blob: 744800df5e13feaa8e088a343f931e5161885085 [file] [log] [blame]
/*
* Copyright (C) 2011 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "../../compiler_internals.h"
#include "arm_lir.h"
#include "../ralloc_util.h"
#include "../codegen_util.h"
#include <string>
namespace art {
static int coreRegs[] = {r0, r1, r2, r3, rARM_SUSPEND, r5, r6, r7, r8, rARM_SELF, r10,
r11, r12, rARM_SP, rARM_LR, rARM_PC};
static int ReservedRegs[] = {rARM_SUSPEND, rARM_SELF, rARM_SP, rARM_LR, rARM_PC};
static int FpRegs[] = {fr0, fr1, fr2, fr3, fr4, fr5, fr6, fr7,
fr8, fr9, fr10, fr11, fr12, fr13, fr14, fr15,
fr16, fr17, fr18, fr19, fr20, fr21, fr22, fr23,
fr24, fr25, fr26, fr27, fr28, fr29, fr30, fr31};
static int coreTemps[] = {r0, r1, r2, r3, r12};
static int fpTemps[] = {fr0, fr1, fr2, fr3, fr4, fr5, fr6, fr7,
fr8, fr9, fr10, fr11, fr12, fr13, fr14, fr15};
RegLocation LocCReturn()
{
RegLocation res = ARM_LOC_C_RETURN;
return res;
}
RegLocation LocCReturnWide()
{
RegLocation res = ARM_LOC_C_RETURN_WIDE;
return res;
}
RegLocation LocCReturnFloat()
{
RegLocation res = ARM_LOC_C_RETURN_FLOAT;
return res;
}
RegLocation LocCReturnDouble()
{
RegLocation res = ARM_LOC_C_RETURN_DOUBLE;
return res;
}
// Return a target-dependent special register.
int TargetReg(SpecialTargetRegister reg) {
int res = INVALID_REG;
switch (reg) {
case kSelf: res = rARM_SELF; break;
case kSuspend: res = rARM_SUSPEND; break;
case kLr: res = rARM_LR; break;
case kPc: res = rARM_PC; break;
case kSp: res = rARM_SP; break;
case kArg0: res = rARM_ARG0; break;
case kArg1: res = rARM_ARG1; break;
case kArg2: res = rARM_ARG2; break;
case kArg3: res = rARM_ARG3; break;
case kFArg0: res = rARM_FARG0; break;
case kFArg1: res = rARM_FARG1; break;
case kFArg2: res = rARM_FARG2; break;
case kFArg3: res = rARM_FARG3; break;
case kRet0: res = rARM_RET0; break;
case kRet1: res = rARM_RET1; break;
case kInvokeTgt: res = rARM_INVOKE_TGT; break;
case kCount: res = rARM_COUNT; break;
}
return res;
}
// Create a double from a pair of singles.
int S2d(int lowReg, int highReg)
{
return ARM_S2D(lowReg, highReg);
}
// Is reg a single or double?
bool FpReg(int reg)
{
return ARM_FPREG(reg);
}
// Is reg a single?
bool SingleReg(int reg)
{
return ARM_SINGLEREG(reg);
}
// Is reg a double?
bool DoubleReg(int reg)
{
return ARM_DOUBLEREG(reg);
}
// Return mask to strip off fp reg flags and bias.
uint32_t FpRegMask()
{
return ARM_FP_REG_MASK;
}
// True if both regs single, both core or both double.
bool SameRegType(int reg1, int reg2)
{
return (ARM_REGTYPE(reg1) == ARM_REGTYPE(reg2));
}
/*
* Decode the register id.
*/
uint64_t GetRegMaskCommon(CompilationUnit* cUnit, int reg)
{
uint64_t seed;
int shift;
int regId;
regId = reg & 0x1f;
/* Each double register is equal to a pair of single-precision FP registers */
seed = ARM_DOUBLEREG(reg) ? 3 : 1;
/* FP register starts at bit position 16 */
shift = ARM_FPREG(reg) ? kArmFPReg0 : 0;
/* Expand the double register id into single offset */
shift += regId;
return (seed << shift);
}
uint64_t GetPCUseDefEncoding()
{
return ENCODE_ARM_REG_PC;
}
void SetupTargetResourceMasks(CompilationUnit* cUnit, LIR* lir)
{
DCHECK_EQ(cUnit->instructionSet, kThumb2);
// Thumb2 specific setup
uint64_t flags = EncodingMap[lir->opcode].flags;
int opcode = lir->opcode;
if (flags & REG_DEF_SP) {
lir->defMask |= ENCODE_ARM_REG_SP;
}
if (flags & REG_USE_SP) {
lir->useMask |= ENCODE_ARM_REG_SP;
}
if (flags & REG_DEF_LIST0) {
lir->defMask |= ENCODE_ARM_REG_LIST(lir->operands[0]);
}
if (flags & REG_DEF_LIST1) {
lir->defMask |= ENCODE_ARM_REG_LIST(lir->operands[1]);
}
if (flags & REG_DEF_FPCS_LIST0) {
lir->defMask |= ENCODE_ARM_REG_FPCS_LIST(lir->operands[0]);
}
if (flags & REG_DEF_FPCS_LIST2) {
for (int i = 0; i < lir->operands[2]; i++) {
SetupRegMask(cUnit, &lir->defMask, lir->operands[1] + i);
}
}
if (flags & REG_USE_PC) {
lir->useMask |= ENCODE_ARM_REG_PC;
}
/* Conservatively treat the IT block */
if (flags & IS_IT) {
lir->defMask = ENCODE_ALL;
}
if (flags & REG_USE_LIST0) {
lir->useMask |= ENCODE_ARM_REG_LIST(lir->operands[0]);
}
if (flags & REG_USE_LIST1) {
lir->useMask |= ENCODE_ARM_REG_LIST(lir->operands[1]);
}
if (flags & REG_USE_FPCS_LIST0) {
lir->useMask |= ENCODE_ARM_REG_FPCS_LIST(lir->operands[0]);
}
if (flags & REG_USE_FPCS_LIST2) {
for (int i = 0; i < lir->operands[2]; i++) {
SetupRegMask(cUnit, &lir->useMask, lir->operands[1] + i);
}
}
/* Fixup for kThumbPush/lr and kThumbPop/pc */
if (opcode == kThumbPush || opcode == kThumbPop) {
uint64_t r8Mask = GetRegMaskCommon(cUnit, r8);
if ((opcode == kThumbPush) && (lir->useMask & r8Mask)) {
lir->useMask &= ~r8Mask;
lir->useMask |= ENCODE_ARM_REG_LR;
} else if ((opcode == kThumbPop) && (lir->defMask & r8Mask)) {
lir->defMask &= ~r8Mask;
lir->defMask |= ENCODE_ARM_REG_PC;
}
}
if (flags & REG_DEF_LR) {
lir->defMask |= ENCODE_ARM_REG_LR;
}
}
ArmConditionCode ArmConditionEncoding(ConditionCode ccode)
{
ArmConditionCode res;
switch (ccode) {
case kCondEq: res = kArmCondEq; break;
case kCondNe: res = kArmCondNe; break;
case kCondCs: res = kArmCondCs; break;
case kCondCc: res = kArmCondCc; break;
case kCondMi: res = kArmCondMi; break;
case kCondPl: res = kArmCondPl; break;
case kCondVs: res = kArmCondVs; break;
case kCondVc: res = kArmCondVc; break;
case kCondHi: res = kArmCondHi; break;
case kCondLs: res = kArmCondLs; break;
case kCondGe: res = kArmCondGe; break;
case kCondLt: res = kArmCondLt; break;
case kCondGt: res = kArmCondGt; break;
case kCondLe: res = kArmCondLe; break;
case kCondAl: res = kArmCondAl; break;
case kCondNv: res = kArmCondNv; break;
default:
LOG(FATAL) << "Bad condition code " << ccode;
res = static_cast<ArmConditionCode>(0); // Quiet gcc
}
return res;
}
static const char* coreRegNames[16] = {
"r0",
"r1",
"r2",
"r3",
"r4",
"r5",
"r6",
"r7",
"r8",
"rSELF",
"r10",
"r11",
"r12",
"sp",
"lr",
"pc",
};
static const char* shiftNames[4] = {
"lsl",
"lsr",
"asr",
"ror"};
/* Decode and print a ARM register name */
char* DecodeRegList(int opcode, int vector, char* buf)
{
int i;
bool printed = false;
buf[0] = 0;
for (i = 0; i < 16; i++, vector >>= 1) {
if (vector & 0x1) {
int regId = i;
if (opcode == kThumbPush && i == 8) {
regId = r14lr;
} else if (opcode == kThumbPop && i == 8) {
regId = r15pc;
}
if (printed) {
sprintf(buf + strlen(buf), ", r%d", regId);
} else {
printed = true;
sprintf(buf, "r%d", regId);
}
}
}
return buf;
}
char* DecodeFPCSRegList(int count, int base, char* buf)
{
sprintf(buf, "s%d", base);
for (int i = 1; i < count; i++) {
sprintf(buf + strlen(buf), ", s%d",base + i);
}
return buf;
}
int ExpandImmediate(int value)
{
int mode = (value & 0xf00) >> 8;
uint32_t bits = value & 0xff;
switch (mode) {
case 0:
return bits;
case 1:
return (bits << 16) | bits;
case 2:
return (bits << 24) | (bits << 8);
case 3:
return (bits << 24) | (bits << 16) | (bits << 8) | bits;
default:
break;
}
bits = (bits | 0x80) << 24;
return bits >> (((value & 0xf80) >> 7) - 8);
}
const char* ccNames[] = {"eq","ne","cs","cc","mi","pl","vs","vc",
"hi","ls","ge","lt","gt","le","al","nv"};
/*
* Interpret a format string and build a string no longer than size
* See format key in Assemble.c.
*/
std::string BuildInsnString(const char* fmt, LIR* lir, unsigned char* baseAddr)
{
std::string buf;
int i;
const char* fmtEnd = &fmt[strlen(fmt)];
char tbuf[256];
const char* name;
char nc;
while (fmt < fmtEnd) {
int operand;
if (*fmt == '!') {
fmt++;
DCHECK_LT(fmt, fmtEnd);
nc = *fmt++;
if (nc=='!') {
strcpy(tbuf, "!");
} else {
DCHECK_LT(fmt, fmtEnd);
DCHECK_LT(static_cast<unsigned>(nc-'0'), 4U);
operand = lir->operands[nc-'0'];
switch (*fmt++) {
case 'H':
if (operand != 0) {
sprintf(tbuf, ", %s %d",shiftNames[operand & 0x3], operand >> 2);
} else {
strcpy(tbuf,"");
}
break;
case 'B':
switch (operand) {
case kSY:
name = "sy";
break;
case kST:
name = "st";
break;
case kISH:
name = "ish";
break;
case kISHST:
name = "ishst";
break;
case kNSH:
name = "nsh";
break;
case kNSHST:
name = "shst";
break;
default:
name = "DecodeError2";
break;
}
strcpy(tbuf, name);
break;
case 'b':
strcpy(tbuf,"0000");
for (i=3; i>= 0; i--) {
tbuf[i] += operand & 1;
operand >>= 1;
}
break;
case 'n':
operand = ~ExpandImmediate(operand);
sprintf(tbuf,"%d [%#x]", operand, operand);
break;
case 'm':
operand = ExpandImmediate(operand);
sprintf(tbuf,"%d [%#x]", operand, operand);
break;
case 's':
sprintf(tbuf,"s%d",operand & ARM_FP_REG_MASK);
break;
case 'S':
sprintf(tbuf,"d%d",(operand & ARM_FP_REG_MASK) >> 1);
break;
case 'h':
sprintf(tbuf,"%04x", operand);
break;
case 'M':
case 'd':
sprintf(tbuf,"%d", operand);
break;
case 'C':
DCHECK_LT(operand, static_cast<int>(
sizeof(coreRegNames)/sizeof(coreRegNames[0])));
sprintf(tbuf,"%s",coreRegNames[operand]);
break;
case 'E':
sprintf(tbuf,"%d", operand*4);
break;
case 'F':
sprintf(tbuf,"%d", operand*2);
break;
case 'c':
strcpy(tbuf, ccNames[operand]);
break;
case 't':
sprintf(tbuf,"0x%08x (L%p)",
reinterpret_cast<uintptr_t>(baseAddr) + lir->offset + 4 +
(operand << 1),
lir->target);
break;
case 'u': {
int offset_1 = lir->operands[0];
int offset_2 = NEXT_LIR(lir)->operands[0];
uintptr_t target =
(((reinterpret_cast<uintptr_t>(baseAddr) + lir->offset + 4) &
~3) + (offset_1 << 21 >> 9) + (offset_2 << 1)) &
0xfffffffc;
sprintf(tbuf, "%p", reinterpret_cast<void *>(target));
break;
}
/* Nothing to print for BLX_2 */
case 'v':
strcpy(tbuf, "see above");
break;
case 'R':
DecodeRegList(lir->opcode, operand, tbuf);
break;
case 'P':
DecodeFPCSRegList(operand, 16, tbuf);
break;
case 'Q':
DecodeFPCSRegList(operand, 0, tbuf);
break;
default:
strcpy(tbuf,"DecodeError1");
break;
}
buf += tbuf;
}
} else {
buf += *fmt++;
}
}
return buf;
}
void DumpResourceMask(LIR* armLIR, uint64_t mask, const char* prefix)
{
char buf[256];
buf[0] = 0;
if (mask == ENCODE_ALL) {
strcpy(buf, "all");
} else {
char num[8];
int i;
for (i = 0; i < kArmRegEnd; i++) {
if (mask & (1ULL << i)) {
sprintf(num, "%d ", i);
strcat(buf, num);
}
}
if (mask & ENCODE_CCODE) {
strcat(buf, "cc ");
}
if (mask & ENCODE_FP_STATUS) {
strcat(buf, "fpcc ");
}
/* Memory bits */
if (armLIR && (mask & ENCODE_DALVIK_REG)) {
sprintf(buf + strlen(buf), "dr%d%s", armLIR->aliasInfo & 0xffff,
(armLIR->aliasInfo & 0x80000000) ? "(+1)" : "");
}
if (mask & ENCODE_LITERAL) {
strcat(buf, "lit ");
}
if (mask & ENCODE_HEAP_REF) {
strcat(buf, "heap ");
}
if (mask & ENCODE_MUST_NOT_ALIAS) {
strcat(buf, "noalias ");
}
}
if (buf[0]) {
LOG(INFO) << prefix << ": " << buf;
}
}
bool BranchUnconditional(LIR* lir)
{
return ((lir->opcode == kThumbBUncond) || (lir->opcode == kThumb2BUncond));
}
/* Common initialization routine for an architecture family */
bool ArchInit()
{
int i;
for (i = 0; i < kArmLast; i++) {
if (EncodingMap[i].opcode != i) {
LOG(FATAL) << "Encoding order for " << EncodingMap[i].name
<< " is wrong: expecting " << i << ", seeing "
<< static_cast<int>(EncodingMap[i].opcode);
}
}
return ArchVariantInit();
}
/* Architecture-specific initializations and checks go here */
bool ArchVariantInit(void)
{
return true;
}
/*
* Alloc a pair of core registers, or a double. Low reg in low byte,
* high reg in next byte.
*/
int AllocTypedTempPair(CompilationUnit* cUnit, bool fpHint, int regClass)
{
int highReg;
int lowReg;
int res = 0;
if (((regClass == kAnyReg) && fpHint) || (regClass == kFPReg)) {
lowReg = AllocTempDouble(cUnit);
highReg = lowReg + 1;
} else {
lowReg = AllocTemp(cUnit);
highReg = AllocTemp(cUnit);
}
res = (lowReg & 0xff) | ((highReg & 0xff) << 8);
return res;
}
int AllocTypedTemp(CompilationUnit* cUnit, bool fpHint, int regClass)
{
if (((regClass == kAnyReg) && fpHint) || (regClass == kFPReg))
return AllocTempFloat(cUnit);
return AllocTemp(cUnit);
}
void CompilerInitializeRegAlloc(CompilationUnit* cUnit)
{
int numRegs = sizeof(coreRegs)/sizeof(*coreRegs);
int numReserved = sizeof(ReservedRegs)/sizeof(*ReservedRegs);
int numTemps = sizeof(coreTemps)/sizeof(*coreTemps);
int numFPRegs = sizeof(FpRegs)/sizeof(*FpRegs);
int numFPTemps = sizeof(fpTemps)/sizeof(*fpTemps);
RegisterPool *pool =
static_cast<RegisterPool*>(NewMem(cUnit, sizeof(*pool), true, kAllocRegAlloc));
cUnit->regPool = pool;
pool->numCoreRegs = numRegs;
pool->coreRegs = reinterpret_cast<RegisterInfo*>
(NewMem(cUnit, numRegs * sizeof(*cUnit->regPool->coreRegs), true, kAllocRegAlloc));
pool->numFPRegs = numFPRegs;
pool->FPRegs = static_cast<RegisterInfo*>
(NewMem(cUnit, numFPRegs * sizeof(*cUnit->regPool->FPRegs), true, kAllocRegAlloc));
CompilerInitPool(pool->coreRegs, coreRegs, pool->numCoreRegs);
CompilerInitPool(pool->FPRegs, FpRegs, pool->numFPRegs);
// Keep special registers from being allocated
for (int i = 0; i < numReserved; i++) {
if (NO_SUSPEND && (ReservedRegs[i] == rARM_SUSPEND)) {
//To measure cost of suspend check
continue;
}
MarkInUse(cUnit, ReservedRegs[i]);
}
// Mark temp regs - all others not in use can be used for promotion
for (int i = 0; i < numTemps; i++) {
MarkTemp(cUnit, coreTemps[i]);
}
for (int i = 0; i < numFPTemps; i++) {
MarkTemp(cUnit, fpTemps[i]);
}
// Start allocation at r2 in an attempt to avoid clobbering return values
pool->nextCoreReg = r2;
// Construct the alias map.
cUnit->phiAliasMap = static_cast<int*>
(NewMem(cUnit, cUnit->numSSARegs * sizeof(cUnit->phiAliasMap[0]), false, kAllocDFInfo));
for (int i = 0; i < cUnit->numSSARegs; i++) {
cUnit->phiAliasMap[i] = i;
}
for (MIR* phi = cUnit->phiList; phi; phi = phi->meta.phiNext) {
int defReg = phi->ssaRep->defs[0];
for (int i = 0; i < phi->ssaRep->numUses; i++) {
for (int j = 0; j < cUnit->numSSARegs; j++) {
if (cUnit->phiAliasMap[j] == phi->ssaRep->uses[i]) {
cUnit->phiAliasMap[j] = defReg;
}
}
}
}
}
void FreeRegLocTemps(CompilationUnit* cUnit, RegLocation rlKeep,
RegLocation rlFree)
{
if ((rlFree.lowReg != rlKeep.lowReg) && (rlFree.lowReg != rlKeep.highReg) &&
(rlFree.highReg != rlKeep.lowReg) && (rlFree.highReg != rlKeep.highReg)) {
// No overlap, free both
FreeTemp(cUnit, rlFree.lowReg);
FreeTemp(cUnit, rlFree.highReg);
}
}
/*
* TUNING: is leaf? Can't just use "hasInvoke" to determine as some
* instructions might call out to C/assembly helper functions. Until
* machinery is in place, always spill lr.
*/
void AdjustSpillMask(CompilationUnit* cUnit)
{
cUnit->coreSpillMask |= (1 << rARM_LR);
cUnit->numCoreSpills++;
}
/*
* Mark a callee-save fp register as promoted. Note that
* vpush/vpop uses contiguous register lists so we must
* include any holes in the mask. Associate holes with
* Dalvik register INVALID_VREG (0xFFFFU).
*/
void MarkPreservedSingle(CompilationUnit* cUnit, int vReg, int reg)
{
DCHECK_GE(reg, ARM_FP_REG_MASK + ARM_FP_CALLEE_SAVE_BASE);
reg = (reg & ARM_FP_REG_MASK) - ARM_FP_CALLEE_SAVE_BASE;
// Ensure fpVmapTable is large enough
int tableSize = cUnit->fpVmapTable.size();
for (int i = tableSize; i < (reg + 1); i++) {
cUnit->fpVmapTable.push_back(INVALID_VREG);
}
// Add the current mapping
cUnit->fpVmapTable[reg] = vReg;
// Size of fpVmapTable is high-water mark, use to set mask
cUnit->numFPSpills = cUnit->fpVmapTable.size();
cUnit->fpSpillMask = ((1 << cUnit->numFPSpills) - 1) << ARM_FP_CALLEE_SAVE_BASE;
}
void FlushRegWide(CompilationUnit* cUnit, int reg1, int reg2)
{
RegisterInfo* info1 = GetRegInfo(cUnit, reg1);
RegisterInfo* info2 = GetRegInfo(cUnit, reg2);
DCHECK(info1 && info2 && info1->pair && info2->pair &&
(info1->partner == info2->reg) &&
(info2->partner == info1->reg));
if ((info1->live && info1->dirty) || (info2->live && info2->dirty)) {
if (!(info1->isTemp && info2->isTemp)) {
/* Should not happen. If it does, there's a problem in evalLoc */
LOG(FATAL) << "Long half-temp, half-promoted";
}
info1->dirty = false;
info2->dirty = false;
if (SRegToVReg(cUnit, info2->sReg) <
SRegToVReg(cUnit, info1->sReg))
info1 = info2;
int vReg = SRegToVReg(cUnit, info1->sReg);
StoreBaseDispWide(cUnit, rARM_SP, VRegOffset(cUnit, vReg), info1->reg, info1->partner);
}
}
void FlushReg(CompilationUnit* cUnit, int reg)
{
RegisterInfo* info = GetRegInfo(cUnit, reg);
if (info->live && info->dirty) {
info->dirty = false;
int vReg = SRegToVReg(cUnit, info->sReg);
StoreBaseDisp(cUnit, rARM_SP, VRegOffset(cUnit, vReg), reg, kWord);
}
}
/* Give access to the target-dependent FP register encoding to common code */
bool IsFpReg(int reg) {
return ARM_FPREG(reg);
}
/* Clobber all regs that might be used by an external C call */
void ClobberCalleeSave(CompilationUnit *cUnit)
{
Clobber(cUnit, r0);
Clobber(cUnit, r1);
Clobber(cUnit, r2);
Clobber(cUnit, r3);
Clobber(cUnit, r12);
Clobber(cUnit, r14lr);
Clobber(cUnit, fr0);
Clobber(cUnit, fr1);
Clobber(cUnit, fr2);
Clobber(cUnit, fr3);
Clobber(cUnit, fr4);
Clobber(cUnit, fr5);
Clobber(cUnit, fr6);
Clobber(cUnit, fr7);
Clobber(cUnit, fr8);
Clobber(cUnit, fr9);
Clobber(cUnit, fr10);
Clobber(cUnit, fr11);
Clobber(cUnit, fr12);
Clobber(cUnit, fr13);
Clobber(cUnit, fr14);
Clobber(cUnit, fr15);
}
extern RegLocation GetReturnWideAlt(CompilationUnit* cUnit)
{
RegLocation res = LocCReturnWide();
res.lowReg = r2;
res.highReg = r3;
Clobber(cUnit, r2);
Clobber(cUnit, r3);
MarkInUse(cUnit, r2);
MarkInUse(cUnit, r3);
MarkPair(cUnit, res.lowReg, res.highReg);
return res;
}
extern RegLocation GetReturnAlt(CompilationUnit* cUnit)
{
RegLocation res = LocCReturn();
res.lowReg = r1;
Clobber(cUnit, r1);
MarkInUse(cUnit, r1);
return res;
}
extern RegisterInfo* GetRegInfo(CompilationUnit* cUnit, int reg)
{
return ARM_FPREG(reg) ? &cUnit->regPool->FPRegs[reg & ARM_FP_REG_MASK]
: &cUnit->regPool->coreRegs[reg];
}
/* To be used when explicitly managing register use */
extern void LockCallTemps(CompilationUnit* cUnit)
{
LockTemp(cUnit, r0);
LockTemp(cUnit, r1);
LockTemp(cUnit, r2);
LockTemp(cUnit, r3);
}
/* To be used when explicitly managing register use */
extern void FreeCallTemps(CompilationUnit* cUnit)
{
FreeTemp(cUnit, r0);
FreeTemp(cUnit, r1);
FreeTemp(cUnit, r2);
FreeTemp(cUnit, r3);
}
int LoadHelper(CompilationUnit* cUnit, int offset)
{
LoadWordDisp(cUnit, rARM_SELF, offset, rARM_LR);
return rARM_LR;
}
uint64_t GetTargetInstFlags(int opcode)
{
return EncodingMap[opcode].flags;
}
const char* GetTargetInstName(int opcode)
{
return EncodingMap[opcode].name;
}
const char* GetTargetInstFmt(int opcode)
{
return EncodingMap[opcode].fmt;
}
} // namespace art