| /* |
| * Copyright (C) 2011 The Android Open Source Project |
| * |
| * Licensed under the Apache License, Version 2.0 (the "License"); |
| * you may not use this file except in compliance with the License. |
| * You may obtain a copy of the License at |
| * |
| * http://www.apache.org/licenses/LICENSE-2.0 |
| * |
| * Unless required by applicable law or agreed to in writing, software |
| * distributed under the License is distributed on an "AS IS" BASIS, |
| * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| * See the License for the specific language governing permissions and |
| * limitations under the License. |
| */ |
| |
| /* This file contains codegen for the Thumb2 ISA. */ |
| |
| #include "oat_compilation_unit.h" |
| #include "oat/runtime/oat_support_entrypoints.h" |
| #include "arm_lir.h" |
| #include "../codegen_util.h" |
| #include "../ralloc_util.h" |
| |
| namespace art { |
| |
| |
| /* Return the position of an ssa name within the argument list */ |
| int InPosition(CompilationUnit* cUnit, int sReg) |
| { |
| int vReg = SRegToVReg(cUnit, sReg); |
| return vReg - cUnit->numRegs; |
| } |
| |
| /* |
| * Describe an argument. If it's already in an arg register, just leave it |
| * there. NOTE: all live arg registers must be locked prior to this call |
| * to avoid having them allocated as a temp by downstream utilities. |
| */ |
| RegLocation ArgLoc(CompilationUnit* cUnit, RegLocation loc) |
| { |
| int argNum = InPosition(cUnit, loc.sRegLow); |
| if (loc.wide) { |
| if (argNum == 2) { |
| // Bad case - half in register, half in frame. Just punt |
| loc.location = kLocInvalid; |
| } else if (argNum < 2) { |
| loc.lowReg = rARM_ARG1 + argNum; |
| loc.highReg = loc.lowReg + 1; |
| loc.location = kLocPhysReg; |
| } else { |
| loc.location = kLocDalvikFrame; |
| } |
| } else { |
| if (argNum < 3) { |
| loc.lowReg = rARM_ARG1 + argNum; |
| loc.location = kLocPhysReg; |
| } else { |
| loc.location = kLocDalvikFrame; |
| } |
| } |
| return loc; |
| } |
| |
| /* |
| * Load an argument. If already in a register, just return. If in |
| * the frame, we can't use the normal LoadValue() because it assumed |
| * a proper frame - and we're frameless. |
| */ |
| RegLocation LoadArg(CompilationUnit* cUnit, RegLocation loc) |
| { |
| if (loc.location == kLocDalvikFrame) { |
| int start = (InPosition(cUnit, loc.sRegLow) + 1) * sizeof(uint32_t); |
| loc.lowReg = AllocTemp(cUnit); |
| LoadWordDisp(cUnit, rARM_SP, start, loc.lowReg); |
| if (loc.wide) { |
| loc.highReg = AllocTemp(cUnit); |
| LoadWordDisp(cUnit, rARM_SP, start + sizeof(uint32_t), loc.highReg); |
| } |
| loc.location = kLocPhysReg; |
| } |
| return loc; |
| } |
| |
| /* Lock any referenced arguments that arrive in registers */ |
| void LockLiveArgs(CompilationUnit* cUnit, MIR* mir) |
| { |
| int firstIn = cUnit->numRegs; |
| const int numArgRegs = 3; // TODO: generalize & move to RegUtil.cc |
| for (int i = 0; i < mir->ssaRep->numUses; i++) { |
| int vReg = SRegToVReg(cUnit, mir->ssaRep->uses[i]); |
| int InPosition = vReg - firstIn; |
| if (InPosition < numArgRegs) { |
| LockTemp(cUnit, rARM_ARG1 + InPosition); |
| } |
| } |
| } |
| |
| /* Find the next MIR, which may be in a following basic block */ |
| MIR* GetNextMir(CompilationUnit* cUnit, BasicBlock** pBb, MIR* mir) |
| { |
| BasicBlock* bb = *pBb; |
| MIR* origMir = mir; |
| while (bb != NULL) { |
| if (mir != NULL) { |
| mir = mir->next; |
| } |
| if (mir != NULL) { |
| return mir; |
| } else { |
| bb = bb->fallThrough; |
| *pBb = bb; |
| if (bb) { |
| mir = bb->firstMIRInsn; |
| if (mir != NULL) { |
| return mir; |
| } |
| } |
| } |
| } |
| return origMir; |
| } |
| |
| /* Used for the "printMe" listing */ |
| void GenPrintLabel(CompilationUnit *cUnit, MIR* mir) |
| { |
| /* Mark the beginning of a Dalvik instruction for line tracking */ |
| char* instStr = cUnit->printMe ? |
| GetDalvikDisassembly(cUnit, mir->dalvikInsn, "") : NULL; |
| MarkBoundary(cUnit, mir->offset, instStr); |
| /* Don't generate the SSA annotation unless verbose mode is on */ |
| if (cUnit->printMe && mir->ssaRep) { |
| char* ssaString = GetSSAString(cUnit, mir->ssaRep); |
| NewLIR1(cUnit, kPseudoSSARep, reinterpret_cast<uintptr_t>(ssaString)); |
| } |
| } |
| |
| MIR* SpecialIGet(CompilationUnit* cUnit, BasicBlock** bb, MIR* mir, |
| OpSize size, bool longOrDouble, bool isObject) |
| { |
| int fieldOffset; |
| bool isVolatile; |
| uint32_t fieldIdx = mir->dalvikInsn.vC; |
| bool fastPath = FastInstance(cUnit, fieldIdx, fieldOffset, isVolatile, false); |
| if (!fastPath || !(mir->optimizationFlags & MIR_IGNORE_NULL_CHECK)) { |
| return NULL; |
| } |
| RegLocation rlObj = GetSrc(cUnit, mir, 0); |
| LockLiveArgs(cUnit, mir); |
| rlObj = ArgLoc(cUnit, rlObj); |
| RegLocation rlDest; |
| if (longOrDouble) { |
| rlDest = GetReturnWide(cUnit, false); |
| } else { |
| rlDest = GetReturn(cUnit, false); |
| } |
| // Point of no return - no aborts after this |
| GenPrintLabel(cUnit, mir); |
| rlObj = LoadArg(cUnit, rlObj); |
| GenIGet(cUnit, fieldIdx, mir->optimizationFlags, size, rlDest, rlObj, |
| longOrDouble, isObject); |
| return GetNextMir(cUnit, bb, mir); |
| } |
| |
| MIR* SpecialIPut(CompilationUnit* cUnit, BasicBlock** bb, MIR* mir, |
| OpSize size, bool longOrDouble, bool isObject) |
| { |
| int fieldOffset; |
| bool isVolatile; |
| uint32_t fieldIdx = mir->dalvikInsn.vC; |
| bool fastPath = FastInstance(cUnit, fieldIdx, fieldOffset, isVolatile, false); |
| if (!fastPath || !(mir->optimizationFlags & MIR_IGNORE_NULL_CHECK)) { |
| return NULL; |
| } |
| RegLocation rlSrc; |
| RegLocation rlObj; |
| LockLiveArgs(cUnit, mir); |
| if (longOrDouble) { |
| rlSrc = GetSrcWide(cUnit, mir, 0); |
| rlObj = GetSrc(cUnit, mir, 2); |
| } else { |
| rlSrc = GetSrc(cUnit, mir, 0); |
| rlObj = GetSrc(cUnit, mir, 1); |
| } |
| rlSrc = ArgLoc(cUnit, rlSrc); |
| rlObj = ArgLoc(cUnit, rlObj); |
| // Reject if source is split across registers & frame |
| if (rlObj.location == kLocInvalid) { |
| ResetRegPool(cUnit); |
| return NULL; |
| } |
| // Point of no return - no aborts after this |
| GenPrintLabel(cUnit, mir); |
| rlObj = LoadArg(cUnit, rlObj); |
| rlSrc = LoadArg(cUnit, rlSrc); |
| GenIPut(cUnit, fieldIdx, mir->optimizationFlags, size, rlSrc, rlObj, |
| longOrDouble, isObject); |
| return GetNextMir(cUnit, bb, mir); |
| } |
| |
| MIR* SpecialIdentity(CompilationUnit* cUnit, MIR* mir) |
| { |
| RegLocation rlSrc; |
| RegLocation rlDest; |
| bool wide = (mir->ssaRep->numUses == 2); |
| if (wide) { |
| rlSrc = GetSrcWide(cUnit, mir, 0); |
| rlDest = GetReturnWide(cUnit, false); |
| } else { |
| rlSrc = GetSrc(cUnit, mir, 0); |
| rlDest = GetReturn(cUnit, false); |
| } |
| LockLiveArgs(cUnit, mir); |
| rlSrc = ArgLoc(cUnit, rlSrc); |
| if (rlSrc.location == kLocInvalid) { |
| ResetRegPool(cUnit); |
| return NULL; |
| } |
| // Point of no return - no aborts after this |
| GenPrintLabel(cUnit, mir); |
| rlSrc = LoadArg(cUnit, rlSrc); |
| if (wide) { |
| StoreValueWide(cUnit, rlDest, rlSrc); |
| } else { |
| StoreValue(cUnit, rlDest, rlSrc); |
| } |
| return mir; |
| } |
| |
| /* |
| * Special-case code genration for simple non-throwing leaf methods. |
| */ |
| void GenSpecialCase(CompilationUnit* cUnit, BasicBlock* bb, MIR* mir, |
| SpecialCaseHandler specialCase) |
| { |
| cUnit->currentDalvikOffset = mir->offset; |
| MIR* nextMir = NULL; |
| switch (specialCase) { |
| case kNullMethod: |
| DCHECK(mir->dalvikInsn.opcode == Instruction::RETURN_VOID); |
| nextMir = mir; |
| break; |
| case kConstFunction: |
| GenPrintLabel(cUnit, mir); |
| LoadConstant(cUnit, rARM_RET0, mir->dalvikInsn.vB); |
| nextMir = GetNextMir(cUnit, &bb, mir); |
| break; |
| case kIGet: |
| nextMir = SpecialIGet(cUnit, &bb, mir, kWord, false, false); |
| break; |
| case kIGetBoolean: |
| case kIGetByte: |
| nextMir = SpecialIGet(cUnit, &bb, mir, kUnsignedByte, false, false); |
| break; |
| case kIGetObject: |
| nextMir = SpecialIGet(cUnit, &bb, mir, kWord, false, true); |
| break; |
| case kIGetChar: |
| nextMir = SpecialIGet(cUnit, &bb, mir, kUnsignedHalf, false, false); |
| break; |
| case kIGetShort: |
| nextMir = SpecialIGet(cUnit, &bb, mir, kSignedHalf, false, false); |
| break; |
| case kIGetWide: |
| nextMir = SpecialIGet(cUnit, &bb, mir, kLong, true, false); |
| break; |
| case kIPut: |
| nextMir = SpecialIPut(cUnit, &bb, mir, kWord, false, false); |
| break; |
| case kIPutBoolean: |
| case kIPutByte: |
| nextMir = SpecialIPut(cUnit, &bb, mir, kUnsignedByte, false, false); |
| break; |
| case kIPutObject: |
| nextMir = SpecialIPut(cUnit, &bb, mir, kWord, false, true); |
| break; |
| case kIPutChar: |
| nextMir = SpecialIPut(cUnit, &bb, mir, kUnsignedHalf, false, false); |
| break; |
| case kIPutShort: |
| nextMir = SpecialIPut(cUnit, &bb, mir, kSignedHalf, false, false); |
| break; |
| case kIPutWide: |
| nextMir = SpecialIPut(cUnit, &bb, mir, kLong, true, false); |
| break; |
| case kIdentity: |
| nextMir = SpecialIdentity(cUnit, mir); |
| break; |
| default: |
| return; |
| } |
| if (nextMir != NULL) { |
| cUnit->currentDalvikOffset = nextMir->offset; |
| if (specialCase != kIdentity) { |
| GenPrintLabel(cUnit, nextMir); |
| } |
| NewLIR1(cUnit, kThumbBx, rARM_LR); |
| cUnit->coreSpillMask = 0; |
| cUnit->numCoreSpills = 0; |
| cUnit->fpSpillMask = 0; |
| cUnit->numFPSpills = 0; |
| cUnit->frameSize = 0; |
| cUnit->coreVmapTable.clear(); |
| cUnit->fpVmapTable.clear(); |
| } |
| } |
| |
| /* |
| * The sparse table in the literal pool is an array of <key,displacement> |
| * pairs. For each set, we'll load them as a pair using ldmia. |
| * This means that the register number of the temp we use for the key |
| * must be lower than the reg for the displacement. |
| * |
| * The test loop will look something like: |
| * |
| * adr rBase, <table> |
| * ldr rVal, [rARM_SP, vRegOff] |
| * mov rIdx, #tableSize |
| * lp: |
| * ldmia rBase!, {rKey, rDisp} |
| * sub rIdx, #1 |
| * cmp rVal, rKey |
| * ifeq |
| * add rARM_PC, rDisp ; This is the branch from which we compute displacement |
| * cbnz rIdx, lp |
| */ |
| void GenSparseSwitch(CompilationUnit* cUnit, uint32_t tableOffset, |
| RegLocation rlSrc) |
| { |
| const uint16_t* table = cUnit->insns + cUnit->currentDalvikOffset + tableOffset; |
| if (cUnit->printMe) { |
| DumpSparseSwitchTable(table); |
| } |
| // Add the table to the list - we'll process it later |
| SwitchTable *tabRec = |
| static_cast<SwitchTable*>(NewMem(cUnit, sizeof(SwitchTable), true, kAllocData)); |
| tabRec->table = table; |
| tabRec->vaddr = cUnit->currentDalvikOffset; |
| int size = table[1]; |
| tabRec->targets = static_cast<LIR**>(NewMem(cUnit, size * sizeof(LIR*), true, kAllocLIR)); |
| InsertGrowableList(cUnit, &cUnit->switchTables, reinterpret_cast<uintptr_t>(tabRec)); |
| |
| // Get the switch value |
| rlSrc = LoadValue(cUnit, rlSrc, kCoreReg); |
| int rBase = AllocTemp(cUnit); |
| /* Allocate key and disp temps */ |
| int rKey = AllocTemp(cUnit); |
| int rDisp = AllocTemp(cUnit); |
| // Make sure rKey's register number is less than rDisp's number for ldmia |
| if (rKey > rDisp) { |
| int tmp = rDisp; |
| rDisp = rKey; |
| rKey = tmp; |
| } |
| // Materialize a pointer to the switch table |
| NewLIR3(cUnit, kThumb2Adr, rBase, 0, reinterpret_cast<uintptr_t>(tabRec)); |
| // Set up rIdx |
| int rIdx = AllocTemp(cUnit); |
| LoadConstant(cUnit, rIdx, size); |
| // Establish loop branch target |
| LIR* target = NewLIR0(cUnit, kPseudoTargetLabel); |
| // Load next key/disp |
| NewLIR2(cUnit, kThumb2LdmiaWB, rBase, (1 << rKey) | (1 << rDisp)); |
| OpRegReg(cUnit, kOpCmp, rKey, rlSrc.lowReg); |
| // Go if match. NOTE: No instruction set switch here - must stay Thumb2 |
| OpIT(cUnit, kArmCondEq, ""); |
| LIR* switchBranch = NewLIR1(cUnit, kThumb2AddPCR, rDisp); |
| tabRec->anchor = switchBranch; |
| // Needs to use setflags encoding here |
| NewLIR3(cUnit, kThumb2SubsRRI12, rIdx, rIdx, 1); |
| OpCondBranch(cUnit, kCondNe, target); |
| } |
| |
| |
| void GenPackedSwitch(CompilationUnit* cUnit, uint32_t tableOffset, |
| RegLocation rlSrc) |
| { |
| const uint16_t* table = cUnit->insns + cUnit->currentDalvikOffset + tableOffset; |
| if (cUnit->printMe) { |
| DumpPackedSwitchTable(table); |
| } |
| // Add the table to the list - we'll process it later |
| SwitchTable *tabRec = |
| static_cast<SwitchTable*>(NewMem(cUnit, sizeof(SwitchTable), true, kAllocData)); |
| tabRec->table = table; |
| tabRec->vaddr = cUnit->currentDalvikOffset; |
| int size = table[1]; |
| tabRec->targets = static_cast<LIR**>(NewMem(cUnit, size * sizeof(LIR*), true, kAllocLIR)); |
| InsertGrowableList(cUnit, &cUnit->switchTables, reinterpret_cast<uintptr_t>(tabRec)); |
| |
| // Get the switch value |
| rlSrc = LoadValue(cUnit, rlSrc, kCoreReg); |
| int tableBase = AllocTemp(cUnit); |
| // Materialize a pointer to the switch table |
| NewLIR3(cUnit, kThumb2Adr, tableBase, 0, reinterpret_cast<uintptr_t>(tabRec)); |
| int lowKey = s4FromSwitchData(&table[2]); |
| int keyReg; |
| // Remove the bias, if necessary |
| if (lowKey == 0) { |
| keyReg = rlSrc.lowReg; |
| } else { |
| keyReg = AllocTemp(cUnit); |
| OpRegRegImm(cUnit, kOpSub, keyReg, rlSrc.lowReg, lowKey); |
| } |
| // Bounds check - if < 0 or >= size continue following switch |
| OpRegImm(cUnit, kOpCmp, keyReg, size-1); |
| LIR* branchOver = OpCondBranch(cUnit, kCondHi, NULL); |
| |
| // Load the displacement from the switch table |
| int dispReg = AllocTemp(cUnit); |
| LoadBaseIndexed(cUnit, tableBase, keyReg, dispReg, 2, kWord); |
| |
| // ..and go! NOTE: No instruction set switch here - must stay Thumb2 |
| LIR* switchBranch = NewLIR1(cUnit, kThumb2AddPCR, dispReg); |
| tabRec->anchor = switchBranch; |
| |
| /* branchOver target here */ |
| LIR* target = NewLIR0(cUnit, kPseudoTargetLabel); |
| branchOver->target = target; |
| } |
| |
| /* |
| * Array data table format: |
| * ushort ident = 0x0300 magic value |
| * ushort width width of each element in the table |
| * uint size number of elements in the table |
| * ubyte data[size*width] table of data values (may contain a single-byte |
| * padding at the end) |
| * |
| * Total size is 4+(width * size + 1)/2 16-bit code units. |
| */ |
| void GenFillArrayData(CompilationUnit* cUnit, uint32_t tableOffset, RegLocation rlSrc) |
| { |
| const uint16_t* table = cUnit->insns + cUnit->currentDalvikOffset + tableOffset; |
| // Add the table to the list - we'll process it later |
| FillArrayData *tabRec = |
| static_cast<FillArrayData*>(NewMem(cUnit, sizeof(FillArrayData), true, kAllocData)); |
| tabRec->table = table; |
| tabRec->vaddr = cUnit->currentDalvikOffset; |
| uint16_t width = tabRec->table[1]; |
| uint32_t size = tabRec->table[2] | ((static_cast<uint32_t>(tabRec->table[3])) << 16); |
| tabRec->size = (size * width) + 8; |
| |
| InsertGrowableList(cUnit, &cUnit->fillArrayData, reinterpret_cast<uintptr_t>(tabRec)); |
| |
| // Making a call - use explicit registers |
| FlushAllRegs(cUnit); /* Everything to home location */ |
| LoadValueDirectFixed(cUnit, rlSrc, r0); |
| LoadWordDisp(cUnit, rARM_SELF, ENTRYPOINT_OFFSET(pHandleFillArrayDataFromCode), |
| rARM_LR); |
| // Materialize a pointer to the fill data image |
| NewLIR3(cUnit, kThumb2Adr, r1, 0, reinterpret_cast<uintptr_t>(tabRec)); |
| ClobberCalleeSave(cUnit); |
| LIR* callInst = OpReg(cUnit, kOpBlx, rARM_LR); |
| MarkSafepointPC(cUnit, callInst); |
| } |
| |
| /* |
| * Handle simple case (thin lock) inline. If it's complicated, bail |
| * out to the heavyweight lock/unlock routines. We'll use dedicated |
| * registers here in order to be in the right position in case we |
| * to bail to oat[Lock/Unlock]Object(self, object) |
| * |
| * r0 -> self pointer [arg0 for oat[Lock/Unlock]Object |
| * r1 -> object [arg1 for oat[Lock/Unlock]Object |
| * r2 -> intial contents of object->lock, later result of strex |
| * r3 -> self->threadId |
| * r12 -> allow to be used by utilities as general temp |
| * |
| * The result of the strex is 0 if we acquire the lock. |
| * |
| * See comments in Sync.c for the layout of the lock word. |
| * Of particular interest to this code is the test for the |
| * simple case - which we handle inline. For monitor enter, the |
| * simple case is thin lock, held by no-one. For monitor exit, |
| * the simple case is thin lock, held by the unlocking thread with |
| * a recurse count of 0. |
| * |
| * A minor complication is that there is a field in the lock word |
| * unrelated to locking: the hash state. This field must be ignored, but |
| * preserved. |
| * |
| */ |
| void GenMonitorEnter(CompilationUnit* cUnit, int optFlags, RegLocation rlSrc) |
| { |
| FlushAllRegs(cUnit); |
| DCHECK_EQ(LW_SHAPE_THIN, 0); |
| LoadValueDirectFixed(cUnit, rlSrc, r0); // Get obj |
| LockCallTemps(cUnit); // Prepare for explicit register usage |
| GenNullCheck(cUnit, rlSrc.sRegLow, r0, optFlags); |
| LoadWordDisp(cUnit, rARM_SELF, Thread::ThinLockIdOffset().Int32Value(), r2); |
| NewLIR3(cUnit, kThumb2Ldrex, r1, r0, |
| Object::MonitorOffset().Int32Value() >> 2); // Get object->lock |
| // Align owner |
| OpRegImm(cUnit, kOpLsl, r2, LW_LOCK_OWNER_SHIFT); |
| // Is lock unheld on lock or held by us (==threadId) on unlock? |
| NewLIR4(cUnit, kThumb2Bfi, r2, r1, 0, LW_LOCK_OWNER_SHIFT - 1); |
| NewLIR3(cUnit, kThumb2Bfc, r1, LW_HASH_STATE_SHIFT, LW_LOCK_OWNER_SHIFT - 1); |
| OpRegImm(cUnit, kOpCmp, r1, 0); |
| OpIT(cUnit, kArmCondEq, ""); |
| NewLIR4(cUnit, kThumb2Strex, r1, r2, r0, |
| Object::MonitorOffset().Int32Value() >> 2); |
| OpRegImm(cUnit, kOpCmp, r1, 0); |
| OpIT(cUnit, kArmCondNe, "T"); |
| // Go expensive route - artLockObjectFromCode(self, obj); |
| LoadWordDisp(cUnit, rARM_SELF, ENTRYPOINT_OFFSET(pLockObjectFromCode), rARM_LR); |
| ClobberCalleeSave(cUnit); |
| LIR* callInst = OpReg(cUnit, kOpBlx, rARM_LR); |
| MarkSafepointPC(cUnit, callInst); |
| GenMemBarrier(cUnit, kLoadLoad); |
| } |
| |
| /* |
| * For monitor unlock, we don't have to use ldrex/strex. Once |
| * we've determined that the lock is thin and that we own it with |
| * a zero recursion count, it's safe to punch it back to the |
| * initial, unlock thin state with a store word. |
| */ |
| void GenMonitorExit(CompilationUnit* cUnit, int optFlags, RegLocation rlSrc) |
| { |
| DCHECK_EQ(LW_SHAPE_THIN, 0); |
| FlushAllRegs(cUnit); |
| LoadValueDirectFixed(cUnit, rlSrc, r0); // Get obj |
| LockCallTemps(cUnit); // Prepare for explicit register usage |
| GenNullCheck(cUnit, rlSrc.sRegLow, r0, optFlags); |
| LoadWordDisp(cUnit, r0, Object::MonitorOffset().Int32Value(), r1); // Get lock |
| LoadWordDisp(cUnit, rARM_SELF, Thread::ThinLockIdOffset().Int32Value(), r2); |
| // Is lock unheld on lock or held by us (==threadId) on unlock? |
| OpRegRegImm(cUnit, kOpAnd, r3, r1, |
| (LW_HASH_STATE_MASK << LW_HASH_STATE_SHIFT)); |
| // Align owner |
| OpRegImm(cUnit, kOpLsl, r2, LW_LOCK_OWNER_SHIFT); |
| NewLIR3(cUnit, kThumb2Bfc, r1, LW_HASH_STATE_SHIFT, LW_LOCK_OWNER_SHIFT - 1); |
| OpRegReg(cUnit, kOpSub, r1, r2); |
| OpIT(cUnit, kArmCondEq, "EE"); |
| StoreWordDisp(cUnit, r0, Object::MonitorOffset().Int32Value(), r3); |
| // Go expensive route - UnlockObjectFromCode(obj); |
| LoadWordDisp(cUnit, rARM_SELF, ENTRYPOINT_OFFSET(pUnlockObjectFromCode), rARM_LR); |
| ClobberCalleeSave(cUnit); |
| LIR* callInst = OpReg(cUnit, kOpBlx, rARM_LR); |
| MarkSafepointPC(cUnit, callInst); |
| GenMemBarrier(cUnit, kStoreLoad); |
| } |
| |
| /* |
| * Mark garbage collection card. Skip if the value we're storing is null. |
| */ |
| void MarkGCCard(CompilationUnit* cUnit, int valReg, int tgtAddrReg) |
| { |
| int regCardBase = AllocTemp(cUnit); |
| int regCardNo = AllocTemp(cUnit); |
| LIR* branchOver = OpCmpImmBranch(cUnit, kCondEq, valReg, 0, NULL); |
| LoadWordDisp(cUnit, rARM_SELF, Thread::CardTableOffset().Int32Value(), regCardBase); |
| OpRegRegImm(cUnit, kOpLsr, regCardNo, tgtAddrReg, CardTable::kCardShift); |
| StoreBaseIndexed(cUnit, regCardBase, regCardNo, regCardBase, 0, |
| kUnsignedByte); |
| LIR* target = NewLIR0(cUnit, kPseudoTargetLabel); |
| branchOver->target = target; |
| FreeTemp(cUnit, regCardBase); |
| FreeTemp(cUnit, regCardNo); |
| } |
| |
| void GenEntrySequence(CompilationUnit* cUnit, RegLocation* ArgLocs, |
| RegLocation rlMethod) |
| { |
| int spillCount = cUnit->numCoreSpills + cUnit->numFPSpills; |
| /* |
| * On entry, r0, r1, r2 & r3 are live. Let the register allocation |
| * mechanism know so it doesn't try to use any of them when |
| * expanding the frame or flushing. This leaves the utility |
| * code with a single temp: r12. This should be enough. |
| */ |
| LockTemp(cUnit, r0); |
| LockTemp(cUnit, r1); |
| LockTemp(cUnit, r2); |
| LockTemp(cUnit, r3); |
| |
| /* |
| * We can safely skip the stack overflow check if we're |
| * a leaf *and* our frame size < fudge factor. |
| */ |
| bool skipOverflowCheck = ((cUnit->attrs & METHOD_IS_LEAF) && |
| (static_cast<size_t>(cUnit->frameSize) < |
| Thread::kStackOverflowReservedBytes)); |
| NewLIR0(cUnit, kPseudoMethodEntry); |
| if (!skipOverflowCheck) { |
| /* Load stack limit */ |
| LoadWordDisp(cUnit, rARM_SELF, Thread::StackEndOffset().Int32Value(), r12); |
| } |
| /* Spill core callee saves */ |
| NewLIR1(cUnit, kThumb2Push, cUnit->coreSpillMask); |
| /* Need to spill any FP regs? */ |
| if (cUnit->numFPSpills) { |
| /* |
| * NOTE: fp spills are a little different from core spills in that |
| * they are pushed as a contiguous block. When promoting from |
| * the fp set, we must allocate all singles from s16..highest-promoted |
| */ |
| NewLIR1(cUnit, kThumb2VPushCS, cUnit->numFPSpills); |
| } |
| if (!skipOverflowCheck) { |
| OpRegRegImm(cUnit, kOpSub, rARM_LR, rARM_SP, cUnit->frameSize - (spillCount * 4)); |
| GenRegRegCheck(cUnit, kCondCc, rARM_LR, r12, kThrowStackOverflow); |
| OpRegCopy(cUnit, rARM_SP, rARM_LR); // Establish stack |
| } else { |
| OpRegImm(cUnit, kOpSub, rARM_SP, cUnit->frameSize - (spillCount * 4)); |
| } |
| |
| FlushIns(cUnit, ArgLocs, rlMethod); |
| |
| FreeTemp(cUnit, r0); |
| FreeTemp(cUnit, r1); |
| FreeTemp(cUnit, r2); |
| FreeTemp(cUnit, r3); |
| } |
| |
| void GenExitSequence(CompilationUnit* cUnit) |
| { |
| int spillCount = cUnit->numCoreSpills + cUnit->numFPSpills; |
| /* |
| * In the exit path, r0/r1 are live - make sure they aren't |
| * allocated by the register utilities as temps. |
| */ |
| LockTemp(cUnit, r0); |
| LockTemp(cUnit, r1); |
| |
| NewLIR0(cUnit, kPseudoMethodExit); |
| OpRegImm(cUnit, kOpAdd, rARM_SP, cUnit->frameSize - (spillCount * 4)); |
| /* Need to restore any FP callee saves? */ |
| if (cUnit->numFPSpills) { |
| NewLIR1(cUnit, kThumb2VPopCS, cUnit->numFPSpills); |
| } |
| if (cUnit->coreSpillMask & (1 << rARM_LR)) { |
| /* Unspill rARM_LR to rARM_PC */ |
| cUnit->coreSpillMask &= ~(1 << rARM_LR); |
| cUnit->coreSpillMask |= (1 << rARM_PC); |
| } |
| NewLIR1(cUnit, kThumb2Pop, cUnit->coreSpillMask); |
| if (!(cUnit->coreSpillMask & (1 << rARM_PC))) { |
| /* We didn't pop to rARM_PC, so must do a bv rARM_LR */ |
| NewLIR1(cUnit, kThumbBx, rARM_LR); |
| } |
| } |
| |
| } // namespace art |