| /* | 
 |  * Copyright (C) 2017 The Android Open Source Project | 
 |  * | 
 |  * Licensed under the Apache License, Version 2.0 (the "License"); | 
 |  * you may not use this file except in compliance with the License. | 
 |  * You may obtain a copy of the License at | 
 |  * | 
 |  *      http://www.apache.org/licenses/LICENSE-2.0 | 
 |  * | 
 |  * Unless required by applicable law or agreed to in writing, software | 
 |  * distributed under the License is distributed on an "AS IS" BASIS, | 
 |  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | 
 |  * See the License for the specific language governing permissions and | 
 |  * limitations under the License. | 
 |  */ | 
 |  | 
 | #ifndef ART_COMPILER_OPTIMIZING_NODES_VECTOR_H_ | 
 | #define ART_COMPILER_OPTIMIZING_NODES_VECTOR_H_ | 
 |  | 
 | // This #include should never be used by compilation, because this header file (nodes_vector.h) | 
 | // is included in the header file nodes.h itself. However it gives editing tools better context. | 
 | #include "nodes.h" | 
 |  | 
 | namespace art { | 
 |  | 
 | // Memory alignment, represented as an offset relative to a base, where 0 <= offset < base, | 
 | // and base is a power of two. For example, the value Alignment(16, 0) means memory is | 
 | // perfectly aligned at a 16-byte boundary, whereas the value Alignment(16, 4) means | 
 | // memory is always exactly 4 bytes above such a boundary. | 
 | class Alignment { | 
 |  public: | 
 |   Alignment(size_t base, size_t offset) : base_(base), offset_(offset) { | 
 |     DCHECK_LT(offset, base); | 
 |     DCHECK(IsPowerOfTwo(base)); | 
 |   } | 
 |  | 
 |   // Returns true if memory is at least aligned at the given boundary. | 
 |   // Assumes requested base is power of two. | 
 |   bool IsAlignedAt(size_t base) const { | 
 |     DCHECK_NE(0u, base); | 
 |     DCHECK(IsPowerOfTwo(base)); | 
 |     return ((offset_ | base_) & (base - 1u)) == 0; | 
 |   } | 
 |  | 
 |   size_t Base() const { return base_; } | 
 |  | 
 |   size_t Offset() const { return offset_; } | 
 |  | 
 |   std::string ToString() const { | 
 |     return "ALIGN(" + std::to_string(base_) + "," + std::to_string(offset_) + ")"; | 
 |   } | 
 |  | 
 |   bool operator==(const Alignment& other) const { | 
 |     return base_ == other.base_ && offset_ == other.offset_; | 
 |   } | 
 |  | 
 |  private: | 
 |   size_t base_; | 
 |   size_t offset_; | 
 | }; | 
 |  | 
 | // | 
 | // Definitions of abstract vector operations in HIR. | 
 | // | 
 |  | 
 | // Abstraction of a vector operation, i.e., an operation that performs | 
 | // GetVectorLength() x GetPackedType() operations simultaneously. | 
 | class HVecOperation : public HVariableInputSizeInstruction { | 
 |  public: | 
 |   // A SIMD operation looks like a FPU location. | 
 |   // TODO: we could introduce SIMD types in HIR. | 
 |   static constexpr DataType::Type kSIMDType = DataType::Type::kFloat64; | 
 |  | 
 |   HVecOperation(InstructionKind kind, | 
 |                 ArenaAllocator* allocator, | 
 |                 DataType::Type packed_type, | 
 |                 SideEffects side_effects, | 
 |                 size_t number_of_inputs, | 
 |                 size_t vector_length, | 
 |                 uint32_t dex_pc) | 
 |       : HVariableInputSizeInstruction(kind, | 
 |                                       kSIMDType, | 
 |                                       side_effects, | 
 |                                       dex_pc, | 
 |                                       allocator, | 
 |                                       number_of_inputs, | 
 |                                       kArenaAllocVectorNode), | 
 |         vector_length_(vector_length) { | 
 |     SetPackedField<PackedTypeField>(packed_type); | 
 |     DCHECK_LT(1u, vector_length); | 
 |   } | 
 |  | 
 |   // Returns the number of elements packed in a vector. | 
 |   size_t GetVectorLength() const { | 
 |     return vector_length_; | 
 |   } | 
 |  | 
 |   // Returns the number of bytes in a full vector. | 
 |   size_t GetVectorNumberOfBytes() const { | 
 |     return vector_length_ * DataType::Size(GetPackedType()); | 
 |   } | 
 |  | 
 |   // Returns the true component type packed in a vector. | 
 |   DataType::Type GetPackedType() const { | 
 |     return GetPackedField<PackedTypeField>(); | 
 |   } | 
 |  | 
 |   // Assumes vector nodes cannot be moved by default. Each concrete implementation | 
 |   // that can be moved should override this method and return true. | 
 |   // | 
 |   // Note: similar approach is used for instruction scheduling (if it is turned on for the target): | 
 |   // by default HScheduler::IsSchedulable returns false for a particular HVecOperation. | 
 |   // HScheduler${ARCH}::IsSchedulable can be overridden to return true for an instruction (see | 
 |   // scheduler_arm64.h for example) if it is safe to schedule it; in this case one *must* also | 
 |   // look at/update HScheduler${ARCH}::IsSchedulingBarrier for this instruction. | 
 |   // | 
 |   // Note: For newly introduced vector instructions HScheduler${ARCH}::IsSchedulingBarrier must be | 
 |   // altered to return true if the instruction might reside outside the SIMD loop body since SIMD | 
 |   // registers are not kept alive across vector loop boundaries (yet). | 
 |   bool CanBeMoved() const override { return false; } | 
 |  | 
 |   // Tests if all data of a vector node (vector length and packed type) is equal. | 
 |   // Each concrete implementation that adds more fields should test equality of | 
 |   // those fields in its own method *and* call all super methods. | 
 |   bool InstructionDataEquals(const HInstruction* other) const override { | 
 |     DCHECK(other->IsVecOperation()); | 
 |     const HVecOperation* o = other->AsVecOperation(); | 
 |     return GetVectorLength() == o->GetVectorLength() && GetPackedType() == o->GetPackedType(); | 
 |   } | 
 |  | 
 |   // Maps an integral type to the same-size signed type and leaves other types alone. | 
 |   static DataType::Type ToSignedType(DataType::Type type) { | 
 |     switch (type) { | 
 |       case DataType::Type::kBool:  // 1-byte storage unit | 
 |       case DataType::Type::kUint8: | 
 |         return DataType::Type::kInt8; | 
 |       case DataType::Type::kUint16: | 
 |         return DataType::Type::kInt16; | 
 |       default: | 
 |         DCHECK(type != DataType::Type::kVoid && type != DataType::Type::kReference) << type; | 
 |         return type; | 
 |     } | 
 |   } | 
 |  | 
 |   // Maps an integral type to the same-size unsigned type and leaves other types alone. | 
 |   static DataType::Type ToUnsignedType(DataType::Type type) { | 
 |     switch (type) { | 
 |       case DataType::Type::kBool:  // 1-byte storage unit | 
 |       case DataType::Type::kInt8: | 
 |         return DataType::Type::kUint8; | 
 |       case DataType::Type::kInt16: | 
 |         return DataType::Type::kUint16; | 
 |       default: | 
 |         DCHECK(type != DataType::Type::kVoid && type != DataType::Type::kReference) << type; | 
 |         return type; | 
 |     } | 
 |   } | 
 |  | 
 |   // Maps an integral type to the same-size (un)signed type. Leaves other types alone. | 
 |   static DataType::Type ToProperType(DataType::Type type, bool is_unsigned) { | 
 |     return is_unsigned ? ToUnsignedType(type) : ToSignedType(type); | 
 |   } | 
 |  | 
 |   // Helper method to determine if an instruction returns a SIMD value. | 
 |   // TODO: This method is needed until we introduce SIMD as proper type. | 
 |   static bool ReturnsSIMDValue(HInstruction* instruction) { | 
 |     if (instruction->IsVecOperation()) { | 
 |       return !instruction->IsVecExtractScalar();  // only scalar returning vec op | 
 |     } else if (instruction->IsPhi()) { | 
 |       // Vectorizer only uses Phis in reductions, so checking for a 2-way phi | 
 |       // with a direct vector operand as second argument suffices. | 
 |       return | 
 |           instruction->GetType() == kSIMDType && | 
 |           instruction->InputCount() == 2 && | 
 |           instruction->InputAt(1)->IsVecOperation(); | 
 |     } | 
 |     return false; | 
 |   } | 
 |  | 
 |   DECLARE_ABSTRACT_INSTRUCTION(VecOperation); | 
 |  | 
 |  protected: | 
 |   // Additional packed bits. | 
 |   static constexpr size_t kFieldPackedType = HInstruction::kNumberOfGenericPackedBits; | 
 |   static constexpr size_t kFieldPackedTypeSize = | 
 |       MinimumBitsToStore(static_cast<size_t>(DataType::Type::kLast)); | 
 |   static constexpr size_t kNumberOfVectorOpPackedBits = kFieldPackedType + kFieldPackedTypeSize; | 
 |   static_assert(kNumberOfVectorOpPackedBits <= kMaxNumberOfPackedBits, "Too many packed fields."); | 
 |   using PackedTypeField = BitField<DataType::Type, kFieldPackedType, kFieldPackedTypeSize>; | 
 |  | 
 |   DEFAULT_COPY_CONSTRUCTOR(VecOperation); | 
 |  | 
 |  private: | 
 |   const size_t vector_length_; | 
 | }; | 
 |  | 
 | // Abstraction of a unary vector operation. | 
 | class HVecUnaryOperation : public HVecOperation { | 
 |  public: | 
 |   HVecUnaryOperation(InstructionKind kind, | 
 |                      ArenaAllocator* allocator, | 
 |                      HInstruction* input, | 
 |                      DataType::Type packed_type, | 
 |                      size_t vector_length, | 
 |                      uint32_t dex_pc) | 
 |       : HVecOperation(kind, | 
 |                       allocator, | 
 |                       packed_type, | 
 |                       SideEffects::None(), | 
 |                       /* number_of_inputs= */ 1, | 
 |                       vector_length, | 
 |                       dex_pc) { | 
 |     SetRawInputAt(0, input); | 
 |   } | 
 |  | 
 |   HInstruction* GetInput() const { return InputAt(0); } | 
 |  | 
 |   DECLARE_ABSTRACT_INSTRUCTION(VecUnaryOperation); | 
 |  | 
 |  protected: | 
 |   DEFAULT_COPY_CONSTRUCTOR(VecUnaryOperation); | 
 | }; | 
 |  | 
 | // Abstraction of a binary vector operation. | 
 | class HVecBinaryOperation : public HVecOperation { | 
 |  public: | 
 |   HVecBinaryOperation(InstructionKind kind, | 
 |                       ArenaAllocator* allocator, | 
 |                       HInstruction* left, | 
 |                       HInstruction* right, | 
 |                       DataType::Type packed_type, | 
 |                       size_t vector_length, | 
 |                       uint32_t dex_pc) | 
 |       : HVecOperation(kind, | 
 |                       allocator, | 
 |                       packed_type, | 
 |                       SideEffects::None(), | 
 |                       /* number_of_inputs= */ 2, | 
 |                       vector_length, | 
 |                       dex_pc) { | 
 |     SetRawInputAt(0, left); | 
 |     SetRawInputAt(1, right); | 
 |   } | 
 |  | 
 |   HInstruction* GetLeft() const { return InputAt(0); } | 
 |   HInstruction* GetRight() const { return InputAt(1); } | 
 |  | 
 |   DECLARE_ABSTRACT_INSTRUCTION(VecBinaryOperation); | 
 |  | 
 |  protected: | 
 |   DEFAULT_COPY_CONSTRUCTOR(VecBinaryOperation); | 
 | }; | 
 |  | 
 | // Abstraction of a vector operation that references memory, with an alignment. | 
 | // The Android runtime guarantees elements have at least natural alignment. | 
 | class HVecMemoryOperation : public HVecOperation { | 
 |  public: | 
 |   HVecMemoryOperation(InstructionKind kind, | 
 |                       ArenaAllocator* allocator, | 
 |                       DataType::Type packed_type, | 
 |                       SideEffects side_effects, | 
 |                       size_t number_of_inputs, | 
 |                       size_t vector_length, | 
 |                       uint32_t dex_pc) | 
 |       : HVecOperation(kind, | 
 |                       allocator, | 
 |                       packed_type, | 
 |                       side_effects, | 
 |                       number_of_inputs, | 
 |                       vector_length, | 
 |                       dex_pc), | 
 |         alignment_(DataType::Size(packed_type), 0) { | 
 |     DCHECK_GE(number_of_inputs, 2u); | 
 |   } | 
 |  | 
 |   void SetAlignment(Alignment alignment) { alignment_ = alignment; } | 
 |  | 
 |   Alignment GetAlignment() const { return alignment_; } | 
 |  | 
 |   HInstruction* GetArray() const { return InputAt(0); } | 
 |   HInstruction* GetIndex() const { return InputAt(1); } | 
 |  | 
 |   bool InstructionDataEquals(const HInstruction* other) const override { | 
 |     DCHECK(other->IsVecMemoryOperation()); | 
 |     const HVecMemoryOperation* o = other->AsVecMemoryOperation(); | 
 |     return HVecOperation::InstructionDataEquals(o) && GetAlignment() == o->GetAlignment(); | 
 |   } | 
 |  | 
 |   DECLARE_ABSTRACT_INSTRUCTION(VecMemoryOperation); | 
 |  | 
 |  protected: | 
 |   DEFAULT_COPY_CONSTRUCTOR(VecMemoryOperation); | 
 |  | 
 |  private: | 
 |   Alignment alignment_; | 
 | }; | 
 |  | 
 | // Packed type consistency checker ("same vector length" integral types may mix freely). | 
 | // Tests relaxed type consistency in which packed same-size integral types can co-exist, | 
 | // but other type mixes are an error. | 
 | inline static bool HasConsistentPackedTypes(HInstruction* input, DataType::Type type) { | 
 |   if (input->IsPhi()) { | 
 |     return input->GetType() == HVecOperation::kSIMDType;  // carries SIMD | 
 |   } | 
 |   DCHECK(input->IsVecOperation()); | 
 |   DataType::Type input_type = input->AsVecOperation()->GetPackedType(); | 
 |   DCHECK_EQ(HVecOperation::ToUnsignedType(input_type) == HVecOperation::ToUnsignedType(type), | 
 |             HVecOperation::ToSignedType(input_type) == HVecOperation::ToSignedType(type)); | 
 |   return HVecOperation::ToSignedType(input_type) == HVecOperation::ToSignedType(type); | 
 | } | 
 |  | 
 | // | 
 | // Definitions of concrete unary vector operations in HIR. | 
 | // | 
 |  | 
 | // Replicates the given scalar into a vector, | 
 | // viz. replicate(x) = [ x, .. , x ]. | 
 | class HVecReplicateScalar final : public HVecUnaryOperation { | 
 |  public: | 
 |   HVecReplicateScalar(ArenaAllocator* allocator, | 
 |                       HInstruction* scalar, | 
 |                       DataType::Type packed_type, | 
 |                       size_t vector_length, | 
 |                       uint32_t dex_pc) | 
 |       : HVecUnaryOperation( | 
 |             kVecReplicateScalar, allocator, scalar, packed_type, vector_length, dex_pc) { | 
 |     DCHECK(!ReturnsSIMDValue(scalar)); | 
 |   } | 
 |  | 
 |   // A replicate needs to stay in place, since SIMD registers are not | 
 |   // kept alive across vector loop boundaries (yet). | 
 |   bool CanBeMoved() const override { return false; } | 
 |  | 
 |   DECLARE_INSTRUCTION(VecReplicateScalar); | 
 |  | 
 |  protected: | 
 |   DEFAULT_COPY_CONSTRUCTOR(VecReplicateScalar); | 
 | }; | 
 |  | 
 | // Extracts a particular scalar from the given vector, | 
 | // viz. extract[ x1, .. , xn ] = x_i. | 
 | // | 
 | // TODO: for now only i == 1 case supported. | 
 | class HVecExtractScalar final : public HVecUnaryOperation { | 
 |  public: | 
 |   HVecExtractScalar(ArenaAllocator* allocator, | 
 |                     HInstruction* input, | 
 |                     DataType::Type packed_type, | 
 |                     size_t vector_length, | 
 |                     size_t index, | 
 |                     uint32_t dex_pc) | 
 |       : HVecUnaryOperation( | 
 |             kVecExtractScalar, allocator, input, packed_type, vector_length, dex_pc) { | 
 |     DCHECK(HasConsistentPackedTypes(input, packed_type)); | 
 |     DCHECK_LT(index, vector_length); | 
 |     DCHECK_EQ(index, 0u); | 
 |     // Yields a single component in the vector. | 
 |     // Overrides the kSIMDType set by the VecOperation constructor. | 
 |     SetPackedField<TypeField>(packed_type); | 
 |   } | 
 |  | 
 |   // An extract needs to stay in place, since SIMD registers are not | 
 |   // kept alive across vector loop boundaries (yet). | 
 |   bool CanBeMoved() const override { return false; } | 
 |  | 
 |   DECLARE_INSTRUCTION(VecExtractScalar); | 
 |  | 
 |  protected: | 
 |   DEFAULT_COPY_CONSTRUCTOR(VecExtractScalar); | 
 | }; | 
 |  | 
 | // Reduces the given vector into the first element as sum/min/max, | 
 | // viz. sum-reduce[ x1, .. , xn ] = [ y, ---- ], where y = sum xi | 
 | // and the "-" denotes "don't care" (implementation dependent). | 
 | class HVecReduce final : public HVecUnaryOperation { | 
 |  public: | 
 |   enum ReductionKind { | 
 |     kSum = 1, | 
 |     kMin = 2, | 
 |     kMax = 3 | 
 |   }; | 
 |  | 
 |   HVecReduce(ArenaAllocator* allocator, | 
 |              HInstruction* input, | 
 |              DataType::Type packed_type, | 
 |              size_t vector_length, | 
 |              ReductionKind reduction_kind, | 
 |              uint32_t dex_pc) | 
 |       : HVecUnaryOperation(kVecReduce, allocator, input, packed_type, vector_length, dex_pc), | 
 |         reduction_kind_(reduction_kind) { | 
 |     DCHECK(HasConsistentPackedTypes(input, packed_type)); | 
 |   } | 
 |  | 
 |   ReductionKind GetReductionKind() const { return reduction_kind_; } | 
 |  | 
 |   bool CanBeMoved() const override { return true; } | 
 |  | 
 |   bool InstructionDataEquals(const HInstruction* other) const override { | 
 |     DCHECK(other->IsVecReduce()); | 
 |     const HVecReduce* o = other->AsVecReduce(); | 
 |     return HVecOperation::InstructionDataEquals(o) && GetReductionKind() == o->GetReductionKind(); | 
 |   } | 
 |  | 
 |   DECLARE_INSTRUCTION(VecReduce); | 
 |  | 
 |  protected: | 
 |   DEFAULT_COPY_CONSTRUCTOR(VecReduce); | 
 |  | 
 |  private: | 
 |   const ReductionKind reduction_kind_; | 
 | }; | 
 |  | 
 | // Converts every component in the vector, | 
 | // viz. cnv[ x1, .. , xn ]  = [ cnv(x1), .. , cnv(xn) ]. | 
 | class HVecCnv final : public HVecUnaryOperation { | 
 |  public: | 
 |   HVecCnv(ArenaAllocator* allocator, | 
 |           HInstruction* input, | 
 |           DataType::Type packed_type, | 
 |           size_t vector_length, | 
 |           uint32_t dex_pc) | 
 |       : HVecUnaryOperation(kVecCnv, allocator, input, packed_type, vector_length, dex_pc) { | 
 |     DCHECK(input->IsVecOperation()); | 
 |     DCHECK_NE(GetInputType(), GetResultType());  // actual convert | 
 |   } | 
 |  | 
 |   DataType::Type GetInputType() const { return InputAt(0)->AsVecOperation()->GetPackedType(); } | 
 |   DataType::Type GetResultType() const { return GetPackedType(); } | 
 |  | 
 |   bool CanBeMoved() const override { return true; } | 
 |  | 
 |   DECLARE_INSTRUCTION(VecCnv); | 
 |  | 
 |  protected: | 
 |   DEFAULT_COPY_CONSTRUCTOR(VecCnv); | 
 | }; | 
 |  | 
 | // Negates every component in the vector, | 
 | // viz. neg[ x1, .. , xn ]  = [ -x1, .. , -xn ]. | 
 | class HVecNeg final : public HVecUnaryOperation { | 
 |  public: | 
 |   HVecNeg(ArenaAllocator* allocator, | 
 |           HInstruction* input, | 
 |           DataType::Type packed_type, | 
 |           size_t vector_length, | 
 |           uint32_t dex_pc) | 
 |       : HVecUnaryOperation(kVecNeg, allocator, input, packed_type, vector_length, dex_pc) { | 
 |     DCHECK(HasConsistentPackedTypes(input, packed_type)); | 
 |   } | 
 |  | 
 |   bool CanBeMoved() const override { return true; } | 
 |  | 
 |   DECLARE_INSTRUCTION(VecNeg); | 
 |  | 
 |  protected: | 
 |   DEFAULT_COPY_CONSTRUCTOR(VecNeg); | 
 | }; | 
 |  | 
 | // Takes absolute value of every component in the vector, | 
 | // viz. abs[ x1, .. , xn ]  = [ |x1|, .. , |xn| ] | 
 | // for signed operand x. | 
 | class HVecAbs final : public HVecUnaryOperation { | 
 |  public: | 
 |   HVecAbs(ArenaAllocator* allocator, | 
 |           HInstruction* input, | 
 |           DataType::Type packed_type, | 
 |           size_t vector_length, | 
 |           uint32_t dex_pc) | 
 |       : HVecUnaryOperation(kVecAbs, allocator, input, packed_type, vector_length, dex_pc) { | 
 |     DCHECK(HasConsistentPackedTypes(input, packed_type)); | 
 |   } | 
 |  | 
 |   bool CanBeMoved() const override { return true; } | 
 |  | 
 |   DECLARE_INSTRUCTION(VecAbs); | 
 |  | 
 |  protected: | 
 |   DEFAULT_COPY_CONSTRUCTOR(VecAbs); | 
 | }; | 
 |  | 
 | // Bitwise- or boolean-nots every component in the vector, | 
 | // viz. not[ x1, .. , xn ]  = [ ~x1, .. , ~xn ], or | 
 | //      not[ x1, .. , xn ]  = [ !x1, .. , !xn ] for boolean. | 
 | class HVecNot final : public HVecUnaryOperation { | 
 |  public: | 
 |   HVecNot(ArenaAllocator* allocator, | 
 |           HInstruction* input, | 
 |           DataType::Type packed_type, | 
 |           size_t vector_length, | 
 |           uint32_t dex_pc) | 
 |       : HVecUnaryOperation(kVecNot, allocator, input, packed_type, vector_length, dex_pc) { | 
 |     DCHECK(input->IsVecOperation()); | 
 |   } | 
 |  | 
 |   bool CanBeMoved() const override { return true; } | 
 |  | 
 |   DECLARE_INSTRUCTION(VecNot); | 
 |  | 
 |  protected: | 
 |   DEFAULT_COPY_CONSTRUCTOR(VecNot); | 
 | }; | 
 |  | 
 | // | 
 | // Definitions of concrete binary vector operations in HIR. | 
 | // | 
 |  | 
 | // Adds every component in the two vectors, | 
 | // viz. [ x1, .. , xn ] + [ y1, .. , yn ] = [ x1 + y1, .. , xn + yn ]. | 
 | class HVecAdd final : public HVecBinaryOperation { | 
 |  public: | 
 |   HVecAdd(ArenaAllocator* allocator, | 
 |           HInstruction* left, | 
 |           HInstruction* right, | 
 |           DataType::Type packed_type, | 
 |           size_t vector_length, | 
 |           uint32_t dex_pc) | 
 |       : HVecBinaryOperation(kVecAdd, allocator, left, right, packed_type, vector_length, dex_pc) { | 
 |     DCHECK(HasConsistentPackedTypes(left, packed_type)); | 
 |     DCHECK(HasConsistentPackedTypes(right, packed_type)); | 
 |   } | 
 |  | 
 |   bool CanBeMoved() const override { return true; } | 
 |  | 
 |   DECLARE_INSTRUCTION(VecAdd); | 
 |  | 
 |  protected: | 
 |   DEFAULT_COPY_CONSTRUCTOR(VecAdd); | 
 | }; | 
 |  | 
 | // Adds every component in the two vectors using saturation arithmetic, | 
 | // viz. [ x1, .. , xn ] + [ y1, .. , yn ] = [ x1 +_sat y1, .. , xn +_sat yn ] | 
 | // for either both signed or both unsigned operands x, y (reflected in packed_type). | 
 | class HVecSaturationAdd final : public HVecBinaryOperation { | 
 |  public: | 
 |   HVecSaturationAdd(ArenaAllocator* allocator, | 
 |                     HInstruction* left, | 
 |                     HInstruction* right, | 
 |                     DataType::Type packed_type, | 
 |                     size_t vector_length, | 
 |                     uint32_t dex_pc) | 
 |       : HVecBinaryOperation( | 
 |           kVecSaturationAdd, allocator, left, right, packed_type, vector_length, dex_pc) { | 
 |     DCHECK(HasConsistentPackedTypes(left, packed_type)); | 
 |     DCHECK(HasConsistentPackedTypes(right, packed_type)); | 
 |   } | 
 |  | 
 |   bool CanBeMoved() const override { return true; } | 
 |  | 
 |   DECLARE_INSTRUCTION(VecSaturationAdd); | 
 |  | 
 |  protected: | 
 |   DEFAULT_COPY_CONSTRUCTOR(VecSaturationAdd); | 
 | }; | 
 |  | 
 | // Performs halving add on every component in the two vectors, viz. | 
 | // rounded   [ x1, .. , xn ] hradd [ y1, .. , yn ] = [ (x1 + y1 + 1) >> 1, .. , (xn + yn + 1) >> 1 ] | 
 | // truncated [ x1, .. , xn ] hadd  [ y1, .. , yn ] = [ (x1 + y1)     >> 1, .. , (xn + yn )    >> 1 ] | 
 | // for either both signed or both unsigned operands x, y (reflected in packed_type). | 
 | class HVecHalvingAdd final : public HVecBinaryOperation { | 
 |  public: | 
 |   HVecHalvingAdd(ArenaAllocator* allocator, | 
 |                  HInstruction* left, | 
 |                  HInstruction* right, | 
 |                  DataType::Type packed_type, | 
 |                  size_t vector_length, | 
 |                  bool is_rounded, | 
 |                  uint32_t dex_pc) | 
 |       : HVecBinaryOperation( | 
 |             kVecHalvingAdd, allocator, left, right, packed_type, vector_length, dex_pc) { | 
 |     DCHECK(HasConsistentPackedTypes(left, packed_type)); | 
 |     DCHECK(HasConsistentPackedTypes(right, packed_type)); | 
 |     SetPackedFlag<kFieldHAddIsRounded>(is_rounded); | 
 |   } | 
 |  | 
 |   bool IsRounded() const { return GetPackedFlag<kFieldHAddIsRounded>(); } | 
 |  | 
 |   bool CanBeMoved() const override { return true; } | 
 |  | 
 |   bool InstructionDataEquals(const HInstruction* other) const override { | 
 |     DCHECK(other->IsVecHalvingAdd()); | 
 |     const HVecHalvingAdd* o = other->AsVecHalvingAdd(); | 
 |     return HVecOperation::InstructionDataEquals(o) && IsRounded() == o->IsRounded(); | 
 |   } | 
 |  | 
 |   DECLARE_INSTRUCTION(VecHalvingAdd); | 
 |  | 
 |  protected: | 
 |   DEFAULT_COPY_CONSTRUCTOR(VecHalvingAdd); | 
 |  | 
 |  private: | 
 |   // Additional packed bits. | 
 |   static constexpr size_t kFieldHAddIsRounded = HVecOperation::kNumberOfVectorOpPackedBits; | 
 |   static constexpr size_t kNumberOfHAddPackedBits = kFieldHAddIsRounded + 1; | 
 |   static_assert(kNumberOfHAddPackedBits <= kMaxNumberOfPackedBits, "Too many packed fields."); | 
 | }; | 
 |  | 
 | // Subtracts every component in the two vectors, | 
 | // viz. [ x1, .. , xn ] - [ y1, .. , yn ] = [ x1 - y1, .. , xn - yn ]. | 
 | class HVecSub final : public HVecBinaryOperation { | 
 |  public: | 
 |   HVecSub(ArenaAllocator* allocator, | 
 |           HInstruction* left, | 
 |           HInstruction* right, | 
 |           DataType::Type packed_type, | 
 |           size_t vector_length, | 
 |           uint32_t dex_pc) | 
 |       : HVecBinaryOperation(kVecSub, allocator, left, right, packed_type, vector_length, dex_pc) { | 
 |     DCHECK(HasConsistentPackedTypes(left, packed_type)); | 
 |     DCHECK(HasConsistentPackedTypes(right, packed_type)); | 
 |   } | 
 |  | 
 |   bool CanBeMoved() const override { return true; } | 
 |  | 
 |   DECLARE_INSTRUCTION(VecSub); | 
 |  | 
 |  protected: | 
 |   DEFAULT_COPY_CONSTRUCTOR(VecSub); | 
 | }; | 
 |  | 
 | // Subtracts every component in the two vectors using saturation arithmetic, | 
 | // viz. [ x1, .. , xn ] + [ y1, .. , yn ] = [ x1 -_sat y1, .. , xn -_sat yn ] | 
 | // for either both signed or both unsigned operands x, y (reflected in packed_type). | 
 | class HVecSaturationSub final : public HVecBinaryOperation { | 
 |  public: | 
 |   HVecSaturationSub(ArenaAllocator* allocator, | 
 |                     HInstruction* left, | 
 |                     HInstruction* right, | 
 |                     DataType::Type packed_type, | 
 |                     size_t vector_length, | 
 |                     uint32_t dex_pc) | 
 |       : HVecBinaryOperation( | 
 |           kVecSaturationSub, allocator, left, right, packed_type, vector_length, dex_pc) { | 
 |     DCHECK(HasConsistentPackedTypes(left, packed_type)); | 
 |     DCHECK(HasConsistentPackedTypes(right, packed_type)); | 
 |   } | 
 |  | 
 |   bool CanBeMoved() const override { return true; } | 
 |  | 
 |   DECLARE_INSTRUCTION(VecSaturationSub); | 
 |  | 
 |  protected: | 
 |   DEFAULT_COPY_CONSTRUCTOR(VecSaturationSub); | 
 | }; | 
 |  | 
 | // Multiplies every component in the two vectors, | 
 | // viz. [ x1, .. , xn ] * [ y1, .. , yn ] = [ x1 * y1, .. , xn * yn ]. | 
 | class HVecMul final : public HVecBinaryOperation { | 
 |  public: | 
 |   HVecMul(ArenaAllocator* allocator, | 
 |           HInstruction* left, | 
 |           HInstruction* right, | 
 |           DataType::Type packed_type, | 
 |           size_t vector_length, | 
 |           uint32_t dex_pc) | 
 |       : HVecBinaryOperation(kVecMul, allocator, left, right, packed_type, vector_length, dex_pc) { | 
 |     DCHECK(HasConsistentPackedTypes(left, packed_type)); | 
 |     DCHECK(HasConsistentPackedTypes(right, packed_type)); | 
 |   } | 
 |  | 
 |   bool CanBeMoved() const override { return true; } | 
 |  | 
 |   DECLARE_INSTRUCTION(VecMul); | 
 |  | 
 |  protected: | 
 |   DEFAULT_COPY_CONSTRUCTOR(VecMul); | 
 | }; | 
 |  | 
 | // Divides every component in the two vectors, | 
 | // viz. [ x1, .. , xn ] / [ y1, .. , yn ] = [ x1 / y1, .. , xn / yn ]. | 
 | class HVecDiv final : public HVecBinaryOperation { | 
 |  public: | 
 |   HVecDiv(ArenaAllocator* allocator, | 
 |           HInstruction* left, | 
 |           HInstruction* right, | 
 |           DataType::Type packed_type, | 
 |           size_t vector_length, | 
 |           uint32_t dex_pc) | 
 |       : HVecBinaryOperation(kVecDiv, allocator, left, right, packed_type, vector_length, dex_pc) { | 
 |     DCHECK(HasConsistentPackedTypes(left, packed_type)); | 
 |     DCHECK(HasConsistentPackedTypes(right, packed_type)); | 
 |   } | 
 |  | 
 |   bool CanBeMoved() const override { return true; } | 
 |  | 
 |   DECLARE_INSTRUCTION(VecDiv); | 
 |  | 
 |  protected: | 
 |   DEFAULT_COPY_CONSTRUCTOR(VecDiv); | 
 | }; | 
 |  | 
 | // Takes minimum of every component in the two vectors, | 
 | // viz. MIN( [ x1, .. , xn ] , [ y1, .. , yn ]) = [ min(x1, y1), .. , min(xn, yn) ] | 
 | // for either both signed or both unsigned operands x, y (reflected in packed_type). | 
 | class HVecMin final : public HVecBinaryOperation { | 
 |  public: | 
 |   HVecMin(ArenaAllocator* allocator, | 
 |           HInstruction* left, | 
 |           HInstruction* right, | 
 |           DataType::Type packed_type, | 
 |           size_t vector_length, | 
 |           uint32_t dex_pc) | 
 |       : HVecBinaryOperation(kVecMin, allocator, left, right, packed_type, vector_length, dex_pc) { | 
 |     DCHECK(HasConsistentPackedTypes(left, packed_type)); | 
 |     DCHECK(HasConsistentPackedTypes(right, packed_type)); | 
 |   } | 
 |  | 
 |   bool CanBeMoved() const override { return true; } | 
 |  | 
 |   DECLARE_INSTRUCTION(VecMin); | 
 |  | 
 |  protected: | 
 |   DEFAULT_COPY_CONSTRUCTOR(VecMin); | 
 | }; | 
 |  | 
 | // Takes maximum of every component in the two vectors, | 
 | // viz. MAX( [ x1, .. , xn ] , [ y1, .. , yn ]) = [ max(x1, y1), .. , max(xn, yn) ] | 
 | // for either both signed or both unsigned operands x, y (reflected in packed_type). | 
 | class HVecMax final : public HVecBinaryOperation { | 
 |  public: | 
 |   HVecMax(ArenaAllocator* allocator, | 
 |           HInstruction* left, | 
 |           HInstruction* right, | 
 |           DataType::Type packed_type, | 
 |           size_t vector_length, | 
 |           uint32_t dex_pc) | 
 |       : HVecBinaryOperation(kVecMax, allocator, left, right, packed_type, vector_length, dex_pc) { | 
 |     DCHECK(HasConsistentPackedTypes(left, packed_type)); | 
 |     DCHECK(HasConsistentPackedTypes(right, packed_type)); | 
 |   } | 
 |  | 
 |   bool CanBeMoved() const override { return true; } | 
 |  | 
 |   DECLARE_INSTRUCTION(VecMax); | 
 |  | 
 |  protected: | 
 |   DEFAULT_COPY_CONSTRUCTOR(VecMax); | 
 | }; | 
 |  | 
 | // Bitwise-ands every component in the two vectors, | 
 | // viz. [ x1, .. , xn ] & [ y1, .. , yn ] = [ x1 & y1, .. , xn & yn ]. | 
 | class HVecAnd final : public HVecBinaryOperation { | 
 |  public: | 
 |   HVecAnd(ArenaAllocator* allocator, | 
 |           HInstruction* left, | 
 |           HInstruction* right, | 
 |           DataType::Type packed_type, | 
 |           size_t vector_length, | 
 |           uint32_t dex_pc) | 
 |       : HVecBinaryOperation(kVecAnd, allocator, left, right, packed_type, vector_length, dex_pc) { | 
 |     DCHECK(left->IsVecOperation() && right->IsVecOperation()); | 
 |   } | 
 |  | 
 |   bool CanBeMoved() const override { return true; } | 
 |  | 
 |   DECLARE_INSTRUCTION(VecAnd); | 
 |  | 
 |  protected: | 
 |   DEFAULT_COPY_CONSTRUCTOR(VecAnd); | 
 | }; | 
 |  | 
 | // Bitwise-and-nots every component in the two vectors, | 
 | // viz. [ x1, .. , xn ] and-not [ y1, .. , yn ] = [ ~x1 & y1, .. , ~xn & yn ]. | 
 | class HVecAndNot final : public HVecBinaryOperation { | 
 |  public: | 
 |   HVecAndNot(ArenaAllocator* allocator, | 
 |              HInstruction* left, | 
 |              HInstruction* right, | 
 |              DataType::Type packed_type, | 
 |              size_t vector_length, | 
 |              uint32_t dex_pc) | 
 |          : HVecBinaryOperation( | 
 |                kVecAndNot, allocator, left, right, packed_type, vector_length, dex_pc) { | 
 |     DCHECK(left->IsVecOperation() && right->IsVecOperation()); | 
 |   } | 
 |  | 
 |   bool CanBeMoved() const override { return true; } | 
 |  | 
 |   DECLARE_INSTRUCTION(VecAndNot); | 
 |  | 
 |  protected: | 
 |   DEFAULT_COPY_CONSTRUCTOR(VecAndNot); | 
 | }; | 
 |  | 
 | // Bitwise-ors every component in the two vectors, | 
 | // viz. [ x1, .. , xn ] | [ y1, .. , yn ] = [ x1 | y1, .. , xn | yn ]. | 
 | class HVecOr final : public HVecBinaryOperation { | 
 |  public: | 
 |   HVecOr(ArenaAllocator* allocator, | 
 |          HInstruction* left, | 
 |          HInstruction* right, | 
 |          DataType::Type packed_type, | 
 |          size_t vector_length, | 
 |          uint32_t dex_pc) | 
 |       : HVecBinaryOperation(kVecOr, allocator, left, right, packed_type, vector_length, dex_pc) { | 
 |     DCHECK(left->IsVecOperation() && right->IsVecOperation()); | 
 |   } | 
 |  | 
 |   bool CanBeMoved() const override { return true; } | 
 |  | 
 |   DECLARE_INSTRUCTION(VecOr); | 
 |  | 
 |  protected: | 
 |   DEFAULT_COPY_CONSTRUCTOR(VecOr); | 
 | }; | 
 |  | 
 | // Bitwise-xors every component in the two vectors, | 
 | // viz. [ x1, .. , xn ] ^ [ y1, .. , yn ] = [ x1 ^ y1, .. , xn ^ yn ]. | 
 | class HVecXor final : public HVecBinaryOperation { | 
 |  public: | 
 |   HVecXor(ArenaAllocator* allocator, | 
 |           HInstruction* left, | 
 |           HInstruction* right, | 
 |           DataType::Type packed_type, | 
 |           size_t vector_length, | 
 |           uint32_t dex_pc) | 
 |       : HVecBinaryOperation(kVecXor, allocator, left, right, packed_type, vector_length, dex_pc) { | 
 |     DCHECK(left->IsVecOperation() && right->IsVecOperation()); | 
 |   } | 
 |  | 
 |   bool CanBeMoved() const override { return true; } | 
 |  | 
 |   DECLARE_INSTRUCTION(VecXor); | 
 |  | 
 |  protected: | 
 |   DEFAULT_COPY_CONSTRUCTOR(VecXor); | 
 | }; | 
 |  | 
 | // Logically shifts every component in the vector left by the given distance, | 
 | // viz. [ x1, .. , xn ] << d = [ x1 << d, .. , xn << d ]. | 
 | class HVecShl final : public HVecBinaryOperation { | 
 |  public: | 
 |   HVecShl(ArenaAllocator* allocator, | 
 |           HInstruction* left, | 
 |           HInstruction* right, | 
 |           DataType::Type packed_type, | 
 |           size_t vector_length, | 
 |           uint32_t dex_pc) | 
 |       : HVecBinaryOperation(kVecShl, allocator, left, right, packed_type, vector_length, dex_pc) { | 
 |     DCHECK(HasConsistentPackedTypes(left, packed_type)); | 
 |   } | 
 |  | 
 |   bool CanBeMoved() const override { return true; } | 
 |  | 
 |   DECLARE_INSTRUCTION(VecShl); | 
 |  | 
 |  protected: | 
 |   DEFAULT_COPY_CONSTRUCTOR(VecShl); | 
 | }; | 
 |  | 
 | // Arithmetically shifts every component in the vector right by the given distance, | 
 | // viz. [ x1, .. , xn ] >> d = [ x1 >> d, .. , xn >> d ]. | 
 | class HVecShr final : public HVecBinaryOperation { | 
 |  public: | 
 |   HVecShr(ArenaAllocator* allocator, | 
 |           HInstruction* left, | 
 |           HInstruction* right, | 
 |           DataType::Type packed_type, | 
 |           size_t vector_length, | 
 |           uint32_t dex_pc) | 
 |       : HVecBinaryOperation(kVecShr, allocator, left, right, packed_type, vector_length, dex_pc) { | 
 |     DCHECK(HasConsistentPackedTypes(left, packed_type)); | 
 |   } | 
 |  | 
 |   bool CanBeMoved() const override { return true; } | 
 |  | 
 |   DECLARE_INSTRUCTION(VecShr); | 
 |  | 
 |  protected: | 
 |   DEFAULT_COPY_CONSTRUCTOR(VecShr); | 
 | }; | 
 |  | 
 | // Logically shifts every component in the vector right by the given distance, | 
 | // viz. [ x1, .. , xn ] >>> d = [ x1 >>> d, .. , xn >>> d ]. | 
 | class HVecUShr final : public HVecBinaryOperation { | 
 |  public: | 
 |   HVecUShr(ArenaAllocator* allocator, | 
 |            HInstruction* left, | 
 |            HInstruction* right, | 
 |            DataType::Type packed_type, | 
 |            size_t vector_length, | 
 |            uint32_t dex_pc) | 
 |       : HVecBinaryOperation(kVecUShr, allocator, left, right, packed_type, vector_length, dex_pc) { | 
 |     DCHECK(HasConsistentPackedTypes(left, packed_type)); | 
 |   } | 
 |  | 
 |   bool CanBeMoved() const override { return true; } | 
 |  | 
 |   DECLARE_INSTRUCTION(VecUShr); | 
 |  | 
 |  protected: | 
 |   DEFAULT_COPY_CONSTRUCTOR(VecUShr); | 
 | }; | 
 |  | 
 | // | 
 | // Definitions of concrete miscellaneous vector operations in HIR. | 
 | // | 
 |  | 
 | // Assigns the given scalar elements to a vector, | 
 | // viz. set( array(x1, .. , xn) ) = [ x1, .. ,            xn ] if n == m, | 
 | //      set( array(x1, .. , xm) ) = [ x1, .. , xm, 0, .. , 0 ] if m <  n. | 
 | class HVecSetScalars final : public HVecOperation { | 
 |  public: | 
 |   HVecSetScalars(ArenaAllocator* allocator, | 
 |                  HInstruction* scalars[], | 
 |                  DataType::Type packed_type, | 
 |                  size_t vector_length, | 
 |                  size_t number_of_scalars, | 
 |                  uint32_t dex_pc) | 
 |       : HVecOperation(kVecSetScalars, | 
 |                       allocator, | 
 |                       packed_type, | 
 |                       SideEffects::None(), | 
 |                       number_of_scalars, | 
 |                       vector_length, | 
 |                       dex_pc) { | 
 |     for (size_t i = 0; i < number_of_scalars; i++) { | 
 |       DCHECK(!ReturnsSIMDValue(scalars[i])); | 
 |       SetRawInputAt(0, scalars[i]); | 
 |     } | 
 |   } | 
 |  | 
 |   // Setting scalars needs to stay in place, since SIMD registers are not | 
 |   // kept alive across vector loop boundaries (yet). | 
 |   bool CanBeMoved() const override { return false; } | 
 |  | 
 |   DECLARE_INSTRUCTION(VecSetScalars); | 
 |  | 
 |  protected: | 
 |   DEFAULT_COPY_CONSTRUCTOR(VecSetScalars); | 
 | }; | 
 |  | 
 | // Multiplies every component in the two vectors, adds the result vector to the accumulator vector, | 
 | // viz. [ a1, .. , an ] + [ x1, .. , xn ] * [ y1, .. , yn ] = [ a1 + x1 * y1, .. , an + xn * yn ]. | 
 | // For floating point types, Java rounding behavior must be preserved; the products are rounded to | 
 | // the proper precision before being added. "Fused" multiply-add operations available on several | 
 | // architectures are not usable since they would violate Java language rules. | 
 | class HVecMultiplyAccumulate final : public HVecOperation { | 
 |  public: | 
 |   HVecMultiplyAccumulate(ArenaAllocator* allocator, | 
 |                          InstructionKind op, | 
 |                          HInstruction* accumulator, | 
 |                          HInstruction* mul_left, | 
 |                          HInstruction* mul_right, | 
 |                          DataType::Type packed_type, | 
 |                          size_t vector_length, | 
 |                          uint32_t dex_pc) | 
 |       : HVecOperation(kVecMultiplyAccumulate, | 
 |                       allocator, | 
 |                       packed_type, | 
 |                       SideEffects::None(), | 
 |                       /* number_of_inputs= */ 3, | 
 |                       vector_length, | 
 |                       dex_pc), | 
 |         op_kind_(op) { | 
 |     DCHECK(op == InstructionKind::kAdd || op == InstructionKind::kSub); | 
 |     DCHECK(HasConsistentPackedTypes(accumulator, packed_type)); | 
 |     DCHECK(HasConsistentPackedTypes(mul_left, packed_type)); | 
 |     DCHECK(HasConsistentPackedTypes(mul_right, packed_type)); | 
 |     // Remove the following if we add an architecture that supports floating point multiply-add | 
 |     // with Java-compatible rounding. | 
 |     DCHECK(DataType::IsIntegralType(packed_type)); | 
 |     SetRawInputAt(0, accumulator); | 
 |     SetRawInputAt(1, mul_left); | 
 |     SetRawInputAt(2, mul_right); | 
 |   } | 
 |  | 
 |   bool CanBeMoved() const override { return true; } | 
 |  | 
 |   bool InstructionDataEquals(const HInstruction* other) const override { | 
 |     DCHECK(other->IsVecMultiplyAccumulate()); | 
 |     const HVecMultiplyAccumulate* o = other->AsVecMultiplyAccumulate(); | 
 |     return HVecOperation::InstructionDataEquals(o) && GetOpKind() == o->GetOpKind(); | 
 |   } | 
 |  | 
 |   InstructionKind GetOpKind() const { return op_kind_; } | 
 |  | 
 |   DECLARE_INSTRUCTION(VecMultiplyAccumulate); | 
 |  | 
 |  protected: | 
 |   DEFAULT_COPY_CONSTRUCTOR(VecMultiplyAccumulate); | 
 |  | 
 |  private: | 
 |   // Indicates if this is a MADD or MSUB. | 
 |   const InstructionKind op_kind_; | 
 | }; | 
 |  | 
 | // Takes the absolute difference of two vectors, and adds the results to | 
 | // same-precision or wider-precision components in the accumulator, | 
 | // viz. SAD([ a1, .. , am ], [ x1, .. , xn ], [ y1, .. , yn ]) = | 
 | //          [ a1 + sum abs(xi-yi), .. , am + sum abs(xj-yj) ], | 
 | //      for m <= n, non-overlapping sums, and signed operands x, y. | 
 | class HVecSADAccumulate final : public HVecOperation { | 
 |  public: | 
 |   HVecSADAccumulate(ArenaAllocator* allocator, | 
 |                     HInstruction* accumulator, | 
 |                     HInstruction* sad_left, | 
 |                     HInstruction* sad_right, | 
 |                     DataType::Type packed_type, | 
 |                     size_t vector_length, | 
 |                     uint32_t dex_pc) | 
 |       : HVecOperation(kVecSADAccumulate, | 
 |                       allocator, | 
 |                       packed_type, | 
 |                       SideEffects::None(), | 
 |                       /* number_of_inputs= */ 3, | 
 |                       vector_length, | 
 |                       dex_pc) { | 
 |     DCHECK(HasConsistentPackedTypes(accumulator, packed_type)); | 
 |     DCHECK(sad_left->IsVecOperation()); | 
 |     DCHECK(sad_right->IsVecOperation()); | 
 |     DCHECK_EQ(ToSignedType(sad_left->AsVecOperation()->GetPackedType()), | 
 |               ToSignedType(sad_right->AsVecOperation()->GetPackedType())); | 
 |     SetRawInputAt(0, accumulator); | 
 |     SetRawInputAt(1, sad_left); | 
 |     SetRawInputAt(2, sad_right); | 
 |   } | 
 |  | 
 |   DECLARE_INSTRUCTION(VecSADAccumulate); | 
 |  | 
 |  protected: | 
 |   DEFAULT_COPY_CONSTRUCTOR(VecSADAccumulate); | 
 | }; | 
 |  | 
 | // Performs dot product of two vectors and adds the result to wider precision components in | 
 | // the accumulator. | 
 | // | 
 | // viz. DOT_PRODUCT([ a1, .. , am], [ x1, .. , xn ], [ y1, .. , yn ]) = | 
 | //                  [ a1 + sum(xi * yi), .. , am + sum(xj * yj) ], | 
 | //      for m <= n, non-overlapping sums, | 
 | //      for either both signed or both unsigned operands x, y. | 
 | // | 
 | // Notes: | 
 | //   - packed type reflects the type of sum reduction, not the type of the operands. | 
 | //   - IsZeroExtending() is used to determine the kind of signed/zero extension to be | 
 | //     performed for the operands. | 
 | // | 
 | // TODO: Support types other than kInt32 for packed type. | 
 | class HVecDotProd final : public HVecOperation { | 
 |  public: | 
 |   HVecDotProd(ArenaAllocator* allocator, | 
 |               HInstruction* accumulator, | 
 |               HInstruction* left, | 
 |               HInstruction* right, | 
 |               DataType::Type packed_type, | 
 |               bool is_zero_extending, | 
 |               size_t vector_length, | 
 |               uint32_t dex_pc) | 
 |     : HVecOperation(kVecDotProd, | 
 |                     allocator, | 
 |                     packed_type, | 
 |                     SideEffects::None(), | 
 |                     /* number_of_inputs= */ 3, | 
 |                     vector_length, | 
 |                     dex_pc) { | 
 |     DCHECK(HasConsistentPackedTypes(accumulator, packed_type)); | 
 |     DCHECK(DataType::IsIntegralType(packed_type)); | 
 |     DCHECK(left->IsVecOperation()); | 
 |     DCHECK(right->IsVecOperation()); | 
 |     DCHECK_EQ(ToSignedType(left->AsVecOperation()->GetPackedType()), | 
 |               ToSignedType(right->AsVecOperation()->GetPackedType())); | 
 |     SetRawInputAt(0, accumulator); | 
 |     SetRawInputAt(1, left); | 
 |     SetRawInputAt(2, right); | 
 |     SetPackedFlag<kFieldHDotProdIsZeroExtending>(is_zero_extending); | 
 |   } | 
 |  | 
 |   bool IsZeroExtending() const { return GetPackedFlag<kFieldHDotProdIsZeroExtending>(); } | 
 |  | 
 |   bool CanBeMoved() const override { return true; } | 
 |  | 
 |   DECLARE_INSTRUCTION(VecDotProd); | 
 |  | 
 |  protected: | 
 |   DEFAULT_COPY_CONSTRUCTOR(VecDotProd); | 
 |  | 
 |  private: | 
 |   // Additional packed bits. | 
 |   static constexpr size_t kFieldHDotProdIsZeroExtending = | 
 |       HVecOperation::kNumberOfVectorOpPackedBits; | 
 |   static constexpr size_t kNumberOfHDotProdPackedBits = kFieldHDotProdIsZeroExtending + 1; | 
 |   static_assert(kNumberOfHDotProdPackedBits <= kMaxNumberOfPackedBits, "Too many packed fields."); | 
 | }; | 
 |  | 
 | // Loads a vector from memory, viz. load(mem, 1) | 
 | // yield the vector [ mem(1), .. , mem(n) ]. | 
 | class HVecLoad final : public HVecMemoryOperation { | 
 |  public: | 
 |   HVecLoad(ArenaAllocator* allocator, | 
 |            HInstruction* base, | 
 |            HInstruction* index, | 
 |            DataType::Type packed_type, | 
 |            SideEffects side_effects, | 
 |            size_t vector_length, | 
 |            bool is_string_char_at, | 
 |            uint32_t dex_pc) | 
 |       : HVecMemoryOperation(kVecLoad, | 
 |                             allocator, | 
 |                             packed_type, | 
 |                             side_effects, | 
 |                             /* number_of_inputs= */ 2, | 
 |                             vector_length, | 
 |                             dex_pc) { | 
 |     SetRawInputAt(0, base); | 
 |     SetRawInputAt(1, index); | 
 |     SetPackedFlag<kFieldIsStringCharAt>(is_string_char_at); | 
 |   } | 
 |  | 
 |   bool IsStringCharAt() const { return GetPackedFlag<kFieldIsStringCharAt>(); } | 
 |  | 
 |   bool CanBeMoved() const override { return true; } | 
 |  | 
 |   bool InstructionDataEquals(const HInstruction* other) const override { | 
 |     DCHECK(other->IsVecLoad()); | 
 |     const HVecLoad* o = other->AsVecLoad(); | 
 |     return HVecMemoryOperation::InstructionDataEquals(o) && IsStringCharAt() == o->IsStringCharAt(); | 
 |   } | 
 |  | 
 |   DECLARE_INSTRUCTION(VecLoad); | 
 |  | 
 |  protected: | 
 |   DEFAULT_COPY_CONSTRUCTOR(VecLoad); | 
 |  | 
 |  private: | 
 |   // Additional packed bits. | 
 |   static constexpr size_t kFieldIsStringCharAt = HVecOperation::kNumberOfVectorOpPackedBits; | 
 |   static constexpr size_t kNumberOfVecLoadPackedBits = kFieldIsStringCharAt + 1; | 
 |   static_assert(kNumberOfVecLoadPackedBits <= kMaxNumberOfPackedBits, "Too many packed fields."); | 
 | }; | 
 |  | 
 | // Stores a vector to memory, viz. store(m, 1, [x1, .. , xn] ) | 
 | // sets mem(1) = x1, .. , mem(n) = xn. | 
 | class HVecStore final : public HVecMemoryOperation { | 
 |  public: | 
 |   HVecStore(ArenaAllocator* allocator, | 
 |             HInstruction* base, | 
 |             HInstruction* index, | 
 |             HInstruction* value, | 
 |             DataType::Type packed_type, | 
 |             SideEffects side_effects, | 
 |             size_t vector_length, | 
 |             uint32_t dex_pc) | 
 |       : HVecMemoryOperation(kVecStore, | 
 |                             allocator, | 
 |                             packed_type, | 
 |                             side_effects, | 
 |                             /* number_of_inputs= */ 3, | 
 |                             vector_length, | 
 |                             dex_pc) { | 
 |     DCHECK(HasConsistentPackedTypes(value, packed_type)); | 
 |     SetRawInputAt(0, base); | 
 |     SetRawInputAt(1, index); | 
 |     SetRawInputAt(2, value); | 
 |   } | 
 |  | 
 |   // A store needs to stay in place. | 
 |   bool CanBeMoved() const override { return false; } | 
 |  | 
 |   DECLARE_INSTRUCTION(VecStore); | 
 |  | 
 |  protected: | 
 |   DEFAULT_COPY_CONSTRUCTOR(VecStore) | 
 | }; | 
 |  | 
 | }  // namespace art | 
 |  | 
 | #endif  // ART_COMPILER_OPTIMIZING_NODES_VECTOR_H_ |