| /* |
| * Copyright (C) 2014 The Android Open Source Project |
| * |
| * Licensed under the Apache License, Version 2.0 (the "License"); |
| * you may not use this file except in compliance with the License. |
| * You may obtain a copy of the License at |
| * |
| * http://www.apache.org/licenses/LICENSE-2.0 |
| * |
| * Unless required by applicable law or agreed to in writing, software |
| * distributed under the License is distributed on an "AS IS" BASIS, |
| * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| * See the License for the specific language governing permissions and |
| * limitations under the License. |
| */ |
| |
| #ifndef ART_RUNTIME_MONITOR_POOL_H_ |
| #define ART_RUNTIME_MONITOR_POOL_H_ |
| |
| #include "monitor.h" |
| |
| #include "base/allocator.h" |
| #ifdef __LP64__ |
| #include <stdint.h> |
| #include "base/atomic.h" |
| #include "runtime.h" |
| #else |
| #include "base/stl_util.h" // STLDeleteElements |
| #endif |
| |
| namespace art { |
| |
| // Abstraction to keep monitors small enough to fit in a lock word (32bits). On 32bit systems the |
| // monitor id loses the alignment bits of the Monitor*. |
| class MonitorPool { |
| public: |
| static MonitorPool* Create() { |
| #ifndef __LP64__ |
| return nullptr; |
| #else |
| return new MonitorPool(); |
| #endif |
| } |
| |
| static Monitor* CreateMonitor(Thread* self, Thread* owner, mirror::Object* obj, int32_t hash_code) |
| REQUIRES_SHARED(Locks::mutator_lock_) { |
| #ifndef __LP64__ |
| Monitor* mon = new Monitor(self, owner, obj, hash_code); |
| DCHECK_ALIGNED(mon, LockWord::kMonitorIdAlignment); |
| return mon; |
| #else |
| return GetMonitorPool()->CreateMonitorInPool(self, owner, obj, hash_code); |
| #endif |
| } |
| |
| static void ReleaseMonitor(Thread* self, Monitor* monitor) { |
| #ifndef __LP64__ |
| UNUSED(self); |
| delete monitor; |
| #else |
| GetMonitorPool()->ReleaseMonitorToPool(self, monitor); |
| #endif |
| } |
| |
| static void ReleaseMonitors(Thread* self, MonitorList::Monitors* monitors) { |
| #ifndef __LP64__ |
| UNUSED(self); |
| STLDeleteElements(monitors); |
| #else |
| GetMonitorPool()->ReleaseMonitorsToPool(self, monitors); |
| #endif |
| } |
| |
| static Monitor* MonitorFromMonitorId(MonitorId mon_id) { |
| #ifndef __LP64__ |
| return reinterpret_cast<Monitor*>(mon_id << LockWord::kMonitorIdAlignmentShift); |
| #else |
| return GetMonitorPool()->LookupMonitor(mon_id); |
| #endif |
| } |
| |
| static MonitorId MonitorIdFromMonitor(Monitor* mon) { |
| #ifndef __LP64__ |
| return reinterpret_cast<MonitorId>(mon) >> LockWord::kMonitorIdAlignmentShift; |
| #else |
| return mon->GetMonitorId(); |
| #endif |
| } |
| |
| static MonitorId ComputeMonitorId(Monitor* mon, Thread* self) { |
| #ifndef __LP64__ |
| UNUSED(self); |
| return MonitorIdFromMonitor(mon); |
| #else |
| return GetMonitorPool()->ComputeMonitorIdInPool(mon, self); |
| #endif |
| } |
| |
| static MonitorPool* GetMonitorPool() { |
| #ifndef __LP64__ |
| return nullptr; |
| #else |
| return Runtime::Current()->GetMonitorPool(); |
| #endif |
| } |
| |
| ~MonitorPool() { |
| #ifdef __LP64__ |
| FreeInternal(); |
| #endif |
| } |
| |
| private: |
| #ifdef __LP64__ |
| // When we create a monitor pool, threads have not been initialized, yet, so ignore thread-safety |
| // analysis. |
| MonitorPool() NO_THREAD_SAFETY_ANALYSIS; |
| |
| void AllocateChunk() REQUIRES(Locks::allocated_monitor_ids_lock_); |
| |
| // Release all chunks and metadata. This is done on shutdown, where threads have been destroyed, |
| // so ignore thead-safety analysis. |
| void FreeInternal() NO_THREAD_SAFETY_ANALYSIS; |
| |
| Monitor* CreateMonitorInPool(Thread* self, Thread* owner, mirror::Object* obj, int32_t hash_code) |
| REQUIRES_SHARED(Locks::mutator_lock_); |
| |
| void ReleaseMonitorToPool(Thread* self, Monitor* monitor); |
| void ReleaseMonitorsToPool(Thread* self, MonitorList::Monitors* monitors); |
| |
| // Note: This is safe as we do not ever move chunks. All needed entries in the monitor_chunks_ |
| // data structure are read-only once we get here. Updates happen-before this call because |
| // the lock word was stored with release semantics and we read it with acquire semantics to |
| // retrieve the id. |
| Monitor* LookupMonitor(MonitorId mon_id) { |
| size_t offset = MonitorIdToOffset(mon_id); |
| size_t index = offset / kChunkSize; |
| size_t top_index = index / kMaxListSize; |
| size_t list_index = index % kMaxListSize; |
| size_t offset_in_chunk = offset % kChunkSize; |
| uintptr_t base = monitor_chunks_[top_index][list_index]; |
| return reinterpret_cast<Monitor*>(base + offset_in_chunk); |
| } |
| |
| static bool IsInChunk(uintptr_t base_addr, Monitor* mon) { |
| uintptr_t mon_ptr = reinterpret_cast<uintptr_t>(mon); |
| return base_addr <= mon_ptr && (mon_ptr - base_addr < kChunkSize); |
| } |
| |
| MonitorId ComputeMonitorIdInPool(Monitor* mon, Thread* self) { |
| MutexLock mu(self, *Locks::allocated_monitor_ids_lock_); |
| for (size_t i = 0; i <= current_chunk_list_index_; ++i) { |
| for (size_t j = 0; j < ChunkListCapacity(i); ++j) { |
| if (j >= num_chunks_ && i == current_chunk_list_index_) { |
| break; |
| } |
| uintptr_t chunk_addr = monitor_chunks_[i][j]; |
| if (IsInChunk(chunk_addr, mon)) { |
| return OffsetToMonitorId( |
| reinterpret_cast<uintptr_t>(mon) - chunk_addr |
| + i * (kMaxListSize * kChunkSize) + j * kChunkSize); |
| } |
| } |
| } |
| LOG(FATAL) << "Did not find chunk that contains monitor."; |
| return 0; |
| } |
| |
| static constexpr size_t MonitorIdToOffset(MonitorId id) { |
| return id << 3; |
| } |
| |
| static constexpr MonitorId OffsetToMonitorId(size_t offset) { |
| return static_cast<MonitorId>(offset >> 3); |
| } |
| |
| static constexpr size_t ChunkListCapacity(size_t index) { |
| return kInitialChunkStorage << index; |
| } |
| |
| // TODO: There are assumptions in the code that monitor addresses are 8B aligned (>>3). |
| static constexpr size_t kMonitorAlignment = 8; |
| // Size of a monitor, rounded up to a multiple of alignment. |
| static constexpr size_t kAlignedMonitorSize = (sizeof(Monitor) + kMonitorAlignment - 1) & |
| -kMonitorAlignment; |
| // As close to a page as we can get seems a good start. |
| static constexpr size_t kChunkCapacity = kPageSize / kAlignedMonitorSize; |
| // Chunk size that is referenced in the id. We can collapse this to the actually used storage |
| // in a chunk, i.e., kChunkCapacity * kAlignedMonitorSize, but this will mean proper divisions. |
| static constexpr size_t kChunkSize = kPageSize; |
| static_assert(IsPowerOfTwo(kChunkSize), "kChunkSize must be power of 2"); |
| // The number of chunks of storage that can be referenced by the initial chunk list. |
| // The total number of usable monitor chunks is typically 255 times this number, so it |
| // should be large enough that we don't run out. We run out of address bits if it's > 512. |
| // Currently we set it a bit smaller, to save half a page per process. We make it tiny in |
| // debug builds to catch growth errors. The only value we really expect to tune. |
| static constexpr size_t kInitialChunkStorage = kIsDebugBuild ? 1U : 256U; |
| static_assert(IsPowerOfTwo(kInitialChunkStorage), "kInitialChunkStorage must be power of 2"); |
| // The number of lists, each containing pointers to storage chunks. |
| static constexpr size_t kMaxChunkLists = 8; // Dictated by 3 bit index. Don't increase above 8. |
| static_assert(IsPowerOfTwo(kMaxChunkLists), "kMaxChunkLists must be power of 2"); |
| static constexpr size_t kMaxListSize = kInitialChunkStorage << (kMaxChunkLists - 1); |
| // We lose 3 bits in monitor id due to 3 bit monitor_chunks_ index, and gain it back from |
| // the 3 bit alignment constraint on monitors: |
| static_assert(kMaxListSize * kChunkSize < (1 << LockWord::kMonitorIdSize), |
| "Monitor id bits don't fit"); |
| static_assert(IsPowerOfTwo(kMaxListSize), "kMaxListSize must be power of 2"); |
| |
| // Array of pointers to lists (again arrays) of pointers to chunks containing monitors. |
| // Zeroth entry points to a list (array) of kInitialChunkStorage pointers to chunks. |
| // Each subsequent list as twice as large as the preceding one. |
| // Monitor Ids are interpreted as follows: |
| // Top 3 bits (of 28): index into monitor_chunks_. |
| // Next 16 bits: index into the chunk list, i.e. monitor_chunks_[i]. |
| // Last 9 bits: offset within chunk, expressed as multiple of kMonitorAlignment. |
| // If we set kInitialChunkStorage to 512, this would allow us to use roughly 128K chunks of |
| // monitors, which is 0.5GB of monitors. With this maximum setting, the largest chunk list |
| // contains 64K entries, and we make full use of the available index space. With a |
| // kInitialChunkStorage value of 256, this is proportionately reduced to 0.25GB of monitors. |
| // Updates to monitor_chunks_ are guarded by allocated_monitor_ids_lock_ . |
| // No field in this entire data structure is ever updated once a monitor id whose lookup |
| // requires it has been made visible to another thread. Thus readers never race with |
| // updates, in spite of the fact that they acquire no locks. |
| uintptr_t* monitor_chunks_[kMaxChunkLists]; // uintptr_t is really a Monitor* . |
| // Highest currently used index in monitor_chunks_ . Used for newly allocated chunks. |
| size_t current_chunk_list_index_ GUARDED_BY(Locks::allocated_monitor_ids_lock_); |
| // Number of chunk pointers stored in monitor_chunks_[current_chunk_list_index_] so far. |
| size_t num_chunks_ GUARDED_BY(Locks::allocated_monitor_ids_lock_); |
| // After the initial allocation, this is always equal to |
| // ChunkListCapacity(current_chunk_list_index_). |
| size_t current_chunk_list_capacity_ GUARDED_BY(Locks::allocated_monitor_ids_lock_); |
| |
| typedef TrackingAllocator<uint8_t, kAllocatorTagMonitorPool> Allocator; |
| Allocator allocator_; |
| |
| // Start of free list of monitors. |
| // Note: these point to the right memory regions, but do *not* denote initialized objects. |
| Monitor* first_free_ GUARDED_BY(Locks::allocated_monitor_ids_lock_); |
| #endif |
| }; |
| |
| } // namespace art |
| |
| #endif // ART_RUNTIME_MONITOR_POOL_H_ |