blob: 6e8dfd60fb60380321b4564fb01dd5d8eb460f2e [file] [log] [blame]
/*
* Copyright (C) 2015 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#ifndef ART_COMPILER_ELF_BUILDER_H_
#define ART_COMPILER_ELF_BUILDER_H_
#include <vector>
#include "arch/instruction_set.h"
#include "base/bit_utils.h"
#include "base/casts.h"
#include "base/unix_file/fd_file.h"
#include "buffered_output_stream.h"
#include "elf_utils.h"
#include "file_output_stream.h"
#include "leb128.h"
namespace art {
// Writes ELF file.
//
// The basic layout of the elf file:
// Elf_Ehdr - The ELF header.
// Elf_Phdr[] - Program headers for the linker.
// .rodata - DEX files and oat metadata.
// .text - Compiled code.
// .bss - Zero-initialized writeable section.
// .dynstr - Names for .dynsym.
// .dynsym - A few oat-specific dynamic symbols.
// .hash - Hash-table for .dynsym.
// .dynamic - Tags which let the linker locate .dynsym.
// .strtab - Names for .symtab.
// .symtab - Debug symbols.
// .eh_frame - Unwind information (CFI).
// .eh_frame_hdr - Index of .eh_frame.
// .debug_frame - Unwind information (CFI).
// .debug_frame.oat_patches - Addresses for relocation.
// .debug_info - Debug information.
// .debug_info.oat_patches - Addresses for relocation.
// .debug_abbrev - Decoding information for .debug_info.
// .debug_str - Strings for .debug_info.
// .debug_line - Line number tables.
// .debug_line.oat_patches - Addresses for relocation.
// .text.oat_patches - Addresses for relocation.
// .shstrtab - Names of ELF sections.
// Elf_Shdr[] - Section headers.
//
// Some section are optional (the debug sections in particular).
//
// We try write the section data directly into the file without much
// in-memory buffering. This means we generally write sections based on the
// dependency order (e.g. .dynamic points to .dynsym which points to .text).
//
// In the cases where we need to buffer, we write the larger section first
// and buffer the smaller one (e.g. .strtab is bigger than .symtab).
//
// The debug sections are written last for easier stripping.
//
template <typename ElfTypes>
class ElfBuilder FINAL {
public:
static constexpr size_t kMaxProgramHeaders = 16;
using Elf_Addr = typename ElfTypes::Addr;
using Elf_Off = typename ElfTypes::Off;
using Elf_Word = typename ElfTypes::Word;
using Elf_Sword = typename ElfTypes::Sword;
using Elf_Ehdr = typename ElfTypes::Ehdr;
using Elf_Shdr = typename ElfTypes::Shdr;
using Elf_Sym = typename ElfTypes::Sym;
using Elf_Phdr = typename ElfTypes::Phdr;
using Elf_Dyn = typename ElfTypes::Dyn;
// Base class of all sections.
class Section : public OutputStream {
public:
Section(ElfBuilder<ElfTypes>* owner, const std::string& name,
Elf_Word type, Elf_Word flags, const Section* link,
Elf_Word info, Elf_Word align, Elf_Word entsize)
: OutputStream(name), owner_(owner), header_(),
section_index_(0), name_(name), link_(link),
started_(false), finished_(false), phdr_flags_(PF_R), phdr_type_(0) {
DCHECK_GE(align, 1u);
header_.sh_type = type;
header_.sh_flags = flags;
header_.sh_info = info;
header_.sh_addralign = align;
header_.sh_entsize = entsize;
}
virtual ~Section() {
if (started_) {
CHECK(finished_);
}
}
// Start writing of this section.
void Start() {
CHECK(!started_);
CHECK(!finished_);
started_ = true;
auto& sections = owner_->sections_;
// Check that the previous section is complete.
CHECK(sections.empty() || sections.back()->finished_);
// The first ELF section index is 1. Index 0 is reserved for NULL.
section_index_ = sections.size() + 1;
// Push this section on the list of written sections.
sections.push_back(this);
// Align file position.
if (header_.sh_type != SHT_NOBITS) {
header_.sh_offset = RoundUp(owner_->Seek(0, kSeekCurrent), header_.sh_addralign);
owner_->Seek(header_.sh_offset, kSeekSet);
}
// Align virtual memory address.
if ((header_.sh_flags & SHF_ALLOC) != 0) {
header_.sh_addr = RoundUp(owner_->virtual_address_, header_.sh_addralign);
owner_->virtual_address_ = header_.sh_addr;
}
}
// Finish writing of this section.
void End() {
CHECK(started_);
CHECK(!finished_);
finished_ = true;
if (header_.sh_type == SHT_NOBITS) {
CHECK_GT(header_.sh_size, 0u);
} else {
// Use the current file position to determine section size.
off_t file_offset = owner_->Seek(0, kSeekCurrent);
CHECK_GE(file_offset, (off_t)header_.sh_offset);
header_.sh_size = file_offset - header_.sh_offset;
}
if ((header_.sh_flags & SHF_ALLOC) != 0) {
owner_->virtual_address_ += header_.sh_size;
}
}
// Get the location of this section in virtual memory.
Elf_Addr GetAddress() const {
CHECK(started_);
return header_.sh_addr;
}
// Returns the size of the content of this section.
Elf_Word GetSize() const {
if (finished_) {
return header_.sh_size;
} else {
CHECK(started_);
CHECK_NE(header_.sh_type, (Elf_Word)SHT_NOBITS);
return owner_->Seek(0, kSeekCurrent) - header_.sh_offset;
}
}
// Set desired allocation size for .bss section.
void SetSize(Elf_Word size) {
CHECK_EQ(header_.sh_type, (Elf_Word)SHT_NOBITS);
header_.sh_size = size;
}
// This function always succeeds to simplify code.
// Use builder's Good() to check the actual status.
bool WriteFully(const void* buffer, size_t byte_count) OVERRIDE {
CHECK(started_);
CHECK(!finished_);
owner_->WriteFully(buffer, byte_count);
return true;
}
// This function always succeeds to simplify code.
// Use builder's Good() to check the actual status.
off_t Seek(off_t offset, Whence whence) OVERRIDE {
// Forward the seek as-is and trust the caller to use it reasonably.
return owner_->Seek(offset, whence);
}
Elf_Word GetSectionIndex() const {
DCHECK(started_);
DCHECK_NE(section_index_, 0u);
return section_index_;
}
private:
ElfBuilder<ElfTypes>* owner_;
Elf_Shdr header_;
Elf_Word section_index_;
const std::string name_;
const Section* const link_;
bool started_;
bool finished_;
Elf_Word phdr_flags_;
Elf_Word phdr_type_;
friend class ElfBuilder;
DISALLOW_COPY_AND_ASSIGN(Section);
};
// Writer of .dynstr .strtab and .shstrtab sections.
class StringSection FINAL : public Section {
public:
StringSection(ElfBuilder<ElfTypes>* owner, const std::string& name,
Elf_Word flags, Elf_Word align)
: Section(owner, name, SHT_STRTAB, flags, nullptr, 0, align, 0),
current_offset_(0) {
}
Elf_Word Write(const std::string& name) {
if (current_offset_ == 0) {
DCHECK(name.empty());
}
Elf_Word offset = current_offset_;
this->WriteFully(name.c_str(), name.length() + 1);
current_offset_ += name.length() + 1;
return offset;
}
private:
Elf_Word current_offset_;
};
// Writer of .dynsym and .symtab sections.
class SymbolSection FINAL : public Section {
public:
SymbolSection(ElfBuilder<ElfTypes>* owner, const std::string& name,
Elf_Word type, Elf_Word flags, StringSection* strtab)
: Section(owner, name, type, flags, strtab, 0,
sizeof(Elf_Off), sizeof(Elf_Sym)) {
}
// Buffer symbol for this section. It will be written later.
void Add(Elf_Word name, const Section* section,
Elf_Addr addr, bool is_relative, Elf_Word size,
uint8_t binding, uint8_t type, uint8_t other = 0) {
CHECK(section != nullptr);
Elf_Sym sym = Elf_Sym();
sym.st_name = name;
sym.st_value = addr + (is_relative ? section->GetAddress() : 0);
sym.st_size = size;
sym.st_other = other;
sym.st_shndx = section->GetSectionIndex();
sym.st_info = (binding << 4) + (type & 0xf);
symbols_.push_back(sym);
}
void Write() {
// The symbol table always has to start with NULL symbol.
Elf_Sym null_symbol = Elf_Sym();
this->WriteFully(&null_symbol, sizeof(null_symbol));
this->WriteFully(symbols_.data(), symbols_.size() * sizeof(symbols_[0]));
symbols_.clear();
symbols_.shrink_to_fit();
}
private:
std::vector<Elf_Sym> symbols_;
};
ElfBuilder(InstructionSet isa, OutputStream* output)
: isa_(isa),
output_(output),
output_good_(true),
output_offset_(0),
rodata_(this, ".rodata", SHT_PROGBITS, SHF_ALLOC, nullptr, 0, kPageSize, 0),
text_(this, ".text", SHT_PROGBITS, SHF_ALLOC | SHF_EXECINSTR, nullptr, 0, kPageSize, 0),
bss_(this, ".bss", SHT_NOBITS, SHF_ALLOC, nullptr, 0, kPageSize, 0),
dynstr_(this, ".dynstr", SHF_ALLOC, kPageSize),
dynsym_(this, ".dynsym", SHT_DYNSYM, SHF_ALLOC, &dynstr_),
hash_(this, ".hash", SHT_HASH, SHF_ALLOC, &dynsym_, 0, sizeof(Elf_Word), sizeof(Elf_Word)),
dynamic_(this, ".dynamic", SHT_DYNAMIC, SHF_ALLOC, &dynstr_, 0, kPageSize, sizeof(Elf_Dyn)),
eh_frame_(this, ".eh_frame", SHT_PROGBITS, SHF_ALLOC, nullptr, 0, kPageSize, 0),
eh_frame_hdr_(this, ".eh_frame_hdr", SHT_PROGBITS, SHF_ALLOC, nullptr, 0, 4, 0),
strtab_(this, ".strtab", 0, kPageSize),
symtab_(this, ".symtab", SHT_SYMTAB, 0, &strtab_),
debug_frame_(this, ".debug_frame", SHT_PROGBITS, 0, nullptr, 0, sizeof(Elf_Addr), 0),
debug_info_(this, ".debug_info", SHT_PROGBITS, 0, nullptr, 0, 1, 0),
debug_line_(this, ".debug_line", SHT_PROGBITS, 0, nullptr, 0, 1, 0),
shstrtab_(this, ".shstrtab", 0, 1),
virtual_address_(0) {
text_.phdr_flags_ = PF_R | PF_X;
bss_.phdr_flags_ = PF_R | PF_W;
dynamic_.phdr_flags_ = PF_R | PF_W;
dynamic_.phdr_type_ = PT_DYNAMIC;
eh_frame_hdr_.phdr_type_ = PT_GNU_EH_FRAME;
}
~ElfBuilder() {}
InstructionSet GetIsa() { return isa_; }
Section* GetRoData() { return &rodata_; }
Section* GetText() { return &text_; }
Section* GetBss() { return &bss_; }
StringSection* GetStrTab() { return &strtab_; }
SymbolSection* GetSymTab() { return &symtab_; }
Section* GetEhFrame() { return &eh_frame_; }
Section* GetEhFrameHdr() { return &eh_frame_hdr_; }
Section* GetDebugFrame() { return &debug_frame_; }
Section* GetDebugInfo() { return &debug_info_; }
Section* GetDebugLine() { return &debug_line_; }
// Encode patch locations as LEB128 list of deltas between consecutive addresses.
// (exposed publicly for tests)
static void EncodeOatPatches(const std::vector<uintptr_t>& locations,
std::vector<uint8_t>* buffer) {
buffer->reserve(buffer->size() + locations.size() * 2); // guess 2 bytes per ULEB128.
uintptr_t address = 0; // relative to start of section.
for (uintptr_t location : locations) {
DCHECK_GE(location, address) << "Patch locations are not in sorted order";
EncodeUnsignedLeb128(buffer, dchecked_integral_cast<uint32_t>(location - address));
address = location;
}
}
void WritePatches(const char* name, const std::vector<uintptr_t>* patch_locations) {
std::vector<uint8_t> buffer;
EncodeOatPatches(*patch_locations, &buffer);
std::unique_ptr<Section> s(new Section(this, name, SHT_OAT_PATCH, 0, nullptr, 0, 1, 0));
s->Start();
s->WriteFully(buffer.data(), buffer.size());
s->End();
other_sections_.push_back(std::move(s));
}
void WriteSection(const char* name, const std::vector<uint8_t>* buffer) {
std::unique_ptr<Section> s(new Section(this, name, SHT_PROGBITS, 0, nullptr, 0, 1, 0));
s->Start();
s->WriteFully(buffer->data(), buffer->size());
s->End();
other_sections_.push_back(std::move(s));
}
void Start() {
// Reserve space for ELF header and program headers.
// We do not know the number of headers until later, so
// it is easiest to just reserve a fixed amount of space.
int size = sizeof(Elf_Ehdr) + sizeof(Elf_Phdr) * kMaxProgramHeaders;
Seek(size, kSeekSet);
virtual_address_ += size;
}
void End() {
// Write section names and finish the section headers.
shstrtab_.Start();
shstrtab_.Write("");
for (auto* section : sections_) {
section->header_.sh_name = shstrtab_.Write(section->name_);
if (section->link_ != nullptr) {
section->header_.sh_link = section->link_->GetSectionIndex();
}
}
shstrtab_.End();
// Write section headers at the end of the ELF file.
std::vector<Elf_Shdr> shdrs;
shdrs.reserve(1u + sections_.size());
shdrs.push_back(Elf_Shdr()); // NULL at index 0.
for (auto* section : sections_) {
shdrs.push_back(section->header_);
}
Elf_Off section_headers_offset;
section_headers_offset = RoundUp(Seek(0, kSeekCurrent), sizeof(Elf_Off));
Seek(section_headers_offset, kSeekSet);
WriteFully(shdrs.data(), shdrs.size() * sizeof(shdrs[0]));
// Write the initial file headers.
std::vector<Elf_Phdr> phdrs = MakeProgramHeaders();
Elf_Ehdr elf_header = MakeElfHeader(isa_);
elf_header.e_phoff = sizeof(Elf_Ehdr);
elf_header.e_shoff = section_headers_offset;
elf_header.e_phnum = phdrs.size();
elf_header.e_shnum = shdrs.size();
elf_header.e_shstrndx = shstrtab_.GetSectionIndex();
Seek(0, kSeekSet);
WriteFully(&elf_header, sizeof(elf_header));
WriteFully(phdrs.data(), phdrs.size() * sizeof(phdrs[0]));
}
// The running program does not have access to section headers
// and the loader is not supposed to use them either.
// The dynamic sections therefore replicates some of the layout
// information like the address and size of .rodata and .text.
// It also contains other metadata like the SONAME.
// The .dynamic section is found using the PT_DYNAMIC program header.
void WriteDynamicSection(const std::string& elf_file_path) {
std::string soname(elf_file_path);
size_t directory_separator_pos = soname.rfind('/');
if (directory_separator_pos != std::string::npos) {
soname = soname.substr(directory_separator_pos + 1);
}
dynstr_.Start();
dynstr_.Write(""); // dynstr should start with empty string.
dynsym_.Add(dynstr_.Write("oatdata"), &rodata_, 0, true,
rodata_.GetSize(), STB_GLOBAL, STT_OBJECT);
if (text_.GetSize() != 0u) {
dynsym_.Add(dynstr_.Write("oatexec"), &text_, 0, true,
text_.GetSize(), STB_GLOBAL, STT_OBJECT);
dynsym_.Add(dynstr_.Write("oatlastword"), &text_, text_.GetSize() - 4,
true, 4, STB_GLOBAL, STT_OBJECT);
} else if (rodata_.GetSize() != 0) {
// rodata_ can be size 0 for dwarf_test.
dynsym_.Add(dynstr_.Write("oatlastword"), &rodata_, rodata_.GetSize() - 4,
true, 4, STB_GLOBAL, STT_OBJECT);
}
if (bss_.finished_) {
dynsym_.Add(dynstr_.Write("oatbss"), &bss_,
0, true, bss_.GetSize(), STB_GLOBAL, STT_OBJECT);
dynsym_.Add(dynstr_.Write("oatbsslastword"), &bss_,
bss_.GetSize() - 4, true, 4, STB_GLOBAL, STT_OBJECT);
}
Elf_Word soname_offset = dynstr_.Write(soname);
dynstr_.End();
dynsym_.Start();
dynsym_.Write();
dynsym_.End();
// We do not really need a hash-table since there is so few entries.
// However, the hash-table is the only way the linker can actually
// determine the number of symbols in .dynsym so it is required.
hash_.Start();
int count = dynsym_.GetSize() / sizeof(Elf_Sym); // Includes NULL.
std::vector<Elf_Word> hash;
hash.push_back(1); // Number of buckets.
hash.push_back(count); // Number of chains.
// Buckets. Having just one makes it linear search.
hash.push_back(1); // Point to first non-NULL symbol.
// Chains. This creates linked list of symbols.
hash.push_back(0); // Dummy entry for the NULL symbol.
for (int i = 1; i < count - 1; i++) {
hash.push_back(i + 1); // Each symbol points to the next one.
}
hash.push_back(0); // Last symbol terminates the chain.
hash_.WriteFully(hash.data(), hash.size() * sizeof(hash[0]));
hash_.End();
dynamic_.Start();
Elf_Dyn dyns[] = {
{ DT_HASH, { hash_.GetAddress() } },
{ DT_STRTAB, { dynstr_.GetAddress() } },
{ DT_SYMTAB, { dynsym_.GetAddress() } },
{ DT_SYMENT, { sizeof(Elf_Sym) } },
{ DT_STRSZ, { dynstr_.GetSize() } },
{ DT_SONAME, { soname_offset } },
{ DT_NULL, { 0 } },
};
dynamic_.WriteFully(&dyns, sizeof(dyns));
dynamic_.End();
}
// Returns true if all writes and seeks on the output stream succeeded.
bool Good() {
return output_good_;
}
private:
// This function always succeeds to simplify code.
// Use Good() to check the actual status of the output stream.
void WriteFully(const void* buffer, size_t byte_count) {
if (output_good_) {
if (!output_->WriteFully(buffer, byte_count)) {
PLOG(ERROR) << "Failed to write " << byte_count
<< " bytes to ELF file at offset " << output_offset_;
output_good_ = false;
}
}
output_offset_ += byte_count;
}
// This function always succeeds to simplify code.
// Use Good() to check the actual status of the output stream.
off_t Seek(off_t offset, Whence whence) {
// We keep shadow copy of the offset so that we return
// the expected value even if the output stream failed.
off_t new_offset;
switch (whence) {
case kSeekSet:
new_offset = offset;
break;
case kSeekCurrent:
new_offset = output_offset_ + offset;
break;
default:
LOG(FATAL) << "Unsupported seek type: " << whence;
UNREACHABLE();
}
if (output_good_) {
off_t actual_offset = output_->Seek(offset, whence);
if (actual_offset == (off_t)-1) {
PLOG(ERROR) << "Failed to seek in ELF file. Offset=" << offset
<< " whence=" << whence << " new_offset=" << new_offset;
output_good_ = false;
}
DCHECK_EQ(actual_offset, new_offset);
}
output_offset_ = new_offset;
return new_offset;
}
static Elf_Ehdr MakeElfHeader(InstructionSet isa) {
Elf_Ehdr elf_header = Elf_Ehdr();
switch (isa) {
case kArm:
// Fall through.
case kThumb2: {
elf_header.e_machine = EM_ARM;
elf_header.e_flags = EF_ARM_EABI_VER5;
break;
}
case kArm64: {
elf_header.e_machine = EM_AARCH64;
elf_header.e_flags = 0;
break;
}
case kX86: {
elf_header.e_machine = EM_386;
elf_header.e_flags = 0;
break;
}
case kX86_64: {
elf_header.e_machine = EM_X86_64;
elf_header.e_flags = 0;
break;
}
case kMips: {
elf_header.e_machine = EM_MIPS;
elf_header.e_flags = (EF_MIPS_NOREORDER |
EF_MIPS_PIC |
EF_MIPS_CPIC |
EF_MIPS_ABI_O32 |
EF_MIPS_ARCH_32R2);
break;
}
case kMips64: {
elf_header.e_machine = EM_MIPS;
elf_header.e_flags = (EF_MIPS_NOREORDER |
EF_MIPS_PIC |
EF_MIPS_CPIC |
EF_MIPS_ARCH_64R6);
break;
}
case kNone: {
LOG(FATAL) << "No instruction set";
break;
}
default: {
LOG(FATAL) << "Unknown instruction set " << isa;
}
}
elf_header.e_ident[EI_MAG0] = ELFMAG0;
elf_header.e_ident[EI_MAG1] = ELFMAG1;
elf_header.e_ident[EI_MAG2] = ELFMAG2;
elf_header.e_ident[EI_MAG3] = ELFMAG3;
elf_header.e_ident[EI_CLASS] = (sizeof(Elf_Addr) == sizeof(Elf32_Addr))
? ELFCLASS32 : ELFCLASS64;;
elf_header.e_ident[EI_DATA] = ELFDATA2LSB;
elf_header.e_ident[EI_VERSION] = EV_CURRENT;
elf_header.e_ident[EI_OSABI] = ELFOSABI_LINUX;
elf_header.e_ident[EI_ABIVERSION] = 0;
elf_header.e_type = ET_DYN;
elf_header.e_version = 1;
elf_header.e_entry = 0;
elf_header.e_ehsize = sizeof(Elf_Ehdr);
elf_header.e_phentsize = sizeof(Elf_Phdr);
elf_header.e_shentsize = sizeof(Elf_Shdr);
elf_header.e_phoff = sizeof(Elf_Ehdr);
return elf_header;
}
// Create program headers based on written sections.
std::vector<Elf_Phdr> MakeProgramHeaders() {
CHECK(!sections_.empty());
std::vector<Elf_Phdr> phdrs;
{
// The program headers must start with PT_PHDR which is used in
// loaded process to determine the number of program headers.
Elf_Phdr phdr = Elf_Phdr();
phdr.p_type = PT_PHDR;
phdr.p_flags = PF_R;
phdr.p_offset = phdr.p_vaddr = phdr.p_paddr = sizeof(Elf_Ehdr);
phdr.p_filesz = phdr.p_memsz = 0; // We need to fill this later.
phdr.p_align = sizeof(Elf_Off);
phdrs.push_back(phdr);
// Tell the linker to mmap the start of file to memory.
Elf_Phdr load = Elf_Phdr();
load.p_type = PT_LOAD;
load.p_flags = PF_R;
load.p_offset = load.p_vaddr = load.p_paddr = 0;
load.p_filesz = load.p_memsz = sections_[0]->header_.sh_offset;
load.p_align = kPageSize;
phdrs.push_back(load);
}
// Create program headers for sections.
for (auto* section : sections_) {
const Elf_Shdr& shdr = section->header_;
if ((shdr.sh_flags & SHF_ALLOC) != 0 && shdr.sh_size != 0) {
// PT_LOAD tells the linker to mmap part of the file.
// The linker can only mmap page-aligned sections.
// Single PT_LOAD may contain several ELF sections.
Elf_Phdr& prev = phdrs.back();
Elf_Phdr load = Elf_Phdr();
load.p_type = PT_LOAD;
load.p_flags = section->phdr_flags_;
load.p_offset = shdr.sh_offset;
load.p_vaddr = load.p_paddr = shdr.sh_addr;
load.p_filesz = (shdr.sh_type != SHT_NOBITS ? shdr.sh_size : 0u);
load.p_memsz = shdr.sh_size;
load.p_align = shdr.sh_addralign;
if (prev.p_type == load.p_type &&
prev.p_flags == load.p_flags &&
prev.p_filesz == prev.p_memsz && // Do not merge .bss
load.p_filesz == load.p_memsz) { // Do not merge .bss
// Merge this PT_LOAD with the previous one.
Elf_Word size = shdr.sh_offset + shdr.sh_size - prev.p_offset;
prev.p_filesz = size;
prev.p_memsz = size;
} else {
// If we are adding new load, it must be aligned.
CHECK_EQ(shdr.sh_addralign, (Elf_Word)kPageSize);
phdrs.push_back(load);
}
}
}
for (auto* section : sections_) {
const Elf_Shdr& shdr = section->header_;
if ((shdr.sh_flags & SHF_ALLOC) != 0 && shdr.sh_size != 0) {
// Other PT_* types allow the program to locate interesting
// parts of memory at runtime. They must overlap with PT_LOAD.
if (section->phdr_type_ != 0) {
Elf_Phdr phdr = Elf_Phdr();
phdr.p_type = section->phdr_type_;
phdr.p_flags = section->phdr_flags_;
phdr.p_offset = shdr.sh_offset;
phdr.p_vaddr = phdr.p_paddr = shdr.sh_addr;
phdr.p_filesz = phdr.p_memsz = shdr.sh_size;
phdr.p_align = shdr.sh_addralign;
phdrs.push_back(phdr);
}
}
}
// Set the size of the initial PT_PHDR.
CHECK_EQ(phdrs[0].p_type, (Elf_Word)PT_PHDR);
phdrs[0].p_filesz = phdrs[0].p_memsz = phdrs.size() * sizeof(Elf_Phdr);
return phdrs;
}
InstructionSet isa_;
OutputStream* output_;
bool output_good_; // True if all writes to output succeeded.
off_t output_offset_; // Keep track of the current position in the stream.
Section rodata_;
Section text_;
Section bss_;
StringSection dynstr_;
SymbolSection dynsym_;
Section hash_;
Section dynamic_;
Section eh_frame_;
Section eh_frame_hdr_;
StringSection strtab_;
SymbolSection symtab_;
Section debug_frame_;
Section debug_info_;
Section debug_line_;
StringSection shstrtab_;
std::vector<std::unique_ptr<Section>> other_sections_;
// List of used section in the order in which they were written.
std::vector<Section*> sections_;
// Used for allocation of virtual address space.
Elf_Addr virtual_address_;
DISALLOW_COPY_AND_ASSIGN(ElfBuilder);
};
} // namespace art
#endif // ART_COMPILER_ELF_BUILDER_H_