| /* |
| * Copyright (C) 2011 The Android Open Source Project |
| * |
| * Licensed under the Apache License, Version 2.0 (the "License"); |
| * you may not use this file except in compliance with the License. |
| * You may obtain a copy of the License at |
| * |
| * http://www.apache.org/licenses/LICENSE-2.0 |
| * |
| * Unless required by applicable law or agreed to in writing, software |
| * distributed under the License is distributed on an "AS IS" BASIS, |
| * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| * See the License for the specific language governing permissions and |
| * limitations under the License. |
| */ |
| |
| #ifndef ART_SRC_STACK_H_ |
| #define ART_SRC_STACK_H_ |
| |
| #include "dex_file.h" |
| #include "instrumentation.h" |
| #include "base/macros.h" |
| #include "oat/runtime/context.h" |
| |
| #include <stdint.h> |
| #include <string> |
| |
| namespace art { |
| |
| namespace mirror { |
| class AbstractMethod; |
| class Object; |
| } // namespace mirror |
| |
| class Context; |
| class ShadowFrame; |
| class StackIndirectReferenceTable; |
| class ScopedObjectAccess; |
| class Thread; |
| |
| // The kind of vreg being accessed in calls to Set/GetVReg. |
| enum VRegKind { |
| kReferenceVReg, |
| kIntVReg, |
| kFloatVReg, |
| kLongLoVReg, |
| kLongHiVReg, |
| kDoubleLoVReg, |
| kDoubleHiVReg, |
| kConstant, |
| kImpreciseConstant, |
| kUndefined, |
| }; |
| |
| // ShadowFrame has 3 possible layouts: |
| // - portable - a unified array of VRegs and references. Precise references need GC maps. |
| // - interpreter - separate VRegs and reference arrays. References are in the reference array. |
| // - JNI - just VRegs, but where every VReg holds a reference. |
| class ShadowFrame { |
| public: |
| // Create ShadowFrame for interpreter. |
| static ShadowFrame* Create(uint32_t num_vregs, ShadowFrame* link, |
| mirror::AbstractMethod* method, uint32_t dex_pc) { |
| size_t sz = sizeof(ShadowFrame) + |
| (sizeof(uint32_t) * num_vregs) + |
| (sizeof(mirror::Object*) * num_vregs); |
| uint8_t* memory = new uint8_t[sz]; |
| ShadowFrame* sf = new (memory) ShadowFrame(num_vregs, link, method, dex_pc, true); |
| return sf; |
| } |
| ~ShadowFrame() {} |
| |
| bool HasReferenceArray() const { |
| return (number_of_vregs_ & kHasReferenceArray) != 0; |
| } |
| |
| uint32_t NumberOfVRegs() const { |
| return number_of_vregs_ & ~kHasReferenceArray; |
| } |
| |
| void SetNumberOfVRegs(uint32_t number_of_vregs) { |
| number_of_vregs_ = number_of_vregs | (number_of_vregs_ & kHasReferenceArray); |
| } |
| |
| uint32_t GetDexPC() const { |
| return dex_pc_; |
| } |
| |
| void SetDexPC(uint32_t dex_pc) { |
| dex_pc_ = dex_pc; |
| } |
| |
| ShadowFrame* GetLink() const { |
| return link_; |
| } |
| |
| void SetLink(ShadowFrame* frame) { |
| DCHECK_NE(this, frame); |
| link_ = frame; |
| } |
| |
| int32_t GetVReg(size_t i) const { |
| DCHECK_LT(i, NumberOfVRegs()); |
| const uint32_t* vreg = &vregs_[i]; |
| return *reinterpret_cast<const int32_t*>(vreg); |
| } |
| |
| float GetVRegFloat(size_t i) const { |
| DCHECK_LT(i, NumberOfVRegs()); |
| // NOTE: Strict-aliasing? |
| const uint32_t* vreg = &vregs_[i]; |
| return *reinterpret_cast<const float*>(vreg); |
| } |
| |
| int64_t GetVRegLong(size_t i) const { |
| const uint32_t* vreg = &vregs_[i]; |
| return *reinterpret_cast<const int64_t*>(vreg); |
| } |
| |
| double GetVRegDouble(size_t i) const { |
| const uint32_t* vreg = &vregs_[i]; |
| return *reinterpret_cast<const double*>(vreg); |
| } |
| |
| mirror::Object* GetVRegReference(size_t i) const { |
| DCHECK_LT(i, NumberOfVRegs()); |
| if (HasReferenceArray()) { |
| return References()[i]; |
| } else { |
| const uint32_t* vreg = &vregs_[i]; |
| return *reinterpret_cast<mirror::Object* const*>(vreg); |
| } |
| } |
| |
| void SetVReg(size_t i, int32_t val) { |
| DCHECK_LT(i, NumberOfVRegs()); |
| uint32_t* vreg = &vregs_[i]; |
| *reinterpret_cast<int32_t*>(vreg) = val; |
| } |
| |
| void SetVRegFloat(size_t i, float val) { |
| DCHECK_LT(i, NumberOfVRegs()); |
| uint32_t* vreg = &vregs_[i]; |
| *reinterpret_cast<float*>(vreg) = val; |
| } |
| |
| void SetVRegLong(size_t i, int64_t val) { |
| uint32_t* vreg = &vregs_[i]; |
| *reinterpret_cast<int64_t*>(vreg) = val; |
| } |
| |
| void SetVRegDouble(size_t i, double val) { |
| uint32_t* vreg = &vregs_[i]; |
| *reinterpret_cast<double*>(vreg) = val; |
| } |
| |
| void SetVRegReference(size_t i, mirror::Object* val) { |
| DCHECK_LT(i, NumberOfVRegs()); |
| uint32_t* vreg = &vregs_[i]; |
| *reinterpret_cast<mirror::Object**>(vreg) = val; |
| if (HasReferenceArray()) { |
| References()[i] = val; |
| } |
| } |
| |
| mirror::AbstractMethod* GetMethod() const { |
| DCHECK_NE(method_, static_cast<void*>(NULL)); |
| return method_; |
| } |
| |
| void SetMethod(mirror::AbstractMethod* method) { |
| DCHECK_NE(method, static_cast<void*>(NULL)); |
| method_ = method; |
| } |
| |
| bool Contains(mirror::Object** shadow_frame_entry_obj) const { |
| if (HasReferenceArray()) { |
| return ((&References()[0] <= shadow_frame_entry_obj) && |
| (shadow_frame_entry_obj <= (&References()[NumberOfVRegs() - 1]))); |
| } else { |
| uint32_t* shadow_frame_entry = reinterpret_cast<uint32_t*>(shadow_frame_entry_obj); |
| return ((&vregs_[0] <= shadow_frame_entry) && |
| (shadow_frame_entry <= (&vregs_[NumberOfVRegs() - 1]))); |
| } |
| } |
| |
| static size_t LinkOffset() { |
| return OFFSETOF_MEMBER(ShadowFrame, link_); |
| } |
| |
| static size_t MethodOffset() { |
| return OFFSETOF_MEMBER(ShadowFrame, method_); |
| } |
| |
| static size_t DexPCOffset() { |
| return OFFSETOF_MEMBER(ShadowFrame, dex_pc_); |
| } |
| |
| static size_t NumberOfVRegsOffset() { |
| return OFFSETOF_MEMBER(ShadowFrame, number_of_vregs_); |
| } |
| |
| static size_t VRegsOffset() { |
| return OFFSETOF_MEMBER(ShadowFrame, vregs_); |
| } |
| |
| private: |
| ShadowFrame(uint32_t num_vregs, ShadowFrame* link, mirror::AbstractMethod* method, |
| uint32_t dex_pc, bool has_reference_array) |
| : number_of_vregs_(num_vregs), link_(link), method_(method), dex_pc_(dex_pc) { |
| CHECK_LT(num_vregs, static_cast<uint32_t>(kHasReferenceArray)); |
| if (has_reference_array) { |
| number_of_vregs_ |= kHasReferenceArray; |
| for (size_t i = 0; i < num_vregs; ++i) { |
| SetVRegReference(i, NULL); |
| } |
| } else { |
| for (size_t i = 0; i < num_vregs; ++i) { |
| SetVReg(i, 0); |
| } |
| } |
| } |
| |
| mirror::Object* const* References() const { |
| DCHECK(HasReferenceArray()); |
| const uint32_t* vreg_end = &vregs_[NumberOfVRegs()]; |
| return reinterpret_cast<mirror::Object* const*>(vreg_end); |
| } |
| |
| mirror::Object** References() { |
| return const_cast<mirror::Object**>(const_cast<const ShadowFrame*>(this)->References()); |
| } |
| |
| enum ShadowFrameFlag { |
| kHasReferenceArray = 1ul << 31 |
| }; |
| // TODO: make the majority of these fields const. |
| uint32_t number_of_vregs_; |
| // Link to previous shadow frame or NULL. |
| ShadowFrame* link_; |
| mirror::AbstractMethod* method_; |
| uint32_t dex_pc_; |
| uint32_t vregs_[0]; |
| |
| DISALLOW_IMPLICIT_CONSTRUCTORS(ShadowFrame); |
| }; |
| |
| // The managed stack is used to record fragments of managed code stacks. Managed code stacks |
| // may either be shadow frames or lists of frames using fixed frame sizes. Transition records are |
| // necessary for transitions between code using different frame layouts and transitions into native |
| // code. |
| class PACKED(4) ManagedStack { |
| public: |
| ManagedStack() |
| : link_(NULL), top_shadow_frame_(NULL), top_quick_frame_(NULL), top_quick_frame_pc_(0) {} |
| |
| void PushManagedStackFragment(ManagedStack* fragment) { |
| // Copy this top fragment into given fragment. |
| memcpy(fragment, this, sizeof(ManagedStack)); |
| // Clear this fragment, which has become the top. |
| memset(this, 0, sizeof(ManagedStack)); |
| // Link our top fragment onto the given fragment. |
| link_ = fragment; |
| } |
| |
| void PopManagedStackFragment(const ManagedStack& fragment) { |
| DCHECK(&fragment == link_); |
| // Copy this given fragment back to the top. |
| memcpy(this, &fragment, sizeof(ManagedStack)); |
| } |
| |
| ManagedStack* GetLink() const { |
| return link_; |
| } |
| |
| mirror::AbstractMethod** GetTopQuickFrame() const { |
| return top_quick_frame_; |
| } |
| |
| void SetTopQuickFrame(mirror::AbstractMethod** top) { |
| top_quick_frame_ = top; |
| } |
| |
| uintptr_t GetTopQuickFramePc() const { |
| return top_quick_frame_pc_; |
| } |
| |
| void SetTopQuickFramePc(uintptr_t pc) { |
| top_quick_frame_pc_ = pc; |
| } |
| |
| static size_t TopQuickFrameOffset() { |
| return OFFSETOF_MEMBER(ManagedStack, top_quick_frame_); |
| } |
| |
| static size_t TopQuickFramePcOffset() { |
| return OFFSETOF_MEMBER(ManagedStack, top_quick_frame_pc_); |
| } |
| |
| ShadowFrame* PushShadowFrame(ShadowFrame* new_top_frame) { |
| ShadowFrame* old_frame = top_shadow_frame_; |
| top_shadow_frame_ = new_top_frame; |
| new_top_frame->SetLink(old_frame); |
| return old_frame; |
| } |
| |
| ShadowFrame* PopShadowFrame() { |
| CHECK(top_shadow_frame_ != NULL); |
| ShadowFrame* frame = top_shadow_frame_; |
| top_shadow_frame_ = frame->GetLink(); |
| return frame; |
| } |
| |
| ShadowFrame* GetTopShadowFrame() const { |
| return top_shadow_frame_; |
| } |
| |
| void SetTopShadowFrame(ShadowFrame* top) { |
| top_shadow_frame_ = top; |
| } |
| |
| static size_t TopShadowFrameOffset() { |
| return OFFSETOF_MEMBER(ManagedStack, top_shadow_frame_); |
| } |
| |
| size_t NumJniShadowFrameReferences() const; |
| |
| bool ShadowFramesContain(mirror::Object** shadow_frame_entry) const; |
| |
| private: |
| ManagedStack* link_; |
| ShadowFrame* top_shadow_frame_; |
| mirror::AbstractMethod** top_quick_frame_; |
| uintptr_t top_quick_frame_pc_; |
| }; |
| |
| class StackVisitor { |
| protected: |
| StackVisitor(Thread* thread, Context* context) SHARED_LOCKS_REQUIRED(Locks::mutator_lock_); |
| |
| public: |
| virtual ~StackVisitor() {} |
| |
| // Return 'true' if we should continue to visit more frames, 'false' to stop. |
| virtual bool VisitFrame() SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) = 0; |
| |
| void WalkStack(bool include_transitions = false) |
| SHARED_LOCKS_REQUIRED(Locks::mutator_lock_); |
| |
| mirror::AbstractMethod* GetMethod() const { |
| if (cur_shadow_frame_ != NULL) { |
| return cur_shadow_frame_->GetMethod(); |
| } else if (cur_quick_frame_ != NULL) { |
| return *cur_quick_frame_; |
| } else { |
| return NULL; |
| } |
| } |
| |
| bool IsShadowFrame() const { |
| return cur_shadow_frame_ != NULL; |
| } |
| |
| uint32_t GetDexPc() const SHARED_LOCKS_REQUIRED(Locks::mutator_lock_); |
| |
| size_t GetNativePcOffset() const SHARED_LOCKS_REQUIRED(Locks::mutator_lock_); |
| |
| uintptr_t* CalleeSaveAddress(int num, size_t frame_size) const { |
| // Callee saves are held at the top of the frame |
| DCHECK(GetMethod() != NULL); |
| byte* save_addr = |
| reinterpret_cast<byte*>(cur_quick_frame_) + frame_size - ((num + 1) * kPointerSize); |
| #if defined(__i386__) |
| save_addr -= kPointerSize; // account for return address |
| #endif |
| return reinterpret_cast<uintptr_t*>(save_addr); |
| } |
| |
| // Returns the height of the stack in the managed stack frames, including transitions. |
| size_t GetFrameHeight() SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) { |
| return GetNumFrames() - cur_depth_; |
| } |
| |
| // Returns a frame ID for JDWP use, starting from 1. |
| size_t GetFrameId() SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) { |
| return GetFrameHeight() + 1; |
| } |
| |
| size_t GetNumFrames() SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) { |
| if (num_frames_ == 0) { |
| num_frames_ = ComputeNumFrames(thread_); |
| } |
| return num_frames_; |
| } |
| |
| uint32_t GetVReg(mirror::AbstractMethod* m, uint16_t vreg, VRegKind kind) const |
| SHARED_LOCKS_REQUIRED(Locks::mutator_lock_); |
| |
| void SetVReg(mirror::AbstractMethod* m, uint16_t vreg, uint32_t new_value, VRegKind kind) |
| SHARED_LOCKS_REQUIRED(Locks::mutator_lock_); |
| |
| uintptr_t GetGPR(uint32_t reg) const; |
| void SetGPR(uint32_t reg, uintptr_t value); |
| |
| uint32_t GetVReg(mirror::AbstractMethod** cur_quick_frame, const DexFile::CodeItem* code_item, |
| uint32_t core_spills, uint32_t fp_spills, size_t frame_size, |
| uint16_t vreg) const { |
| int offset = GetVRegOffset(code_item, core_spills, fp_spills, frame_size, vreg); |
| DCHECK_EQ(cur_quick_frame, GetCurrentQuickFrame()); |
| byte* vreg_addr = reinterpret_cast<byte*>(cur_quick_frame) + offset; |
| return *reinterpret_cast<uint32_t*>(vreg_addr); |
| } |
| |
| uintptr_t GetReturnPc() const; |
| |
| void SetReturnPc(uintptr_t new_ret_pc); |
| |
| /* |
| * Return sp-relative offset for a Dalvik virtual register, compiler |
| * spill or Method* in bytes using Method*. |
| * Note that (reg >= 0) refers to a Dalvik register, (reg == -2) |
| * denotes Method* and (reg <= -3) denotes a compiler temp. |
| * |
| * +------------------------+ |
| * | IN[ins-1] | {Note: resides in caller's frame} |
| * | . | |
| * | IN[0] | |
| * | caller's Method* | |
| * +========================+ {Note: start of callee's frame} |
| * | core callee-save spill | {variable sized} |
| * +------------------------+ |
| * | fp callee-save spill | |
| * +------------------------+ |
| * | filler word | {For compatibility, if V[locals-1] used as wide |
| * +------------------------+ |
| * | V[locals-1] | |
| * | V[locals-2] | |
| * | . | |
| * | . | ... (reg == 2) |
| * | V[1] | ... (reg == 1) |
| * | V[0] | ... (reg == 0) <---- "locals_start" |
| * +------------------------+ |
| * | Compiler temps | ... (reg == -2) |
| * | | ... (reg == -3) |
| * | | ... (reg == -4) |
| * +------------------------+ |
| * | stack alignment padding| {0 to (kStackAlignWords-1) of padding} |
| * +------------------------+ |
| * | OUT[outs-1] | |
| * | OUT[outs-2] | |
| * | . | |
| * | OUT[0] | |
| * | curMethod* | ... (reg == -1) <<== sp, 16-byte aligned |
| * +========================+ |
| */ |
| static int GetVRegOffset(const DexFile::CodeItem* code_item, |
| uint32_t core_spills, uint32_t fp_spills, |
| size_t frame_size, int reg) { |
| DCHECK_EQ(frame_size & (kStackAlignment - 1), 0U); |
| int num_spills = __builtin_popcount(core_spills) + __builtin_popcount(fp_spills) + 1; // Filler. |
| int num_ins = code_item->ins_size_; |
| int num_regs = code_item->registers_size_ - num_ins; |
| int locals_start = frame_size - ((num_spills + num_regs) * sizeof(uint32_t)); |
| if (reg == -2) { |
| return 0; // Method* |
| } else if (reg <= -3) { |
| return locals_start - ((reg + 1) * sizeof(uint32_t)); // Compiler temp. |
| } else if (reg < num_regs) { |
| return locals_start + (reg * sizeof(uint32_t)); // Dalvik local reg. |
| } else { |
| return frame_size + ((reg - num_regs) * sizeof(uint32_t)) + sizeof(uint32_t); // Dalvik in. |
| } |
| } |
| |
| uintptr_t GetCurrentQuickFramePc() const { |
| return cur_quick_frame_pc_; |
| } |
| |
| mirror::AbstractMethod** GetCurrentQuickFrame() const { |
| return cur_quick_frame_; |
| } |
| |
| ShadowFrame* GetCurrentShadowFrame() const { |
| return cur_shadow_frame_; |
| } |
| |
| StackIndirectReferenceTable* GetCurrentSirt() const { |
| mirror::AbstractMethod** sp = GetCurrentQuickFrame(); |
| ++sp; // Skip Method*; SIRT comes next; |
| return reinterpret_cast<StackIndirectReferenceTable*>(sp); |
| } |
| |
| std::string DescribeLocation() const SHARED_LOCKS_REQUIRED(Locks::mutator_lock_); |
| |
| static size_t ComputeNumFrames(Thread* thread) SHARED_LOCKS_REQUIRED(Locks::mutator_lock_); |
| |
| static void DescribeStack(Thread* thread) SHARED_LOCKS_REQUIRED(Locks::mutator_lock_); |
| |
| private: |
| |
| InstrumentationStackFrame GetInstrumentationStackFrame(uint32_t depth) const; |
| |
| void SanityCheckFrame() const SHARED_LOCKS_REQUIRED(Locks::mutator_lock_); |
| |
| Thread* const thread_; |
| ShadowFrame* cur_shadow_frame_; |
| mirror::AbstractMethod** cur_quick_frame_; |
| uintptr_t cur_quick_frame_pc_; |
| // Lazily computed, number of frames in the stack. |
| size_t num_frames_; |
| // Depth of the frame we're currently at. |
| size_t cur_depth_; |
| protected: |
| Context* const context_; |
| }; |
| |
| class VmapTable { |
| public: |
| explicit VmapTable(const uint16_t* table) : table_(table) { |
| } |
| |
| uint16_t operator[](size_t i) const { |
| return table_[i + 1]; |
| } |
| |
| size_t size() const { |
| return table_[0]; |
| } |
| |
| // Is the dex register 'vreg' in the context or on the stack? Should not be called when the |
| // 'kind' is unknown or constant. |
| bool IsInContext(size_t vreg, uint32_t& vmap_offset, VRegKind kind) const { |
| DCHECK(kind == kReferenceVReg || kind == kIntVReg || kind == kFloatVReg || |
| kind == kLongLoVReg || kind == kLongHiVReg || kind == kDoubleLoVReg || |
| kind == kDoubleHiVReg || kind == kImpreciseConstant); |
| vmap_offset = 0xEBAD0FF5; |
| // TODO: take advantage of the registers being ordered |
| // TODO: we treat kImpreciseConstant as an integer below, need to ensure that such values |
| // are never promoted to floating point registers. |
| bool is_float = (kind == kFloatVReg) || (kind == kDoubleLoVReg) || (kind == kDoubleHiVReg); |
| bool in_floats = false; |
| for (size_t i = 0; i < size(); ++i) { |
| // Stop if we find what we are are looking for. |
| if ((table_[i + 1] == vreg) && (in_floats == is_float)) { |
| vmap_offset = i; |
| return true; |
| } |
| // 0xffff is the marker for LR (return PC on x86), following it are spilled float registers. |
| if (table_[i + 1] == 0xffff) { |
| in_floats = true; |
| } |
| } |
| return false; |
| } |
| |
| // Compute the register number that corresponds to the entry in the vmap (vmap_offset, computed |
| // by IsInContext above). If the kind is floating point then the result will be a floating point |
| // register number, otherwise it will be an integer register number. |
| uint32_t ComputeRegister(uint32_t spill_mask, uint32_t vmap_offset, VRegKind kind) const { |
| // Compute the register we need to load from the context. |
| DCHECK(kind == kReferenceVReg || kind == kIntVReg || kind == kFloatVReg || |
| kind == kLongLoVReg || kind == kLongHiVReg || kind == kDoubleLoVReg || |
| kind == kDoubleHiVReg || kind == kImpreciseConstant); |
| // TODO: we treat kImpreciseConstant as an integer below, need to ensure that such values |
| // are never promoted to floating point registers. |
| bool is_float = (kind == kFloatVReg) || (kind == kDoubleLoVReg) || (kind == kDoubleHiVReg); |
| uint32_t matches = 0; |
| if (is_float) { |
| while (table_[matches] != 0xffff) { |
| matches++; |
| } |
| } |
| CHECK_LT(vmap_offset - matches, static_cast<uint32_t>(__builtin_popcount(spill_mask))); |
| uint32_t spill_shifts = 0; |
| while (matches != (vmap_offset + 1)) { |
| DCHECK_NE(spill_mask, 0u); |
| matches += spill_mask & 1; // Add 1 if the low bit is set |
| spill_mask >>= 1; |
| spill_shifts++; |
| } |
| spill_shifts--; // wind back one as we want the last match |
| return spill_shifts; |
| } |
| private: |
| const uint16_t* table_; |
| }; |
| |
| } // namespace art |
| |
| #endif // ART_SRC_STACK_H_ |