blob: 24900a7f10462a5921fed3d4cd1094cf8aac5800 [file] [log] [blame]
/*
* Copyright (C) 2014 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "assembler_mips64.h"
#include "base/bit_utils.h"
#include "base/casts.h"
#include "entrypoints/quick/quick_entrypoints.h"
#include "entrypoints/quick/quick_entrypoints_enum.h"
#include "memory_region.h"
#include "thread.h"
namespace art {
namespace mips64 {
static_assert(static_cast<size_t>(kMips64PointerSize) == kMips64DoublewordSize,
"Unexpected Mips64 pointer size.");
static_assert(kMips64PointerSize == PointerSize::k64, "Unexpected Mips64 pointer size.");
void Mips64Assembler::FinalizeCode() {
for (auto& exception_block : exception_blocks_) {
EmitExceptionPoll(&exception_block);
}
ReserveJumpTableSpace();
EmitLiterals();
PromoteBranches();
}
void Mips64Assembler::FinalizeInstructions(const MemoryRegion& region) {
EmitBranches();
EmitJumpTables();
Assembler::FinalizeInstructions(region);
PatchCFI();
}
void Mips64Assembler::PatchCFI() {
if (cfi().NumberOfDelayedAdvancePCs() == 0u) {
return;
}
typedef DebugFrameOpCodeWriterForAssembler::DelayedAdvancePC DelayedAdvancePC;
const auto data = cfi().ReleaseStreamAndPrepareForDelayedAdvancePC();
const std::vector<uint8_t>& old_stream = data.first;
const std::vector<DelayedAdvancePC>& advances = data.second;
// Refill our data buffer with patched opcodes.
cfi().ReserveCFIStream(old_stream.size() + advances.size() + 16);
size_t stream_pos = 0;
for (const DelayedAdvancePC& advance : advances) {
DCHECK_GE(advance.stream_pos, stream_pos);
// Copy old data up to the point where advance was issued.
cfi().AppendRawData(old_stream, stream_pos, advance.stream_pos);
stream_pos = advance.stream_pos;
// Insert the advance command with its final offset.
size_t final_pc = GetAdjustedPosition(advance.pc);
cfi().AdvancePC(final_pc);
}
// Copy the final segment if any.
cfi().AppendRawData(old_stream, stream_pos, old_stream.size());
}
void Mips64Assembler::EmitBranches() {
CHECK(!overwriting_);
// Switch from appending instructions at the end of the buffer to overwriting
// existing instructions (branch placeholders) in the buffer.
overwriting_ = true;
for (auto& branch : branches_) {
EmitBranch(&branch);
}
overwriting_ = false;
}
void Mips64Assembler::Emit(uint32_t value) {
if (overwriting_) {
// Branches to labels are emitted into their placeholders here.
buffer_.Store<uint32_t>(overwrite_location_, value);
overwrite_location_ += sizeof(uint32_t);
} else {
// Other instructions are simply appended at the end here.
AssemblerBuffer::EnsureCapacity ensured(&buffer_);
buffer_.Emit<uint32_t>(value);
}
}
void Mips64Assembler::EmitR(int opcode, GpuRegister rs, GpuRegister rt, GpuRegister rd,
int shamt, int funct) {
CHECK_NE(rs, kNoGpuRegister);
CHECK_NE(rt, kNoGpuRegister);
CHECK_NE(rd, kNoGpuRegister);
uint32_t encoding = static_cast<uint32_t>(opcode) << kOpcodeShift |
static_cast<uint32_t>(rs) << kRsShift |
static_cast<uint32_t>(rt) << kRtShift |
static_cast<uint32_t>(rd) << kRdShift |
shamt << kShamtShift |
funct;
Emit(encoding);
}
void Mips64Assembler::EmitRsd(int opcode, GpuRegister rs, GpuRegister rd,
int shamt, int funct) {
CHECK_NE(rs, kNoGpuRegister);
CHECK_NE(rd, kNoGpuRegister);
uint32_t encoding = static_cast<uint32_t>(opcode) << kOpcodeShift |
static_cast<uint32_t>(rs) << kRsShift |
static_cast<uint32_t>(ZERO) << kRtShift |
static_cast<uint32_t>(rd) << kRdShift |
shamt << kShamtShift |
funct;
Emit(encoding);
}
void Mips64Assembler::EmitRtd(int opcode, GpuRegister rt, GpuRegister rd,
int shamt, int funct) {
CHECK_NE(rt, kNoGpuRegister);
CHECK_NE(rd, kNoGpuRegister);
uint32_t encoding = static_cast<uint32_t>(opcode) << kOpcodeShift |
static_cast<uint32_t>(ZERO) << kRsShift |
static_cast<uint32_t>(rt) << kRtShift |
static_cast<uint32_t>(rd) << kRdShift |
shamt << kShamtShift |
funct;
Emit(encoding);
}
void Mips64Assembler::EmitI(int opcode, GpuRegister rs, GpuRegister rt, uint16_t imm) {
CHECK_NE(rs, kNoGpuRegister);
CHECK_NE(rt, kNoGpuRegister);
uint32_t encoding = static_cast<uint32_t>(opcode) << kOpcodeShift |
static_cast<uint32_t>(rs) << kRsShift |
static_cast<uint32_t>(rt) << kRtShift |
imm;
Emit(encoding);
}
void Mips64Assembler::EmitI21(int opcode, GpuRegister rs, uint32_t imm21) {
CHECK_NE(rs, kNoGpuRegister);
CHECK(IsUint<21>(imm21)) << imm21;
uint32_t encoding = static_cast<uint32_t>(opcode) << kOpcodeShift |
static_cast<uint32_t>(rs) << kRsShift |
imm21;
Emit(encoding);
}
void Mips64Assembler::EmitI26(int opcode, uint32_t imm26) {
CHECK(IsUint<26>(imm26)) << imm26;
uint32_t encoding = static_cast<uint32_t>(opcode) << kOpcodeShift | imm26;
Emit(encoding);
}
void Mips64Assembler::EmitFR(int opcode, int fmt, FpuRegister ft, FpuRegister fs, FpuRegister fd,
int funct) {
CHECK_NE(ft, kNoFpuRegister);
CHECK_NE(fs, kNoFpuRegister);
CHECK_NE(fd, kNoFpuRegister);
uint32_t encoding = static_cast<uint32_t>(opcode) << kOpcodeShift |
fmt << kFmtShift |
static_cast<uint32_t>(ft) << kFtShift |
static_cast<uint32_t>(fs) << kFsShift |
static_cast<uint32_t>(fd) << kFdShift |
funct;
Emit(encoding);
}
void Mips64Assembler::EmitFI(int opcode, int fmt, FpuRegister ft, uint16_t imm) {
CHECK_NE(ft, kNoFpuRegister);
uint32_t encoding = static_cast<uint32_t>(opcode) << kOpcodeShift |
fmt << kFmtShift |
static_cast<uint32_t>(ft) << kFtShift |
imm;
Emit(encoding);
}
void Mips64Assembler::EmitMsa3R(int operation,
int df,
VectorRegister wt,
VectorRegister ws,
VectorRegister wd,
int minor_opcode) {
CHECK_NE(wt, kNoVectorRegister);
CHECK_NE(ws, kNoVectorRegister);
CHECK_NE(wd, kNoVectorRegister);
uint32_t encoding = static_cast<uint32_t>(kMsaMajorOpcode) << kOpcodeShift |
operation << kMsaOperationShift |
df << kDfShift |
static_cast<uint32_t>(wt) << kWtShift |
static_cast<uint32_t>(ws) << kWsShift |
static_cast<uint32_t>(wd) << kWdShift |
minor_opcode;
Emit(encoding);
}
void Mips64Assembler::EmitMsaBIT(int operation,
int df_m,
VectorRegister ws,
VectorRegister wd,
int minor_opcode) {
CHECK_NE(ws, kNoVectorRegister);
CHECK_NE(wd, kNoVectorRegister);
uint32_t encoding = static_cast<uint32_t>(kMsaMajorOpcode) << kOpcodeShift |
operation << kMsaOperationShift |
df_m << kDfMShift |
static_cast<uint32_t>(ws) << kWsShift |
static_cast<uint32_t>(wd) << kWdShift |
minor_opcode;
Emit(encoding);
}
void Mips64Assembler::EmitMsaELM(int operation,
int df_n,
VectorRegister ws,
VectorRegister wd,
int minor_opcode) {
CHECK_NE(ws, kNoVectorRegister);
CHECK_NE(wd, kNoVectorRegister);
uint32_t encoding = static_cast<uint32_t>(kMsaMajorOpcode) << kOpcodeShift |
operation << kMsaELMOperationShift |
df_n << kDfNShift |
static_cast<uint32_t>(ws) << kWsShift |
static_cast<uint32_t>(wd) << kWdShift |
minor_opcode;
Emit(encoding);
}
void Mips64Assembler::EmitMsaMI10(int s10,
GpuRegister rs,
VectorRegister wd,
int minor_opcode,
int df) {
CHECK_NE(rs, kNoGpuRegister);
CHECK_NE(wd, kNoVectorRegister);
CHECK(IsUint<10>(s10)) << s10;
uint32_t encoding = static_cast<uint32_t>(kMsaMajorOpcode) << kOpcodeShift |
s10 << kS10Shift |
static_cast<uint32_t>(rs) << kWsShift |
static_cast<uint32_t>(wd) << kWdShift |
minor_opcode << kS10MinorShift |
df;
Emit(encoding);
}
void Mips64Assembler::EmitMsaI10(int operation,
int df,
int i10,
VectorRegister wd,
int minor_opcode) {
CHECK_NE(wd, kNoVectorRegister);
CHECK(IsUint<10>(i10)) << i10;
uint32_t encoding = static_cast<uint32_t>(kMsaMajorOpcode) << kOpcodeShift |
operation << kMsaOperationShift |
df << kDfShift |
i10 << kI10Shift |
static_cast<uint32_t>(wd) << kWdShift |
minor_opcode;
Emit(encoding);
}
void Mips64Assembler::EmitMsa2R(int operation,
int df,
VectorRegister ws,
VectorRegister wd,
int minor_opcode) {
CHECK_NE(ws, kNoVectorRegister);
CHECK_NE(wd, kNoVectorRegister);
uint32_t encoding = static_cast<uint32_t>(kMsaMajorOpcode) << kOpcodeShift |
operation << kMsa2ROperationShift |
df << kDf2RShift |
static_cast<uint32_t>(ws) << kWsShift |
static_cast<uint32_t>(wd) << kWdShift |
minor_opcode;
Emit(encoding);
}
void Mips64Assembler::EmitMsa2RF(int operation,
int df,
VectorRegister ws,
VectorRegister wd,
int minor_opcode) {
CHECK_NE(ws, kNoVectorRegister);
CHECK_NE(wd, kNoVectorRegister);
uint32_t encoding = static_cast<uint32_t>(kMsaMajorOpcode) << kOpcodeShift |
operation << kMsa2RFOperationShift |
df << kDf2RShift |
static_cast<uint32_t>(ws) << kWsShift |
static_cast<uint32_t>(wd) << kWdShift |
minor_opcode;
Emit(encoding);
}
void Mips64Assembler::Addu(GpuRegister rd, GpuRegister rs, GpuRegister rt) {
EmitR(0, rs, rt, rd, 0, 0x21);
}
void Mips64Assembler::Addiu(GpuRegister rt, GpuRegister rs, uint16_t imm16) {
EmitI(0x9, rs, rt, imm16);
}
void Mips64Assembler::Daddu(GpuRegister rd, GpuRegister rs, GpuRegister rt) {
EmitR(0, rs, rt, rd, 0, 0x2d);
}
void Mips64Assembler::Daddiu(GpuRegister rt, GpuRegister rs, uint16_t imm16) {
EmitI(0x19, rs, rt, imm16);
}
void Mips64Assembler::Subu(GpuRegister rd, GpuRegister rs, GpuRegister rt) {
EmitR(0, rs, rt, rd, 0, 0x23);
}
void Mips64Assembler::Dsubu(GpuRegister rd, GpuRegister rs, GpuRegister rt) {
EmitR(0, rs, rt, rd, 0, 0x2f);
}
void Mips64Assembler::MulR6(GpuRegister rd, GpuRegister rs, GpuRegister rt) {
EmitR(0, rs, rt, rd, 2, 0x18);
}
void Mips64Assembler::MuhR6(GpuRegister rd, GpuRegister rs, GpuRegister rt) {
EmitR(0, rs, rt, rd, 3, 0x18);
}
void Mips64Assembler::DivR6(GpuRegister rd, GpuRegister rs, GpuRegister rt) {
EmitR(0, rs, rt, rd, 2, 0x1a);
}
void Mips64Assembler::ModR6(GpuRegister rd, GpuRegister rs, GpuRegister rt) {
EmitR(0, rs, rt, rd, 3, 0x1a);
}
void Mips64Assembler::DivuR6(GpuRegister rd, GpuRegister rs, GpuRegister rt) {
EmitR(0, rs, rt, rd, 2, 0x1b);
}
void Mips64Assembler::ModuR6(GpuRegister rd, GpuRegister rs, GpuRegister rt) {
EmitR(0, rs, rt, rd, 3, 0x1b);
}
void Mips64Assembler::Dmul(GpuRegister rd, GpuRegister rs, GpuRegister rt) {
EmitR(0, rs, rt, rd, 2, 0x1c);
}
void Mips64Assembler::Dmuh(GpuRegister rd, GpuRegister rs, GpuRegister rt) {
EmitR(0, rs, rt, rd, 3, 0x1c);
}
void Mips64Assembler::Ddiv(GpuRegister rd, GpuRegister rs, GpuRegister rt) {
EmitR(0, rs, rt, rd, 2, 0x1e);
}
void Mips64Assembler::Dmod(GpuRegister rd, GpuRegister rs, GpuRegister rt) {
EmitR(0, rs, rt, rd, 3, 0x1e);
}
void Mips64Assembler::Ddivu(GpuRegister rd, GpuRegister rs, GpuRegister rt) {
EmitR(0, rs, rt, rd, 2, 0x1f);
}
void Mips64Assembler::Dmodu(GpuRegister rd, GpuRegister rs, GpuRegister rt) {
EmitR(0, rs, rt, rd, 3, 0x1f);
}
void Mips64Assembler::And(GpuRegister rd, GpuRegister rs, GpuRegister rt) {
EmitR(0, rs, rt, rd, 0, 0x24);
}
void Mips64Assembler::Andi(GpuRegister rt, GpuRegister rs, uint16_t imm16) {
EmitI(0xc, rs, rt, imm16);
}
void Mips64Assembler::Or(GpuRegister rd, GpuRegister rs, GpuRegister rt) {
EmitR(0, rs, rt, rd, 0, 0x25);
}
void Mips64Assembler::Ori(GpuRegister rt, GpuRegister rs, uint16_t imm16) {
EmitI(0xd, rs, rt, imm16);
}
void Mips64Assembler::Xor(GpuRegister rd, GpuRegister rs, GpuRegister rt) {
EmitR(0, rs, rt, rd, 0, 0x26);
}
void Mips64Assembler::Xori(GpuRegister rt, GpuRegister rs, uint16_t imm16) {
EmitI(0xe, rs, rt, imm16);
}
void Mips64Assembler::Nor(GpuRegister rd, GpuRegister rs, GpuRegister rt) {
EmitR(0, rs, rt, rd, 0, 0x27);
}
void Mips64Assembler::Bitswap(GpuRegister rd, GpuRegister rt) {
EmitRtd(0x1f, rt, rd, 0x0, 0x20);
}
void Mips64Assembler::Dbitswap(GpuRegister rd, GpuRegister rt) {
EmitRtd(0x1f, rt, rd, 0x0, 0x24);
}
void Mips64Assembler::Seb(GpuRegister rd, GpuRegister rt) {
EmitR(0x1f, static_cast<GpuRegister>(0), rt, rd, 0x10, 0x20);
}
void Mips64Assembler::Seh(GpuRegister rd, GpuRegister rt) {
EmitR(0x1f, static_cast<GpuRegister>(0), rt, rd, 0x18, 0x20);
}
void Mips64Assembler::Dsbh(GpuRegister rd, GpuRegister rt) {
EmitRtd(0x1f, rt, rd, 0x2, 0x24);
}
void Mips64Assembler::Dshd(GpuRegister rd, GpuRegister rt) {
EmitRtd(0x1f, rt, rd, 0x5, 0x24);
}
void Mips64Assembler::Dext(GpuRegister rt, GpuRegister rs, int pos, int size) {
CHECK(IsUint<5>(pos)) << pos;
CHECK(IsUint<5>(size - 1)) << size;
EmitR(0x1f, rs, rt, static_cast<GpuRegister>(size - 1), pos, 0x3);
}
void Mips64Assembler::Dinsu(GpuRegister rt, GpuRegister rs, int pos, int size) {
CHECK(IsUint<5>(pos - 32)) << pos;
CHECK(IsUint<5>(size - 1)) << size;
CHECK(IsUint<5>(pos + size - 33)) << pos << " + " << size;
EmitR(0x1f, rs, rt, static_cast<GpuRegister>(pos + size - 33), pos - 32, 0x6);
}
void Mips64Assembler::Lsa(GpuRegister rd, GpuRegister rs, GpuRegister rt, int saPlusOne) {
CHECK(1 <= saPlusOne && saPlusOne <= 4) << saPlusOne;
int sa = saPlusOne - 1;
EmitR(0x0, rs, rt, rd, sa, 0x05);
}
void Mips64Assembler::Dlsa(GpuRegister rd, GpuRegister rs, GpuRegister rt, int saPlusOne) {
CHECK(1 <= saPlusOne && saPlusOne <= 4) << saPlusOne;
int sa = saPlusOne - 1;
EmitR(0x0, rs, rt, rd, sa, 0x15);
}
void Mips64Assembler::Wsbh(GpuRegister rd, GpuRegister rt) {
EmitRtd(0x1f, rt, rd, 2, 0x20);
}
void Mips64Assembler::Sc(GpuRegister rt, GpuRegister base, int16_t imm9) {
CHECK(IsInt<9>(imm9));
EmitI(0x1f, base, rt, ((imm9 & 0x1FF) << 7) | 0x26);
}
void Mips64Assembler::Scd(GpuRegister rt, GpuRegister base, int16_t imm9) {
CHECK(IsInt<9>(imm9));
EmitI(0x1f, base, rt, ((imm9 & 0x1FF) << 7) | 0x27);
}
void Mips64Assembler::Ll(GpuRegister rt, GpuRegister base, int16_t imm9) {
CHECK(IsInt<9>(imm9));
EmitI(0x1f, base, rt, ((imm9 & 0x1FF) << 7) | 0x36);
}
void Mips64Assembler::Lld(GpuRegister rt, GpuRegister base, int16_t imm9) {
CHECK(IsInt<9>(imm9));
EmitI(0x1f, base, rt, ((imm9 & 0x1FF) << 7) | 0x37);
}
void Mips64Assembler::Sll(GpuRegister rd, GpuRegister rt, int shamt) {
EmitR(0, static_cast<GpuRegister>(0), rt, rd, shamt, 0x00);
}
void Mips64Assembler::Srl(GpuRegister rd, GpuRegister rt, int shamt) {
EmitR(0, static_cast<GpuRegister>(0), rt, rd, shamt, 0x02);
}
void Mips64Assembler::Rotr(GpuRegister rd, GpuRegister rt, int shamt) {
EmitR(0, static_cast<GpuRegister>(1), rt, rd, shamt, 0x02);
}
void Mips64Assembler::Sra(GpuRegister rd, GpuRegister rt, int shamt) {
EmitR(0, static_cast<GpuRegister>(0), rt, rd, shamt, 0x03);
}
void Mips64Assembler::Sllv(GpuRegister rd, GpuRegister rt, GpuRegister rs) {
EmitR(0, rs, rt, rd, 0, 0x04);
}
void Mips64Assembler::Rotrv(GpuRegister rd, GpuRegister rt, GpuRegister rs) {
EmitR(0, rs, rt, rd, 1, 0x06);
}
void Mips64Assembler::Srlv(GpuRegister rd, GpuRegister rt, GpuRegister rs) {
EmitR(0, rs, rt, rd, 0, 0x06);
}
void Mips64Assembler::Srav(GpuRegister rd, GpuRegister rt, GpuRegister rs) {
EmitR(0, rs, rt, rd, 0, 0x07);
}
void Mips64Assembler::Dsll(GpuRegister rd, GpuRegister rt, int shamt) {
EmitR(0, static_cast<GpuRegister>(0), rt, rd, shamt, 0x38);
}
void Mips64Assembler::Dsrl(GpuRegister rd, GpuRegister rt, int shamt) {
EmitR(0, static_cast<GpuRegister>(0), rt, rd, shamt, 0x3a);
}
void Mips64Assembler::Drotr(GpuRegister rd, GpuRegister rt, int shamt) {
EmitR(0, static_cast<GpuRegister>(1), rt, rd, shamt, 0x3a);
}
void Mips64Assembler::Dsra(GpuRegister rd, GpuRegister rt, int shamt) {
EmitR(0, static_cast<GpuRegister>(0), rt, rd, shamt, 0x3b);
}
void Mips64Assembler::Dsll32(GpuRegister rd, GpuRegister rt, int shamt) {
EmitR(0, static_cast<GpuRegister>(0), rt, rd, shamt, 0x3c);
}
void Mips64Assembler::Dsrl32(GpuRegister rd, GpuRegister rt, int shamt) {
EmitR(0, static_cast<GpuRegister>(0), rt, rd, shamt, 0x3e);
}
void Mips64Assembler::Drotr32(GpuRegister rd, GpuRegister rt, int shamt) {
EmitR(0, static_cast<GpuRegister>(1), rt, rd, shamt, 0x3e);
}
void Mips64Assembler::Dsra32(GpuRegister rd, GpuRegister rt, int shamt) {
EmitR(0, static_cast<GpuRegister>(0), rt, rd, shamt, 0x3f);
}
void Mips64Assembler::Dsllv(GpuRegister rd, GpuRegister rt, GpuRegister rs) {
EmitR(0, rs, rt, rd, 0, 0x14);
}
void Mips64Assembler::Dsrlv(GpuRegister rd, GpuRegister rt, GpuRegister rs) {
EmitR(0, rs, rt, rd, 0, 0x16);
}
void Mips64Assembler::Drotrv(GpuRegister rd, GpuRegister rt, GpuRegister rs) {
EmitR(0, rs, rt, rd, 1, 0x16);
}
void Mips64Assembler::Dsrav(GpuRegister rd, GpuRegister rt, GpuRegister rs) {
EmitR(0, rs, rt, rd, 0, 0x17);
}
void Mips64Assembler::Lb(GpuRegister rt, GpuRegister rs, uint16_t imm16) {
EmitI(0x20, rs, rt, imm16);
}
void Mips64Assembler::Lh(GpuRegister rt, GpuRegister rs, uint16_t imm16) {
EmitI(0x21, rs, rt, imm16);
}
void Mips64Assembler::Lw(GpuRegister rt, GpuRegister rs, uint16_t imm16) {
EmitI(0x23, rs, rt, imm16);
}
void Mips64Assembler::Ld(GpuRegister rt, GpuRegister rs, uint16_t imm16) {
EmitI(0x37, rs, rt, imm16);
}
void Mips64Assembler::Lbu(GpuRegister rt, GpuRegister rs, uint16_t imm16) {
EmitI(0x24, rs, rt, imm16);
}
void Mips64Assembler::Lhu(GpuRegister rt, GpuRegister rs, uint16_t imm16) {
EmitI(0x25, rs, rt, imm16);
}
void Mips64Assembler::Lwu(GpuRegister rt, GpuRegister rs, uint16_t imm16) {
EmitI(0x27, rs, rt, imm16);
}
void Mips64Assembler::Lwpc(GpuRegister rs, uint32_t imm19) {
CHECK(IsUint<19>(imm19)) << imm19;
EmitI21(0x3B, rs, (0x01 << 19) | imm19);
}
void Mips64Assembler::Lwupc(GpuRegister rs, uint32_t imm19) {
CHECK(IsUint<19>(imm19)) << imm19;
EmitI21(0x3B, rs, (0x02 << 19) | imm19);
}
void Mips64Assembler::Ldpc(GpuRegister rs, uint32_t imm18) {
CHECK(IsUint<18>(imm18)) << imm18;
EmitI21(0x3B, rs, (0x06 << 18) | imm18);
}
void Mips64Assembler::Lui(GpuRegister rt, uint16_t imm16) {
EmitI(0xf, static_cast<GpuRegister>(0), rt, imm16);
}
void Mips64Assembler::Aui(GpuRegister rt, GpuRegister rs, uint16_t imm16) {
EmitI(0xf, rs, rt, imm16);
}
void Mips64Assembler::Daui(GpuRegister rt, GpuRegister rs, uint16_t imm16) {
CHECK_NE(rs, ZERO);
EmitI(0x1d, rs, rt, imm16);
}
void Mips64Assembler::Dahi(GpuRegister rs, uint16_t imm16) {
EmitI(1, rs, static_cast<GpuRegister>(6), imm16);
}
void Mips64Assembler::Dati(GpuRegister rs, uint16_t imm16) {
EmitI(1, rs, static_cast<GpuRegister>(0x1e), imm16);
}
void Mips64Assembler::Sync(uint32_t stype) {
EmitR(0, static_cast<GpuRegister>(0), static_cast<GpuRegister>(0),
static_cast<GpuRegister>(0), stype & 0x1f, 0xf);
}
void Mips64Assembler::Sb(GpuRegister rt, GpuRegister rs, uint16_t imm16) {
EmitI(0x28, rs, rt, imm16);
}
void Mips64Assembler::Sh(GpuRegister rt, GpuRegister rs, uint16_t imm16) {
EmitI(0x29, rs, rt, imm16);
}
void Mips64Assembler::Sw(GpuRegister rt, GpuRegister rs, uint16_t imm16) {
EmitI(0x2b, rs, rt, imm16);
}
void Mips64Assembler::Sd(GpuRegister rt, GpuRegister rs, uint16_t imm16) {
EmitI(0x3f, rs, rt, imm16);
}
void Mips64Assembler::Slt(GpuRegister rd, GpuRegister rs, GpuRegister rt) {
EmitR(0, rs, rt, rd, 0, 0x2a);
}
void Mips64Assembler::Sltu(GpuRegister rd, GpuRegister rs, GpuRegister rt) {
EmitR(0, rs, rt, rd, 0, 0x2b);
}
void Mips64Assembler::Slti(GpuRegister rt, GpuRegister rs, uint16_t imm16) {
EmitI(0xa, rs, rt, imm16);
}
void Mips64Assembler::Sltiu(GpuRegister rt, GpuRegister rs, uint16_t imm16) {
EmitI(0xb, rs, rt, imm16);
}
void Mips64Assembler::Seleqz(GpuRegister rd, GpuRegister rs, GpuRegister rt) {
EmitR(0, rs, rt, rd, 0, 0x35);
}
void Mips64Assembler::Selnez(GpuRegister rd, GpuRegister rs, GpuRegister rt) {
EmitR(0, rs, rt, rd, 0, 0x37);
}
void Mips64Assembler::Clz(GpuRegister rd, GpuRegister rs) {
EmitRsd(0, rs, rd, 0x01, 0x10);
}
void Mips64Assembler::Clo(GpuRegister rd, GpuRegister rs) {
EmitRsd(0, rs, rd, 0x01, 0x11);
}
void Mips64Assembler::Dclz(GpuRegister rd, GpuRegister rs) {
EmitRsd(0, rs, rd, 0x01, 0x12);
}
void Mips64Assembler::Dclo(GpuRegister rd, GpuRegister rs) {
EmitRsd(0, rs, rd, 0x01, 0x13);
}
void Mips64Assembler::Jalr(GpuRegister rd, GpuRegister rs) {
EmitR(0, rs, static_cast<GpuRegister>(0), rd, 0, 0x09);
}
void Mips64Assembler::Jalr(GpuRegister rs) {
Jalr(RA, rs);
}
void Mips64Assembler::Jr(GpuRegister rs) {
Jalr(ZERO, rs);
}
void Mips64Assembler::Auipc(GpuRegister rs, uint16_t imm16) {
EmitI(0x3B, rs, static_cast<GpuRegister>(0x1E), imm16);
}
void Mips64Assembler::Addiupc(GpuRegister rs, uint32_t imm19) {
CHECK(IsUint<19>(imm19)) << imm19;
EmitI21(0x3B, rs, imm19);
}
void Mips64Assembler::Bc(uint32_t imm26) {
EmitI26(0x32, imm26);
}
void Mips64Assembler::Balc(uint32_t imm26) {
EmitI26(0x3A, imm26);
}
void Mips64Assembler::Jic(GpuRegister rt, uint16_t imm16) {
EmitI(0x36, static_cast<GpuRegister>(0), rt, imm16);
}
void Mips64Assembler::Jialc(GpuRegister rt, uint16_t imm16) {
EmitI(0x3E, static_cast<GpuRegister>(0), rt, imm16);
}
void Mips64Assembler::Bltc(GpuRegister rs, GpuRegister rt, uint16_t imm16) {
CHECK_NE(rs, ZERO);
CHECK_NE(rt, ZERO);
CHECK_NE(rs, rt);
EmitI(0x17, rs, rt, imm16);
}
void Mips64Assembler::Bltzc(GpuRegister rt, uint16_t imm16) {
CHECK_NE(rt, ZERO);
EmitI(0x17, rt, rt, imm16);
}
void Mips64Assembler::Bgtzc(GpuRegister rt, uint16_t imm16) {
CHECK_NE(rt, ZERO);
EmitI(0x17, static_cast<GpuRegister>(0), rt, imm16);
}
void Mips64Assembler::Bgec(GpuRegister rs, GpuRegister rt, uint16_t imm16) {
CHECK_NE(rs, ZERO);
CHECK_NE(rt, ZERO);
CHECK_NE(rs, rt);
EmitI(0x16, rs, rt, imm16);
}
void Mips64Assembler::Bgezc(GpuRegister rt, uint16_t imm16) {
CHECK_NE(rt, ZERO);
EmitI(0x16, rt, rt, imm16);
}
void Mips64Assembler::Blezc(GpuRegister rt, uint16_t imm16) {
CHECK_NE(rt, ZERO);
EmitI(0x16, static_cast<GpuRegister>(0), rt, imm16);
}
void Mips64Assembler::Bltuc(GpuRegister rs, GpuRegister rt, uint16_t imm16) {
CHECK_NE(rs, ZERO);
CHECK_NE(rt, ZERO);
CHECK_NE(rs, rt);
EmitI(0x7, rs, rt, imm16);
}
void Mips64Assembler::Bgeuc(GpuRegister rs, GpuRegister rt, uint16_t imm16) {
CHECK_NE(rs, ZERO);
CHECK_NE(rt, ZERO);
CHECK_NE(rs, rt);
EmitI(0x6, rs, rt, imm16);
}
void Mips64Assembler::Beqc(GpuRegister rs, GpuRegister rt, uint16_t imm16) {
CHECK_NE(rs, ZERO);
CHECK_NE(rt, ZERO);
CHECK_NE(rs, rt);
EmitI(0x8, std::min(rs, rt), std::max(rs, rt), imm16);
}
void Mips64Assembler::Bnec(GpuRegister rs, GpuRegister rt, uint16_t imm16) {
CHECK_NE(rs, ZERO);
CHECK_NE(rt, ZERO);
CHECK_NE(rs, rt);
EmitI(0x18, std::min(rs, rt), std::max(rs, rt), imm16);
}
void Mips64Assembler::Beqzc(GpuRegister rs, uint32_t imm21) {
CHECK_NE(rs, ZERO);
EmitI21(0x36, rs, imm21);
}
void Mips64Assembler::Bnezc(GpuRegister rs, uint32_t imm21) {
CHECK_NE(rs, ZERO);
EmitI21(0x3E, rs, imm21);
}
void Mips64Assembler::Bc1eqz(FpuRegister ft, uint16_t imm16) {
EmitFI(0x11, 0x9, ft, imm16);
}
void Mips64Assembler::Bc1nez(FpuRegister ft, uint16_t imm16) {
EmitFI(0x11, 0xD, ft, imm16);
}
void Mips64Assembler::EmitBcondc(BranchCondition cond,
GpuRegister rs,
GpuRegister rt,
uint32_t imm16_21) {
switch (cond) {
case kCondLT:
Bltc(rs, rt, imm16_21);
break;
case kCondGE:
Bgec(rs, rt, imm16_21);
break;
case kCondLE:
Bgec(rt, rs, imm16_21);
break;
case kCondGT:
Bltc(rt, rs, imm16_21);
break;
case kCondLTZ:
CHECK_EQ(rt, ZERO);
Bltzc(rs, imm16_21);
break;
case kCondGEZ:
CHECK_EQ(rt, ZERO);
Bgezc(rs, imm16_21);
break;
case kCondLEZ:
CHECK_EQ(rt, ZERO);
Blezc(rs, imm16_21);
break;
case kCondGTZ:
CHECK_EQ(rt, ZERO);
Bgtzc(rs, imm16_21);
break;
case kCondEQ:
Beqc(rs, rt, imm16_21);
break;
case kCondNE:
Bnec(rs, rt, imm16_21);
break;
case kCondEQZ:
CHECK_EQ(rt, ZERO);
Beqzc(rs, imm16_21);
break;
case kCondNEZ:
CHECK_EQ(rt, ZERO);
Bnezc(rs, imm16_21);
break;
case kCondLTU:
Bltuc(rs, rt, imm16_21);
break;
case kCondGEU:
Bgeuc(rs, rt, imm16_21);
break;
case kCondF:
CHECK_EQ(rt, ZERO);
Bc1eqz(static_cast<FpuRegister>(rs), imm16_21);
break;
case kCondT:
CHECK_EQ(rt, ZERO);
Bc1nez(static_cast<FpuRegister>(rs), imm16_21);
break;
case kUncond:
LOG(FATAL) << "Unexpected branch condition " << cond;
UNREACHABLE();
}
}
void Mips64Assembler::AddS(FpuRegister fd, FpuRegister fs, FpuRegister ft) {
EmitFR(0x11, 0x10, ft, fs, fd, 0x0);
}
void Mips64Assembler::SubS(FpuRegister fd, FpuRegister fs, FpuRegister ft) {
EmitFR(0x11, 0x10, ft, fs, fd, 0x1);
}
void Mips64Assembler::MulS(FpuRegister fd, FpuRegister fs, FpuRegister ft) {
EmitFR(0x11, 0x10, ft, fs, fd, 0x2);
}
void Mips64Assembler::DivS(FpuRegister fd, FpuRegister fs, FpuRegister ft) {
EmitFR(0x11, 0x10, ft, fs, fd, 0x3);
}
void Mips64Assembler::AddD(FpuRegister fd, FpuRegister fs, FpuRegister ft) {
EmitFR(0x11, 0x11, ft, fs, fd, 0x0);
}
void Mips64Assembler::SubD(FpuRegister fd, FpuRegister fs, FpuRegister ft) {
EmitFR(0x11, 0x11, ft, fs, fd, 0x1);
}
void Mips64Assembler::MulD(FpuRegister fd, FpuRegister fs, FpuRegister ft) {
EmitFR(0x11, 0x11, ft, fs, fd, 0x2);
}
void Mips64Assembler::DivD(FpuRegister fd, FpuRegister fs, FpuRegister ft) {
EmitFR(0x11, 0x11, ft, fs, fd, 0x3);
}
void Mips64Assembler::SqrtS(FpuRegister fd, FpuRegister fs) {
EmitFR(0x11, 0x10, static_cast<FpuRegister>(0), fs, fd, 0x4);
}
void Mips64Assembler::SqrtD(FpuRegister fd, FpuRegister fs) {
EmitFR(0x11, 0x11, static_cast<FpuRegister>(0), fs, fd, 0x4);
}
void Mips64Assembler::AbsS(FpuRegister fd, FpuRegister fs) {
EmitFR(0x11, 0x10, static_cast<FpuRegister>(0), fs, fd, 0x5);
}
void Mips64Assembler::AbsD(FpuRegister fd, FpuRegister fs) {
EmitFR(0x11, 0x11, static_cast<FpuRegister>(0), fs, fd, 0x5);
}
void Mips64Assembler::MovS(FpuRegister fd, FpuRegister fs) {
EmitFR(0x11, 0x10, static_cast<FpuRegister>(0), fs, fd, 0x6);
}
void Mips64Assembler::MovD(FpuRegister fd, FpuRegister fs) {
EmitFR(0x11, 0x11, static_cast<FpuRegister>(0), fs, fd, 0x6);
}
void Mips64Assembler::NegS(FpuRegister fd, FpuRegister fs) {
EmitFR(0x11, 0x10, static_cast<FpuRegister>(0), fs, fd, 0x7);
}
void Mips64Assembler::NegD(FpuRegister fd, FpuRegister fs) {
EmitFR(0x11, 0x11, static_cast<FpuRegister>(0), fs, fd, 0x7);
}
void Mips64Assembler::RoundLS(FpuRegister fd, FpuRegister fs) {
EmitFR(0x11, 0x10, static_cast<FpuRegister>(0), fs, fd, 0x8);
}
void Mips64Assembler::RoundLD(FpuRegister fd, FpuRegister fs) {
EmitFR(0x11, 0x11, static_cast<FpuRegister>(0), fs, fd, 0x8);
}
void Mips64Assembler::RoundWS(FpuRegister fd, FpuRegister fs) {
EmitFR(0x11, 0x10, static_cast<FpuRegister>(0), fs, fd, 0xc);
}
void Mips64Assembler::RoundWD(FpuRegister fd, FpuRegister fs) {
EmitFR(0x11, 0x11, static_cast<FpuRegister>(0), fs, fd, 0xc);
}
void Mips64Assembler::TruncLS(FpuRegister fd, FpuRegister fs) {
EmitFR(0x11, 0x10, static_cast<FpuRegister>(0), fs, fd, 0x9);
}
void Mips64Assembler::TruncLD(FpuRegister fd, FpuRegister fs) {
EmitFR(0x11, 0x11, static_cast<FpuRegister>(0), fs, fd, 0x9);
}
void Mips64Assembler::TruncWS(FpuRegister fd, FpuRegister fs) {
EmitFR(0x11, 0x10, static_cast<FpuRegister>(0), fs, fd, 0xd);
}
void Mips64Assembler::TruncWD(FpuRegister fd, FpuRegister fs) {
EmitFR(0x11, 0x11, static_cast<FpuRegister>(0), fs, fd, 0xd);
}
void Mips64Assembler::CeilLS(FpuRegister fd, FpuRegister fs) {
EmitFR(0x11, 0x10, static_cast<FpuRegister>(0), fs, fd, 0xa);
}
void Mips64Assembler::CeilLD(FpuRegister fd, FpuRegister fs) {
EmitFR(0x11, 0x11, static_cast<FpuRegister>(0), fs, fd, 0xa);
}
void Mips64Assembler::CeilWS(FpuRegister fd, FpuRegister fs) {
EmitFR(0x11, 0x10, static_cast<FpuRegister>(0), fs, fd, 0xe);
}
void Mips64Assembler::CeilWD(FpuRegister fd, FpuRegister fs) {
EmitFR(0x11, 0x11, static_cast<FpuRegister>(0), fs, fd, 0xe);
}
void Mips64Assembler::FloorLS(FpuRegister fd, FpuRegister fs) {
EmitFR(0x11, 0x10, static_cast<FpuRegister>(0), fs, fd, 0xb);
}
void Mips64Assembler::FloorLD(FpuRegister fd, FpuRegister fs) {
EmitFR(0x11, 0x11, static_cast<FpuRegister>(0), fs, fd, 0xb);
}
void Mips64Assembler::FloorWS(FpuRegister fd, FpuRegister fs) {
EmitFR(0x11, 0x10, static_cast<FpuRegister>(0), fs, fd, 0xf);
}
void Mips64Assembler::FloorWD(FpuRegister fd, FpuRegister fs) {
EmitFR(0x11, 0x11, static_cast<FpuRegister>(0), fs, fd, 0xf);
}
void Mips64Assembler::SelS(FpuRegister fd, FpuRegister fs, FpuRegister ft) {
EmitFR(0x11, 0x10, ft, fs, fd, 0x10);
}
void Mips64Assembler::SelD(FpuRegister fd, FpuRegister fs, FpuRegister ft) {
EmitFR(0x11, 0x11, ft, fs, fd, 0x10);
}
void Mips64Assembler::RintS(FpuRegister fd, FpuRegister fs) {
EmitFR(0x11, 0x10, static_cast<FpuRegister>(0), fs, fd, 0x1a);
}
void Mips64Assembler::RintD(FpuRegister fd, FpuRegister fs) {
EmitFR(0x11, 0x11, static_cast<FpuRegister>(0), fs, fd, 0x1a);
}
void Mips64Assembler::ClassS(FpuRegister fd, FpuRegister fs) {
EmitFR(0x11, 0x10, static_cast<FpuRegister>(0), fs, fd, 0x1b);
}
void Mips64Assembler::ClassD(FpuRegister fd, FpuRegister fs) {
EmitFR(0x11, 0x11, static_cast<FpuRegister>(0), fs, fd, 0x1b);
}
void Mips64Assembler::MinS(FpuRegister fd, FpuRegister fs, FpuRegister ft) {
EmitFR(0x11, 0x10, ft, fs, fd, 0x1c);
}
void Mips64Assembler::MinD(FpuRegister fd, FpuRegister fs, FpuRegister ft) {
EmitFR(0x11, 0x11, ft, fs, fd, 0x1c);
}
void Mips64Assembler::MaxS(FpuRegister fd, FpuRegister fs, FpuRegister ft) {
EmitFR(0x11, 0x10, ft, fs, fd, 0x1e);
}
void Mips64Assembler::MaxD(FpuRegister fd, FpuRegister fs, FpuRegister ft) {
EmitFR(0x11, 0x11, ft, fs, fd, 0x1e);
}
void Mips64Assembler::CmpUnS(FpuRegister fd, FpuRegister fs, FpuRegister ft) {
EmitFR(0x11, 0x14, ft, fs, fd, 0x01);
}
void Mips64Assembler::CmpEqS(FpuRegister fd, FpuRegister fs, FpuRegister ft) {
EmitFR(0x11, 0x14, ft, fs, fd, 0x02);
}
void Mips64Assembler::CmpUeqS(FpuRegister fd, FpuRegister fs, FpuRegister ft) {
EmitFR(0x11, 0x14, ft, fs, fd, 0x03);
}
void Mips64Assembler::CmpLtS(FpuRegister fd, FpuRegister fs, FpuRegister ft) {
EmitFR(0x11, 0x14, ft, fs, fd, 0x04);
}
void Mips64Assembler::CmpUltS(FpuRegister fd, FpuRegister fs, FpuRegister ft) {
EmitFR(0x11, 0x14, ft, fs, fd, 0x05);
}
void Mips64Assembler::CmpLeS(FpuRegister fd, FpuRegister fs, FpuRegister ft) {
EmitFR(0x11, 0x14, ft, fs, fd, 0x06);
}
void Mips64Assembler::CmpUleS(FpuRegister fd, FpuRegister fs, FpuRegister ft) {
EmitFR(0x11, 0x14, ft, fs, fd, 0x07);
}
void Mips64Assembler::CmpOrS(FpuRegister fd, FpuRegister fs, FpuRegister ft) {
EmitFR(0x11, 0x14, ft, fs, fd, 0x11);
}
void Mips64Assembler::CmpUneS(FpuRegister fd, FpuRegister fs, FpuRegister ft) {
EmitFR(0x11, 0x14, ft, fs, fd, 0x12);
}
void Mips64Assembler::CmpNeS(FpuRegister fd, FpuRegister fs, FpuRegister ft) {
EmitFR(0x11, 0x14, ft, fs, fd, 0x13);
}
void Mips64Assembler::CmpUnD(FpuRegister fd, FpuRegister fs, FpuRegister ft) {
EmitFR(0x11, 0x15, ft, fs, fd, 0x01);
}
void Mips64Assembler::CmpEqD(FpuRegister fd, FpuRegister fs, FpuRegister ft) {
EmitFR(0x11, 0x15, ft, fs, fd, 0x02);
}
void Mips64Assembler::CmpUeqD(FpuRegister fd, FpuRegister fs, FpuRegister ft) {
EmitFR(0x11, 0x15, ft, fs, fd, 0x03);
}
void Mips64Assembler::CmpLtD(FpuRegister fd, FpuRegister fs, FpuRegister ft) {
EmitFR(0x11, 0x15, ft, fs, fd, 0x04);
}
void Mips64Assembler::CmpUltD(FpuRegister fd, FpuRegister fs, FpuRegister ft) {
EmitFR(0x11, 0x15, ft, fs, fd, 0x05);
}
void Mips64Assembler::CmpLeD(FpuRegister fd, FpuRegister fs, FpuRegister ft) {
EmitFR(0x11, 0x15, ft, fs, fd, 0x06);
}
void Mips64Assembler::CmpUleD(FpuRegister fd, FpuRegister fs, FpuRegister ft) {
EmitFR(0x11, 0x15, ft, fs, fd, 0x07);
}
void Mips64Assembler::CmpOrD(FpuRegister fd, FpuRegister fs, FpuRegister ft) {
EmitFR(0x11, 0x15, ft, fs, fd, 0x11);
}
void Mips64Assembler::CmpUneD(FpuRegister fd, FpuRegister fs, FpuRegister ft) {
EmitFR(0x11, 0x15, ft, fs, fd, 0x12);
}
void Mips64Assembler::CmpNeD(FpuRegister fd, FpuRegister fs, FpuRegister ft) {
EmitFR(0x11, 0x15, ft, fs, fd, 0x13);
}
void Mips64Assembler::Cvtsw(FpuRegister fd, FpuRegister fs) {
EmitFR(0x11, 0x14, static_cast<FpuRegister>(0), fs, fd, 0x20);
}
void Mips64Assembler::Cvtdw(FpuRegister fd, FpuRegister fs) {
EmitFR(0x11, 0x14, static_cast<FpuRegister>(0), fs, fd, 0x21);
}
void Mips64Assembler::Cvtsd(FpuRegister fd, FpuRegister fs) {
EmitFR(0x11, 0x11, static_cast<FpuRegister>(0), fs, fd, 0x20);
}
void Mips64Assembler::Cvtds(FpuRegister fd, FpuRegister fs) {
EmitFR(0x11, 0x10, static_cast<FpuRegister>(0), fs, fd, 0x21);
}
void Mips64Assembler::Cvtsl(FpuRegister fd, FpuRegister fs) {
EmitFR(0x11, 0x15, static_cast<FpuRegister>(0), fs, fd, 0x20);
}
void Mips64Assembler::Cvtdl(FpuRegister fd, FpuRegister fs) {
EmitFR(0x11, 0x15, static_cast<FpuRegister>(0), fs, fd, 0x21);
}
void Mips64Assembler::Mfc1(GpuRegister rt, FpuRegister fs) {
EmitFR(0x11, 0x00, static_cast<FpuRegister>(rt), fs, static_cast<FpuRegister>(0), 0x0);
}
void Mips64Assembler::Mfhc1(GpuRegister rt, FpuRegister fs) {
EmitFR(0x11, 0x03, static_cast<FpuRegister>(rt), fs, static_cast<FpuRegister>(0), 0x0);
}
void Mips64Assembler::Mtc1(GpuRegister rt, FpuRegister fs) {
EmitFR(0x11, 0x04, static_cast<FpuRegister>(rt), fs, static_cast<FpuRegister>(0), 0x0);
}
void Mips64Assembler::Mthc1(GpuRegister rt, FpuRegister fs) {
EmitFR(0x11, 0x07, static_cast<FpuRegister>(rt), fs, static_cast<FpuRegister>(0), 0x0);
}
void Mips64Assembler::Dmfc1(GpuRegister rt, FpuRegister fs) {
EmitFR(0x11, 0x01, static_cast<FpuRegister>(rt), fs, static_cast<FpuRegister>(0), 0x0);
}
void Mips64Assembler::Dmtc1(GpuRegister rt, FpuRegister fs) {
EmitFR(0x11, 0x05, static_cast<FpuRegister>(rt), fs, static_cast<FpuRegister>(0), 0x0);
}
void Mips64Assembler::Lwc1(FpuRegister ft, GpuRegister rs, uint16_t imm16) {
EmitI(0x31, rs, static_cast<GpuRegister>(ft), imm16);
}
void Mips64Assembler::Ldc1(FpuRegister ft, GpuRegister rs, uint16_t imm16) {
EmitI(0x35, rs, static_cast<GpuRegister>(ft), imm16);
}
void Mips64Assembler::Swc1(FpuRegister ft, GpuRegister rs, uint16_t imm16) {
EmitI(0x39, rs, static_cast<GpuRegister>(ft), imm16);
}
void Mips64Assembler::Sdc1(FpuRegister ft, GpuRegister rs, uint16_t imm16) {
EmitI(0x3d, rs, static_cast<GpuRegister>(ft), imm16);
}
void Mips64Assembler::Break() {
EmitR(0, static_cast<GpuRegister>(0), static_cast<GpuRegister>(0),
static_cast<GpuRegister>(0), 0, 0xD);
}
void Mips64Assembler::Nop() {
EmitR(0x0, static_cast<GpuRegister>(0), static_cast<GpuRegister>(0),
static_cast<GpuRegister>(0), 0, 0x0);
}
void Mips64Assembler::Move(GpuRegister rd, GpuRegister rs) {
Or(rd, rs, ZERO);
}
void Mips64Assembler::Clear(GpuRegister rd) {
Move(rd, ZERO);
}
void Mips64Assembler::Not(GpuRegister rd, GpuRegister rs) {
Nor(rd, rs, ZERO);
}
void Mips64Assembler::AndV(VectorRegister wd, VectorRegister ws, VectorRegister wt) {
CHECK(HasMsa());
EmitMsa3R(0x0, 0x0, wt, ws, wd, 0x1e);
}
void Mips64Assembler::OrV(VectorRegister wd, VectorRegister ws, VectorRegister wt) {
CHECK(HasMsa());
EmitMsa3R(0x0, 0x1, wt, ws, wd, 0x1e);
}
void Mips64Assembler::NorV(VectorRegister wd, VectorRegister ws, VectorRegister wt) {
CHECK(HasMsa());
EmitMsa3R(0x0, 0x2, wt, ws, wd, 0x1e);
}
void Mips64Assembler::XorV(VectorRegister wd, VectorRegister ws, VectorRegister wt) {
CHECK(HasMsa());
EmitMsa3R(0x0, 0x3, wt, ws, wd, 0x1e);
}
void Mips64Assembler::AddvB(VectorRegister wd, VectorRegister ws, VectorRegister wt) {
CHECK(HasMsa());
EmitMsa3R(0x0, 0x0, wt, ws, wd, 0xe);
}
void Mips64Assembler::AddvH(VectorRegister wd, VectorRegister ws, VectorRegister wt) {
CHECK(HasMsa());
EmitMsa3R(0x0, 0x1, wt, ws, wd, 0xe);
}
void Mips64Assembler::AddvW(VectorRegister wd, VectorRegister ws, VectorRegister wt) {
CHECK(HasMsa());
EmitMsa3R(0x0, 0x2, wt, ws, wd, 0xe);
}
void Mips64Assembler::AddvD(VectorRegister wd, VectorRegister ws, VectorRegister wt) {
CHECK(HasMsa());
EmitMsa3R(0x0, 0x3, wt, ws, wd, 0xe);
}
void Mips64Assembler::SubvB(VectorRegister wd, VectorRegister ws, VectorRegister wt) {
CHECK(HasMsa());
EmitMsa3R(0x1, 0x0, wt, ws, wd, 0xe);
}
void Mips64Assembler::SubvH(VectorRegister wd, VectorRegister ws, VectorRegister wt) {
CHECK(HasMsa());
EmitMsa3R(0x1, 0x1, wt, ws, wd, 0xe);
}
void Mips64Assembler::SubvW(VectorRegister wd, VectorRegister ws, VectorRegister wt) {
CHECK(HasMsa());
EmitMsa3R(0x1, 0x2, wt, ws, wd, 0xe);
}
void Mips64Assembler::SubvD(VectorRegister wd, VectorRegister ws, VectorRegister wt) {
CHECK(HasMsa());
EmitMsa3R(0x1, 0x3, wt, ws, wd, 0xe);
}
void Mips64Assembler::MulvB(VectorRegister wd, VectorRegister ws, VectorRegister wt) {
CHECK(HasMsa());
EmitMsa3R(0x0, 0x0, wt, ws, wd, 0x12);
}
void Mips64Assembler::MulvH(VectorRegister wd, VectorRegister ws, VectorRegister wt) {
CHECK(HasMsa());
EmitMsa3R(0x0, 0x1, wt, ws, wd, 0x12);
}
void Mips64Assembler::MulvW(VectorRegister wd, VectorRegister ws, VectorRegister wt) {
CHECK(HasMsa());
EmitMsa3R(0x0, 0x2, wt, ws, wd, 0x12);
}
void Mips64Assembler::MulvD(VectorRegister wd, VectorRegister ws, VectorRegister wt) {
CHECK(HasMsa());
EmitMsa3R(0x0, 0x3, wt, ws, wd, 0x12);
}
void Mips64Assembler::Div_sB(VectorRegister wd, VectorRegister ws, VectorRegister wt) {
CHECK(HasMsa());
EmitMsa3R(0x4, 0x0, wt, ws, wd, 0x12);
}
void Mips64Assembler::Div_sH(VectorRegister wd, VectorRegister ws, VectorRegister wt) {
CHECK(HasMsa());
EmitMsa3R(0x4, 0x1, wt, ws, wd, 0x12);
}
void Mips64Assembler::Div_sW(VectorRegister wd, VectorRegister ws, VectorRegister wt) {
CHECK(HasMsa());
EmitMsa3R(0x4, 0x2, wt, ws, wd, 0x12);
}
void Mips64Assembler::Div_sD(VectorRegister wd, VectorRegister ws, VectorRegister wt) {
CHECK(HasMsa());
EmitMsa3R(0x4, 0x3, wt, ws, wd, 0x12);
}
void Mips64Assembler::Div_uB(VectorRegister wd, VectorRegister ws, VectorRegister wt) {
CHECK(HasMsa());
EmitMsa3R(0x5, 0x0, wt, ws, wd, 0x12);
}
void Mips64Assembler::Div_uH(VectorRegister wd, VectorRegister ws, VectorRegister wt) {
CHECK(HasMsa());
EmitMsa3R(0x5, 0x1, wt, ws, wd, 0x12);
}
void Mips64Assembler::Div_uW(VectorRegister wd, VectorRegister ws, VectorRegister wt) {
CHECK(HasMsa());
EmitMsa3R(0x5, 0x2, wt, ws, wd, 0x12);
}
void Mips64Assembler::Div_uD(VectorRegister wd, VectorRegister ws, VectorRegister wt) {
CHECK(HasMsa());
EmitMsa3R(0x5, 0x3, wt, ws, wd, 0x12);
}
void Mips64Assembler::Mod_sB(VectorRegister wd, VectorRegister ws, VectorRegister wt) {
CHECK(HasMsa());
EmitMsa3R(0x6, 0x0, wt, ws, wd, 0x12);
}
void Mips64Assembler::Mod_sH(VectorRegister wd, VectorRegister ws, VectorRegister wt) {
CHECK(HasMsa());
EmitMsa3R(0x6, 0x1, wt, ws, wd, 0x12);
}
void Mips64Assembler::Mod_sW(VectorRegister wd, VectorRegister ws, VectorRegister wt) {
CHECK(HasMsa());
EmitMsa3R(0x6, 0x2, wt, ws, wd, 0x12);
}
void Mips64Assembler::Mod_sD(VectorRegister wd, VectorRegister ws, VectorRegister wt) {
CHECK(HasMsa());
EmitMsa3R(0x6, 0x3, wt, ws, wd, 0x12);
}
void Mips64Assembler::Mod_uB(VectorRegister wd, VectorRegister ws, VectorRegister wt) {
CHECK(HasMsa());
EmitMsa3R(0x7, 0x0, wt, ws, wd, 0x12);
}
void Mips64Assembler::Mod_uH(VectorRegister wd, VectorRegister ws, VectorRegister wt) {
CHECK(HasMsa());
EmitMsa3R(0x7, 0x1, wt, ws, wd, 0x12);
}
void Mips64Assembler::Mod_uW(VectorRegister wd, VectorRegister ws, VectorRegister wt) {
CHECK(HasMsa());
EmitMsa3R(0x7, 0x2, wt, ws, wd, 0x12);
}
void Mips64Assembler::Mod_uD(VectorRegister wd, VectorRegister ws, VectorRegister wt) {
CHECK(HasMsa());
EmitMsa3R(0x7, 0x3, wt, ws, wd, 0x12);
}
void Mips64Assembler::Add_aB(VectorRegister wd, VectorRegister ws, VectorRegister wt) {
CHECK(HasMsa());
EmitMsa3R(0x0, 0x0, wt, ws, wd, 0x10);
}
void Mips64Assembler::Add_aH(VectorRegister wd, VectorRegister ws, VectorRegister wt) {
CHECK(HasMsa());
EmitMsa3R(0x0, 0x1, wt, ws, wd, 0x10);
}
void Mips64Assembler::Add_aW(VectorRegister wd, VectorRegister ws, VectorRegister wt) {
CHECK(HasMsa());
EmitMsa3R(0x0, 0x2, wt, ws, wd, 0x10);
}
void Mips64Assembler::Add_aD(VectorRegister wd, VectorRegister ws, VectorRegister wt) {
CHECK(HasMsa());
EmitMsa3R(0x0, 0x3, wt, ws, wd, 0x10);
}
void Mips64Assembler::Ave_sB(VectorRegister wd, VectorRegister ws, VectorRegister wt) {
CHECK(HasMsa());
EmitMsa3R(0x4, 0x0, wt, ws, wd, 0x10);
}
void Mips64Assembler::Ave_sH(VectorRegister wd, VectorRegister ws, VectorRegister wt) {
CHECK(HasMsa());
EmitMsa3R(0x4, 0x1, wt, ws, wd, 0x10);
}
void Mips64Assembler::Ave_sW(VectorRegister wd, VectorRegister ws, VectorRegister wt) {
CHECK(HasMsa());
EmitMsa3R(0x4, 0x2, wt, ws, wd, 0x10);
}
void Mips64Assembler::Ave_sD(VectorRegister wd, VectorRegister ws, VectorRegister wt) {
CHECK(HasMsa());
EmitMsa3R(0x4, 0x3, wt, ws, wd, 0x10);
}
void Mips64Assembler::Ave_uB(VectorRegister wd, VectorRegister ws, VectorRegister wt) {
CHECK(HasMsa());
EmitMsa3R(0x5, 0x0, wt, ws, wd, 0x10);
}
void Mips64Assembler::Ave_uH(VectorRegister wd, VectorRegister ws, VectorRegister wt) {
CHECK(HasMsa());
EmitMsa3R(0x5, 0x1, wt, ws, wd, 0x10);
}
void Mips64Assembler::Ave_uW(VectorRegister wd, VectorRegister ws, VectorRegister wt) {
CHECK(HasMsa());
EmitMsa3R(0x5, 0x2, wt, ws, wd, 0x10);
}
void Mips64Assembler::Ave_uD(VectorRegister wd, VectorRegister ws, VectorRegister wt) {
CHECK(HasMsa());
EmitMsa3R(0x5, 0x3, wt, ws, wd, 0x10);
}
void Mips64Assembler::Aver_sB(VectorRegister wd, VectorRegister ws, VectorRegister wt) {
CHECK(HasMsa());
EmitMsa3R(0x6, 0x0, wt, ws, wd, 0x10);
}
void Mips64Assembler::Aver_sH(VectorRegister wd, VectorRegister ws, VectorRegister wt) {
CHECK(HasMsa());
EmitMsa3R(0x6, 0x1, wt, ws, wd, 0x10);
}
void Mips64Assembler::Aver_sW(VectorRegister wd, VectorRegister ws, VectorRegister wt) {
CHECK(HasMsa());
EmitMsa3R(0x6, 0x2, wt, ws, wd, 0x10);
}
void Mips64Assembler::Aver_sD(VectorRegister wd, VectorRegister ws, VectorRegister wt) {
CHECK(HasMsa());
EmitMsa3R(0x6, 0x3, wt, ws, wd, 0x10);
}
void Mips64Assembler::Aver_uB(VectorRegister wd, VectorRegister ws, VectorRegister wt) {
CHECK(HasMsa());
EmitMsa3R(0x7, 0x0, wt, ws, wd, 0x10);
}
void Mips64Assembler::Aver_uH(VectorRegister wd, VectorRegister ws, VectorRegister wt) {
CHECK(HasMsa());
EmitMsa3R(0x7, 0x1, wt, ws, wd, 0x10);
}
void Mips64Assembler::Aver_uW(VectorRegister wd, VectorRegister ws, VectorRegister wt) {
CHECK(HasMsa());
EmitMsa3R(0x7, 0x2, wt, ws, wd, 0x10);
}
void Mips64Assembler::Aver_uD(VectorRegister wd, VectorRegister ws, VectorRegister wt) {
CHECK(HasMsa());
EmitMsa3R(0x7, 0x3, wt, ws, wd, 0x10);
}
void Mips64Assembler::Max_sB(VectorRegister wd, VectorRegister ws, VectorRegister wt) {
CHECK(HasMsa());
EmitMsa3R(0x2, 0x0, wt, ws, wd, 0xe);
}
void Mips64Assembler::Max_sH(VectorRegister wd, VectorRegister ws, VectorRegister wt) {
CHECK(HasMsa());
EmitMsa3R(0x2, 0x1, wt, ws, wd, 0xe);
}
void Mips64Assembler::Max_sW(VectorRegister wd, VectorRegister ws, VectorRegister wt) {
CHECK(HasMsa());
EmitMsa3R(0x2, 0x2, wt, ws, wd, 0xe);
}
void Mips64Assembler::Max_sD(VectorRegister wd, VectorRegister ws, VectorRegister wt) {
CHECK(HasMsa());
EmitMsa3R(0x2, 0x3, wt, ws, wd, 0xe);
}
void Mips64Assembler::Max_uB(VectorRegister wd, VectorRegister ws, VectorRegister wt) {
CHECK(HasMsa());
EmitMsa3R(0x3, 0x0, wt, ws, wd, 0xe);
}
void Mips64Assembler::Max_uH(VectorRegister wd, VectorRegister ws, VectorRegister wt) {
CHECK(HasMsa());
EmitMsa3R(0x3, 0x1, wt, ws, wd, 0xe);
}
void Mips64Assembler::Max_uW(VectorRegister wd, VectorRegister ws, VectorRegister wt) {
CHECK(HasMsa());
EmitMsa3R(0x3, 0x2, wt, ws, wd, 0xe);
}
void Mips64Assembler::Max_uD(VectorRegister wd, VectorRegister ws, VectorRegister wt) {
CHECK(HasMsa());
EmitMsa3R(0x3, 0x3, wt, ws, wd, 0xe);
}
void Mips64Assembler::Min_sB(VectorRegister wd, VectorRegister ws, VectorRegister wt) {
CHECK(HasMsa());
EmitMsa3R(0x4, 0x0, wt, ws, wd, 0xe);
}
void Mips64Assembler::Min_sH(VectorRegister wd, VectorRegister ws, VectorRegister wt) {
CHECK(HasMsa());
EmitMsa3R(0x4, 0x1, wt, ws, wd, 0xe);
}
void Mips64Assembler::Min_sW(VectorRegister wd, VectorRegister ws, VectorRegister wt) {
CHECK(HasMsa());
EmitMsa3R(0x4, 0x2, wt, ws, wd, 0xe);
}
void Mips64Assembler::Min_sD(VectorRegister wd, VectorRegister ws, VectorRegister wt) {
CHECK(HasMsa());
EmitMsa3R(0x4, 0x3, wt, ws, wd, 0xe);
}
void Mips64Assembler::Min_uB(VectorRegister wd, VectorRegister ws, VectorRegister wt) {
CHECK(HasMsa());
EmitMsa3R(0x5, 0x0, wt, ws, wd, 0xe);
}
void Mips64Assembler::Min_uH(VectorRegister wd, VectorRegister ws, VectorRegister wt) {
CHECK(HasMsa());
EmitMsa3R(0x5, 0x1, wt, ws, wd, 0xe);
}
void Mips64Assembler::Min_uW(VectorRegister wd, VectorRegister ws, VectorRegister wt) {
CHECK(HasMsa());
EmitMsa3R(0x5, 0x2, wt, ws, wd, 0xe);
}
void Mips64Assembler::Min_uD(VectorRegister wd, VectorRegister ws, VectorRegister wt) {
CHECK(HasMsa());
EmitMsa3R(0x5, 0x3, wt, ws, wd, 0xe);
}
void Mips64Assembler::FaddW(VectorRegister wd, VectorRegister ws, VectorRegister wt) {
CHECK(HasMsa());
EmitMsa3R(0x0, 0x0, wt, ws, wd, 0x1b);
}
void Mips64Assembler::FaddD(VectorRegister wd, VectorRegister ws, VectorRegister wt) {
CHECK(HasMsa());
EmitMsa3R(0x0, 0x1, wt, ws, wd, 0x1b);
}
void Mips64Assembler::FsubW(VectorRegister wd, VectorRegister ws, VectorRegister wt) {
CHECK(HasMsa());
EmitMsa3R(0x0, 0x2, wt, ws, wd, 0x1b);
}
void Mips64Assembler::FsubD(VectorRegister wd, VectorRegister ws, VectorRegister wt) {
CHECK(HasMsa());
EmitMsa3R(0x0, 0x3, wt, ws, wd, 0x1b);
}
void Mips64Assembler::FmulW(VectorRegister wd, VectorRegister ws, VectorRegister wt) {
CHECK(HasMsa());
EmitMsa3R(0x1, 0x0, wt, ws, wd, 0x1b);
}
void Mips64Assembler::FmulD(VectorRegister wd, VectorRegister ws, VectorRegister wt) {
CHECK(HasMsa());
EmitMsa3R(0x1, 0x1, wt, ws, wd, 0x1b);
}
void Mips64Assembler::FdivW(VectorRegister wd, VectorRegister ws, VectorRegister wt) {
CHECK(HasMsa());
EmitMsa3R(0x1, 0x2, wt, ws, wd, 0x1b);
}
void Mips64Assembler::FdivD(VectorRegister wd, VectorRegister ws, VectorRegister wt) {
CHECK(HasMsa());
EmitMsa3R(0x1, 0x3, wt, ws, wd, 0x1b);
}
void Mips64Assembler::FmaxW(VectorRegister wd, VectorRegister ws, VectorRegister wt) {
CHECK(HasMsa());
EmitMsa3R(0x7, 0x0, wt, ws, wd, 0x1b);
}
void Mips64Assembler::FmaxD(VectorRegister wd, VectorRegister ws, VectorRegister wt) {
CHECK(HasMsa());
EmitMsa3R(0x7, 0x1, wt, ws, wd, 0x1b);
}
void Mips64Assembler::FminW(VectorRegister wd, VectorRegister ws, VectorRegister wt) {
CHECK(HasMsa());
EmitMsa3R(0x6, 0x0, wt, ws, wd, 0x1b);
}
void Mips64Assembler::FminD(VectorRegister wd, VectorRegister ws, VectorRegister wt) {
CHECK(HasMsa());
EmitMsa3R(0x6, 0x1, wt, ws, wd, 0x1b);
}
void Mips64Assembler::Ffint_sW(VectorRegister wd, VectorRegister ws) {
CHECK(HasMsa());
EmitMsa2RF(0x19e, 0x0, ws, wd, 0x1e);
}
void Mips64Assembler::Ffint_sD(VectorRegister wd, VectorRegister ws) {
CHECK(HasMsa());
EmitMsa2RF(0x19e, 0x1, ws, wd, 0x1e);
}
void Mips64Assembler::Ftint_sW(VectorRegister wd, VectorRegister ws) {
CHECK(HasMsa());
EmitMsa2RF(0x19c, 0x0, ws, wd, 0x1e);
}
void Mips64Assembler::Ftint_sD(VectorRegister wd, VectorRegister ws) {
CHECK(HasMsa());
EmitMsa2RF(0x19c, 0x1, ws, wd, 0x1e);
}
void Mips64Assembler::SllB(VectorRegister wd, VectorRegister ws, VectorRegister wt) {
CHECK(HasMsa());
EmitMsa3R(0x0, 0x0, wt, ws, wd, 0xd);
}
void Mips64Assembler::SllH(VectorRegister wd, VectorRegister ws, VectorRegister wt) {
CHECK(HasMsa());
EmitMsa3R(0x0, 0x1, wt, ws, wd, 0xd);
}
void Mips64Assembler::SllW(VectorRegister wd, VectorRegister ws, VectorRegister wt) {
CHECK(HasMsa());
EmitMsa3R(0x0, 0x2, wt, ws, wd, 0xd);
}
void Mips64Assembler::SllD(VectorRegister wd, VectorRegister ws, VectorRegister wt) {
CHECK(HasMsa());
EmitMsa3R(0x0, 0x3, wt, ws, wd, 0xd);
}
void Mips64Assembler::SraB(VectorRegister wd, VectorRegister ws, VectorRegister wt) {
CHECK(HasMsa());
EmitMsa3R(0x1, 0x0, wt, ws, wd, 0xd);
}
void Mips64Assembler::SraH(VectorRegister wd, VectorRegister ws, VectorRegister wt) {
CHECK(HasMsa());
EmitMsa3R(0x1, 0x1, wt, ws, wd, 0xd);
}
void Mips64Assembler::SraW(VectorRegister wd, VectorRegister ws, VectorRegister wt) {
CHECK(HasMsa());
EmitMsa3R(0x1, 0x2, wt, ws, wd, 0xd);
}
void Mips64Assembler::SraD(VectorRegister wd, VectorRegister ws, VectorRegister wt) {
CHECK(HasMsa());
EmitMsa3R(0x1, 0x3, wt, ws, wd, 0xd);
}
void Mips64Assembler::SrlB(VectorRegister wd, VectorRegister ws, VectorRegister wt) {
CHECK(HasMsa());
EmitMsa3R(0x2, 0x0, wt, ws, wd, 0xd);
}
void Mips64Assembler::SrlH(VectorRegister wd, VectorRegister ws, VectorRegister wt) {
CHECK(HasMsa());
EmitMsa3R(0x2, 0x1, wt, ws, wd, 0xd);
}
void Mips64Assembler::SrlW(VectorRegister wd, VectorRegister ws, VectorRegister wt) {
CHECK(HasMsa());
EmitMsa3R(0x2, 0x2, wt, ws, wd, 0xd);
}
void Mips64Assembler::SrlD(VectorRegister wd, VectorRegister ws, VectorRegister wt) {
CHECK(HasMsa());
EmitMsa3R(0x2, 0x3, wt, ws, wd, 0xd);
}
void Mips64Assembler::SlliB(VectorRegister wd, VectorRegister ws, int shamt3) {
CHECK(HasMsa());
CHECK(IsUint<3>(shamt3)) << shamt3;
EmitMsaBIT(0x0, shamt3 | kMsaDfMByteMask, ws, wd, 0x9);
}
void Mips64Assembler::SlliH(VectorRegister wd, VectorRegister ws, int shamt4) {
CHECK(HasMsa());
CHECK(IsUint<4>(shamt4)) << shamt4;
EmitMsaBIT(0x0, shamt4 | kMsaDfMHalfwordMask, ws, wd, 0x9);
}
void Mips64Assembler::SlliW(VectorRegister wd, VectorRegister ws, int shamt5) {
CHECK(HasMsa());
CHECK(IsUint<5>(shamt5)) << shamt5;
EmitMsaBIT(0x0, shamt5 | kMsaDfMWordMask, ws, wd, 0x9);
}
void Mips64Assembler::SlliD(VectorRegister wd, VectorRegister ws, int shamt6) {
CHECK(HasMsa());
CHECK(IsUint<6>(shamt6)) << shamt6;
EmitMsaBIT(0x0, shamt6 | kMsaDfMDoublewordMask, ws, wd, 0x9);
}
void Mips64Assembler::SraiB(VectorRegister wd, VectorRegister ws, int shamt3) {
CHECK(HasMsa());
CHECK(IsUint<3>(shamt3)) << shamt3;
EmitMsaBIT(0x1, shamt3 | kMsaDfMByteMask, ws, wd, 0x9);
}
void Mips64Assembler::SraiH(VectorRegister wd, VectorRegister ws, int shamt4) {
CHECK(HasMsa());
CHECK(IsUint<4>(shamt4)) << shamt4;
EmitMsaBIT(0x1, shamt4 | kMsaDfMHalfwordMask, ws, wd, 0x9);
}
void Mips64Assembler::SraiW(VectorRegister wd, VectorRegister ws, int shamt5) {
CHECK(HasMsa());
CHECK(IsUint<5>(shamt5)) << shamt5;
EmitMsaBIT(0x1, shamt5 | kMsaDfMWordMask, ws, wd, 0x9);
}
void Mips64Assembler::SraiD(VectorRegister wd, VectorRegister ws, int shamt6) {
CHECK(HasMsa());
CHECK(IsUint<6>(shamt6)) << shamt6;
EmitMsaBIT(0x1, shamt6 | kMsaDfMDoublewordMask, ws, wd, 0x9);
}
void Mips64Assembler::SrliB(VectorRegister wd, VectorRegister ws, int shamt3) {
CHECK(HasMsa());
CHECK(IsUint<3>(shamt3)) << shamt3;
EmitMsaBIT(0x2, shamt3 | kMsaDfMByteMask, ws, wd, 0x9);
}
void Mips64Assembler::SrliH(VectorRegister wd, VectorRegister ws, int shamt4) {
CHECK(HasMsa());
CHECK(IsUint<4>(shamt4)) << shamt4;
EmitMsaBIT(0x2, shamt4 | kMsaDfMHalfwordMask, ws, wd, 0x9);
}
void Mips64Assembler::SrliW(VectorRegister wd, VectorRegister ws, int shamt5) {
CHECK(HasMsa());
CHECK(IsUint<5>(shamt5)) << shamt5;
EmitMsaBIT(0x2, shamt5 | kMsaDfMWordMask, ws, wd, 0x9);
}
void Mips64Assembler::SrliD(VectorRegister wd, VectorRegister ws, int shamt6) {
CHECK(HasMsa());
CHECK(IsUint<6>(shamt6)) << shamt6;
EmitMsaBIT(0x2, shamt6 | kMsaDfMDoublewordMask, ws, wd, 0x9);
}
void Mips64Assembler::MoveV(VectorRegister wd, VectorRegister ws) {
CHECK(HasMsa());
EmitMsaBIT(0x1, 0x3e, ws, wd, 0x19);
}
void Mips64Assembler::SplatiB(VectorRegister wd, VectorRegister ws, int n4) {
CHECK(HasMsa());
CHECK(IsUint<4>(n4)) << n4;
EmitMsaELM(0x1, n4 | kMsaDfNByteMask, ws, wd, 0x19);
}
void Mips64Assembler::SplatiH(VectorRegister wd, VectorRegister ws, int n3) {
CHECK(HasMsa());
CHECK(IsUint<3>(n3)) << n3;
EmitMsaELM(0x1, n3 | kMsaDfNHalfwordMask, ws, wd, 0x19);
}
void Mips64Assembler::SplatiW(VectorRegister wd, VectorRegister ws, int n2) {
CHECK(HasMsa());
CHECK(IsUint<2>(n2)) << n2;
EmitMsaELM(0x1, n2 | kMsaDfNWordMask, ws, wd, 0x19);
}
void Mips64Assembler::SplatiD(VectorRegister wd, VectorRegister ws, int n1) {
CHECK(HasMsa());
CHECK(IsUint<1>(n1)) << n1;
EmitMsaELM(0x1, n1 | kMsaDfNDoublewordMask, ws, wd, 0x19);
}
void Mips64Assembler::FillB(VectorRegister wd, GpuRegister rs) {
CHECK(HasMsa());
EmitMsa2R(0xc0, 0x0, static_cast<VectorRegister>(rs), wd, 0x1e);
}
void Mips64Assembler::FillH(VectorRegister wd, GpuRegister rs) {
CHECK(HasMsa());
EmitMsa2R(0xc0, 0x1, static_cast<VectorRegister>(rs), wd, 0x1e);
}
void Mips64Assembler::FillW(VectorRegister wd, GpuRegister rs) {
CHECK(HasMsa());
EmitMsa2R(0xc0, 0x2, static_cast<VectorRegister>(rs), wd, 0x1e);
}
void Mips64Assembler::FillD(VectorRegister wd, GpuRegister rs) {
CHECK(HasMsa());
EmitMsa2R(0xc0, 0x3, static_cast<VectorRegister>(rs), wd, 0x1e);
}
void Mips64Assembler::LdiB(VectorRegister wd, int imm8) {
CHECK(HasMsa());
CHECK(IsInt<8>(imm8)) << imm8;
EmitMsaI10(0x6, 0x0, imm8 & kMsaS10Mask, wd, 0x7);
}
void Mips64Assembler::LdiH(VectorRegister wd, int imm10) {
CHECK(HasMsa());
CHECK(IsInt<10>(imm10)) << imm10;
EmitMsaI10(0x6, 0x1, imm10 & kMsaS10Mask, wd, 0x7);
}
void Mips64Assembler::LdiW(VectorRegister wd, int imm10) {
CHECK(HasMsa());
CHECK(IsInt<10>(imm10)) << imm10;
EmitMsaI10(0x6, 0x2, imm10 & kMsaS10Mask, wd, 0x7);
}
void Mips64Assembler::LdiD(VectorRegister wd, int imm10) {
CHECK(HasMsa());
CHECK(IsInt<10>(imm10)) << imm10;
EmitMsaI10(0x6, 0x3, imm10 & kMsaS10Mask, wd, 0x7);
}
void Mips64Assembler::LdB(VectorRegister wd, GpuRegister rs, int offset) {
CHECK(HasMsa());
CHECK(IsInt<10>(offset)) << offset;
EmitMsaMI10(offset & kMsaS10Mask, rs, wd, 0x8, 0x0);
}
void Mips64Assembler::LdH(VectorRegister wd, GpuRegister rs, int offset) {
CHECK(HasMsa());
CHECK(IsInt<11>(offset)) << offset;
CHECK_ALIGNED(offset, kMips64HalfwordSize);
EmitMsaMI10((offset >> TIMES_2) & kMsaS10Mask, rs, wd, 0x8, 0x1);
}
void Mips64Assembler::LdW(VectorRegister wd, GpuRegister rs, int offset) {
CHECK(HasMsa());
CHECK(IsInt<12>(offset)) << offset;
CHECK_ALIGNED(offset, kMips64WordSize);
EmitMsaMI10((offset >> TIMES_4) & kMsaS10Mask, rs, wd, 0x8, 0x2);
}
void Mips64Assembler::LdD(VectorRegister wd, GpuRegister rs, int offset) {
CHECK(HasMsa());
CHECK(IsInt<13>(offset)) << offset;
CHECK_ALIGNED(offset, kMips64DoublewordSize);
EmitMsaMI10((offset >> TIMES_8) & kMsaS10Mask, rs, wd, 0x8, 0x3);
}
void Mips64Assembler::StB(VectorRegister wd, GpuRegister rs, int offset) {
CHECK(HasMsa());
CHECK(IsInt<10>(offset)) << offset;
EmitMsaMI10(offset & kMsaS10Mask, rs, wd, 0x9, 0x0);
}
void Mips64Assembler::StH(VectorRegister wd, GpuRegister rs, int offset) {
CHECK(HasMsa());
CHECK(IsInt<11>(offset)) << offset;
CHECK_ALIGNED(offset, kMips64HalfwordSize);
EmitMsaMI10((offset >> TIMES_2) & kMsaS10Mask, rs, wd, 0x9, 0x1);
}
void Mips64Assembler::StW(VectorRegister wd, GpuRegister rs, int offset) {
CHECK(HasMsa());
CHECK(IsInt<12>(offset)) << offset;
CHECK_ALIGNED(offset, kMips64WordSize);
EmitMsaMI10((offset >> TIMES_4) & kMsaS10Mask, rs, wd, 0x9, 0x2);
}
void Mips64Assembler::StD(VectorRegister wd, GpuRegister rs, int offset) {
CHECK(HasMsa());
CHECK(IsInt<13>(offset)) << offset;
CHECK_ALIGNED(offset, kMips64DoublewordSize);
EmitMsaMI10((offset >> TIMES_8) & kMsaS10Mask, rs, wd, 0x9, 0x3);
}
void Mips64Assembler::IlvrB(VectorRegister wd, VectorRegister ws, VectorRegister wt) {
CHECK(HasMsa());
EmitMsa3R(0x5, 0x0, wt, ws, wd, 0x14);
}
void Mips64Assembler::IlvrH(VectorRegister wd, VectorRegister ws, VectorRegister wt) {
CHECK(HasMsa());
EmitMsa3R(0x5, 0x1, wt, ws, wd, 0x14);
}
void Mips64Assembler::IlvrW(VectorRegister wd, VectorRegister ws, VectorRegister wt) {
CHECK(HasMsa());
EmitMsa3R(0x5, 0x2, wt, ws, wd, 0x14);
}
void Mips64Assembler::IlvrD(VectorRegister wd, VectorRegister ws, VectorRegister wt) {
CHECK(HasMsa());
EmitMsa3R(0x5, 0x3, wt, ws, wd, 0x14);
}
void Mips64Assembler::ReplicateFPToVectorRegister(VectorRegister dst,
FpuRegister src,
bool is_double) {
// Float or double in FPU register Fx can be considered as 0th element in vector register Wx.
if (is_double) {
SplatiD(dst, static_cast<VectorRegister>(src), 0);
} else {
SplatiW(dst, static_cast<VectorRegister>(src), 0);
}
}
void Mips64Assembler::LoadConst32(GpuRegister rd, int32_t value) {
TemplateLoadConst32(this, rd, value);
}
// This function is only used for testing purposes.
void Mips64Assembler::RecordLoadConst64Path(int value ATTRIBUTE_UNUSED) {
}
void Mips64Assembler::LoadConst64(GpuRegister rd, int64_t value) {
TemplateLoadConst64(this, rd, value);
}
void Mips64Assembler::Addiu32(GpuRegister rt, GpuRegister rs, int32_t value) {
if (IsInt<16>(value)) {
Addiu(rt, rs, value);
} else {
int16_t high = High16Bits(value);
int16_t low = Low16Bits(value);
high += (low < 0) ? 1 : 0; // Account for sign extension in addiu.
Aui(rt, rs, high);
if (low != 0) {
Addiu(rt, rt, low);
}
}
}
// TODO: don't use rtmp, use daui, dahi, dati.
void Mips64Assembler::Daddiu64(GpuRegister rt, GpuRegister rs, int64_t value, GpuRegister rtmp) {
CHECK_NE(rs, rtmp);
if (IsInt<16>(value)) {
Daddiu(rt, rs, value);
} else {
LoadConst64(rtmp, value);
Daddu(rt, rs, rtmp);
}
}
void Mips64Assembler::Branch::InitShortOrLong(Mips64Assembler::Branch::OffsetBits offset_size,
Mips64Assembler::Branch::Type short_type,
Mips64Assembler::Branch::Type long_type) {
type_ = (offset_size <= branch_info_[short_type].offset_size) ? short_type : long_type;
}
void Mips64Assembler::Branch::InitializeType(Type initial_type) {
OffsetBits offset_size = GetOffsetSizeNeeded(location_, target_);
switch (initial_type) {
case kLabel:
case kLiteral:
case kLiteralUnsigned:
case kLiteralLong:
CHECK(!IsResolved());
type_ = initial_type;
break;
case kCall:
InitShortOrLong(offset_size, kCall, kLongCall);
break;
case kCondBranch:
switch (condition_) {
case kUncond:
InitShortOrLong(offset_size, kUncondBranch, kLongUncondBranch);
break;
case kCondEQZ:
case kCondNEZ:
// Special case for beqzc/bnezc with longer offset than in other b<cond>c instructions.
type_ = (offset_size <= kOffset23) ? kCondBranch : kLongCondBranch;
break;
default:
InitShortOrLong(offset_size, kCondBranch, kLongCondBranch);
break;
}
break;
default:
LOG(FATAL) << "Unexpected branch type " << initial_type;
UNREACHABLE();
}
old_type_ = type_;
}
bool Mips64Assembler::Branch::IsNop(BranchCondition condition, GpuRegister lhs, GpuRegister rhs) {
switch (condition) {
case kCondLT:
case kCondGT:
case kCondNE:
case kCondLTU:
return lhs == rhs;
default:
return false;
}
}
bool Mips64Assembler::Branch::IsUncond(BranchCondition condition,
GpuRegister lhs,
GpuRegister rhs) {
switch (condition) {
case kUncond:
return true;
case kCondGE:
case kCondLE:
case kCondEQ:
case kCondGEU:
return lhs == rhs;
default:
return false;
}
}
Mips64Assembler::Branch::Branch(uint32_t location, uint32_t target, bool is_call)
: old_location_(location),
location_(location),
target_(target),
lhs_reg_(ZERO),
rhs_reg_(ZERO),
condition_(kUncond) {
InitializeType(is_call ? kCall : kCondBranch);
}
Mips64Assembler::Branch::Branch(uint32_t location,
uint32_t target,
Mips64Assembler::BranchCondition condition,
GpuRegister lhs_reg,
GpuRegister rhs_reg)
: old_location_(location),
location_(location),
target_(target),
lhs_reg_(lhs_reg),
rhs_reg_(rhs_reg),
condition_(condition) {
CHECK_NE(condition, kUncond);
switch (condition) {
case kCondEQ:
case kCondNE:
case kCondLT:
case kCondGE:
case kCondLE:
case kCondGT:
case kCondLTU:
case kCondGEU:
CHECK_NE(lhs_reg, ZERO);
CHECK_NE(rhs_reg, ZERO);
break;
case kCondLTZ:
case kCondGEZ:
case kCondLEZ:
case kCondGTZ:
case kCondEQZ:
case kCondNEZ:
CHECK_NE(lhs_reg, ZERO);
CHECK_EQ(rhs_reg, ZERO);
break;
case kCondF:
case kCondT:
CHECK_EQ(rhs_reg, ZERO);
break;
case kUncond:
UNREACHABLE();
}
CHECK(!IsNop(condition, lhs_reg, rhs_reg));
if (IsUncond(condition, lhs_reg, rhs_reg)) {
// Branch condition is always true, make the branch unconditional.
condition_ = kUncond;
}
InitializeType(kCondBranch);
}
Mips64Assembler::Branch::Branch(uint32_t location, GpuRegister dest_reg, Type label_or_literal_type)
: old_location_(location),
location_(location),
target_(kUnresolved),
lhs_reg_(dest_reg),
rhs_reg_(ZERO),
condition_(kUncond) {
CHECK_NE(dest_reg, ZERO);
InitializeType(label_or_literal_type);
}
Mips64Assembler::BranchCondition Mips64Assembler::Branch::OppositeCondition(
Mips64Assembler::BranchCondition cond) {
switch (cond) {
case kCondLT:
return kCondGE;
case kCondGE:
return kCondLT;
case kCondLE:
return kCondGT;
case kCondGT:
return kCondLE;
case kCondLTZ:
return kCondGEZ;
case kCondGEZ:
return kCondLTZ;
case kCondLEZ:
return kCondGTZ;
case kCondGTZ:
return kCondLEZ;
case kCondEQ:
return kCondNE;
case kCondNE:
return kCondEQ;
case kCondEQZ:
return kCondNEZ;
case kCondNEZ:
return kCondEQZ;
case kCondLTU:
return kCondGEU;
case kCondGEU:
return kCondLTU;
case kCondF:
return kCondT;
case kCondT:
return kCondF;
case kUncond:
LOG(FATAL) << "Unexpected branch condition " << cond;
}
UNREACHABLE();
}
Mips64Assembler::Branch::Type Mips64Assembler::Branch::GetType() const {
return type_;
}
Mips64Assembler::BranchCondition Mips64Assembler::Branch::GetCondition() const {
return condition_;
}
GpuRegister Mips64Assembler::Branch::GetLeftRegister() const {
return lhs_reg_;
}
GpuRegister Mips64Assembler::Branch::GetRightRegister() const {
return rhs_reg_;
}
uint32_t Mips64Assembler::Branch::GetTarget() const {
return target_;
}
uint32_t Mips64Assembler::Branch::GetLocation() const {
return location_;
}
uint32_t Mips64Assembler::Branch::GetOldLocation() const {
return old_location_;
}
uint32_t Mips64Assembler::Branch::GetLength() const {
return branch_info_[type_].length;
}
uint32_t Mips64Assembler::Branch::GetOldLength() const {
return branch_info_[old_type_].length;
}
uint32_t Mips64Assembler::Branch::GetSize() const {
return GetLength() * sizeof(uint32_t);
}
uint32_t Mips64Assembler::Branch::GetOldSize() const {
return GetOldLength() * sizeof(uint32_t);
}
uint32_t Mips64Assembler::Branch::GetEndLocation() const {
return GetLocation() + GetSize();
}
uint32_t Mips64Assembler::Branch::GetOldEndLocation() const {
return GetOldLocation() + GetOldSize();
}
bool Mips64Assembler::Branch::IsLong() const {
switch (type_) {
// Short branches.
case kUncondBranch:
case kCondBranch:
case kCall:
// Near label.
case kLabel:
// Near literals.
case kLiteral:
case kLiteralUnsigned:
case kLiteralLong:
return false;
// Long branches.
case kLongUncondBranch:
case kLongCondBranch:
case kLongCall:
// Far label.
case kFarLabel:
// Far literals.
case kFarLiteral:
case kFarLiteralUnsigned:
case kFarLiteralLong:
return true;
}
UNREACHABLE();
}
bool Mips64Assembler::Branch::IsResolved() const {
return target_ != kUnresolved;
}
Mips64Assembler::Branch::OffsetBits Mips64Assembler::Branch::GetOffsetSize() const {
OffsetBits offset_size =
(type_ == kCondBranch && (condition_ == kCondEQZ || condition_ == kCondNEZ))
? kOffset23
: branch_info_[type_].offset_size;
return offset_size;
}
Mips64Assembler::Branch::OffsetBits Mips64Assembler::Branch::GetOffsetSizeNeeded(uint32_t location,
uint32_t target) {
// For unresolved targets assume the shortest encoding
// (later it will be made longer if needed).
if (target == kUnresolved)
return kOffset16;
int64_t distance = static_cast<int64_t>(target) - location;
// To simplify calculations in composite branches consisting of multiple instructions
// bump up the distance by a value larger than the max byte size of a composite branch.
distance += (distance >= 0) ? kMaxBranchSize : -kMaxBranchSize;
if (IsInt<kOffset16>(distance))
return kOffset16;
else if (IsInt<kOffset18>(distance))
return kOffset18;
else if (IsInt<kOffset21>(distance))
return kOffset21;
else if (IsInt<kOffset23>(distance))
return kOffset23;
else if (IsInt<kOffset28>(distance))
return kOffset28;
return kOffset32;
}
void Mips64Assembler::Branch::Resolve(uint32_t target) {
target_ = target;
}
void Mips64Assembler::Branch::Relocate(uint32_t expand_location, uint32_t delta) {
if (location_ > expand_location) {
location_ += delta;
}
if (!IsResolved()) {
return; // Don't know the target yet.
}
if (target_ > expand_location) {
target_ += delta;
}
}
void Mips64Assembler::Branch::PromoteToLong() {
switch (type_) {
// Short branches.
case kUncondBranch:
type_ = kLongUncondBranch;
break;
case kCondBranch:
type_ = kLongCondBranch;
break;
case kCall:
type_ = kLongCall;
break;
// Near label.
case kLabel:
type_ = kFarLabel;
break;
// Near literals.
case kLiteral:
type_ = kFarLiteral;
break;
case kLiteralUnsigned:
type_ = kFarLiteralUnsigned;
break;
case kLiteralLong:
type_ = kFarLiteralLong;
break;
default:
// Note: 'type_' is already long.
break;
}
CHECK(IsLong());
}
uint32_t Mips64Assembler::Branch::PromoteIfNeeded(uint32_t max_short_distance) {
// If the branch is still unresolved or already long, nothing to do.
if (IsLong() || !IsResolved()) {
return 0;
}
// Promote the short branch to long if the offset size is too small
// to hold the distance between location_ and target_.
if (GetOffsetSizeNeeded(location_, target_) > GetOffsetSize()) {
PromoteToLong();
uint32_t old_size = GetOldSize();
uint32_t new_size = GetSize();
CHECK_GT(new_size, old_size);
return new_size - old_size;
}
// The following logic is for debugging/testing purposes.
// Promote some short branches to long when it's not really required.
if (UNLIKELY(max_short_distance != std::numeric_limits<uint32_t>::max())) {
int64_t distance = static_cast<int64_t>(target_) - location_;
distance = (distance >= 0) ? distance : -distance;
if (distance >= max_short_distance) {
PromoteToLong();
uint32_t old_size = GetOldSize();
uint32_t new_size = GetSize();
CHECK_GT(new_size, old_size);
return new_size - old_size;
}
}
return 0;
}
uint32_t Mips64Assembler::Branch::GetOffsetLocation() const {
return location_ + branch_info_[type_].instr_offset * sizeof(uint32_t);
}
uint32_t Mips64Assembler::Branch::GetOffset() const {
CHECK(IsResolved());
uint32_t ofs_mask = 0xFFFFFFFF >> (32 - GetOffsetSize());
// Calculate the byte distance between instructions and also account for
// different PC-relative origins.
uint32_t offset_location = GetOffsetLocation();
if (type_ == kLiteralLong) {
// Special case for the ldpc instruction, whose address (PC) is rounded down to
// a multiple of 8 before adding the offset.
// Note, branch promotion has already taken care of aligning `target_` to an
// address that's a multiple of 8.
offset_location = RoundDown(offset_location, sizeof(uint64_t));
}
uint32_t offset = target_ - offset_location - branch_info_[type_].pc_org * sizeof(uint32_t);
// Prepare the offset for encoding into the instruction(s).
offset = (offset & ofs_mask) >> branch_info_[type_].offset_shift;
return offset;
}
Mips64Assembler::Branch* Mips64Assembler::GetBranch(uint32_t branch_id) {
CHECK_LT(branch_id, branches_.size());
return &branches_[branch_id];
}
const Mips64Assembler::Branch* Mips64Assembler::GetBranch(uint32_t branch_id) const {
CHECK_LT(branch_id, branches_.size());
return &branches_[branch_id];
}
void Mips64Assembler::Bind(Mips64Label* label) {
CHECK(!label->IsBound());
uint32_t bound_pc = buffer_.Size();
// Walk the list of branches referring to and preceding this label.
// Store the previously unknown target addresses in them.
while (label->IsLinked()) {
uint32_t branch_id = label->Position();
Branch* branch = GetBranch(branch_id);
branch->Resolve(bound_pc);
uint32_t branch_location = branch->GetLocation();
// Extract the location of the previous branch in the list (walking the list backwards;
// the previous branch ID was stored in the space reserved for this branch).
uint32_t prev = buffer_.Load<uint32_t>(branch_location);
// On to the previous branch in the list...
label->position_ = prev;
}
// Now make the label object contain its own location (relative to the end of the preceding
// branch, if any; it will be used by the branches referring to and following this label).
label->prev_branch_id_plus_one_ = branches_.size();
if (label->prev_branch_id_plus_one_) {
uint32_t branch_id = label->prev_branch_id_plus_one_ - 1;
const Branch* branch = GetBranch(branch_id);
bound_pc -= branch->GetEndLocation();
}
label->BindTo(bound_pc);
}
uint32_t Mips64Assembler::GetLabelLocation(const Mips64Label* label) const {
CHECK(label->IsBound());
uint32_t target = label->Position();
if (label->prev_branch_id_plus_one_) {
// Get label location based on the branch preceding it.
uint32_t branch_id = label->prev_branch_id_plus_one_ - 1;
const Branch* branch = GetBranch(branch_id);
target += branch->GetEndLocation();
}
return target;
}
uint32_t Mips64Assembler::GetAdjustedPosition(uint32_t old_position) {
// We can reconstruct the adjustment by going through all the branches from the beginning
// up to the old_position. Since we expect AdjustedPosition() to be called in a loop
// with increasing old_position, we can use the data from last AdjustedPosition() to
// continue where we left off and the whole loop should be O(m+n) where m is the number
// of positions to adjust and n is the number of branches.
if (old_position < last_old_position_) {
last_position_adjustment_ = 0;
last_old_position_ = 0;
last_branch_id_ = 0;
}
while (last_branch_id_ != branches_.size()) {
const Branch* branch = GetBranch(last_branch_id_);
if (branch->GetLocation() >= old_position + last_position_adjustment_) {
break;
}
last_position_adjustment_ += branch->GetSize() - branch->GetOldSize();
++last_branch_id_;
}
last_old_position_ = old_position;
return old_position + last_position_adjustment_;
}
void Mips64Assembler::FinalizeLabeledBranch(Mips64Label* label) {
uint32_t length = branches_.back().GetLength();
if (!label->IsBound()) {
// Branch forward (to a following label), distance is unknown.
// The first branch forward will contain 0, serving as the terminator of
// the list of forward-reaching branches.
Emit(label->position_);
length--;
// Now make the label object point to this branch
// (this forms a linked list of branches preceding this label).
uint32_t branch_id = branches_.size() - 1;
label->LinkTo(branch_id);
}
// Reserve space for the branch.
while (length--) {
Nop();
}
}
void Mips64Assembler::Buncond(Mips64Label* label) {
uint32_t target = label->IsBound() ? GetLabelLocation(label) : Branch::kUnresolved;
branches_.emplace_back(buffer_.Size(), target, /* is_call */ false);
FinalizeLabeledBranch(label);
}
void Mips64Assembler::Bcond(Mips64Label* label,
BranchCondition condition,
GpuRegister lhs,
GpuRegister rhs) {
// If lhs = rhs, this can be a NOP.
if (Branch::IsNop(condition, lhs, rhs)) {
return;
}
uint32_t target = label->IsBound() ? GetLabelLocation(label) : Branch::kUnresolved;
branches_.emplace_back(buffer_.Size(), target, condition, lhs, rhs);
FinalizeLabeledBranch(label);
}
void Mips64Assembler::Call(Mips64Label* label) {
uint32_t target = label->IsBound() ? GetLabelLocation(label) : Branch::kUnresolved;
branches_.emplace_back(buffer_.Size(), target, /* is_call */ true);
FinalizeLabeledBranch(label);
}
void Mips64Assembler::LoadLabelAddress(GpuRegister dest_reg, Mips64Label* label) {
// Label address loads are treated as pseudo branches since they require very similar handling.
DCHECK(!label->IsBound());
branches_.emplace_back(buffer_.Size(), dest_reg, Branch::kLabel);
FinalizeLabeledBranch(label);
}
Literal* Mips64Assembler::NewLiteral(size_t size, const uint8_t* data) {
// We don't support byte and half-word literals.
if (size == 4u) {
literals_.emplace_back(size, data);
return &literals_.back();
} else {
DCHECK_EQ(size, 8u);
long_literals_.emplace_back(size, data);
return &long_literals_.back();
}
}
void Mips64Assembler::LoadLiteral(GpuRegister dest_reg,
LoadOperandType load_type,
Literal* literal) {
// Literal loads are treated as pseudo branches since they require very similar handling.
Branch::Type literal_type;
switch (load_type) {
case kLoadWord:
DCHECK_EQ(literal->GetSize(), 4u);
literal_type = Branch::kLiteral;
break;
case kLoadUnsignedWord:
DCHECK_EQ(literal->GetSize(), 4u);
literal_type = Branch::kLiteralUnsigned;
break;
case kLoadDoubleword:
DCHECK_EQ(literal->GetSize(), 8u);
literal_type = Branch::kLiteralLong;
break;
default:
LOG(FATAL) << "Unexpected literal load type " << load_type;
UNREACHABLE();
}
Mips64Label* label = literal->GetLabel();
DCHECK(!label->IsBound());
branches_.emplace_back(buffer_.Size(), dest_reg, literal_type);
FinalizeLabeledBranch(label);
}
JumpTable* Mips64Assembler::CreateJumpTable(std::vector<Mips64Label*>&& labels) {
jump_tables_.emplace_back(std::move(labels));
JumpTable* table = &jump_tables_.back();
DCHECK(!table->GetLabel()->IsBound());
return table;
}
void Mips64Assembler::ReserveJumpTableSpace() {
if (!jump_tables_.empty()) {
for (JumpTable& table : jump_tables_) {
Mips64Label* label = table.GetLabel();
Bind(label);
// Bulk ensure capacity, as this may be large.
size_t orig_size = buffer_.Size();
size_t required_capacity = orig_size + table.GetSize();
if (required_capacity > buffer_.Capacity()) {
buffer_.ExtendCapacity(required_capacity);
}
#ifndef NDEBUG
buffer_.has_ensured_capacity_ = true;
#endif
// Fill the space with dummy data as the data is not final
// until the branches have been promoted. And we shouldn't
// be moving uninitialized data during branch promotion.
for (size_t cnt = table.GetData().size(), i = 0; i < cnt; i++) {
buffer_.Emit<uint32_t>(0x1abe1234u);
}
#ifndef NDEBUG
buffer_.has_ensured_capacity_ = false;
#endif
}
}
}
void Mips64Assembler::EmitJumpTables() {
if (!jump_tables_.empty()) {
CHECK(!overwriting_);
// Switch from appending instructions at the end of the buffer to overwriting
// existing instructions (here, jump tables) in the buffer.
overwriting_ = true;
for (JumpTable& table : jump_tables_) {
Mips64Label* table_label = table.GetLabel();
uint32_t start = GetLabelLocation(table_label);
overwrite_location_ = start;
for (Mips64Label* target : table.GetData()) {
CHECK_EQ(buffer_.Load<uint32_t>(overwrite_location_), 0x1abe1234u);
// The table will contain target addresses relative to the table start.
uint32_t offset = GetLabelLocation(target) - start;
Emit(offset);
}
}
overwriting_ = false;
}
}
void Mips64Assembler::EmitLiterals() {
if (!literals_.empty()) {
for (Literal& literal : literals_) {
Mips64Label* label = literal.GetLabel();
Bind(label);
AssemblerBuffer::EnsureCapacity ensured(&buffer_);
DCHECK_EQ(literal.GetSize(), 4u);
for (size_t i = 0, size = literal.GetSize(); i != size; ++i) {
buffer_.Emit<uint8_t>(literal.GetData()[i]);
}
}
}
if (!long_literals_.empty()) {
// Reserve 4 bytes for potential alignment. If after the branch promotion the 64-bit
// literals don't end up 8-byte-aligned, they will be moved down 4 bytes.
Emit(0); // NOP.
for (Literal& literal : long_literals_) {
Mips64Label* label = literal.GetLabel();
Bind(label);
AssemblerBuffer::EnsureCapacity ensured(&buffer_);
DCHECK_EQ(literal.GetSize(), 8u);
for (size_t i = 0, size = literal.GetSize(); i != size; ++i) {
buffer_.Emit<uint8_t>(literal.GetData()[i]);
}
}
}
}
void Mips64Assembler::PromoteBranches() {
// Promote short branches to long as necessary.
bool changed;
do {
changed = false;
for (auto& branch : branches_) {
CHECK(branch.IsResolved());
uint32_t delta = branch.PromoteIfNeeded();
// If this branch has been promoted and needs to expand in size,
// relocate all branches by the expansion size.
if (delta) {
changed = true;
uint32_t expand_location = branch.GetLocation();
for (auto& branch2 : branches_) {
branch2.Relocate(expand_location, delta);
}
}
}
} while (changed);
// Account for branch expansion by resizing the code buffer
// and moving the code in it to its final location.
size_t branch_count = branches_.size();
if (branch_count > 0) {
// Resize.
Branch& last_branch = branches_[branch_count - 1];
uint32_t size_delta = last_branch.GetEndLocation() - last_branch.GetOldEndLocation();
uint32_t old_size = buffer_.Size();
buffer_.Resize(old_size + size_delta);
// Move the code residing between branch placeholders.
uint32_t end = old_size;
for (size_t i = branch_count; i > 0; ) {
Branch& branch = branches_[--i];
uint32_t size = end - branch.GetOldEndLocation();
buffer_.Move(branch.GetEndLocation(), branch.GetOldEndLocation(), size);
end = branch.GetOldLocation();
}
}
// Align 64-bit literals by moving them down by 4 bytes if needed.
// This will reduce the PC-relative distance, which should be safe for both near and far literals.
if (!long_literals_.empty()) {
uint32_t first_literal_location = GetLabelLocation(long_literals_.front().GetLabel());
size_t lit_size = long_literals_.size() * sizeof(uint64_t);
size_t buf_size = buffer_.Size();
// 64-bit literals must be at the very end of the buffer.
CHECK_EQ(first_literal_location + lit_size, buf_size);
if (!IsAligned<sizeof(uint64_t)>(first_literal_location)) {
buffer_.Move(first_literal_location - sizeof(uint32_t), first_literal_location, lit_size);
// The 4 reserved bytes proved useless, reduce the buffer size.
buffer_.Resize(buf_size - sizeof(uint32_t));
// Reduce target addresses in literal and address loads by 4 bytes in order for correct
// offsets from PC to be generated.
for (auto& branch : branches_) {
uint32_t target = branch.GetTarget();
if (target >= first_literal_location) {
branch.Resolve(target - sizeof(uint32_t));
}
}
// If after this we ever call GetLabelLocation() to get the location of a 64-bit literal,
// we need to adjust the location of the literal's label as well.
for (Literal& literal : long_literals_) {
// Bound label's position is negative, hence incrementing it instead of decrementing.
literal.GetLabel()->position_ += sizeof(uint32_t);
}
}
}
}
// Note: make sure branch_info_[] and EmitBranch() are kept synchronized.
const Mips64Assembler::Branch::BranchInfo Mips64Assembler::Branch::branch_info_[] = {
// Short branches.
{ 1, 0, 1, Mips64Assembler::Branch::kOffset28, 2 }, // kUncondBranch
{ 2, 0, 1, Mips64Assembler::Branch::kOffset18, 2 }, // kCondBranch
// Exception: kOffset23 for beqzc/bnezc
{ 1, 0, 1, Mips64Assembler::Branch::kOffset28, 2 }, // kCall
// Near label.
{ 1, 0, 0, Mips64Assembler::Branch::kOffset21, 2 }, // kLabel
// Near literals.
{ 1, 0, 0, Mips64Assembler::Branch::kOffset21, 2 }, // kLiteral
{ 1, 0, 0, Mips64Assembler::Branch::kOffset21, 2 }, // kLiteralUnsigned
{ 1, 0, 0, Mips64Assembler::Branch::kOffset21, 3 }, // kLiteralLong
// Long branches.
{ 2, 0, 0, Mips64Assembler::Branch::kOffset32, 0 }, // kLongUncondBranch
{ 3, 1, 0, Mips64Assembler::Branch::kOffset32, 0 }, // kLongCondBranch
{ 2, 0, 0, Mips64Assembler::Branch::kOffset32, 0 }, // kLongCall
// Far label.
{ 2, 0, 0, Mips64Assembler::Branch::kOffset32, 0 }, // kFarLabel
// Far literals.
{ 2, 0, 0, Mips64Assembler::Branch::kOffset32, 0 }, // kFarLiteral
{ 2, 0, 0, Mips64Assembler::Branch::kOffset32, 0 }, // kFarLiteralUnsigned
{ 2, 0, 0, Mips64Assembler::Branch::kOffset32, 0 }, // kFarLiteralLong
};
// Note: make sure branch_info_[] and EmitBranch() are kept synchronized.
void Mips64Assembler::EmitBranch(Mips64Assembler::Branch* branch) {
CHECK(overwriting_);
overwrite_location_ = branch->GetLocation();
uint32_t offset = branch->GetOffset();
BranchCondition condition = branch->GetCondition();
GpuRegister lhs = branch->GetLeftRegister();
GpuRegister rhs = branch->GetRightRegister();
switch (branch->GetType()) {
// Short branches.
case Branch::kUncondBranch:
CHECK_EQ(overwrite_location_, branch->GetOffsetLocation());
Bc(offset);
break;
case Branch::kCondBranch:
CHECK_EQ(overwrite_location_, branch->GetOffsetLocation());
EmitBcondc(condition, lhs, rhs, offset);
Nop(); // TODO: improve by filling the forbidden/delay slot.
break;
case Branch::kCall:
CHECK_EQ(overwrite_location_, branch->GetOffsetLocation());
Balc(offset);
break;
// Near label.
case Branch::kLabel:
CHECK_EQ(overwrite_location_, branch->GetOffsetLocation());
Addiupc(lhs, offset);
break;
// Near literals.
case Branch::kLiteral:
CHECK_EQ(overwrite_location_, branch->GetOffsetLocation());
Lwpc(lhs, offset);
break;
case Branch::kLiteralUnsigned:
CHECK_EQ(overwrite_location_, branch->GetOffsetLocation());
Lwupc(lhs, offset);
break;
case Branch::kLiteralLong:
CHECK_EQ(overwrite_location_, branch->GetOffsetLocation());
Ldpc(lhs, offset);
break;
// Long branches.
case Branch::kLongUncondBranch:
offset += (offset & 0x8000) << 1; // Account for sign extension in jic.
CHECK_EQ(overwrite_location_, branch->GetOffsetLocation());
Auipc(AT, High16Bits(offset));
Jic(AT, Low16Bits(offset));
break;
case Branch::kLongCondBranch:
EmitBcondc(Branch::OppositeCondition(condition), lhs, rhs, 2);
offset += (offset & 0x8000) << 1; // Account for sign extension in jic.
CHECK_EQ(overwrite_location_, branch->GetOffsetLocation());
Auipc(AT, High16Bits(offset));
Jic(AT, Low16Bits(offset));
break;
case Branch::kLongCall:
offset += (offset & 0x8000) << 1; // Account for sign extension in jialc.
CHECK_EQ(overwrite_location_, branch->GetOffsetLocation());
Auipc(AT, High16Bits(offset));
Jialc(AT, Low16Bits(offset));
break;
// Far label.
case Branch::kFarLabel:
offset += (offset & 0x8000) << 1; // Account for sign extension in daddiu.
CHECK_EQ(overwrite_location_, branch->GetOffsetLocation());
Auipc(AT, High16Bits(offset));
Daddiu(lhs, AT, Low16Bits(offset));
break;
// Far literals.
case Branch::kFarLiteral:
offset += (offset & 0x8000) << 1; // Account for sign extension in lw.
CHECK_EQ(overwrite_location_, branch->GetOffsetLocation());
Auipc(AT, High16Bits(offset));
Lw(lhs, AT, Low16Bits(offset));
break;
case Branch::kFarLiteralUnsigned:
offset += (offset & 0x8000) << 1; // Account for sign extension in lwu.
CHECK_EQ(overwrite_location_, branch->GetOffsetLocation());
Auipc(AT, High16Bits(offset));
Lwu(lhs, AT, Low16Bits(offset));
break;
case Branch::kFarLiteralLong:
offset += (offset & 0x8000) << 1; // Account for sign extension in ld.
CHECK_EQ(overwrite_location_, branch->GetOffsetLocation());
Auipc(AT, High16Bits(offset));
Ld(lhs, AT, Low16Bits(offset));
break;
}
CHECK_EQ(overwrite_location_, branch->GetEndLocation());
CHECK_LT(branch->GetSize(), static_cast<uint32_t>(Branch::kMaxBranchSize));
}
void Mips64Assembler::Bc(Mips64Label* label) {
Buncond(label);
}
void Mips64Assembler::Balc(Mips64Label* label) {
Call(label);
}
void Mips64Assembler::Bltc(GpuRegister rs, GpuRegister rt, Mips64Label* label) {
Bcond(label, kCondLT, rs, rt);
}
void Mips64Assembler::Bltzc(GpuRegister rt, Mips64Label* label) {
Bcond(label, kCondLTZ, rt);
}
void Mips64Assembler::Bgtzc(GpuRegister rt, Mips64Label* label) {
Bcond(label, kCondGTZ, rt);
}
void Mips64Assembler::Bgec(GpuRegister rs, GpuRegister rt, Mips64Label* label) {
Bcond(label, kCondGE, rs, rt);
}
void Mips64Assembler::Bgezc(GpuRegister rt, Mips64Label* label) {
Bcond(label, kCondGEZ, rt);
}
void Mips64Assembler::Blezc(GpuRegister rt, Mips64Label* label) {
Bcond(label, kCondLEZ, rt);
}
void Mips64Assembler::Bltuc(GpuRegister rs, GpuRegister rt, Mips64Label* label) {
Bcond(label, kCondLTU, rs, rt);
}
void Mips64Assembler::Bgeuc(GpuRegister rs, GpuRegister rt, Mips64Label* label) {
Bcond(label, kCondGEU, rs, rt);
}
void Mips64Assembler::Beqc(GpuRegister rs, GpuRegister rt, Mips64Label* label) {
Bcond(label, kCondEQ, rs, rt);
}
void Mips64Assembler::Bnec(GpuRegister rs, GpuRegister rt, Mips64Label* label) {
Bcond(label, kCondNE, rs, rt);
}
void Mips64Assembler::Beqzc(GpuRegister rs, Mips64Label* label) {
Bcond(label, kCondEQZ, rs);
}
void Mips64Assembler::Bnezc(GpuRegister rs, Mips64Label* label) {
Bcond(label, kCondNEZ, rs);
}
void Mips64Assembler::Bc1eqz(FpuRegister ft, Mips64Label* label) {
Bcond(label, kCondF, static_cast<GpuRegister>(ft), ZERO);
}
void Mips64Assembler::Bc1nez(FpuRegister ft, Mips64Label* label) {
Bcond(label, kCondT, static_cast<GpuRegister>(ft), ZERO);
}
void Mips64Assembler::AdjustBaseAndOffset(GpuRegister& base,
int32_t& offset,
bool is_doubleword) {
// This method is used to adjust the base register and offset pair
// for a load/store when the offset doesn't fit into int16_t.
// It is assumed that `base + offset` is sufficiently aligned for memory
// operands that are machine word in size or smaller. For doubleword-sized
// operands it's assumed that `base` is a multiple of 8, while `offset`
// may be a multiple of 4 (e.g. 4-byte-aligned long and double arguments
// and spilled variables on the stack accessed relative to the stack
// pointer register).
// We preserve the "alignment" of `offset` by adjusting it by a multiple of 8.
CHECK_NE(base, AT); // Must not overwrite the register `base` while loading `offset`.
bool doubleword_aligned = IsAligned<kMips64DoublewordSize>(offset);
bool two_accesses = is_doubleword && !doubleword_aligned;
// IsInt<16> must be passed a signed value, hence the static cast below.
if (IsInt<16>(offset) &&
(!two_accesses || IsInt<16>(static_cast<int32_t>(offset + kMips64WordSize)))) {
// Nothing to do: `offset` (and, if needed, `offset + 4`) fits into int16_t.
return;
}
// Remember the "(mis)alignment" of `offset`, it will be checked at the end.
uint32_t misalignment = offset & (kMips64DoublewordSize - 1);
// First, see if `offset` can be represented as a sum of two 16-bit signed
// offsets. This can save an instruction.
// To simplify matters, only do this for a symmetric range of offsets from
// about -64KB to about +64KB, allowing further addition of 4 when accessing
// 64-bit variables with two 32-bit accesses.
constexpr int32_t kMinOffsetForSimpleAdjustment = 0x7ff8; // Max int16_t that's a multiple of 8.
constexpr int32_t kMaxOffsetForSimpleAdjustment = 2 * kMinOffsetForSimpleAdjustment;
if (0 <= offset && offset <= kMaxOffsetForSimpleAdjustment) {
Daddiu(AT, base, kMinOffsetForSimpleAdjustment);
offset -= kMinOffsetForSimpleAdjustment;
} else if (-kMaxOffsetForSimpleAdjustment <= offset && offset < 0) {
Daddiu(AT, base, -kMinOffsetForSimpleAdjustment);
offset += kMinOffsetForSimpleAdjustment;
} else {
// In more complex cases take advantage of the daui instruction, e.g.:
// daui AT, base, offset_high
// [dahi AT, 1] // When `offset` is close to +2GB.
// lw reg_lo, offset_low(AT)
// [lw reg_hi, (offset_low+4)(AT)] // If misaligned 64-bit load.
// or when offset_low+4 overflows int16_t:
// daui AT, base, offset_high
// daddiu AT, AT, 8
// lw reg_lo, (offset_low-8)(AT)
// lw reg_hi, (offset_low-4)(AT)
int16_t offset_low = Low16Bits(offset);
int32_t offset_low32 = offset_low;
int16_t offset_high = High16Bits(offset);
bool increment_hi16 = offset_low < 0;
bool overflow_hi16 = false;
if (increment_hi16) {
offset_high++;
overflow_hi16 = (offset_high == -32768);
}
Daui(AT, base, offset_high);
if (overflow_hi16) {
Dahi(AT, 1);
}
if (two_accesses && !IsInt<16>(static_cast<int32_t>(offset_low32 + kMips64WordSize))) {
// Avoid overflow in the 16-bit offset of the load/store instruction when adding 4.
Daddiu(AT, AT, kMips64DoublewordSize);
offset_low32 -= kMips64DoublewordSize;
}
offset = offset_low32;
}
base = AT;
CHECK(IsInt<16>(offset));
if (two_accesses) {
CHECK(IsInt<16>(static_cast<int32_t>(offset + kMips64WordSize)));
}
CHECK_EQ(misalignment, offset & (kMips64DoublewordSize - 1));
}
void Mips64Assembler::AdjustBaseOffsetAndElementSizeShift(GpuRegister& base,
int32_t& offset,
int& element_size_shift) {
// This method is used to adjust the base register, offset and element_size_shift
// for a vector load/store when the offset doesn't fit into allowed number of bits.
// MSA ld.df and st.df instructions take signed offsets as arguments, but maximum
// offset is dependant on the size of the data format df (10-bit offsets for ld.b,
// 11-bit for ld.h, 12-bit for ld.w and 13-bit for ld.d).
// If element_size_shift is non-negative at entry, it won't be changed, but offset
// will be checked for appropriate alignment. If negative at entry, it will be
// adjusted based on offset for maximum fit.
// It's assumed that `base` is a multiple of 8.
CHECK_NE(base, AT); // Must not overwrite the register `base` while loading `offset`.
if (element_size_shift >= 0) {
CHECK_LE(element_size_shift, TIMES_8);
CHECK_GE(JAVASTYLE_CTZ(offset), element_size_shift);
} else if (IsAligned<kMips64DoublewordSize>(offset)) {
element_size_shift = TIMES_8;
} else if (IsAligned<kMips64WordSize>(offset)) {
element_size_shift = TIMES_4;
} else if (IsAligned<kMips64HalfwordSize>(offset)) {
element_size_shift = TIMES_2;
} else {
element_size_shift = TIMES_1;
}
const int low_len = 10 + element_size_shift; // How many low bits of `offset` ld.df/st.df
// will take.
int16_t low = offset & ((1 << low_len) - 1); // Isolate these bits.
low -= (low & (1 << (low_len - 1))) << 1; // Sign-extend these bits.
if (low == offset) {
return; // `offset` fits into ld.df/st.df.
}
// First, see if `offset` can be represented as a sum of two signed offsets.
// This can save an instruction.
// Max int16_t that's a multiple of element size.
const int32_t kMaxDeltaForSimpleAdjustment = 0x8000 - (1 << element_size_shift);
// Max ld.df/st.df offset that's a multiple of element size.
const int32_t kMaxLoadStoreOffset = 0x1ff << element_size_shift;
const int32_t kMaxOffsetForSimpleAdjustment = kMaxDeltaForSimpleAdjustment + kMaxLoadStoreOffset;
if (IsInt<16>(offset)) {
Daddiu(AT, base, offset);
offset = 0;
} else if (0 <= offset && offset <= kMaxOffsetForSimpleAdjustment) {
Daddiu(AT, base, kMaxDeltaForSimpleAdjustment);
offset -= kMaxDeltaForSimpleAdjustment;
} else if (-kMaxOffsetForSimpleAdjustment <= offset && offset < 0) {
Daddiu(AT, base, -kMaxDeltaForSimpleAdjustment);
offset += kMaxDeltaForSimpleAdjustment;
} else {
// Let's treat `offset` as 64-bit to simplify handling of sign
// extensions in the instructions that supply its smaller signed parts.
//
// 16-bit or smaller parts of `offset`:
// |63 top 48|47 hi 32|31 upper 16|15 mid 13-10|12-9 low 0|
//
// Instructions that supply each part as a signed integer addend:
// |dati |dahi |daui |daddiu |ld.df/st.df |
//
// `top` is always 0, so dati isn't used.
// `hi` is 1 when `offset` is close to +2GB and 0 otherwise.
uint64_t tmp = static_cast<uint64_t>(offset) - low; // Exclude `low` from the rest of `offset`
// (accounts for sign of `low`).
tmp += (tmp & (UINT64_C(1) << 15)) << 1; // Account for sign extension in daddiu.
tmp += (tmp & (UINT64_C(1) << 31)) << 1; // Account for sign extension in daui.
int16_t mid = Low16Bits(tmp);
int16_t upper = High16Bits(tmp);
int16_t hi = Low16Bits(High32Bits(tmp));
Daui(AT, base, upper);
if (hi != 0) {
CHECK_EQ(hi, 1);
Dahi(AT, hi);
}
if (mid != 0) {
Daddiu(AT, AT, mid);
}
offset = low;
}
base = AT;
CHECK_GE(JAVASTYLE_CTZ(offset), element_size_shift);
CHECK(IsInt<10>(offset >> element_size_shift));
}
void Mips64Assembler::LoadFromOffset(LoadOperandType type,
GpuRegister reg,
GpuRegister base,
int32_t offset) {
LoadFromOffset<>(type, reg, base, offset);
}
void Mips64Assembler::LoadFpuFromOffset(LoadOperandType type,
FpuRegister reg,
GpuRegister base,
int32_t offset) {
LoadFpuFromOffset<>(type, reg, base, offset);
}
void Mips64Assembler::EmitLoad(ManagedRegister m_dst, GpuRegister src_register, int32_t src_offset,
size_t size) {
Mips64ManagedRegister dst = m_dst.AsMips64();
if (dst.IsNoRegister()) {
CHECK_EQ(0u, size) << dst;
} else if (dst.IsGpuRegister()) {
if (size == 4) {
LoadFromOffset(kLoadWord, dst.AsGpuRegister(), src_register, src_offset);
} else if (size == 8) {
CHECK_EQ(8u, size) << dst;
LoadFromOffset(kLoadDoubleword, dst.AsGpuRegister(), src_register, src_offset);
} else {
UNIMPLEMENTED(FATAL) << "We only support Load() of size 4 and 8";
}
} else if (dst.IsFpuRegister()) {
if (size == 4) {
CHECK_EQ(4u, size) << dst;
LoadFpuFromOffset(kLoadWord, dst.AsFpuRegister(), src_register, src_offset);
} else if (size == 8) {
CHECK_EQ(8u, size) << dst;
LoadFpuFromOffset(kLoadDoubleword, dst.AsFpuRegister(), src_register, src_offset);
} else {
UNIMPLEMENTED(FATAL) << "We only support Load() of size 4 and 8";
}
}
}
void Mips64Assembler::StoreToOffset(StoreOperandType type,
GpuRegister reg,
GpuRegister base,
int32_t offset) {
StoreToOffset<>(type, reg, base, offset);
}
void Mips64Assembler::StoreFpuToOffset(StoreOperandType type,
FpuRegister reg,
GpuRegister base,
int32_t offset) {
StoreFpuToOffset<>(type, reg, base, offset);
}
static dwarf::Reg DWARFReg(GpuRegister reg) {
return dwarf::Reg::Mips64Core(static_cast<int>(reg));
}
constexpr size_t kFramePointerSize = 8;
void Mips64Assembler::BuildFrame(size_t frame_size,
ManagedRegister method_reg,
ArrayRef<const ManagedRegister> callee_save_regs,
const ManagedRegisterEntrySpills& entry_spills) {
CHECK_ALIGNED(frame_size, kStackAlignment);
DCHECK(!overwriting_);
// Increase frame to required size.
IncreaseFrameSize(frame_size);
// Push callee saves and return address
int stack_offset = frame_size - kFramePointerSize;
StoreToOffset(kStoreDoubleword, RA, SP, stack_offset);
cfi_.RelOffset(DWARFReg(RA), stack_offset);
for (int i = callee_save_regs.size() - 1; i >= 0; --i) {
stack_offset -= kFramePointerSize;
GpuRegister reg = callee_save_regs[i].AsMips64().AsGpuRegister();
StoreToOffset(kStoreDoubleword, reg, SP, stack_offset);
cfi_.RelOffset(DWARFReg(reg), stack_offset);
}
// Write out Method*.
StoreToOffset(kStoreDoubleword, method_reg.AsMips64().AsGpuRegister(), SP, 0);
// Write out entry spills.
int32_t offset = frame_size + kFramePointerSize;
for (size_t i = 0; i < entry_spills.size(); ++i) {
Mips64ManagedRegister reg = entry_spills[i].AsMips64();
ManagedRegisterSpill spill = entry_spills.at(i);
int32_t size = spill.getSize();
if (reg.IsNoRegister()) {
// only increment stack offset.
offset += size;
} else if (reg.IsFpuRegister()) {
StoreFpuToOffset((size == 4) ? kStoreWord : kStoreDoubleword,
reg.AsFpuRegister(), SP, offset);
offset += size;
} else if (reg.IsGpuRegister()) {
StoreToOffset((size == 4) ? kStoreWord : kStoreDoubleword,
reg.AsGpuRegister(), SP, offset);
offset += size;
}
}
}
void Mips64Assembler::RemoveFrame(size_t frame_size,
ArrayRef<const ManagedRegister> callee_save_regs) {
CHECK_ALIGNED(frame_size, kStackAlignment);
DCHECK(!overwriting_);
cfi_.RememberState();
// Pop callee saves and return address
int stack_offset = frame_size - (callee_save_regs.size() * kFramePointerSize) - kFramePointerSize;
for (size_t i = 0; i < callee_save_regs.size(); ++i) {
GpuRegister reg = callee_save_regs[i].AsMips64().AsGpuRegister();
LoadFromOffset(kLoadDoubleword, reg, SP, stack_offset);
cfi_.Restore(DWARFReg(reg));
stack_offset += kFramePointerSize;
}
LoadFromOffset(kLoadDoubleword, RA, SP, stack_offset);
cfi_.Restore(DWARFReg(RA));
// Decrease frame to required size.
DecreaseFrameSize(frame_size);
// Then jump to the return address.
Jr(RA);
Nop();
// The CFI should be restored for any code that follows the exit block.
cfi_.RestoreState();
cfi_.DefCFAOffset(frame_size);
}
void Mips64Assembler::IncreaseFrameSize(size_t adjust) {
CHECK_ALIGNED(adjust, kFramePointerSize);
DCHECK(!overwriting_);
Daddiu64(SP, SP, static_cast<int32_t>(-adjust));
cfi_.AdjustCFAOffset(adjust);
}
void Mips64Assembler::DecreaseFrameSize(size_t adjust) {
CHECK_ALIGNED(adjust, kFramePointerSize);
DCHECK(!overwriting_);
Daddiu64(SP, SP, static_cast<int32_t>(adjust));
cfi_.AdjustCFAOffset(-adjust);
}
void Mips64Assembler::Store(FrameOffset dest, ManagedRegister msrc, size_t size) {
Mips64ManagedRegister src = msrc.AsMips64();
if (src.IsNoRegister()) {
CHECK_EQ(0u, size);
} else if (src.IsGpuRegister()) {
CHECK(size == 4 || size == 8) << size;
if (size == 8) {
StoreToOffset(kStoreDoubleword, src.AsGpuRegister(), SP, dest.Int32Value());
} else if (size == 4) {
StoreToOffset(kStoreWord, src.AsGpuRegister(), SP, dest.Int32Value());
} else {
UNIMPLEMENTED(FATAL) << "We only support Store() of size 4 and 8";
}
} else if (src.IsFpuRegister()) {
CHECK(size == 4 || size == 8) << size;
if (size == 8) {
StoreFpuToOffset(kStoreDoubleword, src.AsFpuRegister(), SP, dest.Int32Value());
} else if (size == 4) {
StoreFpuToOffset(kStoreWord, src.AsFpuRegister(), SP, dest.Int32Value());
} else {
UNIMPLEMENTED(FATAL) << "We only support Store() of size 4 and 8";
}
}
}
void Mips64Assembler::StoreRef(FrameOffset dest, ManagedRegister msrc) {
Mips64ManagedRegister src = msrc.AsMips64();
CHECK(src.IsGpuRegister());
StoreToOffset(kStoreWord, src.AsGpuRegister(), SP, dest.Int32Value());
}
void Mips64Assembler::StoreRawPtr(FrameOffset dest, ManagedRegister msrc) {
Mips64ManagedRegister src = msrc.AsMips64();
CHECK(src.IsGpuRegister());
StoreToOffset(kStoreDoubleword, src.AsGpuRegister(), SP, dest.Int32Value());
}
void Mips64Assembler::StoreImmediateToFrame(FrameOffset dest, uint32_t imm,
ManagedRegister mscratch) {
Mips64ManagedRegister scratch = mscratch.AsMips64();
CHECK(scratch.IsGpuRegister()) << scratch;
LoadConst32(scratch.AsGpuRegister(), imm);
StoreToOffset(kStoreWord, scratch.AsGpuRegister(), SP, dest.Int32Value());
}
void Mips64Assembler::StoreStackOffsetToThread(ThreadOffset64 thr_offs,
FrameOffset fr_offs,
ManagedRegister mscratch) {
Mips64ManagedRegister scratch = mscratch.AsMips64();
CHECK(scratch.IsGpuRegister()) << scratch;
Daddiu64(scratch.AsGpuRegister(), SP, fr_offs.Int32Value());
StoreToOffset(kStoreDoubleword, scratch.AsGpuRegister(), S1, thr_offs.Int32Value());
}
void Mips64Assembler::StoreStackPointerToThread(ThreadOffset64 thr_offs) {
StoreToOffset(kStoreDoubleword, SP, S1, thr_offs.Int32Value());
}
void Mips64Assembler::StoreSpanning(FrameOffset dest, ManagedRegister msrc,
FrameOffset in_off, ManagedRegister mscratch) {
Mips64ManagedRegister src = msrc.AsMips64();
Mips64ManagedRegister scratch = mscratch.AsMips64();
StoreToOffset(kStoreDoubleword, src.AsGpuRegister(), SP, dest.Int32Value());
LoadFromOffset(kLoadDoubleword, scratch.AsGpuRegister(), SP, in_off.Int32Value());
StoreToOffset(kStoreDoubleword, scratch.AsGpuRegister(), SP, dest.Int32Value() + 8);
}
void Mips64Assembler::Load(ManagedRegister mdest, FrameOffset src, size_t size) {
return EmitLoad(mdest, SP, src.Int32Value(), size);
}
void Mips64Assembler::LoadFromThread(ManagedRegister mdest, ThreadOffset64 src, size_t size) {
return EmitLoad(mdest, S1, src.Int32Value(), size);
}
void Mips64Assembler::LoadRef(ManagedRegister mdest, FrameOffset src) {
Mips64ManagedRegister dest = mdest.AsMips64();
CHECK(dest.IsGpuRegister());
LoadFromOffset(kLoadUnsignedWord, dest.AsGpuRegister(), SP, src.Int32Value());
}
void Mips64Assembler::LoadRef(ManagedRegister mdest, ManagedRegister base, MemberOffset offs,
bool unpoison_reference) {
Mips64ManagedRegister dest = mdest.AsMips64();
CHECK(dest.IsGpuRegister() && base.AsMips64().IsGpuRegister());
LoadFromOffset(kLoadUnsignedWord, dest.AsGpuRegister(),
base.AsMips64().AsGpuRegister(), offs.Int32Value());
if (unpoison_reference) {
MaybeUnpoisonHeapReference(dest.AsGpuRegister());
}
}
void Mips64Assembler::LoadRawPtr(ManagedRegister mdest, ManagedRegister base,
Offset offs) {
Mips64ManagedRegister dest = mdest.AsMips64();
CHECK(dest.IsGpuRegister() && base.AsMips64().IsGpuRegister());
LoadFromOffset(kLoadDoubleword, dest.AsGpuRegister(),
base.AsMips64().AsGpuRegister(), offs.Int32Value());
}
void Mips64Assembler::LoadRawPtrFromThread(ManagedRegister mdest, ThreadOffset64 offs) {
Mips64ManagedRegister dest = mdest.AsMips64();
CHECK(dest.IsGpuRegister());
LoadFromOffset(kLoadDoubleword, dest.AsGpuRegister(), S1, offs.Int32Value());
}
void Mips64Assembler::SignExtend(ManagedRegister mreg ATTRIBUTE_UNUSED,
size_t size ATTRIBUTE_UNUSED) {
UNIMPLEMENTED(FATAL) << "No sign extension necessary for MIPS64";
}
void Mips64Assembler::ZeroExtend(ManagedRegister mreg ATTRIBUTE_UNUSED,
size_t size ATTRIBUTE_UNUSED) {
UNIMPLEMENTED(FATAL) << "No zero extension necessary for MIPS64";
}
void Mips64Assembler::Move(ManagedRegister mdest, ManagedRegister msrc, size_t size) {
Mips64ManagedRegister dest = mdest.AsMips64();
Mips64ManagedRegister src = msrc.AsMips64();
if (!dest.Equals(src)) {
if (dest.IsGpuRegister()) {
CHECK(src.IsGpuRegister()) << src;
Move(dest.AsGpuRegister(), src.AsGpuRegister());
} else if (dest.IsFpuRegister()) {
CHECK(src.IsFpuRegister()) << src;
if (size == 4) {
MovS(dest.AsFpuRegister(), src.AsFpuRegister());
} else if (size == 8) {
MovD(dest.AsFpuRegister(), src.AsFpuRegister());
} else {
UNIMPLEMENTED(FATAL) << "We only support Copy() of size 4 and 8";
}
}
}
}
void Mips64Assembler::CopyRef(FrameOffset dest, FrameOffset src,
ManagedRegister mscratch) {
Mips64ManagedRegister scratch = mscratch.AsMips64();
CHECK(scratch.IsGpuRegister()) << scratch;
LoadFromOffset(kLoadWord, scratch.AsGpuRegister(), SP, src.Int32Value());
StoreToOffset(kStoreWord, scratch.AsGpuRegister(), SP, dest.Int32Value());
}
void Mips64Assembler::CopyRawPtrFromThread(FrameOffset fr_offs,
ThreadOffset64 thr_offs,
ManagedRegister mscratch) {
Mips64ManagedRegister scratch = mscratch.AsMips64();
CHECK(scratch.IsGpuRegister()) << scratch;
LoadFromOffset(kLoadDoubleword, scratch.AsGpuRegister(), S1, thr_offs.Int32Value());
StoreToOffset(kStoreDoubleword, scratch.AsGpuRegister(), SP, fr_offs.Int32Value());
}
void Mips64Assembler::CopyRawPtrToThread(ThreadOffset64 thr_offs,
FrameOffset fr_offs,
ManagedRegister mscratch) {
Mips64ManagedRegister scratch = mscratch.AsMips64();
CHECK(scratch.IsGpuRegister()) << scratch;
LoadFromOffset(kLoadDoubleword, scratch.AsGpuRegister(),
SP, fr_offs.Int32Value());
StoreToOffset(kStoreDoubleword, scratch.AsGpuRegister(),
S1, thr_offs.Int32Value());
}
void Mips64Assembler::Copy(FrameOffset dest, FrameOffset src,
ManagedRegister mscratch, size_t size) {
Mips64ManagedRegister scratch = mscratch.AsMips64();
CHECK(scratch.IsGpuRegister()) << scratch;
CHECK(size == 4 || size == 8) << size;
if (size == 4) {
LoadFromOffset(kLoadWord, scratch.AsGpuRegister(), SP, src.Int32Value());
StoreToOffset(kStoreDoubleword, scratch.AsGpuRegister(), SP, dest.Int32Value());
} else if (size == 8) {
LoadFromOffset(kLoadDoubleword, scratch.AsGpuRegister(), SP, src.Int32Value());
StoreToOffset(kStoreDoubleword, scratch.AsGpuRegister(), SP, dest.Int32Value());
} else {
UNIMPLEMENTED(FATAL) << "We only support Copy() of size 4 and 8";
}
}
void Mips64Assembler::Copy(FrameOffset dest, ManagedRegister src_base, Offset src_offset,
ManagedRegister mscratch, size_t size) {
GpuRegister scratch = mscratch.AsMips64().AsGpuRegister();
CHECK(size == 4 || size == 8) << size;
if (size == 4) {
LoadFromOffset(kLoadWord, scratch, src_base.AsMips64().AsGpuRegister(),
src_offset.Int32Value());
StoreToOffset(kStoreDoubleword, scratch, SP, dest.Int32Value());
} else if (size == 8) {
LoadFromOffset(kLoadDoubleword, scratch, src_base.AsMips64().AsGpuRegister(),
src_offset.Int32Value());
StoreToOffset(kStoreDoubleword, scratch, SP, dest.Int32Value());
} else {
UNIMPLEMENTED(FATAL) << "We only support Copy() of size 4 and 8";
}
}
void Mips64Assembler::Copy(ManagedRegister dest_base, Offset dest_offset, FrameOffset src,
ManagedRegister mscratch, size_t size) {
GpuRegister scratch = mscratch.AsMips64().AsGpuRegister();
CHECK(size == 4 || size == 8) << size;
if (size == 4) {
LoadFromOffset(kLoadWord, scratch, SP, src.Int32Value());
StoreToOffset(kStoreDoubleword, scratch, dest_base.AsMips64().AsGpuRegister(),
dest_offset.Int32Value());
} else if (size == 8) {
LoadFromOffset(kLoadDoubleword, scratch, SP, src.Int32Value());
StoreToOffset(kStoreDoubleword, scratch, dest_base.AsMips64().AsGpuRegister(),
dest_offset.Int32Value());
} else {
UNIMPLEMENTED(FATAL) << "We only support Copy() of size 4 and 8";
}
}
void Mips64Assembler::Copy(FrameOffset dest ATTRIBUTE_UNUSED,
FrameOffset src_base ATTRIBUTE_UNUSED,
Offset src_offset ATTRIBUTE_UNUSED,
ManagedRegister mscratch ATTRIBUTE_UNUSED,
size_t size ATTRIBUTE_UNUSED) {
UNIMPLEMENTED(FATAL) << "No MIPS64 implementation";
}
void Mips64Assembler::Copy(ManagedRegister dest, Offset dest_offset,
ManagedRegister src, Offset src_offset,
ManagedRegister mscratch, size_t size) {
GpuRegister scratch = mscratch.AsMips64().AsGpuRegister();
CHECK(size == 4 || size == 8) << size;
if (size == 4) {
LoadFromOffset(kLoadWord, scratch, src.AsMips64().AsGpuRegister(), src_offset.Int32Value());
StoreToOffset(kStoreDoubleword, scratch, dest.AsMips64().AsGpuRegister(), dest_offset.Int32Value());
} else if (size == 8) {
LoadFromOffset(kLoadDoubleword, scratch, src.AsMips64().AsGpuRegister(),
src_offset.Int32Value());
StoreToOffset(kStoreDoubleword, scratch, dest.AsMips64().AsGpuRegister(),
dest_offset.Int32Value());
} else {
UNIMPLEMENTED(FATAL) << "We only support Copy() of size 4 and 8";
}
}
void Mips64Assembler::Copy(FrameOffset dest ATTRIBUTE_UNUSED,
Offset dest_offset ATTRIBUTE_UNUSED,
FrameOffset src ATTRIBUTE_UNUSED,
Offset src_offset ATTRIBUTE_UNUSED,
ManagedRegister mscratch ATTRIBUTE_UNUSED,
size_t size ATTRIBUTE_UNUSED) {
UNIMPLEMENTED(FATAL) << "No MIPS64 implementation";
}
void Mips64Assembler::MemoryBarrier(ManagedRegister mreg ATTRIBUTE_UNUSED) {
// TODO: sync?
UNIMPLEMENTED(FATAL) << "No MIPS64 implementation";
}
void Mips64Assembler::CreateHandleScopeEntry(ManagedRegister mout_reg,
FrameOffset handle_scope_offset,
ManagedRegister min_reg,
bool null_allowed) {
Mips64ManagedRegister out_reg = mout_reg.AsMips64();
Mips64ManagedRegister in_reg = min_reg.AsMips64();
CHECK(in_reg.IsNoRegister() || in_reg.IsGpuRegister()) << in_reg;
CHECK(out_reg.IsGpuRegister()) << out_reg;
if (null_allowed) {
Mips64Label null_arg;
// Null values get a handle scope entry value of 0. Otherwise, the handle scope entry is
// the address in the handle scope holding the reference.
// e.g. out_reg = (handle == 0) ? 0 : (SP+handle_offset)
if (in_reg.IsNoRegister()) {
LoadFromOffset(kLoadUnsignedWord, out_reg.AsGpuRegister(),
SP, handle_scope_offset.Int32Value());
in_reg = out_reg;
}
if (!out_reg.Equals(in_reg)) {
LoadConst32(out_reg.AsGpuRegister(), 0);
}
Beqzc(in_reg.AsGpuRegister(), &null_arg);
Daddiu64(out_reg.AsGpuRegister(), SP, handle_scope_offset.Int32Value());
Bind(&null_arg);
} else {
Daddiu64(out_reg.AsGpuRegister(), SP, handle_scope_offset.Int32Value());
}
}
void Mips64Assembler::CreateHandleScopeEntry(FrameOffset out_off,
FrameOffset handle_scope_offset,
ManagedRegister mscratch,
bool null_allowed) {
Mips64ManagedRegister scratch = mscratch.AsMips64();
CHECK(scratch.IsGpuRegister()) << scratch;
if (null_allowed) {
Mips64Label null_arg;
LoadFromOffset(kLoadUnsignedWord, scratch.AsGpuRegister(), SP,
handle_scope_offset.Int32Value());
// Null values get a handle scope entry value of 0. Otherwise, the handle scope entry is
// the address in the handle scope holding the reference.
// e.g. scratch = (scratch == 0) ? 0 : (SP+handle_scope_offset)
Beqzc(scratch.AsGpuRegister(), &null_arg);
Daddiu64(scratch.AsGpuRegister(), SP, handle_scope_offset.Int32Value());
Bind(&null_arg);
} else {
Daddiu64(scratch.AsGpuRegister(), SP, handle_scope_offset.Int32Value());
}
StoreToOffset(kStoreDoubleword, scratch.AsGpuRegister(), SP, out_off.Int32Value());
}
// Given a handle scope entry, load the associated reference.
void Mips64Assembler::LoadReferenceFromHandleScope(ManagedRegister mout_reg,
ManagedRegister min_reg) {
Mips64ManagedRegister out_reg = mout_reg.AsMips64();
Mips64ManagedRegister in_reg = min_reg.AsMips64();
CHECK(out_reg.IsGpuRegister()) << out_reg;
CHECK(in_reg.IsGpuRegister()) << in_reg;
Mips64Label null_arg;
if (!out_reg.Equals(in_reg)) {
LoadConst32(out_reg.AsGpuRegister(), 0);
}
Beqzc(in_reg.AsGpuRegister(), &null_arg);
LoadFromOffset(kLoadDoubleword, out_reg.AsGpuRegister(),
in_reg.AsGpuRegister(), 0);
Bind(&null_arg);
}
void Mips64Assembler::VerifyObject(ManagedRegister src ATTRIBUTE_UNUSED,
bool could_be_null ATTRIBUTE_UNUSED) {
// TODO: not validating references
}
void Mips64Assembler::VerifyObject(FrameOffset src ATTRIBUTE_UNUSED,
bool could_be_null ATTRIBUTE_UNUSED) {
// TODO: not validating references
}
void Mips64Assembler::Call(ManagedRegister mbase, Offset offset, ManagedRegister mscratch) {
Mips64ManagedRegister base = mbase.AsMips64();
Mips64ManagedRegister scratch = mscratch.AsMips64();
CHECK(base.IsGpuRegister()) << base;
CHECK(scratch.IsGpuRegister()) << scratch;
LoadFromOffset(kLoadDoubleword, scratch.AsGpuRegister(),
base.AsGpuRegister(), offset.Int32Value());
Jalr(scratch.AsGpuRegister());
Nop();
// TODO: place reference map on call
}
void Mips64Assembler::Call(FrameOffset base, Offset offset, ManagedRegister mscratch) {
Mips64ManagedRegister scratch = mscratch.AsMips64();
CHECK(scratch.IsGpuRegister()) << scratch;
// Call *(*(SP + base) + offset)
LoadFromOffset(kLoadDoubleword, scratch.AsGpuRegister(),
SP, base.Int32Value());
LoadFromOffset(kLoadDoubleword, scratch.AsGpuRegister(),
scratch.AsGpuRegister(), offset.Int32Value());
Jalr(scratch.AsGpuRegister());
Nop();
// TODO: place reference map on call
}
void Mips64Assembler::CallFromThread(ThreadOffset64 offset ATTRIBUTE_UNUSED,
ManagedRegister mscratch ATTRIBUTE_UNUSED) {
UNIMPLEMENTED(FATAL) << "No MIPS64 implementation";
}
void Mips64Assembler::GetCurrentThread(ManagedRegister tr) {
Move(tr.AsMips64().AsGpuRegister(), S1);
}
void Mips64Assembler::GetCurrentThread(FrameOffset offset,
ManagedRegister mscratch ATTRIBUTE_UNUSED) {
StoreToOffset(kStoreDoubleword, S1, SP, offset.Int32Value());
}
void Mips64Assembler::ExceptionPoll(ManagedRegister mscratch, size_t stack_adjust) {
Mips64ManagedRegister scratch = mscratch.AsMips64();
exception_blocks_.emplace_back(scratch, stack_adjust);
LoadFromOffset(kLoadDoubleword,
scratch.AsGpuRegister(),
S1,
Thread::ExceptionOffset<kMips64PointerSize>().Int32Value());
Bnezc(scratch.AsGpuRegister(), exception_blocks_.back().Entry());
}
void Mips64Assembler::EmitExceptionPoll(Mips64ExceptionSlowPath* exception) {
Bind(exception->Entry());
if (exception->stack_adjust_ != 0) { // Fix up the frame.
DecreaseFrameSize(exception->stack_adjust_);
}
// Pass exception object as argument.
// Don't care about preserving A0 as this call won't return.
CheckEntrypointTypes<kQuickDeliverException, void, mirror::Object*>();
Move(A0, exception->scratch_.AsGpuRegister());
// Set up call to Thread::Current()->pDeliverException
LoadFromOffset(kLoadDoubleword,
T9,
S1,
QUICK_ENTRYPOINT_OFFSET(kMips64PointerSize, pDeliverException).Int32Value());
Jr(T9);
Nop();
// Call never returns
Break();
}
} // namespace mips64
} // namespace art