blob: 7d7bb94933f54dc9b5cc515dcc4d9a450c553206 [file] [log] [blame]
/*
* Copyright (C) 2017 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "load_store_analysis.h"
namespace art {
// A cap for the number of heap locations to prevent pathological time/space consumption.
// The number of heap locations for most of the methods stays below this threshold.
constexpr size_t kMaxNumberOfHeapLocations = 32;
// Test if two integer ranges [l1,h1] and [l2,h2] overlap.
// Note that the ranges are inclusive on both ends.
// l1|------|h1
// l2|------|h2
static bool CanIntegerRangesOverlap(int64_t l1, int64_t h1, int64_t l2, int64_t h2) {
return std::max(l1, l2) <= std::min(h1, h2);
}
static bool IsAddOrSub(const HInstruction* instruction) {
return instruction->IsAdd() || instruction->IsSub();
}
static bool CanBinaryOpAndIndexAlias(const HBinaryOperation* idx1,
const size_t vector_length1,
const HInstruction* idx2,
const size_t vector_length2) {
if (!IsAddOrSub(idx1)) {
// We currently only support Add and Sub operations.
return true;
}
if (idx1->AsBinaryOperation()->GetLeastConstantLeft() != idx2) {
// Cannot analyze [i+CONST1] and [j].
return true;
}
if (!idx1->GetConstantRight()->IsIntConstant()) {
return true;
}
// Since 'i' are the same in [i+CONST] and [i],
// further compare [CONST] and [0].
int64_t l1 = idx1->IsAdd() ?
idx1->GetConstantRight()->AsIntConstant()->GetValue() :
-idx1->GetConstantRight()->AsIntConstant()->GetValue();
int64_t l2 = 0;
int64_t h1 = l1 + (vector_length1 - 1);
int64_t h2 = l2 + (vector_length2 - 1);
return CanIntegerRangesOverlap(l1, h1, l2, h2);
}
static bool CanBinaryOpsAlias(const HBinaryOperation* idx1,
const size_t vector_length1,
const HBinaryOperation* idx2,
const size_t vector_length2) {
if (!IsAddOrSub(idx1) || !IsAddOrSub(idx2)) {
// We currently only support Add and Sub operations.
return true;
}
if (idx1->AsBinaryOperation()->GetLeastConstantLeft() !=
idx2->AsBinaryOperation()->GetLeastConstantLeft()) {
// Cannot analyze [i+CONST1] and [j+CONST2].
return true;
}
if (!idx1->GetConstantRight()->IsIntConstant() ||
!idx2->GetConstantRight()->IsIntConstant()) {
return true;
}
// Since 'i' are the same in [i+CONST1] and [i+CONST2],
// further compare [CONST1] and [CONST2].
int64_t l1 = idx1->IsAdd() ?
idx1->GetConstantRight()->AsIntConstant()->GetValue() :
-idx1->GetConstantRight()->AsIntConstant()->GetValue();
int64_t l2 = idx2->IsAdd() ?
idx2->GetConstantRight()->AsIntConstant()->GetValue() :
-idx2->GetConstantRight()->AsIntConstant()->GetValue();
int64_t h1 = l1 + (vector_length1 - 1);
int64_t h2 = l2 + (vector_length2 - 1);
return CanIntegerRangesOverlap(l1, h1, l2, h2);
}
bool HeapLocationCollector::CanArrayElementsAlias(const HInstruction* idx1,
const size_t vector_length1,
const HInstruction* idx2,
const size_t vector_length2) const {
DCHECK(idx1 != nullptr);
DCHECK(idx2 != nullptr);
DCHECK_GE(vector_length1, HeapLocation::kScalar);
DCHECK_GE(vector_length2, HeapLocation::kScalar);
// [i] and [i].
if (idx1 == idx2) {
return true;
}
// [CONST1] and [CONST2].
if (idx1->IsIntConstant() && idx2->IsIntConstant()) {
int64_t l1 = idx1->AsIntConstant()->GetValue();
int64_t l2 = idx2->AsIntConstant()->GetValue();
// To avoid any overflow in following CONST+vector_length calculation,
// use int64_t instead of int32_t.
int64_t h1 = l1 + (vector_length1 - 1);
int64_t h2 = l2 + (vector_length2 - 1);
return CanIntegerRangesOverlap(l1, h1, l2, h2);
}
// [i+CONST] and [i].
if (idx1->IsBinaryOperation() &&
idx1->AsBinaryOperation()->GetConstantRight() != nullptr &&
idx1->AsBinaryOperation()->GetLeastConstantLeft() == idx2) {
return CanBinaryOpAndIndexAlias(idx1->AsBinaryOperation(),
vector_length1,
idx2,
vector_length2);
}
// [i] and [i+CONST].
if (idx2->IsBinaryOperation() &&
idx2->AsBinaryOperation()->GetConstantRight() != nullptr &&
idx2->AsBinaryOperation()->GetLeastConstantLeft() == idx1) {
return CanBinaryOpAndIndexAlias(idx2->AsBinaryOperation(),
vector_length2,
idx1,
vector_length1);
}
// [i+CONST1] and [i+CONST2].
if (idx1->IsBinaryOperation() &&
idx1->AsBinaryOperation()->GetConstantRight() != nullptr &&
idx2->IsBinaryOperation() &&
idx2->AsBinaryOperation()->GetConstantRight() != nullptr) {
return CanBinaryOpsAlias(idx1->AsBinaryOperation(),
vector_length1,
idx2->AsBinaryOperation(),
vector_length2);
}
// By default, MAY alias.
return true;
}
bool LoadStoreAnalysis::Run() {
for (HBasicBlock* block : graph_->GetReversePostOrder()) {
heap_location_collector_.VisitBasicBlock(block);
}
if (heap_location_collector_.GetNumberOfHeapLocations() > kMaxNumberOfHeapLocations) {
// Bail out if there are too many heap locations to deal with.
heap_location_collector_.CleanUp();
return false;
}
if (!heap_location_collector_.HasHeapStores()) {
// Without heap stores, this pass would act mostly as GVN on heap accesses.
heap_location_collector_.CleanUp();
return false;
}
if (heap_location_collector_.HasVolatile() || heap_location_collector_.HasMonitorOps()) {
// Don't do load/store elimination if the method has volatile field accesses or
// monitor operations, for now.
// TODO: do it right.
heap_location_collector_.CleanUp();
return false;
}
heap_location_collector_.BuildAliasingMatrix();
return true;
}
} // namespace art