| /* | 
 |  * Copyright (C) 2014 The Android Open Source Project | 
 |  * | 
 |  * Licensed under the Apache License, Version 2.0 (the "License"); | 
 |  * you may not use this file except in compliance with the License. | 
 |  * You may obtain a copy of the License at | 
 |  * | 
 |  *      http://www.apache.org/licenses/LICENSE-2.0 | 
 |  * | 
 |  * Unless required by applicable law or agreed to in writing, software | 
 |  * distributed under the License is distributed on an "AS IS" BASIS, | 
 |  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | 
 |  * See the License for the specific language governing permissions and | 
 |  * limitations under the License. | 
 |  */ | 
 |  | 
 | #include <functional> | 
 | #include <memory> | 
 |  | 
 | #include "base/macros.h" | 
 | #include "base/utils.h" | 
 | #include "builder.h" | 
 | #include "codegen_test_utils.h" | 
 | #include "dex/dex_file.h" | 
 | #include "dex/dex_instruction.h" | 
 | #include "driver/compiler_options.h" | 
 | #include "nodes.h" | 
 | #include "optimizing_unit_test.h" | 
 | #include "register_allocator_linear_scan.h" | 
 | #include "utils/arm/assembler_arm_vixl.h" | 
 | #include "utils/arm/managed_register_arm.h" | 
 | #include "utils/x86/managed_register_x86.h" | 
 |  | 
 | #include "gtest/gtest.h" | 
 |  | 
 | namespace art { | 
 |  | 
 | // Return all combinations of ISA and code generator that are executable on | 
 | // hardware, or on simulator, and that we'd like to test. | 
 | static ::std::vector<CodegenTargetConfig> GetTargetConfigs() { | 
 |   ::std::vector<CodegenTargetConfig> v; | 
 |   ::std::vector<CodegenTargetConfig> test_config_candidates = { | 
 | #ifdef ART_ENABLE_CODEGEN_arm | 
 |     // TODO: Should't this be `kThumb2` instead of `kArm` here? | 
 |     CodegenTargetConfig(InstructionSet::kArm, create_codegen_arm_vixl32), | 
 | #endif | 
 | #ifdef ART_ENABLE_CODEGEN_arm64 | 
 |     CodegenTargetConfig(InstructionSet::kArm64, create_codegen_arm64), | 
 | #endif | 
 | #ifdef ART_ENABLE_CODEGEN_x86 | 
 |     CodegenTargetConfig(InstructionSet::kX86, create_codegen_x86), | 
 | #endif | 
 | #ifdef ART_ENABLE_CODEGEN_x86_64 | 
 |     CodegenTargetConfig(InstructionSet::kX86_64, create_codegen_x86_64), | 
 | #endif | 
 |   }; | 
 |  | 
 |   for (const CodegenTargetConfig& test_config : test_config_candidates) { | 
 |     if (CanExecute(test_config.GetInstructionSet())) { | 
 |       v.push_back(test_config); | 
 |     } | 
 |   } | 
 |  | 
 |   return v; | 
 | } | 
 |  | 
 | class CodegenTest : public OptimizingUnitTest { | 
 |  protected: | 
 |   void TestCode(const std::vector<uint16_t>& data, bool has_result = false, int32_t expected = 0); | 
 |   void TestCodeLong(const std::vector<uint16_t>& data, bool has_result, int64_t expected); | 
 |   void TestComparison(IfCondition condition, | 
 |                       int64_t i, | 
 |                       int64_t j, | 
 |                       DataType::Type type, | 
 |                       const CodegenTargetConfig target_config); | 
 | }; | 
 |  | 
 | void CodegenTest::TestCode(const std::vector<uint16_t>& data, bool has_result, int32_t expected) { | 
 |   for (const CodegenTargetConfig& target_config : GetTargetConfigs()) { | 
 |     ResetPoolAndAllocator(); | 
 |     HGraph* graph = CreateCFG(data); | 
 |     // Remove suspend checks, they cannot be executed in this context. | 
 |     RemoveSuspendChecks(graph); | 
 |     std::unique_ptr<CompilerOptions> compiler_options = | 
 |         CommonCompilerTest::CreateCompilerOptions(target_config.GetInstructionSet(), "default"); | 
 |     RunCode(target_config, *compiler_options, graph, [](HGraph*) {}, has_result, expected); | 
 |   } | 
 | } | 
 |  | 
 | void CodegenTest::TestCodeLong(const std::vector<uint16_t>& data, | 
 |                                bool has_result, int64_t expected) { | 
 |   for (const CodegenTargetConfig& target_config : GetTargetConfigs()) { | 
 |     ResetPoolAndAllocator(); | 
 |     HGraph* graph = CreateCFG(data, DataType::Type::kInt64); | 
 |     // Remove suspend checks, they cannot be executed in this context. | 
 |     RemoveSuspendChecks(graph); | 
 |     std::unique_ptr<CompilerOptions> compiler_options = | 
 |         CommonCompilerTest::CreateCompilerOptions(target_config.GetInstructionSet(), "default"); | 
 |     RunCode(target_config, *compiler_options, graph, [](HGraph*) {}, has_result, expected); | 
 |   } | 
 | } | 
 |  | 
 | TEST_F(CodegenTest, ReturnVoid) { | 
 |   const std::vector<uint16_t> data = ZERO_REGISTER_CODE_ITEM(Instruction::RETURN_VOID); | 
 |   TestCode(data); | 
 | } | 
 |  | 
 | TEST_F(CodegenTest, CFG1) { | 
 |   const std::vector<uint16_t> data = ZERO_REGISTER_CODE_ITEM( | 
 |     Instruction::GOTO | 0x100, | 
 |     Instruction::RETURN_VOID); | 
 |  | 
 |   TestCode(data); | 
 | } | 
 |  | 
 | TEST_F(CodegenTest, CFG2) { | 
 |   const std::vector<uint16_t> data = ZERO_REGISTER_CODE_ITEM( | 
 |     Instruction::GOTO | 0x100, | 
 |     Instruction::GOTO | 0x100, | 
 |     Instruction::RETURN_VOID); | 
 |  | 
 |   TestCode(data); | 
 | } | 
 |  | 
 | TEST_F(CodegenTest, CFG3) { | 
 |   const std::vector<uint16_t> data1 = ZERO_REGISTER_CODE_ITEM( | 
 |     Instruction::GOTO | 0x200, | 
 |     Instruction::RETURN_VOID, | 
 |     Instruction::GOTO | 0xFF00); | 
 |  | 
 |   TestCode(data1); | 
 |  | 
 |   const std::vector<uint16_t> data2 = ZERO_REGISTER_CODE_ITEM( | 
 |     Instruction::GOTO_16, 3, | 
 |     Instruction::RETURN_VOID, | 
 |     Instruction::GOTO_16, 0xFFFF); | 
 |  | 
 |   TestCode(data2); | 
 |  | 
 |   const std::vector<uint16_t> data3 = ZERO_REGISTER_CODE_ITEM( | 
 |     Instruction::GOTO_32, 4, 0, | 
 |     Instruction::RETURN_VOID, | 
 |     Instruction::GOTO_32, 0xFFFF, 0xFFFF); | 
 |  | 
 |   TestCode(data3); | 
 | } | 
 |  | 
 | TEST_F(CodegenTest, CFG4) { | 
 |   const std::vector<uint16_t> data = ZERO_REGISTER_CODE_ITEM( | 
 |     Instruction::RETURN_VOID, | 
 |     Instruction::GOTO | 0x100, | 
 |     Instruction::GOTO | 0xFE00); | 
 |  | 
 |   TestCode(data); | 
 | } | 
 |  | 
 | TEST_F(CodegenTest, CFG5) { | 
 |   const std::vector<uint16_t> data = ONE_REGISTER_CODE_ITEM( | 
 |     Instruction::CONST_4 | 0 | 0, | 
 |     Instruction::IF_EQ, 3, | 
 |     Instruction::GOTO | 0x100, | 
 |     Instruction::RETURN_VOID); | 
 |  | 
 |   TestCode(data); | 
 | } | 
 |  | 
 | TEST_F(CodegenTest, IntConstant) { | 
 |   const std::vector<uint16_t> data = ONE_REGISTER_CODE_ITEM( | 
 |     Instruction::CONST_4 | 0 | 0, | 
 |     Instruction::RETURN_VOID); | 
 |  | 
 |   TestCode(data); | 
 | } | 
 |  | 
 | TEST_F(CodegenTest, Return1) { | 
 |   const std::vector<uint16_t> data = ONE_REGISTER_CODE_ITEM( | 
 |     Instruction::CONST_4 | 0 | 0, | 
 |     Instruction::RETURN | 0); | 
 |  | 
 |   TestCode(data, true, 0); | 
 | } | 
 |  | 
 | TEST_F(CodegenTest, Return2) { | 
 |   const std::vector<uint16_t> data = TWO_REGISTERS_CODE_ITEM( | 
 |     Instruction::CONST_4 | 0 | 0, | 
 |     Instruction::CONST_4 | 0 | 1 << 8, | 
 |     Instruction::RETURN | 1 << 8); | 
 |  | 
 |   TestCode(data, true, 0); | 
 | } | 
 |  | 
 | TEST_F(CodegenTest, Return3) { | 
 |   const std::vector<uint16_t> data = TWO_REGISTERS_CODE_ITEM( | 
 |     Instruction::CONST_4 | 0 | 0, | 
 |     Instruction::CONST_4 | 1 << 8 | 1 << 12, | 
 |     Instruction::RETURN | 1 << 8); | 
 |  | 
 |   TestCode(data, true, 1); | 
 | } | 
 |  | 
 | TEST_F(CodegenTest, ReturnIf1) { | 
 |   const std::vector<uint16_t> data = TWO_REGISTERS_CODE_ITEM( | 
 |     Instruction::CONST_4 | 0 | 0, | 
 |     Instruction::CONST_4 | 1 << 8 | 1 << 12, | 
 |     Instruction::IF_EQ, 3, | 
 |     Instruction::RETURN | 0 << 8, | 
 |     Instruction::RETURN | 1 << 8); | 
 |  | 
 |   TestCode(data, true, 1); | 
 | } | 
 |  | 
 | TEST_F(CodegenTest, ReturnIf2) { | 
 |   const std::vector<uint16_t> data = TWO_REGISTERS_CODE_ITEM( | 
 |     Instruction::CONST_4 | 0 | 0, | 
 |     Instruction::CONST_4 | 1 << 8 | 1 << 12, | 
 |     Instruction::IF_EQ | 0 << 4 | 1 << 8, 3, | 
 |     Instruction::RETURN | 0 << 8, | 
 |     Instruction::RETURN | 1 << 8); | 
 |  | 
 |   TestCode(data, true, 0); | 
 | } | 
 |  | 
 | // Exercise bit-wise (one's complement) not-int instruction. | 
 | #define NOT_INT_TEST(TEST_NAME, INPUT, EXPECTED_OUTPUT)           \ | 
 | TEST_F(CodegenTest, TEST_NAME) {                                  \ | 
 |   const int32_t input = INPUT;                                    \ | 
 |   const uint16_t input_lo = Low16Bits(input);                     \ | 
 |   const uint16_t input_hi = High16Bits(input);                    \ | 
 |   const std::vector<uint16_t> data = TWO_REGISTERS_CODE_ITEM(     \ | 
 |       Instruction::CONST | 0 << 8, input_lo, input_hi,            \ | 
 |       Instruction::NOT_INT | 1 << 8 | 0 << 12 ,                   \ | 
 |       Instruction::RETURN | 1 << 8);                              \ | 
 |                                                                   \ | 
 |   TestCode(data, true, EXPECTED_OUTPUT);                          \ | 
 | } | 
 |  | 
 | NOT_INT_TEST(ReturnNotIntMinus2, -2, 1) | 
 | NOT_INT_TEST(ReturnNotIntMinus1, -1, 0) | 
 | NOT_INT_TEST(ReturnNotInt0, 0, -1) | 
 | NOT_INT_TEST(ReturnNotInt1, 1, -2) | 
 | NOT_INT_TEST(ReturnNotIntINT32_MIN, -2147483648, 2147483647)  // (2^31) - 1 | 
 | NOT_INT_TEST(ReturnNotIntINT32_MINPlus1, -2147483647, 2147483646)  // (2^31) - 2 | 
 | NOT_INT_TEST(ReturnNotIntINT32_MAXMinus1, 2147483646, -2147483647)  // -(2^31) - 1 | 
 | NOT_INT_TEST(ReturnNotIntINT32_MAX, 2147483647, -2147483648)  // -(2^31) | 
 |  | 
 | #undef NOT_INT_TEST | 
 |  | 
 | // Exercise bit-wise (one's complement) not-long instruction. | 
 | #define NOT_LONG_TEST(TEST_NAME, INPUT, EXPECTED_OUTPUT)                 \ | 
 | TEST_F(CodegenTest, TEST_NAME) {                                         \ | 
 |   const int64_t input = INPUT;                                           \ | 
 |   const uint16_t word0 = Low16Bits(Low32Bits(input));   /* LSW. */       \ | 
 |   const uint16_t word1 = High16Bits(Low32Bits(input));                   \ | 
 |   const uint16_t word2 = Low16Bits(High32Bits(input));                   \ | 
 |   const uint16_t word3 = High16Bits(High32Bits(input)); /* MSW. */       \ | 
 |   const std::vector<uint16_t> data = FOUR_REGISTERS_CODE_ITEM(           \ | 
 |       Instruction::CONST_WIDE | 0 << 8, word0, word1, word2, word3,      \ | 
 |       Instruction::NOT_LONG | 2 << 8 | 0 << 12,                          \ | 
 |       Instruction::RETURN_WIDE | 2 << 8);                                \ | 
 |                                                                          \ | 
 |   TestCodeLong(data, true, EXPECTED_OUTPUT);                             \ | 
 | } | 
 |  | 
 | NOT_LONG_TEST(ReturnNotLongMinus2, INT64_C(-2), INT64_C(1)) | 
 | NOT_LONG_TEST(ReturnNotLongMinus1, INT64_C(-1), INT64_C(0)) | 
 | NOT_LONG_TEST(ReturnNotLong0, INT64_C(0), INT64_C(-1)) | 
 | NOT_LONG_TEST(ReturnNotLong1, INT64_C(1), INT64_C(-2)) | 
 |  | 
 | NOT_LONG_TEST(ReturnNotLongINT32_MIN, | 
 |               INT64_C(-2147483648), | 
 |               INT64_C(2147483647))  // (2^31) - 1 | 
 | NOT_LONG_TEST(ReturnNotLongINT32_MINPlus1, | 
 |               INT64_C(-2147483647), | 
 |               INT64_C(2147483646))  // (2^31) - 2 | 
 | NOT_LONG_TEST(ReturnNotLongINT32_MAXMinus1, | 
 |               INT64_C(2147483646), | 
 |               INT64_C(-2147483647))  // -(2^31) - 1 | 
 | NOT_LONG_TEST(ReturnNotLongINT32_MAX, | 
 |               INT64_C(2147483647), | 
 |               INT64_C(-2147483648))  // -(2^31) | 
 |  | 
 | // Note that the C++ compiler won't accept | 
 | // INT64_C(-9223372036854775808) (that is, INT64_MIN) as a valid | 
 | // int64_t literal, so we use INT64_C(-9223372036854775807)-1 instead. | 
 | NOT_LONG_TEST(ReturnNotINT64_MIN, | 
 |               INT64_C(-9223372036854775807)-1, | 
 |               INT64_C(9223372036854775807));  // (2^63) - 1 | 
 | NOT_LONG_TEST(ReturnNotINT64_MINPlus1, | 
 |               INT64_C(-9223372036854775807), | 
 |               INT64_C(9223372036854775806));  // (2^63) - 2 | 
 | NOT_LONG_TEST(ReturnNotLongINT64_MAXMinus1, | 
 |               INT64_C(9223372036854775806), | 
 |               INT64_C(-9223372036854775807));  // -(2^63) - 1 | 
 | NOT_LONG_TEST(ReturnNotLongINT64_MAX, | 
 |               INT64_C(9223372036854775807), | 
 |               INT64_C(-9223372036854775807)-1);  // -(2^63) | 
 |  | 
 | #undef NOT_LONG_TEST | 
 |  | 
 | TEST_F(CodegenTest, IntToLongOfLongToInt) { | 
 |   const int64_t input = INT64_C(4294967296);             // 2^32 | 
 |   const uint16_t word0 = Low16Bits(Low32Bits(input));    // LSW. | 
 |   const uint16_t word1 = High16Bits(Low32Bits(input)); | 
 |   const uint16_t word2 = Low16Bits(High32Bits(input)); | 
 |   const uint16_t word3 = High16Bits(High32Bits(input));  // MSW. | 
 |   const std::vector<uint16_t> data = FIVE_REGISTERS_CODE_ITEM( | 
 |       Instruction::CONST_WIDE | 0 << 8, word0, word1, word2, word3, | 
 |       Instruction::CONST_WIDE | 2 << 8, 1, 0, 0, 0, | 
 |       Instruction::ADD_LONG | 0, 0 << 8 | 2,             // v0 <- 2^32 + 1 | 
 |       Instruction::LONG_TO_INT | 4 << 8 | 0 << 12, | 
 |       Instruction::INT_TO_LONG | 2 << 8 | 4 << 12, | 
 |       Instruction::RETURN_WIDE | 2 << 8); | 
 |  | 
 |   TestCodeLong(data, true, 1); | 
 | } | 
 |  | 
 | TEST_F(CodegenTest, ReturnAdd1) { | 
 |   const std::vector<uint16_t> data = TWO_REGISTERS_CODE_ITEM( | 
 |     Instruction::CONST_4 | 3 << 12 | 0, | 
 |     Instruction::CONST_4 | 4 << 12 | 1 << 8, | 
 |     Instruction::ADD_INT, 1 << 8 | 0, | 
 |     Instruction::RETURN); | 
 |  | 
 |   TestCode(data, true, 7); | 
 | } | 
 |  | 
 | TEST_F(CodegenTest, ReturnAdd2) { | 
 |   const std::vector<uint16_t> data = TWO_REGISTERS_CODE_ITEM( | 
 |     Instruction::CONST_4 | 3 << 12 | 0, | 
 |     Instruction::CONST_4 | 4 << 12 | 1 << 8, | 
 |     Instruction::ADD_INT_2ADDR | 1 << 12, | 
 |     Instruction::RETURN); | 
 |  | 
 |   TestCode(data, true, 7); | 
 | } | 
 |  | 
 | TEST_F(CodegenTest, ReturnAdd3) { | 
 |   const std::vector<uint16_t> data = ONE_REGISTER_CODE_ITEM( | 
 |     Instruction::CONST_4 | 4 << 12 | 0 << 8, | 
 |     Instruction::ADD_INT_LIT8, 3 << 8 | 0, | 
 |     Instruction::RETURN); | 
 |  | 
 |   TestCode(data, true, 7); | 
 | } | 
 |  | 
 | TEST_F(CodegenTest, ReturnAdd4) { | 
 |   const std::vector<uint16_t> data = ONE_REGISTER_CODE_ITEM( | 
 |     Instruction::CONST_4 | 4 << 12 | 0 << 8, | 
 |     Instruction::ADD_INT_LIT16, 3, | 
 |     Instruction::RETURN); | 
 |  | 
 |   TestCode(data, true, 7); | 
 | } | 
 |  | 
 | TEST_F(CodegenTest, ReturnMulInt) { | 
 |   const std::vector<uint16_t> data = TWO_REGISTERS_CODE_ITEM( | 
 |     Instruction::CONST_4 | 3 << 12 | 0, | 
 |     Instruction::CONST_4 | 4 << 12 | 1 << 8, | 
 |     Instruction::MUL_INT, 1 << 8 | 0, | 
 |     Instruction::RETURN); | 
 |  | 
 |   TestCode(data, true, 12); | 
 | } | 
 |  | 
 | TEST_F(CodegenTest, ReturnMulInt2addr) { | 
 |   const std::vector<uint16_t> data = TWO_REGISTERS_CODE_ITEM( | 
 |     Instruction::CONST_4 | 3 << 12 | 0, | 
 |     Instruction::CONST_4 | 4 << 12 | 1 << 8, | 
 |     Instruction::MUL_INT_2ADDR | 1 << 12, | 
 |     Instruction::RETURN); | 
 |  | 
 |   TestCode(data, true, 12); | 
 | } | 
 |  | 
 | TEST_F(CodegenTest, ReturnMulLong) { | 
 |   const std::vector<uint16_t> data = FOUR_REGISTERS_CODE_ITEM( | 
 |     Instruction::CONST_WIDE | 0 << 8, 3, 0, 0, 0, | 
 |     Instruction::CONST_WIDE | 2 << 8, 4, 0, 0, 0, | 
 |     Instruction::MUL_LONG, 2 << 8 | 0, | 
 |     Instruction::RETURN_WIDE); | 
 |  | 
 |   TestCodeLong(data, true, 12); | 
 | } | 
 |  | 
 | TEST_F(CodegenTest, ReturnMulLong2addr) { | 
 |   const std::vector<uint16_t> data = FOUR_REGISTERS_CODE_ITEM( | 
 |     Instruction::CONST_WIDE | 0 << 8, 3, 0, 0, 0, | 
 |     Instruction::CONST_WIDE | 2 << 8, 4, 0, 0, 0, | 
 |     Instruction::MUL_LONG_2ADDR | 2 << 12, | 
 |     Instruction::RETURN_WIDE); | 
 |  | 
 |   TestCodeLong(data, true, 12); | 
 | } | 
 |  | 
 | TEST_F(CodegenTest, ReturnMulIntLit8) { | 
 |   const std::vector<uint16_t> data = ONE_REGISTER_CODE_ITEM( | 
 |     Instruction::CONST_4 | 4 << 12 | 0 << 8, | 
 |     Instruction::MUL_INT_LIT8, 3 << 8 | 0, | 
 |     Instruction::RETURN); | 
 |  | 
 |   TestCode(data, true, 12); | 
 | } | 
 |  | 
 | TEST_F(CodegenTest, ReturnMulIntLit16) { | 
 |   const std::vector<uint16_t> data = ONE_REGISTER_CODE_ITEM( | 
 |     Instruction::CONST_4 | 4 << 12 | 0 << 8, | 
 |     Instruction::MUL_INT_LIT16, 3, | 
 |     Instruction::RETURN); | 
 |  | 
 |   TestCode(data, true, 12); | 
 | } | 
 |  | 
 | TEST_F(CodegenTest, NonMaterializedCondition) { | 
 |   for (CodegenTargetConfig target_config : GetTargetConfigs()) { | 
 |     HGraph* graph = CreateGraph(); | 
 |  | 
 |     HBasicBlock* entry = new (GetAllocator()) HBasicBlock(graph); | 
 |     graph->AddBlock(entry); | 
 |     graph->SetEntryBlock(entry); | 
 |     entry->AddInstruction(new (GetAllocator()) HGoto()); | 
 |  | 
 |     HBasicBlock* first_block = new (GetAllocator()) HBasicBlock(graph); | 
 |     graph->AddBlock(first_block); | 
 |     entry->AddSuccessor(first_block); | 
 |     HIntConstant* constant0 = graph->GetIntConstant(0); | 
 |     HIntConstant* constant1 = graph->GetIntConstant(1); | 
 |     HEqual* equal = new (GetAllocator()) HEqual(constant0, constant0); | 
 |     first_block->AddInstruction(equal); | 
 |     first_block->AddInstruction(new (GetAllocator()) HIf(equal)); | 
 |  | 
 |     HBasicBlock* then_block = new (GetAllocator()) HBasicBlock(graph); | 
 |     HBasicBlock* else_block = new (GetAllocator()) HBasicBlock(graph); | 
 |     HBasicBlock* exit_block = new (GetAllocator()) HBasicBlock(graph); | 
 |     graph->SetExitBlock(exit_block); | 
 |  | 
 |     graph->AddBlock(then_block); | 
 |     graph->AddBlock(else_block); | 
 |     graph->AddBlock(exit_block); | 
 |     first_block->AddSuccessor(then_block); | 
 |     first_block->AddSuccessor(else_block); | 
 |     then_block->AddSuccessor(exit_block); | 
 |     else_block->AddSuccessor(exit_block); | 
 |  | 
 |     exit_block->AddInstruction(new (GetAllocator()) HExit()); | 
 |     then_block->AddInstruction(new (GetAllocator()) HReturn(constant0)); | 
 |     else_block->AddInstruction(new (GetAllocator()) HReturn(constant1)); | 
 |  | 
 |     ASSERT_FALSE(equal->IsEmittedAtUseSite()); | 
 |     graph->BuildDominatorTree(); | 
 |     std::unique_ptr<CompilerOptions> compiler_options = | 
 |         CommonCompilerTest::CreateCompilerOptions(target_config.GetInstructionSet(), "default"); | 
 |     PrepareForRegisterAllocation(graph, *compiler_options).Run(); | 
 |     ASSERT_TRUE(equal->IsEmittedAtUseSite()); | 
 |  | 
 |     auto hook_before_codegen = [](HGraph* graph_in) { | 
 |       HBasicBlock* block = graph_in->GetEntryBlock()->GetSuccessors()[0]; | 
 |       HParallelMove* move = new (graph_in->GetAllocator()) HParallelMove(graph_in->GetAllocator()); | 
 |       block->InsertInstructionBefore(move, block->GetLastInstruction()); | 
 |     }; | 
 |  | 
 |     RunCode(target_config, *compiler_options, graph, hook_before_codegen, true, 0); | 
 |   } | 
 | } | 
 |  | 
 | TEST_F(CodegenTest, MaterializedCondition1) { | 
 |   for (CodegenTargetConfig target_config : GetTargetConfigs()) { | 
 |     // Check that condition are materialized correctly. A materialized condition | 
 |     // should yield `1` if it evaluated to true, and `0` otherwise. | 
 |     // We force the materialization of comparisons for different combinations of | 
 |  | 
 |     // inputs and check the results. | 
 |  | 
 |     int lhs[] = {1, 2, -1, 2, 0xabc}; | 
 |     int rhs[] = {2, 1, 2, -1, 0xabc}; | 
 |  | 
 |     for (size_t i = 0; i < arraysize(lhs); i++) { | 
 |       HGraph* graph = CreateGraph(); | 
 |  | 
 |       HBasicBlock* entry_block = new (GetAllocator()) HBasicBlock(graph); | 
 |       graph->AddBlock(entry_block); | 
 |       graph->SetEntryBlock(entry_block); | 
 |       entry_block->AddInstruction(new (GetAllocator()) HGoto()); | 
 |       HBasicBlock* code_block = new (GetAllocator()) HBasicBlock(graph); | 
 |       graph->AddBlock(code_block); | 
 |       HBasicBlock* exit_block = new (GetAllocator()) HBasicBlock(graph); | 
 |       graph->AddBlock(exit_block); | 
 |       exit_block->AddInstruction(new (GetAllocator()) HExit()); | 
 |  | 
 |       entry_block->AddSuccessor(code_block); | 
 |       code_block->AddSuccessor(exit_block); | 
 |       graph->SetExitBlock(exit_block); | 
 |  | 
 |       HIntConstant* cst_lhs = graph->GetIntConstant(lhs[i]); | 
 |       HIntConstant* cst_rhs = graph->GetIntConstant(rhs[i]); | 
 |       HLessThan cmp_lt(cst_lhs, cst_rhs); | 
 |       code_block->AddInstruction(&cmp_lt); | 
 |       HReturn ret(&cmp_lt); | 
 |       code_block->AddInstruction(&ret); | 
 |  | 
 |       graph->BuildDominatorTree(); | 
 |       auto hook_before_codegen = [](HGraph* graph_in) { | 
 |         HBasicBlock* block = graph_in->GetEntryBlock()->GetSuccessors()[0]; | 
 |         HParallelMove* move = | 
 |             new (graph_in->GetAllocator()) HParallelMove(graph_in->GetAllocator()); | 
 |         block->InsertInstructionBefore(move, block->GetLastInstruction()); | 
 |       }; | 
 |       std::unique_ptr<CompilerOptions> compiler_options = | 
 |           CommonCompilerTest::CreateCompilerOptions(target_config.GetInstructionSet(), "default"); | 
 |       RunCode(target_config, *compiler_options, graph, hook_before_codegen, true, lhs[i] < rhs[i]); | 
 |     } | 
 |   } | 
 | } | 
 |  | 
 | TEST_F(CodegenTest, MaterializedCondition2) { | 
 |   for (CodegenTargetConfig target_config : GetTargetConfigs()) { | 
 |     // Check that HIf correctly interprets a materialized condition. | 
 |     // We force the materialization of comparisons for different combinations of | 
 |     // inputs. An HIf takes the materialized combination as input and returns a | 
 |     // value that we verify. | 
 |  | 
 |     int lhs[] = {1, 2, -1, 2, 0xabc}; | 
 |     int rhs[] = {2, 1, 2, -1, 0xabc}; | 
 |  | 
 |  | 
 |     for (size_t i = 0; i < arraysize(lhs); i++) { | 
 |       HGraph* graph = CreateGraph(); | 
 |  | 
 |       HBasicBlock* entry_block = new (GetAllocator()) HBasicBlock(graph); | 
 |       graph->AddBlock(entry_block); | 
 |       graph->SetEntryBlock(entry_block); | 
 |       entry_block->AddInstruction(new (GetAllocator()) HGoto()); | 
 |  | 
 |       HBasicBlock* if_block = new (GetAllocator()) HBasicBlock(graph); | 
 |       graph->AddBlock(if_block); | 
 |       HBasicBlock* if_true_block = new (GetAllocator()) HBasicBlock(graph); | 
 |       graph->AddBlock(if_true_block); | 
 |       HBasicBlock* if_false_block = new (GetAllocator()) HBasicBlock(graph); | 
 |       graph->AddBlock(if_false_block); | 
 |       HBasicBlock* exit_block = new (GetAllocator()) HBasicBlock(graph); | 
 |       graph->AddBlock(exit_block); | 
 |       exit_block->AddInstruction(new (GetAllocator()) HExit()); | 
 |  | 
 |       graph->SetEntryBlock(entry_block); | 
 |       entry_block->AddSuccessor(if_block); | 
 |       if_block->AddSuccessor(if_true_block); | 
 |       if_block->AddSuccessor(if_false_block); | 
 |       if_true_block->AddSuccessor(exit_block); | 
 |       if_false_block->AddSuccessor(exit_block); | 
 |       graph->SetExitBlock(exit_block); | 
 |  | 
 |       HIntConstant* cst_lhs = graph->GetIntConstant(lhs[i]); | 
 |       HIntConstant* cst_rhs = graph->GetIntConstant(rhs[i]); | 
 |       HLessThan cmp_lt(cst_lhs, cst_rhs); | 
 |       if_block->AddInstruction(&cmp_lt); | 
 |       // We insert a dummy instruction to separate the HIf from the HLessThan | 
 |       // and force the materialization of the condition. | 
 |       HMemoryBarrier force_materialization(MemBarrierKind::kAnyAny, 0); | 
 |       if_block->AddInstruction(&force_materialization); | 
 |       HIf if_lt(&cmp_lt); | 
 |       if_block->AddInstruction(&if_lt); | 
 |  | 
 |       HIntConstant* cst_lt = graph->GetIntConstant(1); | 
 |       HReturn ret_lt(cst_lt); | 
 |       if_true_block->AddInstruction(&ret_lt); | 
 |       HIntConstant* cst_ge = graph->GetIntConstant(0); | 
 |       HReturn ret_ge(cst_ge); | 
 |       if_false_block->AddInstruction(&ret_ge); | 
 |  | 
 |       graph->BuildDominatorTree(); | 
 |       auto hook_before_codegen = [](HGraph* graph_in) { | 
 |         HBasicBlock* block = graph_in->GetEntryBlock()->GetSuccessors()[0]; | 
 |         HParallelMove* move = | 
 |             new (graph_in->GetAllocator()) HParallelMove(graph_in->GetAllocator()); | 
 |         block->InsertInstructionBefore(move, block->GetLastInstruction()); | 
 |       }; | 
 |       std::unique_ptr<CompilerOptions> compiler_options = | 
 |           CommonCompilerTest::CreateCompilerOptions(target_config.GetInstructionSet(), "default"); | 
 |       RunCode(target_config, *compiler_options, graph, hook_before_codegen, true, lhs[i] < rhs[i]); | 
 |     } | 
 |   } | 
 | } | 
 |  | 
 | TEST_F(CodegenTest, ReturnDivIntLit8) { | 
 |   const std::vector<uint16_t> data = ONE_REGISTER_CODE_ITEM( | 
 |     Instruction::CONST_4 | 4 << 12 | 0 << 8, | 
 |     Instruction::DIV_INT_LIT8, 3 << 8 | 0, | 
 |     Instruction::RETURN); | 
 |  | 
 |   TestCode(data, true, 1); | 
 | } | 
 |  | 
 | TEST_F(CodegenTest, ReturnDivInt2Addr) { | 
 |   const std::vector<uint16_t> data = TWO_REGISTERS_CODE_ITEM( | 
 |     Instruction::CONST_4 | 4 << 12 | 0, | 
 |     Instruction::CONST_4 | 2 << 12 | 1 << 8, | 
 |     Instruction::DIV_INT_2ADDR | 1 << 12, | 
 |     Instruction::RETURN); | 
 |  | 
 |   TestCode(data, true, 2); | 
 | } | 
 |  | 
 | // Helper method. | 
 | void CodegenTest::TestComparison(IfCondition condition, | 
 |                                  int64_t i, | 
 |                                  int64_t j, | 
 |                                  DataType::Type type, | 
 |                                  const CodegenTargetConfig target_config) { | 
 |   HGraph* graph = CreateGraph(); | 
 |  | 
 |   HBasicBlock* entry_block = new (GetAllocator()) HBasicBlock(graph); | 
 |   graph->AddBlock(entry_block); | 
 |   graph->SetEntryBlock(entry_block); | 
 |   entry_block->AddInstruction(new (GetAllocator()) HGoto()); | 
 |  | 
 |   HBasicBlock* block = new (GetAllocator()) HBasicBlock(graph); | 
 |   graph->AddBlock(block); | 
 |  | 
 |   HBasicBlock* exit_block = new (GetAllocator()) HBasicBlock(graph); | 
 |   graph->AddBlock(exit_block); | 
 |   graph->SetExitBlock(exit_block); | 
 |   exit_block->AddInstruction(new (GetAllocator()) HExit()); | 
 |  | 
 |   entry_block->AddSuccessor(block); | 
 |   block->AddSuccessor(exit_block); | 
 |  | 
 |   HInstruction* op1; | 
 |   HInstruction* op2; | 
 |   if (type == DataType::Type::kInt32) { | 
 |     op1 = graph->GetIntConstant(i); | 
 |     op2 = graph->GetIntConstant(j); | 
 |   } else { | 
 |     DCHECK_EQ(type, DataType::Type::kInt64); | 
 |     op1 = graph->GetLongConstant(i); | 
 |     op2 = graph->GetLongConstant(j); | 
 |   } | 
 |  | 
 |   HInstruction* comparison = nullptr; | 
 |   bool expected_result = false; | 
 |   const uint64_t x = i; | 
 |   const uint64_t y = j; | 
 |   switch (condition) { | 
 |     case kCondEQ: | 
 |       comparison = new (GetAllocator()) HEqual(op1, op2); | 
 |       expected_result = (i == j); | 
 |       break; | 
 |     case kCondNE: | 
 |       comparison = new (GetAllocator()) HNotEqual(op1, op2); | 
 |       expected_result = (i != j); | 
 |       break; | 
 |     case kCondLT: | 
 |       comparison = new (GetAllocator()) HLessThan(op1, op2); | 
 |       expected_result = (i < j); | 
 |       break; | 
 |     case kCondLE: | 
 |       comparison = new (GetAllocator()) HLessThanOrEqual(op1, op2); | 
 |       expected_result = (i <= j); | 
 |       break; | 
 |     case kCondGT: | 
 |       comparison = new (GetAllocator()) HGreaterThan(op1, op2); | 
 |       expected_result = (i > j); | 
 |       break; | 
 |     case kCondGE: | 
 |       comparison = new (GetAllocator()) HGreaterThanOrEqual(op1, op2); | 
 |       expected_result = (i >= j); | 
 |       break; | 
 |     case kCondB: | 
 |       comparison = new (GetAllocator()) HBelow(op1, op2); | 
 |       expected_result = (x < y); | 
 |       break; | 
 |     case kCondBE: | 
 |       comparison = new (GetAllocator()) HBelowOrEqual(op1, op2); | 
 |       expected_result = (x <= y); | 
 |       break; | 
 |     case kCondA: | 
 |       comparison = new (GetAllocator()) HAbove(op1, op2); | 
 |       expected_result = (x > y); | 
 |       break; | 
 |     case kCondAE: | 
 |       comparison = new (GetAllocator()) HAboveOrEqual(op1, op2); | 
 |       expected_result = (x >= y); | 
 |       break; | 
 |   } | 
 |   block->AddInstruction(comparison); | 
 |   block->AddInstruction(new (GetAllocator()) HReturn(comparison)); | 
 |  | 
 |   graph->BuildDominatorTree(); | 
 |   std::unique_ptr<CompilerOptions> compiler_options = | 
 |       CommonCompilerTest::CreateCompilerOptions(target_config.GetInstructionSet(), "default"); | 
 |   RunCode(target_config, *compiler_options, graph, [](HGraph*) {}, true, expected_result); | 
 | } | 
 |  | 
 | TEST_F(CodegenTest, ComparisonsInt) { | 
 |   for (CodegenTargetConfig target_config : GetTargetConfigs()) { | 
 |     for (int64_t i = -1; i <= 1; i++) { | 
 |       for (int64_t j = -1; j <= 1; j++) { | 
 |         for (int cond = kCondFirst; cond <= kCondLast; cond++) { | 
 |           TestComparison( | 
 |               static_cast<IfCondition>(cond), i, j, DataType::Type::kInt32, target_config); | 
 |         } | 
 |       } | 
 |     } | 
 |   } | 
 | } | 
 |  | 
 | TEST_F(CodegenTest, ComparisonsLong) { | 
 |   for (CodegenTargetConfig target_config : GetTargetConfigs()) { | 
 |     for (int64_t i = -1; i <= 1; i++) { | 
 |       for (int64_t j = -1; j <= 1; j++) { | 
 |         for (int cond = kCondFirst; cond <= kCondLast; cond++) { | 
 |           TestComparison( | 
 |               static_cast<IfCondition>(cond), i, j, DataType::Type::kInt64, target_config); | 
 |         } | 
 |       } | 
 |     } | 
 |   } | 
 | } | 
 |  | 
 | #ifdef ART_ENABLE_CODEGEN_arm | 
 | TEST_F(CodegenTest, ARMVIXLParallelMoveResolver) { | 
 |   std::unique_ptr<CompilerOptions> compiler_options = | 
 |       CommonCompilerTest::CreateCompilerOptions(InstructionSet::kThumb2, "default"); | 
 |   HGraph* graph = CreateGraph(); | 
 |   arm::CodeGeneratorARMVIXL codegen(graph, *compiler_options); | 
 |  | 
 |   codegen.Initialize(); | 
 |  | 
 |   // This will result in calling EmitSwap -> void ParallelMoveResolverARMVIXL::Exchange(int mem1, | 
 |   // int mem2) which was faulty (before the fix). So previously GPR and FP scratch registers were | 
 |   // used as temps; however GPR scratch register is required for big stack offsets which don't fit | 
 |   // LDR encoding. So the following code is a regression test for that situation. | 
 |   HParallelMove* move = new (graph->GetAllocator()) HParallelMove(graph->GetAllocator()); | 
 |   move->AddMove(Location::StackSlot(0), Location::StackSlot(8192), DataType::Type::kInt32, nullptr); | 
 |   move->AddMove(Location::StackSlot(8192), Location::StackSlot(0), DataType::Type::kInt32, nullptr); | 
 |   codegen.GetMoveResolver()->EmitNativeCode(move); | 
 |  | 
 |   InternalCodeAllocator code_allocator; | 
 |   codegen.Finalize(&code_allocator); | 
 | } | 
 | #endif | 
 |  | 
 | #ifdef ART_ENABLE_CODEGEN_arm64 | 
 | // Regression test for b/34760542. | 
 | TEST_F(CodegenTest, ARM64ParallelMoveResolverB34760542) { | 
 |   std::unique_ptr<CompilerOptions> compiler_options = | 
 |       CommonCompilerTest::CreateCompilerOptions(InstructionSet::kArm64, "default"); | 
 |   HGraph* graph = CreateGraph(); | 
 |   arm64::CodeGeneratorARM64 codegen(graph, *compiler_options); | 
 |  | 
 |   codegen.Initialize(); | 
 |  | 
 |   // The following ParallelMove used to fail this assertion: | 
 |   // | 
 |   //   Assertion failed (!available->IsEmpty()) | 
 |   // | 
 |   // in vixl::aarch64::UseScratchRegisterScope::AcquireNextAvailable, | 
 |   // because of the following situation: | 
 |   // | 
 |   //   1. a temp register (IP0) is allocated as a scratch register by | 
 |   //      the parallel move resolver to solve a cycle (swap): | 
 |   // | 
 |   //        [ source=DS0 destination=DS257 type=PrimDouble instruction=null ] | 
 |   //        [ source=DS257 destination=DS0 type=PrimDouble instruction=null ] | 
 |   // | 
 |   //   2. within CodeGeneratorARM64::MoveLocation, another temp | 
 |   //      register (IP1) is allocated to generate the swap between two | 
 |   //      double stack slots; | 
 |   // | 
 |   //   3. VIXL requires a third temp register to emit the `Ldr` or | 
 |   //      `Str` operation from CodeGeneratorARM64::MoveLocation (as | 
 |   //      one of the stack slots' offsets cannot be encoded as an | 
 |   //      immediate), but the pool of (core) temp registers is now | 
 |   //      empty. | 
 |   // | 
 |   // The solution used so far is to use a floating-point temp register | 
 |   // (D31) in step #2, so that IP1 is available for step #3. | 
 |  | 
 |   HParallelMove* move = new (graph->GetAllocator()) HParallelMove(graph->GetAllocator()); | 
 |   move->AddMove(Location::DoubleStackSlot(0), | 
 |                 Location::DoubleStackSlot(257), | 
 |                 DataType::Type::kFloat64, | 
 |                 nullptr); | 
 |   move->AddMove(Location::DoubleStackSlot(257), | 
 |                 Location::DoubleStackSlot(0), | 
 |                 DataType::Type::kFloat64, | 
 |                 nullptr); | 
 |   codegen.GetMoveResolver()->EmitNativeCode(move); | 
 |  | 
 |   InternalCodeAllocator code_allocator; | 
 |   codegen.Finalize(&code_allocator); | 
 | } | 
 |  | 
 | // Check that ParallelMoveResolver works fine for ARM64 for both cases when SIMD is on and off. | 
 | TEST_F(CodegenTest, ARM64ParallelMoveResolverSIMD) { | 
 |   std::unique_ptr<CompilerOptions> compiler_options = | 
 |       CommonCompilerTest::CreateCompilerOptions(InstructionSet::kArm64, "default"); | 
 |   HGraph* graph = CreateGraph(); | 
 |   arm64::CodeGeneratorARM64 codegen(graph, *compiler_options); | 
 |  | 
 |   codegen.Initialize(); | 
 |  | 
 |   graph->SetHasSIMD(true); | 
 |   for (int i = 0; i < 2; i++) { | 
 |     HParallelMove* move = new (graph->GetAllocator()) HParallelMove(graph->GetAllocator()); | 
 |     move->AddMove(Location::SIMDStackSlot(0), | 
 |                   Location::SIMDStackSlot(257), | 
 |                   DataType::Type::kFloat64, | 
 |                   nullptr); | 
 |     move->AddMove(Location::SIMDStackSlot(257), | 
 |                   Location::SIMDStackSlot(0), | 
 |                   DataType::Type::kFloat64, | 
 |                   nullptr); | 
 |     move->AddMove(Location::FpuRegisterLocation(0), | 
 |                   Location::FpuRegisterLocation(1), | 
 |                   DataType::Type::kFloat64, | 
 |                   nullptr); | 
 |     move->AddMove(Location::FpuRegisterLocation(1), | 
 |                   Location::FpuRegisterLocation(0), | 
 |                   DataType::Type::kFloat64, | 
 |                   nullptr); | 
 |     codegen.GetMoveResolver()->EmitNativeCode(move); | 
 |     graph->SetHasSIMD(false); | 
 |   } | 
 |  | 
 |   InternalCodeAllocator code_allocator; | 
 |   codegen.Finalize(&code_allocator); | 
 | } | 
 |  | 
 | // Check that ART ISA Features are propagated to VIXL for arm64 (using cortex-a75 as example). | 
 | TEST_F(CodegenTest, ARM64IsaVIXLFeaturesA75) { | 
 |   std::unique_ptr<CompilerOptions> compiler_options = | 
 |       CommonCompilerTest::CreateCompilerOptions(InstructionSet::kArm64, "cortex-a75"); | 
 |   HGraph* graph = CreateGraph(); | 
 |   arm64::CodeGeneratorARM64 codegen(graph, *compiler_options); | 
 |   vixl::CPUFeatures* features = codegen.GetVIXLAssembler()->GetCPUFeatures(); | 
 |  | 
 |   EXPECT_TRUE(features->Has(vixl::CPUFeatures::kCRC32)); | 
 |   EXPECT_TRUE(features->Has(vixl::CPUFeatures::kDotProduct)); | 
 |   EXPECT_TRUE(features->Has(vixl::CPUFeatures::kFPHalf)); | 
 |   EXPECT_TRUE(features->Has(vixl::CPUFeatures::kNEONHalf)); | 
 |   EXPECT_TRUE(features->Has(vixl::CPUFeatures::kAtomics)); | 
 | } | 
 |  | 
 | // Check that ART ISA Features are propagated to VIXL for arm64 (using cortex-a53 as example). | 
 | TEST_F(CodegenTest, ARM64IsaVIXLFeaturesA53) { | 
 |   std::unique_ptr<CompilerOptions> compiler_options = | 
 |       CommonCompilerTest::CreateCompilerOptions(InstructionSet::kArm64, "cortex-a53"); | 
 |   HGraph* graph = CreateGraph(); | 
 |   arm64::CodeGeneratorARM64 codegen(graph, *compiler_options); | 
 |   vixl::CPUFeatures* features = codegen.GetVIXLAssembler()->GetCPUFeatures(); | 
 |  | 
 |   EXPECT_TRUE(features->Has(vixl::CPUFeatures::kCRC32)); | 
 |   EXPECT_FALSE(features->Has(vixl::CPUFeatures::kDotProduct)); | 
 |   EXPECT_FALSE(features->Has(vixl::CPUFeatures::kFPHalf)); | 
 |   EXPECT_FALSE(features->Has(vixl::CPUFeatures::kNEONHalf)); | 
 |   EXPECT_FALSE(features->Has(vixl::CPUFeatures::kAtomics)); | 
 | } | 
 |  | 
 | constexpr static size_t kExpectedFPSpillSize = 8 * vixl::aarch64::kDRegSizeInBytes; | 
 |  | 
 | // The following two tests check that for both SIMD and non-SIMD graphs exactly 64-bit is | 
 | // allocated on stack per callee-saved FP register to be preserved in the frame entry as | 
 | // ABI states. | 
 | TEST_F(CodegenTest, ARM64FrameSizeSIMD) { | 
 |   std::unique_ptr<CompilerOptions> compiler_options = | 
 |       CommonCompilerTest::CreateCompilerOptions(InstructionSet::kArm64, "default"); | 
 |   HGraph* graph = CreateGraph(); | 
 |   arm64::CodeGeneratorARM64 codegen(graph, *compiler_options); | 
 |  | 
 |   codegen.Initialize(); | 
 |   graph->SetHasSIMD(true); | 
 |  | 
 |   DCHECK_EQ(arm64::callee_saved_fp_registers.GetCount(), 8); | 
 |   vixl::aarch64::CPURegList reg_list = arm64::callee_saved_fp_registers; | 
 |   while (!reg_list.IsEmpty()) { | 
 |     uint32_t reg_code = reg_list.PopLowestIndex().GetCode(); | 
 |     codegen.AddAllocatedRegister(Location::FpuRegisterLocation(reg_code)); | 
 |   } | 
 |   codegen.ComputeSpillMask(); | 
 |  | 
 |   EXPECT_EQ(codegen.GetFpuSpillSize(), kExpectedFPSpillSize); | 
 | } | 
 |  | 
 | TEST_F(CodegenTest, ARM64FrameSizeNoSIMD) { | 
 |   std::unique_ptr<CompilerOptions> compiler_options = | 
 |       CommonCompilerTest::CreateCompilerOptions(InstructionSet::kArm64, "default"); | 
 |   HGraph* graph = CreateGraph(); | 
 |   arm64::CodeGeneratorARM64 codegen(graph, *compiler_options); | 
 |  | 
 |   codegen.Initialize(); | 
 |   graph->SetHasSIMD(false); | 
 |  | 
 |   DCHECK_EQ(arm64::callee_saved_fp_registers.GetCount(), 8); | 
 |   vixl::aarch64::CPURegList reg_list = arm64::callee_saved_fp_registers; | 
 |   while (!reg_list.IsEmpty()) { | 
 |     uint32_t reg_code = reg_list.PopLowestIndex().GetCode(); | 
 |     codegen.AddAllocatedRegister(Location::FpuRegisterLocation(reg_code)); | 
 |   } | 
 |   codegen.ComputeSpillMask(); | 
 |  | 
 |   EXPECT_EQ(codegen.GetFpuSpillSize(), kExpectedFPSpillSize); | 
 | } | 
 |  | 
 | #endif | 
 |  | 
 | }  // namespace art |