| // Copyright 2011 Google Inc. All Rights Reserved. |
| |
| #ifndef ART_SRC_UTILS_H_ |
| #define ART_SRC_UTILS_H_ |
| |
| #include "globals.h" |
| #include "logging.h" |
| #include "primitive.h" |
| #include "stringpiece.h" |
| #include "stringprintf.h" |
| |
| #include <pthread.h> |
| #include <string> |
| #include <vector> |
| |
| namespace art { |
| |
| class Class; |
| class Field; |
| class Method; |
| class Object; |
| class String; |
| |
| template<typename T> |
| static inline bool IsPowerOfTwo(T x) { |
| return (x & (x - 1)) == 0; |
| } |
| |
| template<int n, typename T> |
| static inline bool IsAligned(T x) { |
| COMPILE_ASSERT((n & (n - 1)) == 0, n_not_power_of_two); |
| return (x & (n - 1)) == 0; |
| } |
| |
| template<int n, typename T> |
| static inline bool IsAligned(T* x) { |
| return IsAligned<n>(reinterpret_cast<uintptr_t>(x)); |
| } |
| |
| #define CHECK_ALIGNED(value, alignment) \ |
| CHECK(::art::IsAligned<alignment>(value)) << reinterpret_cast<void*>(value) |
| |
| #define DCHECK_ALIGNED(value, alignment) \ |
| DCHECK(::art::IsAligned<alignment>(value)) << reinterpret_cast<void*>(value) |
| |
| // Check whether an N-bit two's-complement representation can hold value. |
| static inline bool IsInt(int N, word value) { |
| CHECK_LT(0, N); |
| CHECK_LT(N, kBitsPerWord); |
| word limit = static_cast<word>(1) << (N - 1); |
| return (-limit <= value) && (value < limit); |
| } |
| |
| static inline bool IsUint(int N, word value) { |
| CHECK_LT(0, N); |
| CHECK_LT(N, kBitsPerWord); |
| word limit = static_cast<word>(1) << N; |
| return (0 <= value) && (value < limit); |
| } |
| |
| static inline bool IsAbsoluteUint(int N, word value) { |
| CHECK_LT(0, N); |
| CHECK_LT(N, kBitsPerWord); |
| if (value < 0) value = -value; |
| return IsUint(N, value); |
| } |
| |
| static inline int32_t Low16Bits(int32_t value) { |
| return static_cast<int32_t>(value & 0xffff); |
| } |
| |
| static inline int32_t High16Bits(int32_t value) { |
| return static_cast<int32_t>(value >> 16); |
| } |
| |
| static inline int32_t Low32Bits(int64_t value) { |
| return static_cast<int32_t>(value); |
| } |
| |
| static inline int32_t High32Bits(int64_t value) { |
| return static_cast<int32_t>(value >> 32); |
| } |
| |
| template<typename T> |
| static inline T RoundDown(T x, int n) { |
| CHECK(IsPowerOfTwo(n)); |
| return (x & -n); |
| } |
| |
| template<typename T> |
| static inline T RoundUp(T x, int n) { |
| return RoundDown(x + n - 1, n); |
| } |
| |
| // Implementation is from "Hacker's Delight" by Henry S. Warren, Jr., |
| // figure 3-3, page 48, where the function is called clp2. |
| static inline uint32_t RoundUpToPowerOfTwo(uint32_t x) { |
| x = x - 1; |
| x = x | (x >> 1); |
| x = x | (x >> 2); |
| x = x | (x >> 4); |
| x = x | (x >> 8); |
| x = x | (x >> 16); |
| return x + 1; |
| } |
| |
| // Implementation is from "Hacker's Delight" by Henry S. Warren, Jr., |
| // figure 5-2, page 66, where the function is called pop. |
| static inline int CountOneBits(uint32_t x) { |
| x = x - ((x >> 1) & 0x55555555); |
| x = (x & 0x33333333) + ((x >> 2) & 0x33333333); |
| x = (x + (x >> 4)) & 0x0F0F0F0F; |
| x = x + (x >> 8); |
| x = x + (x >> 16); |
| return static_cast<int>(x & 0x0000003F); |
| } |
| |
| #define CLZ(x) __builtin_clz(x) |
| |
| static inline bool NeedsEscaping(uint16_t ch) { |
| return (ch < ' ' || ch > '~'); |
| } |
| |
| static inline std::string PrintableChar(uint16_t ch) { |
| std::string result; |
| result += '\''; |
| if (NeedsEscaping(ch)) { |
| StringAppendF(&result, "\\u%04x", ch); |
| } else { |
| result += ch; |
| } |
| result += '\''; |
| return result; |
| } |
| |
| // TODO: assume the content is UTF-8, and show code point escapes? |
| template<typename StringT> |
| static inline std::string PrintableString(const StringT& s) { |
| std::string result; |
| result += '"'; |
| for (typename StringT::const_iterator it = s.begin(); it != s.end(); ++it) { |
| char ch = *it; |
| if (NeedsEscaping(ch)) { |
| StringAppendF(&result, "\\x%02x", ch & 0xff); |
| } else { |
| result += ch; |
| } |
| } |
| result += '"'; |
| return result; |
| } |
| |
| // Used to implement PrettyClass, PrettyField, PrettyMethod, and PrettyTypeOf, |
| // one of which is probably more useful to you. |
| // Returns a human-readable equivalent of 'descriptor'. So "I" would be "int", |
| // "[[I" would be "int[][]", "[Ljava/lang/String;" would be |
| // "java.lang.String[]", and so forth. |
| std::string PrettyDescriptor(const String* descriptor); |
| std::string PrettyDescriptor(const std::string& descriptor); |
| std::string PrettyDescriptor(Primitive::Type type); |
| |
| // Returns a human-readable signature for 'f'. Something like "a.b.C.f" or |
| // "int a.b.C.f" (depending on the value of 'with_type'). |
| std::string PrettyField(const Field* f, bool with_type = true); |
| |
| // Returns a human-readable signature for 'm'. Something like "a.b.C.m" or |
| // "a.b.C.m(II)V" (depending on the value of 'with_signature'). |
| std::string PrettyMethod(const Method* m, bool with_signature = true); |
| |
| // Returns a human-readable form of the name of the *class* of the given object. |
| // So given an instance of java.lang.String, the output would |
| // be "java.lang.String". Given an array of int, the output would be "int[]". |
| // Given String.class, the output would be "java.lang.Class<java.lang.String>". |
| std::string PrettyTypeOf(const Object* obj); |
| |
| // Returns a human-readable form of the name of the given class. |
| // Given String.class, the output would be "java.lang.Class<java.lang.String>". |
| std::string PrettyClass(const Class* c); |
| |
| // Returns a human-readable form of the name of the given class with its class loader. |
| std::string PrettyClassAndClassLoader(const Class* c); |
| |
| // Performs JNI name mangling as described in section 11.3 "Linking Native Methods" |
| // of the JNI spec. |
| std::string MangleForJni(const std::string& s); |
| |
| // Turn "java.lang.String" into "Ljava/lang/String;". |
| std::string DotToDescriptor(const char* class_name); |
| |
| // Turn "Ljava/lang/String;" into "java.lang.String". |
| std::string DescriptorToDot(const std::string& descriptor); |
| |
| // Tests whether 's' is a valid class name. |
| // name_or_descriptor |
| // true => "java/lang/String" |
| // false => "Ljava/lang/String;" (i.e. "descriptor") |
| // dot_or_slash |
| // true => "java.lang.String" |
| // false => "java/lang/String" (i.e. "dot or slash") |
| bool IsValidClassName(const char* s, bool name_or_descriptor, bool dot_or_slash); |
| |
| // Returns the JNI native function name for the non-overloaded method 'm'. |
| std::string JniShortName(const Method* m); |
| // Returns the JNI native function name for the overloaded method 'm'. |
| std::string JniLongName(const Method* m); |
| |
| bool ReadFileToString(const std::string& file_name, std::string* result); |
| |
| // Returns the current date in ISO yyyy-mm-dd hh:mm:ss format. |
| std::string GetIsoDate(); |
| |
| // Returns the current time in nanoseconds (using the POSIX CLOCK_MONOTONIC). |
| uint64_t NanoTime(); |
| |
| // Splits a string using the given delimiter character into a vector of |
| // strings. Empty strings will be omitted. |
| void Split(const std::string& s, char delim, std::vector<std::string>& result); |
| |
| // Returns the calling thread's tid. (The C libraries don't expose this.) |
| pid_t GetTid(); |
| |
| // Sets the name of the current thread. The name may be truncated to an |
| // implementation-defined limit. |
| void SetThreadName(const char* name); |
| |
| // Returns the art-cache location, or dies trying. |
| std::string GetArtCacheOrDie(); |
| |
| // Returns the art-cache location for a DexFile or OatFile, or dies trying. |
| std::string GetArtCacheFilenameOrDie(const std::string& location); |
| |
| // Check whether the given filename has a valid zip or dex extension |
| bool IsValidZipFilename(const std::string& filename); |
| bool IsValidDexFilename(const std::string& filename); |
| |
| } // namespace art |
| |
| #endif // ART_SRC_UTILS_H_ |