blob: 19cf7593e43c1c2b5b60ce2ce47c86a78c5c5618 [file] [log] [blame]
/*
* Copyright (C) 2014 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#ifndef ART_RUNTIME_READ_BARRIER_INL_H_
#define ART_RUNTIME_READ_BARRIER_INL_H_
#include "read_barrier.h"
#include "gc/collector/concurrent_copying-inl.h"
#include "gc/heap.h"
#include "mirror/object_reference.h"
#include "mirror/reference.h"
#include "runtime.h"
#include "utils.h"
namespace art {
template <typename MirrorType, ReadBarrierOption kReadBarrierOption, bool kAlwaysUpdateField>
inline MirrorType* ReadBarrier::Barrier(
mirror::Object* obj, MemberOffset offset, mirror::HeapReference<MirrorType>* ref_addr) {
constexpr bool with_read_barrier = kReadBarrierOption == kWithReadBarrier;
if (with_read_barrier && kUseBakerReadBarrier) {
// The higher bits of the rb_ptr, rb_ptr_high_bits (must be zero)
// is used to create artificial data dependency from the is_gray
// load to the ref field (ptr) load to avoid needing a load-load
// barrier between the two.
uintptr_t rb_ptr_high_bits;
bool is_gray = HasGrayReadBarrierPointer(obj, &rb_ptr_high_bits);
ref_addr = reinterpret_cast<mirror::HeapReference<MirrorType>*>(
rb_ptr_high_bits | reinterpret_cast<uintptr_t>(ref_addr));
MirrorType* ref = ref_addr->AsMirrorPtr();
MirrorType* old_ref = ref;
if (is_gray) {
// Slow-path.
ref = reinterpret_cast<MirrorType*>(Mark(ref));
// If kAlwaysUpdateField is true, update the field atomically. This may fail if mutator
// updates before us, but it's ok.
if (kAlwaysUpdateField && ref != old_ref) {
obj->CasFieldStrongRelaxedObjectWithoutWriteBarrier<false, false>(
offset, old_ref, ref);
}
}
if (kEnableReadBarrierInvariantChecks) {
CHECK_EQ(rb_ptr_high_bits, 0U) << obj << " rb_ptr=" << obj->GetReadBarrierPointer();
}
AssertToSpaceInvariant(obj, offset, ref);
return ref;
} else if (with_read_barrier && kUseBrooksReadBarrier) {
// To be implemented.
return ref_addr->AsMirrorPtr();
} else if (with_read_barrier && kUseTableLookupReadBarrier) {
MirrorType* ref = ref_addr->AsMirrorPtr();
MirrorType* old_ref = ref;
// The heap or the collector can be null at startup. TODO: avoid the need for this null check.
gc::Heap* heap = Runtime::Current()->GetHeap();
if (heap != nullptr && heap->GetReadBarrierTable()->IsSet(old_ref)) {
ref = reinterpret_cast<MirrorType*>(Mark(old_ref));
// Update the field atomically. This may fail if mutator updates before us, but it's ok.
if (ref != old_ref) {
obj->CasFieldStrongRelaxedObjectWithoutWriteBarrier<false, false>(
offset, old_ref, ref);
}
}
AssertToSpaceInvariant(obj, offset, ref);
return ref;
} else {
// No read barrier.
return ref_addr->AsMirrorPtr();
}
}
template <typename MirrorType, ReadBarrierOption kReadBarrierOption>
inline MirrorType* ReadBarrier::BarrierForRoot(MirrorType** root,
GcRootSource* gc_root_source) {
MirrorType* ref = *root;
const bool with_read_barrier = kReadBarrierOption == kWithReadBarrier;
if (with_read_barrier && kUseBakerReadBarrier) {
// TODO: separate the read barrier code from the collector code more.
Thread* self = Thread::Current();
if (self != nullptr && self->GetIsGcMarking()) {
ref = reinterpret_cast<MirrorType*>(Mark(ref));
}
AssertToSpaceInvariant(gc_root_source, ref);
return ref;
} else if (with_read_barrier && kUseBrooksReadBarrier) {
// To be implemented.
return ref;
} else if (with_read_barrier && kUseTableLookupReadBarrier) {
Thread* self = Thread::Current();
if (self != nullptr &&
self->GetIsGcMarking() &&
Runtime::Current()->GetHeap()->GetReadBarrierTable()->IsSet(ref)) {
MirrorType* old_ref = ref;
ref = reinterpret_cast<MirrorType*>(Mark(old_ref));
// Update the field atomically. This may fail if mutator updates before us, but it's ok.
if (ref != old_ref) {
Atomic<mirror::Object*>* atomic_root = reinterpret_cast<Atomic<mirror::Object*>*>(root);
atomic_root->CompareExchangeStrongRelaxed(old_ref, ref);
}
}
AssertToSpaceInvariant(gc_root_source, ref);
return ref;
} else {
return ref;
}
}
// TODO: Reduce copy paste
template <typename MirrorType, ReadBarrierOption kReadBarrierOption>
inline MirrorType* ReadBarrier::BarrierForRoot(mirror::CompressedReference<MirrorType>* root,
GcRootSource* gc_root_source) {
MirrorType* ref = root->AsMirrorPtr();
const bool with_read_barrier = kReadBarrierOption == kWithReadBarrier;
if (with_read_barrier && kUseBakerReadBarrier) {
// TODO: separate the read barrier code from the collector code more.
Thread* self = Thread::Current();
if (self != nullptr && self->GetIsGcMarking()) {
ref = reinterpret_cast<MirrorType*>(Mark(ref));
}
AssertToSpaceInvariant(gc_root_source, ref);
return ref;
} else if (with_read_barrier && kUseBrooksReadBarrier) {
// To be implemented.
return ref;
} else if (with_read_barrier && kUseTableLookupReadBarrier) {
Thread* self = Thread::Current();
if (self != nullptr &&
self->GetIsGcMarking() &&
Runtime::Current()->GetHeap()->GetReadBarrierTable()->IsSet(ref)) {
auto old_ref = mirror::CompressedReference<MirrorType>::FromMirrorPtr(ref);
ref = reinterpret_cast<MirrorType*>(Mark(ref));
auto new_ref = mirror::CompressedReference<MirrorType>::FromMirrorPtr(ref);
// Update the field atomically. This may fail if mutator updates before us, but it's ok.
if (new_ref.AsMirrorPtr() != old_ref.AsMirrorPtr()) {
auto* atomic_root =
reinterpret_cast<Atomic<mirror::CompressedReference<MirrorType>>*>(root);
atomic_root->CompareExchangeStrongRelaxed(old_ref, new_ref);
}
}
AssertToSpaceInvariant(gc_root_source, ref);
return ref;
} else {
return ref;
}
}
inline bool ReadBarrier::IsDuringStartup() {
gc::Heap* heap = Runtime::Current()->GetHeap();
if (heap == nullptr) {
// During startup, the heap can be null.
return true;
}
if (heap->CurrentCollectorType() != gc::kCollectorTypeCC) {
// CC isn't running.
return true;
}
gc::collector::ConcurrentCopying* collector = heap->ConcurrentCopyingCollector();
if (collector == nullptr) {
// During startup, the collector can be null.
return true;
}
return false;
}
inline void ReadBarrier::AssertToSpaceInvariant(mirror::Object* obj, MemberOffset offset,
mirror::Object* ref) {
if (kEnableToSpaceInvariantChecks || kIsDebugBuild) {
if (ref == nullptr || IsDuringStartup()) {
return;
}
Runtime::Current()->GetHeap()->ConcurrentCopyingCollector()->
AssertToSpaceInvariant(obj, offset, ref);
}
}
inline void ReadBarrier::AssertToSpaceInvariant(GcRootSource* gc_root_source,
mirror::Object* ref) {
if (kEnableToSpaceInvariantChecks || kIsDebugBuild) {
if (ref == nullptr || IsDuringStartup()) {
return;
}
Runtime::Current()->GetHeap()->ConcurrentCopyingCollector()->
AssertToSpaceInvariant(gc_root_source, ref);
}
}
inline mirror::Object* ReadBarrier::Mark(mirror::Object* obj) {
return Runtime::Current()->GetHeap()->ConcurrentCopyingCollector()->Mark(obj);
}
inline bool ReadBarrier::HasGrayReadBarrierPointer(mirror::Object* obj,
uintptr_t* out_rb_ptr_high_bits) {
mirror::Object* rb_ptr = obj->GetReadBarrierPointer();
uintptr_t rb_ptr_bits = reinterpret_cast<uintptr_t>(rb_ptr);
uintptr_t rb_ptr_low_bits = rb_ptr_bits & rb_ptr_mask_;
if (kEnableReadBarrierInvariantChecks) {
CHECK(rb_ptr_low_bits == white_ptr_ || rb_ptr_low_bits == gray_ptr_ ||
rb_ptr_low_bits == black_ptr_)
<< "obj=" << obj << " rb_ptr=" << rb_ptr << " " << PrettyTypeOf(obj);
}
bool is_gray = rb_ptr_low_bits == gray_ptr_;
// The high bits are supposed to be zero. We check this on the caller side.
*out_rb_ptr_high_bits = rb_ptr_bits & ~rb_ptr_mask_;
return is_gray;
}
} // namespace art
#endif // ART_RUNTIME_READ_BARRIER_INL_H_