203int test_set_page_writeback(struct page *page)
2204{
2205 struct address_space *mapping = page_mapping(page);
2206 int ret;
2207
2208 if (mapping) {
Peter Zijlstra69cb51d2007-10-16 23:25:48 -07002209 struct backing_dev_info *bdi = mapping->backing_dev_info;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002210 unsigned long flags;
2211
Nick Piggin19fd6232008-07-25 19:45:32 -07002212 spin_lock_irqsave(&mapping->tree_lock, flags);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002213 ret = TestSetPageWriteback(page);
Peter Zijlstra69cb51d2007-10-16 23:25:48 -07002214 if (!ret) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07002215 radix_tree_tag_set(&mapping->page_tree,
2216 page_index(page),
2217 PAGECACHE_TAG_WRITEBACK);
Miklos Szeredie4ad08f2008-04-30 00:54:37 -07002218 if (bdi_cap_account_writeback(bdi))
Peter Zijlstra69cb51d2007-10-16 23:25:48 -07002219 __inc_bdi_stat(bdi, BDI_WRITEBACK);
2220 }
Linus Torvalds1da177e2005-04-16 15:20:36 -07002221 if (!PageDirty(page))
2222 radix_tree_tag_clear(&mapping->page_tree,
2223 page_index(page),
2224 PAGECACHE_TAG_DIRTY);
Jan Karaf446daa2010-08-09 17:19:12 -07002225 radix_tree_tag_clear(&mapping->page_tree,
2226 page_index(page),
2227 PAGECACHE_TAG_TOWRITE);
Nick Piggin19fd6232008-07-25 19:45:32 -07002228 spin_unlock_irqrestore(&mapping->tree_lock, flags);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002229 } else {
2230 ret = TestSetPageWriteback(page);
2231 }
Andrew Mortond688abf2007-07-19 01:49:17 -07002232 if (!ret)
Michael Rubinf629d1c2010-10-26 14:21:33 -07002233 account_page_writeback(page);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002234 return ret;
2235
2236}
2237EXPORT_SYMBOL(test_set_page_writeback);
2238
2239/*
Nick Piggin00128182007-10-16 01:24:40 -07002240 * Return true if any of the pages in the mapping are marked with the
Linus Torvalds1da177e2005-04-16 15:20:36 -07002241 * passed tag.
2242 */
2243int mapping_tagged(struct address_space *mapping, int tag)
2244{
Konstantin Khlebnikov72c47832011-07-25 17:12:31 -07002245 return radix_tree_tagged(&mapping->page_tree, tag);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002246}
2247EXPORT_SYMBOL(mapping_tagged);