| /* |
| * Copyright (C) 2013 The Android Open Source Project |
| * |
| * Licensed under the Apache License, Version 2.0 (the "License"); |
| * you may not use this file except in compliance with the License. |
| * You may obtain a copy of the License at |
| * |
| * http://www.apache.org/licenses/LICENSE-2.0 |
| * |
| * Unless required by applicable law or agreed to in writing, software |
| * distributed under the License is distributed on an "AS IS" BASIS, |
| * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| * See the License for the specific language governing permissions and |
| * limitations under the License. |
| */ |
| |
| #include "base/mutex-inl.h" |
| #include "mirror/class-inl.h" |
| #include "mirror/object.h" |
| #include "mirror/object-inl.h" |
| #include "thread-inl.h" |
| #include "thread_list.h" |
| #include "rosalloc.h" |
| |
| #include <map> |
| #include <list> |
| #include <vector> |
| |
| namespace art { |
| namespace gc { |
| namespace allocator { |
| |
| extern "C" void* art_heap_rosalloc_morecore(RosAlloc* rosalloc, intptr_t increment); |
| |
| static constexpr bool kUsePrefetchDuringAllocRun = true; |
| static constexpr bool kPrefetchNewRunDataByZeroing = false; |
| static constexpr size_t kPrefetchStride = 64; |
| |
| size_t RosAlloc::bracketSizes[kNumOfSizeBrackets]; |
| size_t RosAlloc::numOfPages[kNumOfSizeBrackets]; |
| size_t RosAlloc::numOfSlots[kNumOfSizeBrackets]; |
| size_t RosAlloc::headerSizes[kNumOfSizeBrackets]; |
| size_t RosAlloc::bulkFreeBitMapOffsets[kNumOfSizeBrackets]; |
| size_t RosAlloc::threadLocalFreeBitMapOffsets[kNumOfSizeBrackets]; |
| bool RosAlloc::initialized_ = false; |
| size_t RosAlloc::dedicated_full_run_storage_[kPageSize / sizeof(size_t)] = { 0 }; |
| RosAlloc::Run* RosAlloc::dedicated_full_run_ = |
| reinterpret_cast<RosAlloc::Run*>(dedicated_full_run_storage_); |
| |
| RosAlloc::RosAlloc(void* base, size_t capacity, size_t max_capacity, |
| PageReleaseMode page_release_mode, size_t page_release_size_threshold) |
| : base_(reinterpret_cast<byte*>(base)), footprint_(capacity), |
| capacity_(capacity), max_capacity_(max_capacity), |
| lock_("rosalloc global lock", kRosAllocGlobalLock), |
| bulk_free_lock_("rosalloc bulk free lock", kRosAllocBulkFreeLock), |
| page_release_mode_(page_release_mode), |
| page_release_size_threshold_(page_release_size_threshold) { |
| DCHECK_EQ(RoundUp(capacity, kPageSize), capacity); |
| DCHECK_EQ(RoundUp(max_capacity, kPageSize), max_capacity); |
| CHECK_LE(capacity, max_capacity); |
| CHECK(IsAligned<kPageSize>(page_release_size_threshold_)); |
| if (!initialized_) { |
| Initialize(); |
| } |
| VLOG(heap) << "RosAlloc base=" |
| << std::hex << (intptr_t)base_ << ", end=" |
| << std::hex << (intptr_t)(base_ + capacity_) |
| << ", capacity=" << std::dec << capacity_ |
| << ", max_capacity=" << std::dec << max_capacity_; |
| for (size_t i = 0; i < kNumOfSizeBrackets; i++) { |
| size_bracket_lock_names[i] = |
| StringPrintf("an rosalloc size bracket %d lock", static_cast<int>(i)); |
| size_bracket_locks_[i] = new Mutex(size_bracket_lock_names[i].c_str(), kRosAllocBracketLock); |
| current_runs_[i] = dedicated_full_run_; |
| } |
| DCHECK_EQ(footprint_, capacity_); |
| size_t num_of_pages = footprint_ / kPageSize; |
| size_t max_num_of_pages = max_capacity_ / kPageSize; |
| std::string error_msg; |
| page_map_mem_map_.reset(MemMap::MapAnonymous("rosalloc page map", NULL, RoundUp(max_num_of_pages, kPageSize), |
| PROT_READ | PROT_WRITE, false, &error_msg)); |
| CHECK(page_map_mem_map_.get() != nullptr) << "Couldn't allocate the page map : " << error_msg; |
| page_map_ = page_map_mem_map_->Begin(); |
| page_map_size_ = num_of_pages; |
| max_page_map_size_ = max_num_of_pages; |
| free_page_run_size_map_.resize(num_of_pages); |
| FreePageRun* free_pages = reinterpret_cast<FreePageRun*>(base_); |
| if (kIsDebugBuild) { |
| free_pages->magic_num_ = kMagicNumFree; |
| } |
| free_pages->SetByteSize(this, capacity_); |
| DCHECK_EQ(capacity_ % kPageSize, static_cast<size_t>(0)); |
| DCHECK(free_pages->IsFree()); |
| free_pages->ReleasePages(this); |
| DCHECK(free_pages->IsFree()); |
| free_page_runs_.insert(free_pages); |
| if (kTraceRosAlloc) { |
| LOG(INFO) << "RosAlloc::RosAlloc() : Inserted run 0x" << std::hex |
| << reinterpret_cast<intptr_t>(free_pages) |
| << " into free_page_runs_"; |
| } |
| } |
| |
| RosAlloc::~RosAlloc() { |
| for (size_t i = 0; i < kNumOfSizeBrackets; i++) { |
| delete size_bracket_locks_[i]; |
| } |
| } |
| |
| void* RosAlloc::AllocPages(Thread* self, size_t num_pages, byte page_map_type) { |
| lock_.AssertHeld(self); |
| DCHECK(page_map_type == kPageMapRun || page_map_type == kPageMapLargeObject); |
| FreePageRun* res = NULL; |
| const size_t req_byte_size = num_pages * kPageSize; |
| // Find the lowest address free page run that's large enough. |
| for (auto it = free_page_runs_.begin(); it != free_page_runs_.end(); ) { |
| FreePageRun* fpr = *it; |
| DCHECK(fpr->IsFree()); |
| size_t fpr_byte_size = fpr->ByteSize(this); |
| DCHECK_EQ(fpr_byte_size % kPageSize, static_cast<size_t>(0)); |
| if (req_byte_size <= fpr_byte_size) { |
| // Found one. |
| free_page_runs_.erase(it++); |
| if (kTraceRosAlloc) { |
| LOG(INFO) << "RosAlloc::AllocPages() : Erased run 0x" |
| << std::hex << reinterpret_cast<intptr_t>(fpr) |
| << " from free_page_runs_"; |
| } |
| if (req_byte_size < fpr_byte_size) { |
| // Split. |
| FreePageRun* remainder = reinterpret_cast<FreePageRun*>(reinterpret_cast<byte*>(fpr) + req_byte_size); |
| if (kIsDebugBuild) { |
| remainder->magic_num_ = kMagicNumFree; |
| } |
| remainder->SetByteSize(this, fpr_byte_size - req_byte_size); |
| DCHECK_EQ(remainder->ByteSize(this) % kPageSize, static_cast<size_t>(0)); |
| // Don't need to call madvise on remainder here. |
| free_page_runs_.insert(remainder); |
| if (kTraceRosAlloc) { |
| LOG(INFO) << "RosAlloc::AllocPages() : Inserted run 0x" << std::hex |
| << reinterpret_cast<intptr_t>(remainder) |
| << " into free_page_runs_"; |
| } |
| fpr->SetByteSize(this, req_byte_size); |
| DCHECK_EQ(fpr->ByteSize(this) % kPageSize, static_cast<size_t>(0)); |
| } |
| res = fpr; |
| break; |
| } else { |
| ++it; |
| } |
| } |
| |
| // Failed to allocate pages. Grow the footprint, if possible. |
| if (UNLIKELY(res == NULL && capacity_ > footprint_)) { |
| FreePageRun* last_free_page_run = NULL; |
| size_t last_free_page_run_size; |
| auto it = free_page_runs_.rbegin(); |
| if (it != free_page_runs_.rend() && (last_free_page_run = *it)->End(this) == base_ + footprint_) { |
| // There is a free page run at the end. |
| DCHECK(last_free_page_run->IsFree()); |
| DCHECK(IsFreePage(ToPageMapIndex(last_free_page_run))); |
| last_free_page_run_size = last_free_page_run->ByteSize(this); |
| } else { |
| // There is no free page run at the end. |
| last_free_page_run_size = 0; |
| } |
| DCHECK_LT(last_free_page_run_size, req_byte_size); |
| if (capacity_ - footprint_ + last_free_page_run_size >= req_byte_size) { |
| // If we grow the heap, we can allocate it. |
| size_t increment = std::min(std::max(2 * MB, req_byte_size - last_free_page_run_size), |
| capacity_ - footprint_); |
| DCHECK_EQ(increment % kPageSize, static_cast<size_t>(0)); |
| size_t new_footprint = footprint_ + increment; |
| size_t new_num_of_pages = new_footprint / kPageSize; |
| DCHECK_LT(page_map_size_, new_num_of_pages); |
| DCHECK_LT(free_page_run_size_map_.size(), new_num_of_pages); |
| page_map_size_ = new_num_of_pages; |
| DCHECK_LE(page_map_size_, max_page_map_size_); |
| free_page_run_size_map_.resize(new_num_of_pages); |
| art_heap_rosalloc_morecore(this, increment); |
| if (last_free_page_run_size > 0) { |
| // There was a free page run at the end. Expand its size. |
| DCHECK_EQ(last_free_page_run_size, last_free_page_run->ByteSize(this)); |
| last_free_page_run->SetByteSize(this, last_free_page_run_size + increment); |
| DCHECK_EQ(last_free_page_run->ByteSize(this) % kPageSize, static_cast<size_t>(0)); |
| DCHECK_EQ(last_free_page_run->End(this), base_ + new_footprint); |
| } else { |
| // Otherwise, insert a new free page run at the end. |
| FreePageRun* new_free_page_run = reinterpret_cast<FreePageRun*>(base_ + footprint_); |
| if (kIsDebugBuild) { |
| new_free_page_run->magic_num_ = kMagicNumFree; |
| } |
| new_free_page_run->SetByteSize(this, increment); |
| DCHECK_EQ(new_free_page_run->ByteSize(this) % kPageSize, static_cast<size_t>(0)); |
| free_page_runs_.insert(new_free_page_run); |
| DCHECK_EQ(*free_page_runs_.rbegin(), new_free_page_run); |
| if (kTraceRosAlloc) { |
| LOG(INFO) << "RosAlloc::AlloPages() : Grew the heap by inserting run 0x" |
| << std::hex << reinterpret_cast<intptr_t>(new_free_page_run) |
| << " into free_page_runs_"; |
| } |
| } |
| DCHECK_LE(footprint_ + increment, capacity_); |
| if (kTraceRosAlloc) { |
| LOG(INFO) << "RosAlloc::AllocPages() : increased the footprint from " |
| << footprint_ << " to " << new_footprint; |
| } |
| footprint_ = new_footprint; |
| |
| // And retry the last free page run. |
| it = free_page_runs_.rbegin(); |
| DCHECK(it != free_page_runs_.rend()); |
| FreePageRun* fpr = *it; |
| if (kIsDebugBuild && last_free_page_run_size > 0) { |
| DCHECK(last_free_page_run != NULL); |
| DCHECK_EQ(last_free_page_run, fpr); |
| } |
| size_t fpr_byte_size = fpr->ByteSize(this); |
| DCHECK_EQ(fpr_byte_size % kPageSize, static_cast<size_t>(0)); |
| DCHECK_LE(req_byte_size, fpr_byte_size); |
| free_page_runs_.erase(fpr); |
| if (kTraceRosAlloc) { |
| LOG(INFO) << "RosAlloc::AllocPages() : Erased run 0x" << std::hex << reinterpret_cast<intptr_t>(fpr) |
| << " from free_page_runs_"; |
| } |
| if (req_byte_size < fpr_byte_size) { |
| // Split if there's a remainder. |
| FreePageRun* remainder = reinterpret_cast<FreePageRun*>(reinterpret_cast<byte*>(fpr) + req_byte_size); |
| if (kIsDebugBuild) { |
| remainder->magic_num_ = kMagicNumFree; |
| } |
| remainder->SetByteSize(this, fpr_byte_size - req_byte_size); |
| DCHECK_EQ(remainder->ByteSize(this) % kPageSize, static_cast<size_t>(0)); |
| free_page_runs_.insert(remainder); |
| if (kTraceRosAlloc) { |
| LOG(INFO) << "RosAlloc::AllocPages() : Inserted run 0x" << std::hex |
| << reinterpret_cast<intptr_t>(remainder) |
| << " into free_page_runs_"; |
| } |
| fpr->SetByteSize(this, req_byte_size); |
| DCHECK_EQ(fpr->ByteSize(this) % kPageSize, static_cast<size_t>(0)); |
| } |
| res = fpr; |
| } |
| } |
| if (LIKELY(res != NULL)) { |
| // Update the page map. |
| size_t page_map_idx = ToPageMapIndex(res); |
| for (size_t i = 0; i < num_pages; i++) { |
| DCHECK(IsFreePage(page_map_idx + i)); |
| } |
| switch (page_map_type) { |
| case kPageMapRun: |
| page_map_[page_map_idx] = kPageMapRun; |
| for (size_t i = 1; i < num_pages; i++) { |
| page_map_[page_map_idx + i] = kPageMapRunPart; |
| } |
| break; |
| case kPageMapLargeObject: |
| page_map_[page_map_idx] = kPageMapLargeObject; |
| for (size_t i = 1; i < num_pages; i++) { |
| page_map_[page_map_idx + i] = kPageMapLargeObjectPart; |
| } |
| break; |
| default: |
| LOG(FATAL) << "Unreachable - page map type: " << page_map_type; |
| break; |
| } |
| if (kIsDebugBuild) { |
| // Clear the first page since it is not madvised due to the magic number. |
| memset(res, 0, kPageSize); |
| } |
| if (kTraceRosAlloc) { |
| LOG(INFO) << "RosAlloc::AllocPages() : 0x" << std::hex << reinterpret_cast<intptr_t>(res) |
| << "-0x" << (reinterpret_cast<intptr_t>(res) + num_pages * kPageSize) |
| << "(" << std::dec << (num_pages * kPageSize) << ")"; |
| } |
| return res; |
| } |
| |
| // Fail. |
| if (kTraceRosAlloc) { |
| LOG(INFO) << "RosAlloc::AllocPages() : NULL"; |
| } |
| return nullptr; |
| } |
| |
| size_t RosAlloc::FreePages(Thread* self, void* ptr, bool already_zero) { |
| lock_.AssertHeld(self); |
| size_t pm_idx = ToPageMapIndex(ptr); |
| DCHECK_LT(pm_idx, page_map_size_); |
| byte pm_type = page_map_[pm_idx]; |
| DCHECK(pm_type == kPageMapRun || pm_type == kPageMapLargeObject); |
| byte pm_part_type; |
| switch (pm_type) { |
| case kPageMapRun: |
| pm_part_type = kPageMapRunPart; |
| break; |
| case kPageMapLargeObject: |
| pm_part_type = kPageMapLargeObjectPart; |
| break; |
| default: |
| LOG(FATAL) << "Unreachable - " << __PRETTY_FUNCTION__ << " : " << "pm_idx=" << pm_idx << ", pm_type=" |
| << static_cast<int>(pm_type) << ", ptr=" << std::hex |
| << reinterpret_cast<intptr_t>(ptr); |
| return 0; |
| } |
| // Update the page map and count the number of pages. |
| size_t num_pages = 1; |
| page_map_[pm_idx] = kPageMapEmpty; |
| size_t idx = pm_idx + 1; |
| size_t end = page_map_size_; |
| while (idx < end && page_map_[idx] == pm_part_type) { |
| page_map_[idx] = kPageMapEmpty; |
| num_pages++; |
| idx++; |
| } |
| const size_t byte_size = num_pages * kPageSize; |
| if (already_zero) { |
| if (kCheckZeroMemory) { |
| const uword* word_ptr = reinterpret_cast<uword*>(ptr); |
| for (size_t i = 0; i < byte_size / sizeof(uword); ++i) { |
| CHECK_EQ(word_ptr[i], 0U) << "words don't match at index " << i; |
| } |
| } |
| } else if (!DoesReleaseAllPages()) { |
| memset(ptr, 0, byte_size); |
| } |
| |
| if (kTraceRosAlloc) { |
| LOG(INFO) << __PRETTY_FUNCTION__ << " : 0x" << std::hex << reinterpret_cast<intptr_t>(ptr) |
| << "-0x" << (reinterpret_cast<intptr_t>(ptr) + byte_size) |
| << "(" << std::dec << (num_pages * kPageSize) << ")"; |
| } |
| |
| // Turn it into a free run. |
| FreePageRun* fpr = reinterpret_cast<FreePageRun*>(ptr); |
| if (kIsDebugBuild) { |
| fpr->magic_num_ = kMagicNumFree; |
| } |
| fpr->SetByteSize(this, byte_size); |
| DCHECK(IsAligned<kPageSize>(fpr->ByteSize(this))); |
| |
| DCHECK(free_page_runs_.find(fpr) == free_page_runs_.end()); |
| if (!free_page_runs_.empty()) { |
| // Try to coalesce in the higher address direction. |
| if (kTraceRosAlloc) { |
| LOG(INFO) << __PRETTY_FUNCTION__ << "RosAlloc::FreePages() : trying to coalesce a free page run 0x" |
| << std::hex << reinterpret_cast<uintptr_t>(fpr) << " [" << std::dec << pm_idx << "] -0x" |
| << std::hex << reinterpret_cast<uintptr_t>(fpr->End(this)) << " [" << std::dec |
| << (fpr->End(this) == End() ? page_map_size_ : ToPageMapIndex(fpr->End(this))) << "]"; |
| } |
| auto higher_it = free_page_runs_.upper_bound(fpr); |
| if (higher_it != free_page_runs_.end()) { |
| for (auto it = higher_it; it != free_page_runs_.end(); ) { |
| FreePageRun* h = *it; |
| DCHECK_EQ(h->ByteSize(this) % kPageSize, static_cast<size_t>(0)); |
| if (kTraceRosAlloc) { |
| LOG(INFO) << "RosAlloc::FreePages() : trying to coalesce with a higher free page run 0x" |
| << std::hex << reinterpret_cast<uintptr_t>(h) << " [" << std::dec << ToPageMapIndex(h) << "] -0x" |
| << std::hex << reinterpret_cast<uintptr_t>(h->End(this)) << " [" << std::dec |
| << (h->End(this) == End() ? page_map_size_ : ToPageMapIndex(h->End(this))) << "]"; |
| } |
| if (fpr->End(this) == h->Begin()) { |
| if (kTraceRosAlloc) { |
| LOG(INFO) << "Success"; |
| } |
| // Clear magic num since this is no longer the start of a free page run. |
| if (kIsDebugBuild) { |
| h->magic_num_ = 0; |
| } |
| free_page_runs_.erase(it++); |
| if (kTraceRosAlloc) { |
| LOG(INFO) << "RosAlloc::FreePages() : (coalesce) Erased run 0x" << std::hex |
| << reinterpret_cast<intptr_t>(h) |
| << " from free_page_runs_"; |
| } |
| fpr->SetByteSize(this, fpr->ByteSize(this) + h->ByteSize(this)); |
| DCHECK_EQ(fpr->ByteSize(this) % kPageSize, static_cast<size_t>(0)); |
| } else { |
| // Not adjacent. Stop. |
| if (kTraceRosAlloc) { |
| LOG(INFO) << "Fail"; |
| } |
| break; |
| } |
| } |
| } |
| // Try to coalesce in the lower address direction. |
| auto lower_it = free_page_runs_.upper_bound(fpr); |
| if (lower_it != free_page_runs_.begin()) { |
| --lower_it; |
| for (auto it = lower_it; ; ) { |
| // We want to try to coalesce with the first element but |
| // there's no "<=" operator for the iterator. |
| bool to_exit_loop = it == free_page_runs_.begin(); |
| |
| FreePageRun* l = *it; |
| DCHECK_EQ(l->ByteSize(this) % kPageSize, static_cast<size_t>(0)); |
| if (kTraceRosAlloc) { |
| LOG(INFO) << "RosAlloc::FreePages() : trying to coalesce with a lower free page run 0x" |
| << std::hex << reinterpret_cast<uintptr_t>(l) << " [" << std::dec << ToPageMapIndex(l) << "] -0x" |
| << std::hex << reinterpret_cast<uintptr_t>(l->End(this)) << " [" << std::dec |
| << (l->End(this) == End() ? page_map_size_ : ToPageMapIndex(l->End(this))) << "]"; |
| } |
| if (l->End(this) == fpr->Begin()) { |
| if (kTraceRosAlloc) { |
| LOG(INFO) << "Success"; |
| } |
| free_page_runs_.erase(it--); |
| if (kTraceRosAlloc) { |
| LOG(INFO) << "RosAlloc::FreePages() : (coalesce) Erased run 0x" << std::hex |
| << reinterpret_cast<intptr_t>(l) |
| << " from free_page_runs_"; |
| } |
| l->SetByteSize(this, l->ByteSize(this) + fpr->ByteSize(this)); |
| DCHECK_EQ(l->ByteSize(this) % kPageSize, static_cast<size_t>(0)); |
| // Clear magic num since this is no longer the start of a free page run. |
| if (kIsDebugBuild) { |
| fpr->magic_num_ = 0; |
| } |
| fpr = l; |
| } else { |
| // Not adjacent. Stop. |
| if (kTraceRosAlloc) { |
| LOG(INFO) << "Fail"; |
| } |
| break; |
| } |
| if (to_exit_loop) { |
| break; |
| } |
| } |
| } |
| } |
| |
| // Insert it. |
| DCHECK_EQ(fpr->ByteSize(this) % kPageSize, static_cast<size_t>(0)); |
| DCHECK(free_page_runs_.find(fpr) == free_page_runs_.end()); |
| DCHECK(fpr->IsFree()); |
| fpr->ReleasePages(this); |
| DCHECK(fpr->IsFree()); |
| free_page_runs_.insert(fpr); |
| DCHECK(free_page_runs_.find(fpr) != free_page_runs_.end()); |
| if (kTraceRosAlloc) { |
| LOG(INFO) << "RosAlloc::FreePages() : Inserted run 0x" << std::hex << reinterpret_cast<intptr_t>(fpr) |
| << " into free_page_runs_"; |
| } |
| return byte_size; |
| } |
| |
| void* RosAlloc::AllocLargeObject(Thread* self, size_t size, size_t* bytes_allocated) { |
| DCHECK_GT(size, kLargeSizeThreshold); |
| size_t num_pages = RoundUp(size, kPageSize) / kPageSize; |
| void* r; |
| { |
| MutexLock mu(self, lock_); |
| r = AllocPages(self, num_pages, kPageMapLargeObject); |
| } |
| if (UNLIKELY(r == nullptr)) { |
| if (kTraceRosAlloc) { |
| LOG(INFO) << "RosAlloc::AllocLargeObject() : NULL"; |
| } |
| return nullptr; |
| } |
| const size_t total_bytes = num_pages * kPageSize; |
| *bytes_allocated = total_bytes; |
| if (kTraceRosAlloc) { |
| LOG(INFO) << "RosAlloc::AllocLargeObject() : 0x" << std::hex << reinterpret_cast<intptr_t>(r) |
| << "-0x" << (reinterpret_cast<intptr_t>(r) + num_pages * kPageSize) |
| << "(" << std::dec << (num_pages * kPageSize) << ")"; |
| } |
| // Check if the returned memory is really all zero. |
| if (kCheckZeroMemory) { |
| CHECK_EQ(total_bytes % sizeof(uword), 0U); |
| const uword* words = reinterpret_cast<uword*>(r); |
| for (size_t i = 0; i < total_bytes / sizeof(uword); ++i) { |
| CHECK_EQ(words[i], 0U); |
| } |
| } |
| return r; |
| } |
| |
| size_t RosAlloc::FreeInternal(Thread* self, void* ptr) { |
| DCHECK_LE(base_, ptr); |
| DCHECK_LT(ptr, base_ + footprint_); |
| size_t pm_idx = RoundDownToPageMapIndex(ptr); |
| Run* run = nullptr; |
| { |
| MutexLock mu(self, lock_); |
| DCHECK_LT(pm_idx, page_map_size_); |
| byte page_map_entry = page_map_[pm_idx]; |
| if (kTraceRosAlloc) { |
| LOG(INFO) << "RosAlloc::FreeInternal() : " << std::hex << ptr << ", pm_idx=" << std::dec << pm_idx |
| << ", page_map_entry=" << static_cast<int>(page_map_entry); |
| } |
| switch (page_map_[pm_idx]) { |
| case kPageMapLargeObject: |
| return FreePages(self, ptr, false); |
| case kPageMapLargeObjectPart: |
| LOG(FATAL) << "Unreachable - page map type: " << page_map_[pm_idx]; |
| return 0; |
| case kPageMapRunPart: { |
| // Find the beginning of the run. |
| do { |
| --pm_idx; |
| DCHECK_LT(pm_idx, capacity_ / kPageSize); |
| } while (page_map_[pm_idx] != kPageMapRun); |
| // Fall-through. |
| case kPageMapRun: |
| run = reinterpret_cast<Run*>(base_ + pm_idx * kPageSize); |
| DCHECK_EQ(run->magic_num_, kMagicNum); |
| break; |
| case kPageMapReleased: |
| // Fall-through. |
| case kPageMapEmpty: |
| LOG(FATAL) << "Unreachable - page map type: " << page_map_[pm_idx]; |
| return 0; |
| } |
| default: |
| LOG(FATAL) << "Unreachable - page map type: " << page_map_[pm_idx]; |
| return 0; |
| } |
| } |
| DCHECK(run != nullptr); |
| return FreeFromRun(self, ptr, run); |
| } |
| |
| size_t RosAlloc::Free(Thread* self, void* ptr) { |
| ReaderMutexLock rmu(self, bulk_free_lock_); |
| return FreeInternal(self, ptr); |
| } |
| |
| RosAlloc::Run* RosAlloc::AllocRun(Thread* self, size_t idx) { |
| RosAlloc::Run* new_run = nullptr; |
| { |
| MutexLock mu(self, lock_); |
| new_run = reinterpret_cast<Run*>(AllocPages(self, numOfPages[idx], kPageMapRun)); |
| } |
| if (LIKELY(new_run != nullptr)) { |
| if (kIsDebugBuild) { |
| new_run->magic_num_ = kMagicNum; |
| } |
| new_run->size_bracket_idx_ = idx; |
| new_run->SetAllocBitMapBitsForInvalidSlots(); |
| DCHECK(!new_run->IsThreadLocal()); |
| DCHECK_EQ(new_run->first_search_vec_idx_, 0U); |
| DCHECK(!new_run->to_be_bulk_freed_); |
| if (kUsePrefetchDuringAllocRun && idx < kNumThreadLocalSizeBrackets) { |
| // Take ownership of the cache lines if we are likely to be thread local run. |
| if (kPrefetchNewRunDataByZeroing) { |
| // Zeroing the data is sometimes faster than prefetching but it increases memory usage |
| // since we end up dirtying zero pages which may have been madvised. |
| new_run->ZeroData(); |
| } else { |
| const size_t num_of_slots = numOfSlots[idx]; |
| const size_t bracket_size = bracketSizes[idx]; |
| const size_t num_of_bytes = num_of_slots * bracket_size; |
| byte* begin = reinterpret_cast<byte*>(new_run) + headerSizes[idx]; |
| for (size_t i = 0; i < num_of_bytes; i += kPrefetchStride) { |
| __builtin_prefetch(begin + i); |
| } |
| } |
| } |
| } |
| return new_run; |
| } |
| |
| RosAlloc::Run* RosAlloc::RefillRun(Thread* self, size_t idx) { |
| // Get the lowest address non-full run from the binary tree. |
| std::set<Run*>* const bt = &non_full_runs_[idx]; |
| if (!bt->empty()) { |
| // If there's one, use it as the current run. |
| auto it = bt->begin(); |
| Run* non_full_run = *it; |
| DCHECK(non_full_run != nullptr); |
| DCHECK(!non_full_run->IsThreadLocal()); |
| bt->erase(it); |
| return non_full_run; |
| } |
| // If there's none, allocate a new run and use it as the current run. |
| return AllocRun(self, idx); |
| } |
| |
| inline void* RosAlloc::AllocFromCurrentRunUnlocked(Thread* self, size_t idx) { |
| Run* current_run = current_runs_[idx]; |
| DCHECK(current_run != nullptr); |
| void* slot_addr = current_run->AllocSlot(); |
| if (UNLIKELY(slot_addr == nullptr)) { |
| // The current run got full. Try to refill it. |
| DCHECK(current_run->IsFull()); |
| if (kIsDebugBuild && current_run != dedicated_full_run_) { |
| full_runs_[idx].insert(current_run); |
| if (kTraceRosAlloc) { |
| LOG(INFO) << __PRETTY_FUNCTION__ << " : Inserted run 0x" << std::hex |
| << reinterpret_cast<intptr_t>(current_run) |
| << " into full_runs_[" << std::dec << idx << "]"; |
| } |
| DCHECK(non_full_runs_[idx].find(current_run) == non_full_runs_[idx].end()); |
| DCHECK(full_runs_[idx].find(current_run) != full_runs_[idx].end()); |
| } |
| current_run = RefillRun(self, idx); |
| if (UNLIKELY(current_run == nullptr)) { |
| // Failed to allocate a new run, make sure that it is the dedicated full run. |
| current_runs_[idx] = dedicated_full_run_; |
| return nullptr; |
| } |
| DCHECK(current_run != nullptr); |
| DCHECK(non_full_runs_[idx].find(current_run) == non_full_runs_[idx].end()); |
| DCHECK(full_runs_[idx].find(current_run) == full_runs_[idx].end()); |
| current_run->SetIsThreadLocal(false); |
| current_runs_[idx] = current_run; |
| DCHECK(!current_run->IsFull()); |
| slot_addr = current_run->AllocSlot(); |
| // Must succeed now with a new run. |
| DCHECK(slot_addr != nullptr); |
| } |
| return slot_addr; |
| } |
| |
| void* RosAlloc::AllocFromRunThreadUnsafe(Thread* self, size_t size, size_t* bytes_allocated) { |
| DCHECK_LE(size, kLargeSizeThreshold); |
| size_t bracket_size; |
| size_t idx = SizeToIndexAndBracketSize(size, &bracket_size); |
| DCHECK_EQ(idx, SizeToIndex(size)); |
| DCHECK_EQ(bracket_size, IndexToBracketSize(idx)); |
| DCHECK_EQ(bracket_size, bracketSizes[idx]); |
| DCHECK_LE(size, bracket_size); |
| DCHECK(size > 512 || bracket_size - size < 16); |
| Locks::mutator_lock_->AssertExclusiveHeld(self); |
| void* slot_addr = AllocFromCurrentRunUnlocked(self, idx); |
| if (LIKELY(slot_addr != nullptr)) { |
| DCHECK(bytes_allocated != nullptr); |
| *bytes_allocated = bracket_size; |
| // Caller verifies that it is all 0. |
| } |
| return slot_addr; |
| } |
| |
| void* RosAlloc::AllocFromRun(Thread* self, size_t size, size_t* bytes_allocated) { |
| DCHECK_LE(size, kLargeSizeThreshold); |
| size_t bracket_size; |
| size_t idx = SizeToIndexAndBracketSize(size, &bracket_size); |
| DCHECK_EQ(idx, SizeToIndex(size)); |
| DCHECK_EQ(bracket_size, IndexToBracketSize(idx)); |
| DCHECK_EQ(bracket_size, bracketSizes[idx]); |
| DCHECK_LE(size, bracket_size); |
| DCHECK(size > 512 || bracket_size - size < 16); |
| |
| void* slot_addr; |
| |
| if (LIKELY(idx < kNumThreadLocalSizeBrackets)) { |
| // Use a thread-local run. |
| Run* thread_local_run = reinterpret_cast<Run*>(self->GetRosAllocRun(idx)); |
| // Allow invalid since this will always fail the allocation. |
| if (kIsDebugBuild) { |
| // Need the lock to prevent race conditions. |
| MutexLock mu(self, *size_bracket_locks_[idx]); |
| CHECK(non_full_runs_[idx].find(thread_local_run) == non_full_runs_[idx].end()); |
| CHECK(full_runs_[idx].find(thread_local_run) == full_runs_[idx].end()); |
| } |
| DCHECK(thread_local_run != nullptr); |
| DCHECK(thread_local_run->IsThreadLocal() || thread_local_run == dedicated_full_run_); |
| slot_addr = thread_local_run->AllocSlot(); |
| // The allocation must fail if the run is invalid. |
| DCHECK(thread_local_run != dedicated_full_run_ || slot_addr == nullptr) |
| << "allocated from an invalid run"; |
| if (UNLIKELY(slot_addr == nullptr)) { |
| // The run got full. Try to free slots. |
| DCHECK(thread_local_run->IsFull()); |
| MutexLock mu(self, *size_bracket_locks_[idx]); |
| bool is_all_free_after_merge; |
| // This is safe to do for the dedicated_full_run_ since the bitmaps are empty. |
| if (thread_local_run->MergeThreadLocalFreeBitMapToAllocBitMap(&is_all_free_after_merge)) { |
| DCHECK_NE(thread_local_run, dedicated_full_run_); |
| // Some slot got freed. Keep it. |
| DCHECK(!thread_local_run->IsFull()); |
| DCHECK_EQ(is_all_free_after_merge, thread_local_run->IsAllFree()); |
| if (is_all_free_after_merge) { |
| // Check that the bitmap idx is back at 0 if it's all free. |
| DCHECK_EQ(thread_local_run->first_search_vec_idx_, 0U); |
| } |
| } else { |
| // No slots got freed. Try to refill the thread-local run. |
| DCHECK(thread_local_run->IsFull()); |
| if (thread_local_run != dedicated_full_run_) { |
| thread_local_run->SetIsThreadLocal(false); |
| if (kIsDebugBuild) { |
| full_runs_[idx].insert(thread_local_run); |
| if (kTraceRosAlloc) { |
| LOG(INFO) << "RosAlloc::AllocFromRun() : Inserted run 0x" << std::hex |
| << reinterpret_cast<intptr_t>(thread_local_run) |
| << " into full_runs_[" << std::dec << idx << "]"; |
| } |
| } |
| DCHECK(non_full_runs_[idx].find(thread_local_run) == non_full_runs_[idx].end()); |
| DCHECK(full_runs_[idx].find(thread_local_run) != full_runs_[idx].end()); |
| } |
| |
| thread_local_run = RefillRun(self, idx); |
| if (UNLIKELY(thread_local_run == nullptr)) { |
| self->SetRosAllocRun(idx, dedicated_full_run_); |
| return nullptr; |
| } |
| DCHECK(non_full_runs_[idx].find(thread_local_run) == non_full_runs_[idx].end()); |
| DCHECK(full_runs_[idx].find(thread_local_run) == full_runs_[idx].end()); |
| thread_local_run->SetIsThreadLocal(true); |
| self->SetRosAllocRun(idx, thread_local_run); |
| DCHECK(!thread_local_run->IsFull()); |
| } |
| |
| DCHECK(thread_local_run != nullptr); |
| DCHECK(!thread_local_run->IsFull()); |
| DCHECK(thread_local_run->IsThreadLocal()); |
| slot_addr = thread_local_run->AllocSlot(); |
| // Must succeed now with a new run. |
| DCHECK(slot_addr != nullptr); |
| } |
| if (kTraceRosAlloc) { |
| LOG(INFO) << "RosAlloc::AllocFromRun() thread-local : 0x" << std::hex << reinterpret_cast<intptr_t>(slot_addr) |
| << "-0x" << (reinterpret_cast<intptr_t>(slot_addr) + bracket_size) |
| << "(" << std::dec << (bracket_size) << ")"; |
| } |
| } else { |
| // Use the (shared) current run. |
| MutexLock mu(self, *size_bracket_locks_[idx]); |
| slot_addr = AllocFromCurrentRunUnlocked(self, idx); |
| if (kTraceRosAlloc) { |
| LOG(INFO) << "RosAlloc::AllocFromRun() : 0x" << std::hex << reinterpret_cast<intptr_t>(slot_addr) |
| << "-0x" << (reinterpret_cast<intptr_t>(slot_addr) + bracket_size) |
| << "(" << std::dec << (bracket_size) << ")"; |
| } |
| } |
| DCHECK(bytes_allocated != nullptr); |
| *bytes_allocated = bracket_size; |
| // Caller verifies that it is all 0. |
| return slot_addr; |
| } |
| |
| size_t RosAlloc::FreeFromRun(Thread* self, void* ptr, Run* run) { |
| DCHECK_EQ(run->magic_num_, kMagicNum); |
| DCHECK_LT(run, ptr); |
| DCHECK_LT(ptr, run->End()); |
| const size_t idx = run->size_bracket_idx_; |
| const size_t bracket_size = bracketSizes[idx]; |
| bool run_was_full = false; |
| MutexLock mu(self, *size_bracket_locks_[idx]); |
| if (kIsDebugBuild) { |
| run_was_full = run->IsFull(); |
| } |
| if (kTraceRosAlloc) { |
| LOG(INFO) << "RosAlloc::FreeFromRun() : 0x" << std::hex << reinterpret_cast<intptr_t>(ptr); |
| } |
| if (LIKELY(run->IsThreadLocal())) { |
| // It's a thread-local run. Just mark the thread-local free bit map and return. |
| DCHECK_LT(run->size_bracket_idx_, kNumThreadLocalSizeBrackets); |
| DCHECK(non_full_runs_[idx].find(run) == non_full_runs_[idx].end()); |
| DCHECK(full_runs_[idx].find(run) == full_runs_[idx].end()); |
| run->MarkThreadLocalFreeBitMap(ptr); |
| if (kTraceRosAlloc) { |
| LOG(INFO) << "RosAlloc::FreeFromRun() : Freed a slot in a thread local run 0x" << std::hex |
| << reinterpret_cast<intptr_t>(run); |
| } |
| // A thread local run will be kept as a thread local even if it's become all free. |
| return bracket_size; |
| } |
| // Free the slot in the run. |
| run->FreeSlot(ptr); |
| std::set<Run*>* non_full_runs = &non_full_runs_[idx]; |
| if (run->IsAllFree()) { |
| // It has just become completely free. Free the pages of this run. |
| std::set<Run*>::iterator pos = non_full_runs->find(run); |
| if (pos != non_full_runs->end()) { |
| non_full_runs->erase(pos); |
| if (kTraceRosAlloc) { |
| LOG(INFO) << "RosAlloc::FreeFromRun() : Erased run 0x" << std::hex |
| << reinterpret_cast<intptr_t>(run) << " from non_full_runs_"; |
| } |
| } |
| if (run == current_runs_[idx]) { |
| current_runs_[idx] = dedicated_full_run_; |
| } |
| DCHECK(non_full_runs_[idx].find(run) == non_full_runs_[idx].end()); |
| DCHECK(full_runs_[idx].find(run) == full_runs_[idx].end()); |
| run->ZeroHeader(); |
| { |
| MutexLock mu(self, lock_); |
| FreePages(self, run, true); |
| } |
| } else { |
| // It is not completely free. If it wasn't the current run or |
| // already in the non-full run set (i.e., it was full) insert it |
| // into the non-full run set. |
| if (run != current_runs_[idx]) { |
| std::unordered_set<Run*, hash_run, eq_run>* full_runs = |
| kIsDebugBuild ? &full_runs_[idx] : NULL; |
| std::set<Run*>::iterator pos = non_full_runs->find(run); |
| if (pos == non_full_runs->end()) { |
| DCHECK(run_was_full); |
| DCHECK(full_runs->find(run) != full_runs->end()); |
| if (kIsDebugBuild) { |
| full_runs->erase(run); |
| if (kTraceRosAlloc) { |
| LOG(INFO) << "RosAlloc::FreeFromRun() : Erased run 0x" << std::hex |
| << reinterpret_cast<intptr_t>(run) << " from full_runs_"; |
| } |
| } |
| non_full_runs->insert(run); |
| DCHECK(!run->IsFull()); |
| if (kTraceRosAlloc) { |
| LOG(INFO) << "RosAlloc::FreeFromRun() : Inserted run 0x" << std::hex |
| << reinterpret_cast<intptr_t>(run) |
| << " into non_full_runs_[" << std::dec << idx << "]"; |
| } |
| } |
| } |
| } |
| return bracket_size; |
| } |
| |
| std::string RosAlloc::Run::BitMapToStr(uint32_t* bit_map_base, size_t num_vec) { |
| std::string bit_map_str; |
| for (size_t v = 0; v < num_vec; v++) { |
| uint32_t vec = bit_map_base[v]; |
| if (v != num_vec - 1) { |
| bit_map_str.append(StringPrintf("%x-", vec)); |
| } else { |
| bit_map_str.append(StringPrintf("%x", vec)); |
| } |
| } |
| return bit_map_str.c_str(); |
| } |
| |
| std::string RosAlloc::Run::Dump() { |
| size_t idx = size_bracket_idx_; |
| size_t num_slots = numOfSlots[idx]; |
| size_t num_vec = RoundUp(num_slots, 32) / 32; |
| std::ostringstream stream; |
| stream << "RosAlloc Run = " << reinterpret_cast<void*>(this) |
| << "{ magic_num=" << static_cast<int>(magic_num_) |
| << " size_bracket_idx=" << idx |
| << " is_thread_local=" << static_cast<int>(is_thread_local_) |
| << " to_be_bulk_freed=" << static_cast<int>(to_be_bulk_freed_) |
| << " first_search_vec_idx=" << first_search_vec_idx_ |
| << " alloc_bit_map=" << BitMapToStr(alloc_bit_map_, num_vec) |
| << " bulk_free_bit_map=" << BitMapToStr(BulkFreeBitMap(), num_vec) |
| << " thread_local_bit_map=" << BitMapToStr(ThreadLocalFreeBitMap(), num_vec) |
| << " }" << std::endl; |
| return stream.str(); |
| } |
| |
| inline void* RosAlloc::Run::AllocSlot() { |
| const size_t idx = size_bracket_idx_; |
| while (true) { |
| if (kIsDebugBuild) { |
| // Make sure that no slots leaked, the bitmap should be full for all previous vectors. |
| for (size_t i = 0; i < first_search_vec_idx_; ++i) { |
| CHECK_EQ(~alloc_bit_map_[i], 0U); |
| } |
| } |
| uint32_t* const alloc_bitmap_ptr = &alloc_bit_map_[first_search_vec_idx_]; |
| uint32_t ffz1 = __builtin_ffs(~*alloc_bitmap_ptr); |
| if (LIKELY(ffz1 != 0)) { |
| const uint32_t ffz = ffz1 - 1; |
| const uint32_t slot_idx = ffz + first_search_vec_idx_ * sizeof(*alloc_bitmap_ptr) * kBitsPerByte; |
| const uint32_t mask = 1U << ffz; |
| DCHECK_LT(slot_idx, numOfSlots[idx]) << "out of range"; |
| // Found an empty slot. Set the bit. |
| DCHECK_EQ(*alloc_bitmap_ptr & mask, 0U); |
| *alloc_bitmap_ptr |= mask; |
| DCHECK_NE(*alloc_bitmap_ptr & mask, 0U); |
| byte* slot_addr = reinterpret_cast<byte*>(this) + headerSizes[idx] + slot_idx * bracketSizes[idx]; |
| if (kTraceRosAlloc) { |
| LOG(INFO) << "RosAlloc::Run::AllocSlot() : 0x" << std::hex << reinterpret_cast<intptr_t>(slot_addr) |
| << ", bracket_size=" << std::dec << bracketSizes[idx] << ", slot_idx=" << slot_idx; |
| } |
| return slot_addr; |
| } |
| const size_t num_words = RoundUp(numOfSlots[idx], 32) / 32; |
| if (first_search_vec_idx_ + 1 >= num_words) { |
| DCHECK(IsFull()); |
| // Already at the last word, return null. |
| return nullptr; |
| } |
| // Increase the index to the next word and try again. |
| ++first_search_vec_idx_; |
| } |
| } |
| |
| void RosAlloc::Run::FreeSlot(void* ptr) { |
| DCHECK(!IsThreadLocal()); |
| const byte idx = size_bracket_idx_; |
| const size_t bracket_size = bracketSizes[idx]; |
| const size_t offset_from_slot_base = reinterpret_cast<byte*>(ptr) |
| - (reinterpret_cast<byte*>(this) + headerSizes[idx]); |
| DCHECK_EQ(offset_from_slot_base % bracket_size, static_cast<size_t>(0)); |
| size_t slot_idx = offset_from_slot_base / bracket_size; |
| DCHECK_LT(slot_idx, numOfSlots[idx]); |
| size_t vec_idx = slot_idx / 32; |
| if (kIsDebugBuild) { |
| size_t num_vec = RoundUp(numOfSlots[idx], 32) / 32; |
| DCHECK_LT(vec_idx, num_vec); |
| } |
| size_t vec_off = slot_idx % 32; |
| uint32_t* vec = &alloc_bit_map_[vec_idx]; |
| first_search_vec_idx_ = std::min(first_search_vec_idx_, static_cast<uint32_t>(vec_idx)); |
| const uint32_t mask = 1U << vec_off; |
| DCHECK_NE(*vec & mask, 0U); |
| *vec &= ~mask; |
| DCHECK_EQ(*vec & mask, 0U); |
| // Zero out the memory. |
| // TODO: Investigate alternate memset since ptr is guaranteed to be aligned to 16. |
| memset(ptr, 0, bracket_size); |
| if (kTraceRosAlloc) { |
| LOG(INFO) << "RosAlloc::Run::FreeSlot() : 0x" << std::hex << reinterpret_cast<intptr_t>(ptr) |
| << ", bracket_size=" << std::dec << bracketSizes[idx] << ", slot_idx=" << slot_idx; |
| } |
| } |
| |
| inline bool RosAlloc::Run::MergeThreadLocalFreeBitMapToAllocBitMap(bool* is_all_free_after_out) { |
| DCHECK(IsThreadLocal()); |
| // Free slots in the alloc bit map based on the thread local free bit map. |
| const size_t idx = size_bracket_idx_; |
| const size_t num_of_slots = numOfSlots[idx]; |
| const size_t num_vec = RoundUp(num_of_slots, 32) / 32; |
| bool changed = false; |
| uint32_t* vecp = &alloc_bit_map_[0]; |
| uint32_t* tl_free_vecp = &ThreadLocalFreeBitMap()[0]; |
| bool is_all_free_after = true; |
| for (size_t v = 0; v < num_vec; v++, vecp++, tl_free_vecp++) { |
| uint32_t tl_free_vec = *tl_free_vecp; |
| uint32_t vec_before = *vecp; |
| uint32_t vec_after; |
| if (tl_free_vec != 0) { |
| first_search_vec_idx_ = std::min(first_search_vec_idx_, static_cast<uint32_t>(v)); |
| vec_after = vec_before & ~tl_free_vec; |
| *vecp = vec_after; |
| changed = true; |
| *tl_free_vecp = 0; // clear the thread local free bit map. |
| } else { |
| vec_after = vec_before; |
| } |
| if (vec_after != 0) { |
| if (v == num_vec - 1) { |
| // Only not all free if a bit other than the mask bits are set. |
| is_all_free_after = |
| is_all_free_after && GetBitmapLastVectorMask(num_of_slots, num_vec) == vec_after; |
| } else { |
| is_all_free_after = false; |
| } |
| } |
| DCHECK_EQ(*tl_free_vecp, static_cast<uint32_t>(0)); |
| } |
| *is_all_free_after_out = is_all_free_after; |
| // Return true if there was at least a bit set in the thread-local |
| // free bit map and at least a bit in the alloc bit map changed. |
| return changed; |
| } |
| |
| inline void RosAlloc::Run::MergeBulkFreeBitMapIntoAllocBitMap() { |
| DCHECK(!IsThreadLocal()); |
| // Free slots in the alloc bit map based on the bulk free bit map. |
| const size_t num_vec = NumberOfBitmapVectors(); |
| uint32_t* vecp = &alloc_bit_map_[0]; |
| uint32_t* free_vecp = &BulkFreeBitMap()[0]; |
| for (size_t v = 0; v < num_vec; v++, vecp++, free_vecp++) { |
| uint32_t free_vec = *free_vecp; |
| if (free_vec != 0) { |
| first_search_vec_idx_ = std::min(first_search_vec_idx_, static_cast<uint32_t>(v)); |
| *vecp &= ~free_vec; |
| *free_vecp = 0; // clear the bulk free bit map. |
| } |
| DCHECK_EQ(*free_vecp, static_cast<uint32_t>(0)); |
| } |
| } |
| |
| inline void RosAlloc::Run::UnionBulkFreeBitMapToThreadLocalFreeBitMap() { |
| DCHECK(IsThreadLocal()); |
| // Union the thread local bit map with the bulk free bit map. |
| size_t num_vec = NumberOfBitmapVectors(); |
| uint32_t* to_vecp = &ThreadLocalFreeBitMap()[0]; |
| uint32_t* from_vecp = &BulkFreeBitMap()[0]; |
| for (size_t v = 0; v < num_vec; v++, to_vecp++, from_vecp++) { |
| uint32_t from_vec = *from_vecp; |
| if (from_vec != 0) { |
| *to_vecp |= from_vec; |
| *from_vecp = 0; // clear the bulk free bit map. |
| } |
| DCHECK_EQ(*from_vecp, static_cast<uint32_t>(0)); |
| } |
| } |
| |
| inline void RosAlloc::Run::MarkThreadLocalFreeBitMap(void* ptr) { |
| DCHECK(IsThreadLocal()); |
| MarkFreeBitMapShared(ptr, ThreadLocalFreeBitMap(), "MarkThreadLocalFreeBitMap"); |
| } |
| |
| inline size_t RosAlloc::Run::MarkBulkFreeBitMap(void* ptr) { |
| return MarkFreeBitMapShared(ptr, BulkFreeBitMap(), "MarkFreeBitMap"); |
| } |
| |
| inline size_t RosAlloc::Run::MarkFreeBitMapShared(void* ptr, uint32_t* free_bit_map_base, |
| const char* caller_name) { |
| const byte idx = size_bracket_idx_; |
| const size_t offset_from_slot_base = reinterpret_cast<byte*>(ptr) |
| - (reinterpret_cast<byte*>(this) + headerSizes[idx]); |
| const size_t bracket_size = bracketSizes[idx]; |
| memset(ptr, 0, bracket_size); |
| DCHECK_EQ(offset_from_slot_base % bracket_size, static_cast<size_t>(0)); |
| size_t slot_idx = offset_from_slot_base / bracket_size; |
| DCHECK_LT(slot_idx, numOfSlots[idx]); |
| size_t vec_idx = slot_idx / 32; |
| if (kIsDebugBuild) { |
| size_t num_vec = NumberOfBitmapVectors(); |
| DCHECK_LT(vec_idx, num_vec); |
| } |
| size_t vec_off = slot_idx % 32; |
| uint32_t* vec = &free_bit_map_base[vec_idx]; |
| const uint32_t mask = 1U << vec_off; |
| DCHECK_EQ(*vec & mask, 0U); |
| *vec |= mask; |
| DCHECK_NE(*vec & mask, 0U); |
| if (kTraceRosAlloc) { |
| LOG(INFO) << "RosAlloc::Run::" << caller_name << "() : 0x" << std::hex |
| << reinterpret_cast<intptr_t>(ptr) |
| << ", bracket_size=" << std::dec << bracketSizes[idx] << ", slot_idx=" << slot_idx; |
| } |
| return bracket_size; |
| } |
| |
| inline uint32_t RosAlloc::Run::GetBitmapLastVectorMask(size_t num_slots, size_t num_vec) { |
| const size_t kBitsPerVec = 32; |
| DCHECK_GE(num_slots * kBitsPerVec, num_vec); |
| size_t remain = num_vec * kBitsPerVec - num_slots; |
| DCHECK_NE(remain, kBitsPerVec); |
| return ((1U << remain) - 1) << (kBitsPerVec - remain); |
| } |
| |
| inline bool RosAlloc::Run::IsAllFree() { |
| const byte idx = size_bracket_idx_; |
| const size_t num_slots = numOfSlots[idx]; |
| const size_t num_vec = NumberOfBitmapVectors(); |
| DCHECK_NE(num_vec, 0U); |
| // Check the last vector after the loop since it uses a special case for the masked bits. |
| for (size_t v = 0; v < num_vec - 1; v++) { |
| uint32_t vec = alloc_bit_map_[v]; |
| if (vec != 0) { |
| return false; |
| } |
| } |
| // Make sure the last word is equal to the mask, all other bits must be 0. |
| return alloc_bit_map_[num_vec - 1] == GetBitmapLastVectorMask(num_slots, num_vec); |
| } |
| |
| inline bool RosAlloc::Run::IsFull() { |
| const size_t num_vec = NumberOfBitmapVectors(); |
| for (size_t v = 0; v < num_vec; ++v) { |
| if (~alloc_bit_map_[v] != 0) { |
| return false; |
| } |
| } |
| return true; |
| } |
| |
| inline bool RosAlloc::Run::IsBulkFreeBitmapClean() { |
| const size_t num_vec = NumberOfBitmapVectors(); |
| for (size_t v = 0; v < num_vec; v++) { |
| uint32_t vec = BulkFreeBitMap()[v]; |
| if (vec != 0) { |
| return false; |
| } |
| } |
| return true; |
| } |
| |
| inline bool RosAlloc::Run::IsThreadLocalFreeBitmapClean() { |
| const size_t num_vec = NumberOfBitmapVectors(); |
| for (size_t v = 0; v < num_vec; v++) { |
| uint32_t vec = ThreadLocalFreeBitMap()[v]; |
| if (vec != 0) { |
| return false; |
| } |
| } |
| return true; |
| } |
| |
| inline void RosAlloc::Run::SetAllocBitMapBitsForInvalidSlots() { |
| const size_t idx = size_bracket_idx_; |
| const size_t num_slots = numOfSlots[idx]; |
| const size_t num_vec = RoundUp(num_slots, 32) / 32; |
| DCHECK_NE(num_vec, 0U); |
| // Make sure to set the bits at the end of the bitmap so that we don't allocate there since they |
| // don't represent valid slots. |
| alloc_bit_map_[num_vec - 1] |= GetBitmapLastVectorMask(num_slots, num_vec); |
| } |
| |
| inline void RosAlloc::Run::ZeroHeader() { |
| const byte idx = size_bracket_idx_; |
| memset(this, 0, headerSizes[idx]); |
| } |
| |
| inline void RosAlloc::Run::ZeroData() { |
| const byte idx = size_bracket_idx_; |
| byte* slot_begin = reinterpret_cast<byte*>(this) + headerSizes[idx]; |
| memset(slot_begin, 0, numOfSlots[idx] * bracketSizes[idx]); |
| } |
| |
| inline void RosAlloc::Run::FillAllocBitMap() { |
| size_t num_vec = NumberOfBitmapVectors(); |
| memset(alloc_bit_map_, 0xFF, sizeof(uint32_t) * num_vec); |
| first_search_vec_idx_ = num_vec - 1; // No free bits in any of the bitmap words. |
| } |
| |
| void RosAlloc::Run::InspectAllSlots(void (*handler)(void* start, void* end, size_t used_bytes, void* callback_arg), |
| void* arg) { |
| size_t idx = size_bracket_idx_; |
| byte* slot_base = reinterpret_cast<byte*>(this) + headerSizes[idx]; |
| size_t num_slots = numOfSlots[idx]; |
| size_t bracket_size = IndexToBracketSize(idx); |
| DCHECK_EQ(slot_base + num_slots * bracket_size, reinterpret_cast<byte*>(this) + numOfPages[idx] * kPageSize); |
| size_t num_vec = RoundUp(num_slots, 32) / 32; |
| size_t slots = 0; |
| for (size_t v = 0; v < num_vec; v++, slots += 32) { |
| DCHECK_GE(num_slots, slots); |
| uint32_t vec = alloc_bit_map_[v]; |
| size_t end = std::min(num_slots - slots, static_cast<size_t>(32)); |
| for (size_t i = 0; i < end; ++i) { |
| bool is_allocated = ((vec >> i) & 0x1) != 0; |
| byte* slot_addr = slot_base + (slots + i) * bracket_size; |
| if (is_allocated) { |
| handler(slot_addr, slot_addr + bracket_size, bracket_size, arg); |
| } else { |
| handler(slot_addr, slot_addr + bracket_size, 0, arg); |
| } |
| } |
| } |
| } |
| |
| // If true, read the page map entries in BulkFree() without using the |
| // lock for better performance, assuming that the existence of an |
| // allocated chunk/pointer being freed in BulkFree() guarantees that |
| // the page map entry won't change. Disabled for now. |
| static constexpr bool kReadPageMapEntryWithoutLockInBulkFree = true; |
| |
| size_t RosAlloc::BulkFree(Thread* self, void** ptrs, size_t num_ptrs) { |
| size_t freed_bytes = 0; |
| if (false) { |
| // Used only to test Free() as GC uses only BulkFree(). |
| for (size_t i = 0; i < num_ptrs; ++i) { |
| freed_bytes += FreeInternal(self, ptrs[i]); |
| } |
| return freed_bytes; |
| } |
| |
| WriterMutexLock wmu(self, bulk_free_lock_); |
| |
| // First mark slots to free in the bulk free bit map without locking the |
| // size bracket locks. On host, unordered_set is faster than vector + flag. |
| #ifdef HAVE_ANDROID_OS |
| std::vector<Run*> runs; |
| #else |
| std::unordered_set<Run*, hash_run, eq_run> runs; |
| #endif |
| for (size_t i = 0; i < num_ptrs; i++) { |
| void* ptr = ptrs[i]; |
| DCHECK_LE(base_, ptr); |
| DCHECK_LT(ptr, base_ + footprint_); |
| size_t pm_idx = RoundDownToPageMapIndex(ptr); |
| Run* run = nullptr; |
| if (kReadPageMapEntryWithoutLockInBulkFree) { |
| // Read the page map entries without locking the lock. |
| byte page_map_entry = page_map_[pm_idx]; |
| if (kTraceRosAlloc) { |
| LOG(INFO) << "RosAlloc::BulkFree() : " << std::hex << ptr << ", pm_idx=" |
| << std::dec << pm_idx |
| << ", page_map_entry=" << static_cast<int>(page_map_entry); |
| } |
| if (LIKELY(page_map_entry == kPageMapRun)) { |
| run = reinterpret_cast<Run*>(base_ + pm_idx * kPageSize); |
| } else if (LIKELY(page_map_entry == kPageMapRunPart)) { |
| size_t pi = pm_idx; |
| // Find the beginning of the run. |
| do { |
| --pi; |
| DCHECK_LT(pi, capacity_ / kPageSize); |
| } while (page_map_[pi] != kPageMapRun); |
| run = reinterpret_cast<Run*>(base_ + pi * kPageSize); |
| } else if (page_map_entry == kPageMapLargeObject) { |
| MutexLock mu(self, lock_); |
| freed_bytes += FreePages(self, ptr, false); |
| continue; |
| } else { |
| LOG(FATAL) << "Unreachable - page map type: " << page_map_entry; |
| } |
| } else { |
| // Read the page map entries with a lock. |
| MutexLock mu(self, lock_); |
| DCHECK_LT(pm_idx, page_map_size_); |
| byte page_map_entry = page_map_[pm_idx]; |
| if (kTraceRosAlloc) { |
| LOG(INFO) << "RosAlloc::BulkFree() : " << std::hex << ptr << ", pm_idx=" |
| << std::dec << pm_idx |
| << ", page_map_entry=" << static_cast<int>(page_map_entry); |
| } |
| if (LIKELY(page_map_entry == kPageMapRun)) { |
| run = reinterpret_cast<Run*>(base_ + pm_idx * kPageSize); |
| } else if (LIKELY(page_map_entry == kPageMapRunPart)) { |
| size_t pi = pm_idx; |
| // Find the beginning of the run. |
| do { |
| --pi; |
| DCHECK_LT(pi, capacity_ / kPageSize); |
| } while (page_map_[pi] != kPageMapRun); |
| run = reinterpret_cast<Run*>(base_ + pi * kPageSize); |
| } else if (page_map_entry == kPageMapLargeObject) { |
| freed_bytes += FreePages(self, ptr, false); |
| continue; |
| } else { |
| LOG(FATAL) << "Unreachable - page map type: " << page_map_entry; |
| } |
| } |
| DCHECK(run != nullptr); |
| DCHECK_EQ(run->magic_num_, kMagicNum); |
| // Set the bit in the bulk free bit map. |
| freed_bytes += run->MarkBulkFreeBitMap(ptr); |
| #ifdef HAVE_ANDROID_OS |
| if (!run->to_be_bulk_freed_) { |
| run->to_be_bulk_freed_ = true; |
| runs.push_back(run); |
| } |
| #else |
| runs.insert(run); |
| #endif |
| } |
| |
| // Now, iterate over the affected runs and update the alloc bit map |
| // based on the bulk free bit map (for non-thread-local runs) and |
| // union the bulk free bit map into the thread-local free bit map |
| // (for thread-local runs.) |
| for (Run* run : runs) { |
| #ifdef HAVE_ANDROID_OS |
| DCHECK(run->to_be_bulk_freed_); |
| run->to_be_bulk_freed_ = false; |
| #endif |
| size_t idx = run->size_bracket_idx_; |
| MutexLock mu(self, *size_bracket_locks_[idx]); |
| if (run->IsThreadLocal()) { |
| DCHECK_LT(run->size_bracket_idx_, kNumThreadLocalSizeBrackets); |
| DCHECK(non_full_runs_[idx].find(run) == non_full_runs_[idx].end()); |
| DCHECK(full_runs_[idx].find(run) == full_runs_[idx].end()); |
| run->UnionBulkFreeBitMapToThreadLocalFreeBitMap(); |
| if (kTraceRosAlloc) { |
| LOG(INFO) << "RosAlloc::BulkFree() : Freed slot(s) in a thread local run 0x" |
| << std::hex << reinterpret_cast<intptr_t>(run); |
| } |
| DCHECK(run->IsThreadLocal()); |
| // A thread local run will be kept as a thread local even if |
| // it's become all free. |
| } else { |
| bool run_was_full = run->IsFull(); |
| run->MergeBulkFreeBitMapIntoAllocBitMap(); |
| if (kTraceRosAlloc) { |
| LOG(INFO) << "RosAlloc::BulkFree() : Freed slot(s) in a run 0x" << std::hex |
| << reinterpret_cast<intptr_t>(run); |
| } |
| // Check if the run should be moved to non_full_runs_ or |
| // free_page_runs_. |
| std::set<Run*>* non_full_runs = &non_full_runs_[idx]; |
| std::unordered_set<Run*, hash_run, eq_run>* full_runs = |
| kIsDebugBuild ? &full_runs_[idx] : NULL; |
| if (run->IsAllFree()) { |
| // It has just become completely free. Free the pages of the |
| // run. |
| bool run_was_current = run == current_runs_[idx]; |
| if (run_was_current) { |
| DCHECK(full_runs->find(run) == full_runs->end()); |
| DCHECK(non_full_runs->find(run) == non_full_runs->end()); |
| // If it was a current run, reuse it. |
| } else if (run_was_full) { |
| // If it was full, remove it from the full run set (debug |
| // only.) |
| if (kIsDebugBuild) { |
| std::unordered_set<Run*, hash_run, eq_run>::iterator pos = full_runs->find(run); |
| DCHECK(pos != full_runs->end()); |
| full_runs->erase(pos); |
| if (kTraceRosAlloc) { |
| LOG(INFO) << "RosAlloc::BulkFree() : Erased run 0x" << std::hex |
| << reinterpret_cast<intptr_t>(run) |
| << " from full_runs_"; |
| } |
| DCHECK(full_runs->find(run) == full_runs->end()); |
| } |
| } else { |
| // If it was in a non full run set, remove it from the set. |
| DCHECK(full_runs->find(run) == full_runs->end()); |
| DCHECK(non_full_runs->find(run) != non_full_runs->end()); |
| non_full_runs->erase(run); |
| if (kTraceRosAlloc) { |
| LOG(INFO) << "RosAlloc::BulkFree() : Erased run 0x" << std::hex |
| << reinterpret_cast<intptr_t>(run) |
| << " from non_full_runs_"; |
| } |
| DCHECK(non_full_runs->find(run) == non_full_runs->end()); |
| } |
| if (!run_was_current) { |
| run->ZeroHeader(); |
| MutexLock mu(self, lock_); |
| FreePages(self, run, true); |
| } |
| } else { |
| // It is not completely free. If it wasn't the current run or |
| // already in the non-full run set (i.e., it was full) insert |
| // it into the non-full run set. |
| if (run == current_runs_[idx]) { |
| DCHECK(non_full_runs->find(run) == non_full_runs->end()); |
| DCHECK(full_runs->find(run) == full_runs->end()); |
| // If it was a current run, keep it. |
| } else if (run_was_full) { |
| // If it was full, remove it from the full run set (debug |
| // only) and insert into the non-full run set. |
| DCHECK(full_runs->find(run) != full_runs->end()); |
| DCHECK(non_full_runs->find(run) == non_full_runs->end()); |
| if (kIsDebugBuild) { |
| full_runs->erase(run); |
| if (kTraceRosAlloc) { |
| LOG(INFO) << "RosAlloc::BulkFree() : Erased run 0x" << std::hex |
| << reinterpret_cast<intptr_t>(run) |
| << " from full_runs_"; |
| } |
| } |
| non_full_runs->insert(run); |
| if (kTraceRosAlloc) { |
| LOG(INFO) << "RosAlloc::BulkFree() : Inserted run 0x" << std::hex |
| << reinterpret_cast<intptr_t>(run) |
| << " into non_full_runs_[" << std::dec << idx; |
| } |
| } else { |
| // If it was not full, so leave it in the non full run set. |
| DCHECK(full_runs->find(run) == full_runs->end()); |
| DCHECK(non_full_runs->find(run) != non_full_runs->end()); |
| } |
| } |
| } |
| } |
| return freed_bytes; |
| } |
| |
| std::string RosAlloc::DumpPageMap() { |
| std::ostringstream stream; |
| stream << "RosAlloc PageMap: " << std::endl; |
| lock_.AssertHeld(Thread::Current()); |
| size_t end = page_map_size_; |
| FreePageRun* curr_fpr = NULL; |
| size_t curr_fpr_size = 0; |
| size_t remaining_curr_fpr_size = 0; |
| size_t num_running_empty_pages = 0; |
| for (size_t i = 0; i < end; ++i) { |
| byte pm = page_map_[i]; |
| switch (pm) { |
| case kPageMapReleased: |
| // Fall-through. |
| case kPageMapEmpty: { |
| FreePageRun* fpr = reinterpret_cast<FreePageRun*>(base_ + i * kPageSize); |
| if (free_page_runs_.find(fpr) != free_page_runs_.end()) { |
| // Encountered a fresh free page run. |
| DCHECK_EQ(remaining_curr_fpr_size, static_cast<size_t>(0)); |
| DCHECK(fpr->IsFree()); |
| DCHECK(curr_fpr == NULL); |
| DCHECK_EQ(curr_fpr_size, static_cast<size_t>(0)); |
| curr_fpr = fpr; |
| curr_fpr_size = fpr->ByteSize(this); |
| DCHECK_EQ(curr_fpr_size % kPageSize, static_cast<size_t>(0)); |
| remaining_curr_fpr_size = curr_fpr_size - kPageSize; |
| stream << "[" << i << "]=" << (pm == kPageMapReleased ? "Released" : "Empty") |
| << " (FPR start) fpr_size=" << curr_fpr_size |
| << " remaining_fpr_size=" << remaining_curr_fpr_size << std::endl; |
| if (remaining_curr_fpr_size == 0) { |
| // Reset at the end of the current free page run. |
| curr_fpr = NULL; |
| curr_fpr_size = 0; |
| } |
| stream << "curr_fpr=0x" << std::hex << reinterpret_cast<intptr_t>(curr_fpr) << std::endl; |
| DCHECK_EQ(num_running_empty_pages, static_cast<size_t>(0)); |
| } else { |
| // Still part of the current free page run. |
| DCHECK_NE(num_running_empty_pages, static_cast<size_t>(0)); |
| DCHECK(curr_fpr != NULL && curr_fpr_size > 0 && remaining_curr_fpr_size > 0); |
| DCHECK_EQ(remaining_curr_fpr_size % kPageSize, static_cast<size_t>(0)); |
| DCHECK_GE(remaining_curr_fpr_size, static_cast<size_t>(kPageSize)); |
| remaining_curr_fpr_size -= kPageSize; |
| stream << "[" << i << "]=Empty (FPR part)" |
| << " remaining_fpr_size=" << remaining_curr_fpr_size << std::endl; |
| if (remaining_curr_fpr_size == 0) { |
| // Reset at the end of the current free page run. |
| curr_fpr = NULL; |
| curr_fpr_size = 0; |
| } |
| } |
| num_running_empty_pages++; |
| break; |
| } |
| case kPageMapLargeObject: { |
| DCHECK_EQ(remaining_curr_fpr_size, static_cast<size_t>(0)); |
| num_running_empty_pages = 0; |
| stream << "[" << i << "]=Large (start)" << std::endl; |
| break; |
| } |
| case kPageMapLargeObjectPart: |
| DCHECK_EQ(remaining_curr_fpr_size, static_cast<size_t>(0)); |
| num_running_empty_pages = 0; |
| stream << "[" << i << "]=Large (part)" << std::endl; |
| break; |
| case kPageMapRun: { |
| DCHECK_EQ(remaining_curr_fpr_size, static_cast<size_t>(0)); |
| num_running_empty_pages = 0; |
| Run* run = reinterpret_cast<Run*>(base_ + i * kPageSize); |
| size_t idx = run->size_bracket_idx_; |
| stream << "[" << i << "]=Run (start)" |
| << " idx=" << idx |
| << " numOfPages=" << numOfPages[idx] |
| << " is_thread_local=" << run->is_thread_local_ |
| << " is_all_free=" << (run->IsAllFree() ? 1 : 0) |
| << std::endl; |
| break; |
| } |
| case kPageMapRunPart: |
| DCHECK_EQ(remaining_curr_fpr_size, static_cast<size_t>(0)); |
| num_running_empty_pages = 0; |
| stream << "[" << i << "]=Run (part)" << std::endl; |
| break; |
| default: |
| stream << "[" << i << "]=Unrecognizable page map type: " << pm; |
| break; |
| } |
| } |
| return stream.str(); |
| } |
| |
| size_t RosAlloc::UsableSize(void* ptr) { |
| DCHECK_LE(base_, ptr); |
| DCHECK_LT(ptr, base_ + footprint_); |
| size_t pm_idx = RoundDownToPageMapIndex(ptr); |
| MutexLock mu(Thread::Current(), lock_); |
| switch (page_map_[pm_idx]) { |
| case kPageMapReleased: |
| // Fall-through. |
| case kPageMapEmpty: |
| LOG(FATAL) << "Unreachable - " << __PRETTY_FUNCTION__ << ": pm_idx=" << pm_idx << ", ptr=" |
| << std::hex << reinterpret_cast<intptr_t>(ptr); |
| break; |
| case kPageMapLargeObject: { |
| size_t num_pages = 1; |
| size_t idx = pm_idx + 1; |
| size_t end = page_map_size_; |
| while (idx < end && page_map_[idx] == kPageMapLargeObjectPart) { |
| num_pages++; |
| idx++; |
| } |
| return num_pages * kPageSize; |
| } |
| case kPageMapLargeObjectPart: |
| LOG(FATAL) << "Unreachable - " << __PRETTY_FUNCTION__ << ": pm_idx=" << pm_idx << ", ptr=" |
| << std::hex << reinterpret_cast<intptr_t>(ptr); |
| break; |
| case kPageMapRun: |
| case kPageMapRunPart: { |
| // Find the beginning of the run. |
| while (page_map_[pm_idx] != kPageMapRun) { |
| pm_idx--; |
| DCHECK_LT(pm_idx, capacity_ / kPageSize); |
| } |
| DCHECK_EQ(page_map_[pm_idx], kPageMapRun); |
| Run* run = reinterpret_cast<Run*>(base_ + pm_idx * kPageSize); |
| DCHECK_EQ(run->magic_num_, kMagicNum); |
| size_t idx = run->size_bracket_idx_; |
| size_t offset_from_slot_base = reinterpret_cast<byte*>(ptr) |
| - (reinterpret_cast<byte*>(run) + headerSizes[idx]); |
| DCHECK_EQ(offset_from_slot_base % bracketSizes[idx], static_cast<size_t>(0)); |
| return IndexToBracketSize(idx); |
| } |
| default: { |
| LOG(FATAL) << "Unreachable - page map type: " << page_map_[pm_idx]; |
| break; |
| } |
| } |
| return 0; |
| } |
| |
| bool RosAlloc::Trim() { |
| MutexLock mu(Thread::Current(), lock_); |
| FreePageRun* last_free_page_run; |
| DCHECK_EQ(footprint_ % kPageSize, static_cast<size_t>(0)); |
| auto it = free_page_runs_.rbegin(); |
| if (it != free_page_runs_.rend() && (last_free_page_run = *it)->End(this) == base_ + footprint_) { |
| // Remove the last free page run, if any. |
| DCHECK(last_free_page_run->IsFree()); |
| DCHECK(IsFreePage(ToPageMapIndex(last_free_page_run))); |
| DCHECK_EQ(last_free_page_run->ByteSize(this) % kPageSize, static_cast<size_t>(0)); |
| DCHECK_EQ(last_free_page_run->End(this), base_ + footprint_); |
| free_page_runs_.erase(last_free_page_run); |
| size_t decrement = last_free_page_run->ByteSize(this); |
| size_t new_footprint = footprint_ - decrement; |
| DCHECK_EQ(new_footprint % kPageSize, static_cast<size_t>(0)); |
| size_t new_num_of_pages = new_footprint / kPageSize; |
| DCHECK_GE(page_map_size_, new_num_of_pages); |
| // Zero out the tail of the page map. |
| byte* zero_begin = const_cast<byte*>(page_map_) + new_num_of_pages; |
| byte* madvise_begin = AlignUp(zero_begin, kPageSize); |
| DCHECK_LE(madvise_begin, page_map_mem_map_->End()); |
| size_t madvise_size = page_map_mem_map_->End() - madvise_begin; |
| if (madvise_size > 0) { |
| DCHECK_ALIGNED(madvise_begin, kPageSize); |
| DCHECK_EQ(RoundUp(madvise_size, kPageSize), madvise_size); |
| if (!kMadviseZeroes) { |
| memset(madvise_begin, 0, madvise_size); |
| } |
| CHECK_EQ(madvise(madvise_begin, madvise_size, MADV_DONTNEED), 0); |
| } |
| if (madvise_begin - zero_begin) { |
| memset(zero_begin, 0, madvise_begin - zero_begin); |
| } |
| page_map_size_ = new_num_of_pages; |
| free_page_run_size_map_.resize(new_num_of_pages); |
| DCHECK_EQ(free_page_run_size_map_.size(), new_num_of_pages); |
| art_heap_rosalloc_morecore(this, -(static_cast<intptr_t>(decrement))); |
| if (kTraceRosAlloc) { |
| LOG(INFO) << "RosAlloc::Trim() : decreased the footprint from " |
| << footprint_ << " to " << new_footprint; |
| } |
| DCHECK_LT(new_footprint, footprint_); |
| DCHECK_LT(new_footprint, capacity_); |
| footprint_ = new_footprint; |
| return true; |
| } |
| return false; |
| } |
| |
| void RosAlloc::InspectAll(void (*handler)(void* start, void* end, size_t used_bytes, void* callback_arg), |
| void* arg) { |
| // Note: no need to use this to release pages as we already do so in FreePages(). |
| if (handler == NULL) { |
| return; |
| } |
| MutexLock mu(Thread::Current(), lock_); |
| size_t pm_end = page_map_size_; |
| size_t i = 0; |
| while (i < pm_end) { |
| byte pm = page_map_[i]; |
| switch (pm) { |
| case kPageMapReleased: |
| // Fall-through. |
| case kPageMapEmpty: { |
| // The start of a free page run. |
| FreePageRun* fpr = reinterpret_cast<FreePageRun*>(base_ + i * kPageSize); |
| DCHECK(free_page_runs_.find(fpr) != free_page_runs_.end()); |
| size_t fpr_size = fpr->ByteSize(this); |
| DCHECK(IsAligned<kPageSize>(fpr_size)); |
| void* start = fpr; |
| if (kIsDebugBuild) { |
| // In the debug build, the first page of a free page run |
| // contains a magic number for debugging. Exclude it. |
| start = reinterpret_cast<byte*>(fpr) + kPageSize; |
| } |
| void* end = reinterpret_cast<byte*>(fpr) + fpr_size; |
| handler(start, end, 0, arg); |
| size_t num_pages = fpr_size / kPageSize; |
| if (kIsDebugBuild) { |
| for (size_t j = i + 1; j < i + num_pages; ++j) { |
| DCHECK(IsFreePage(j)); |
| } |
| } |
| i += fpr_size / kPageSize; |
| DCHECK_LE(i, pm_end); |
| break; |
| } |
| case kPageMapLargeObject: { |
| // The start of a large object. |
| size_t num_pages = 1; |
| size_t idx = i + 1; |
| while (idx < pm_end && page_map_[idx] == kPageMapLargeObjectPart) { |
| num_pages++; |
| idx++; |
| } |
| void* start = base_ + i * kPageSize; |
| void* end = base_ + (i + num_pages) * kPageSize; |
| size_t used_bytes = num_pages * kPageSize; |
| handler(start, end, used_bytes, arg); |
| if (kIsDebugBuild) { |
| for (size_t j = i + 1; j < i + num_pages; ++j) { |
| DCHECK_EQ(page_map_[j], kPageMapLargeObjectPart); |
| } |
| } |
| i += num_pages; |
| DCHECK_LE(i, pm_end); |
| break; |
| } |
| case kPageMapLargeObjectPart: |
| LOG(FATAL) << "Unreachable - page map type: " << pm; |
| break; |
| case kPageMapRun: { |
| // The start of a run. |
| Run* run = reinterpret_cast<Run*>(base_ + i * kPageSize); |
| DCHECK_EQ(run->magic_num_, kMagicNum); |
| // The dedicated full run doesn't contain any real allocations, don't visit the slots in |
| // there. |
| run->InspectAllSlots(handler, arg); |
| size_t num_pages = numOfPages[run->size_bracket_idx_]; |
| if (kIsDebugBuild) { |
| for (size_t j = i + 1; j < i + num_pages; ++j) { |
| DCHECK_EQ(page_map_[j], kPageMapRunPart); |
| } |
| } |
| i += num_pages; |
| DCHECK_LE(i, pm_end); |
| break; |
| } |
| case kPageMapRunPart: |
| LOG(FATAL) << "Unreachable - page map type: " << pm; |
| break; |
| default: |
| LOG(FATAL) << "Unreachable - page map type: " << pm; |
| break; |
| } |
| } |
| } |
| |
| size_t RosAlloc::Footprint() { |
| MutexLock mu(Thread::Current(), lock_); |
| return footprint_; |
| } |
| |
| size_t RosAlloc::FootprintLimit() { |
| MutexLock mu(Thread::Current(), lock_); |
| return capacity_; |
| } |
| |
| void RosAlloc::SetFootprintLimit(size_t new_capacity) { |
| MutexLock mu(Thread::Current(), lock_); |
| DCHECK_EQ(RoundUp(new_capacity, kPageSize), new_capacity); |
| // Only growing is supported here. But Trim() is supported. |
| if (capacity_ < new_capacity) { |
| CHECK_LE(new_capacity, max_capacity_); |
| capacity_ = new_capacity; |
| VLOG(heap) << "new capacity=" << capacity_; |
| } |
| } |
| |
| void RosAlloc::RevokeThreadLocalRuns(Thread* thread) { |
| Thread* self = Thread::Current(); |
| // Avoid race conditions on the bulk free bit maps with BulkFree() (GC). |
| ReaderMutexLock wmu(self, bulk_free_lock_); |
| for (size_t idx = 0; idx < kNumThreadLocalSizeBrackets; idx++) { |
| MutexLock mu(self, *size_bracket_locks_[idx]); |
| Run* thread_local_run = reinterpret_cast<Run*>(thread->GetRosAllocRun(idx)); |
| CHECK(thread_local_run != nullptr); |
| // Invalid means already revoked. |
| DCHECK(thread_local_run->IsThreadLocal()); |
| if (thread_local_run != dedicated_full_run_) { |
| thread->SetRosAllocRun(idx, dedicated_full_run_); |
| DCHECK_EQ(thread_local_run->magic_num_, kMagicNum); |
| // Note the thread local run may not be full here. |
| bool dont_care; |
| thread_local_run->MergeThreadLocalFreeBitMapToAllocBitMap(&dont_care); |
| thread_local_run->SetIsThreadLocal(false); |
| thread_local_run->MergeBulkFreeBitMapIntoAllocBitMap(); |
| DCHECK(non_full_runs_[idx].find(thread_local_run) == non_full_runs_[idx].end()); |
| DCHECK(full_runs_[idx].find(thread_local_run) == full_runs_[idx].end()); |
| RevokeRun(self, idx, thread_local_run); |
| } |
| } |
| } |
| |
| void RosAlloc::RevokeRun(Thread* self, size_t idx, Run* run) { |
| size_bracket_locks_[idx]->AssertHeld(self); |
| DCHECK(run != dedicated_full_run_); |
| if (run->IsFull()) { |
| if (kIsDebugBuild) { |
| full_runs_[idx].insert(run); |
| DCHECK(full_runs_[idx].find(run) != full_runs_[idx].end()); |
| if (kTraceRosAlloc) { |
| LOG(INFO) << __PRETTY_FUNCTION__ << " : Inserted run 0x" << std::hex |
| << reinterpret_cast<intptr_t>(run) |
| << " into full_runs_[" << std::dec << idx << "]"; |
| } |
| } |
| } else if (run->IsAllFree()) { |
| run->ZeroHeader(); |
| MutexLock mu(self, lock_); |
| FreePages(self, run, true); |
| } else { |
| non_full_runs_[idx].insert(run); |
| DCHECK(non_full_runs_[idx].find(run) != non_full_runs_[idx].end()); |
| if (kTraceRosAlloc) { |
| LOG(INFO) << __PRETTY_FUNCTION__ << " : Inserted run 0x" << std::hex |
| << reinterpret_cast<intptr_t>(run) |
| << " into non_full_runs_[" << std::dec << idx << "]"; |
| } |
| } |
| } |
| |
| void RosAlloc::RevokeThreadUnsafeCurrentRuns() { |
| // Revoke the current runs which share the same idx as thread local runs. |
| Thread* self = Thread::Current(); |
| for (size_t idx = 0; idx < kNumThreadLocalSizeBrackets; ++idx) { |
| MutexLock mu(self, *size_bracket_locks_[idx]); |
| if (current_runs_[idx] != dedicated_full_run_) { |
| RevokeRun(self, idx, current_runs_[idx]); |
| current_runs_[idx] = dedicated_full_run_; |
| } |
| } |
| } |
| |
| void RosAlloc::RevokeAllThreadLocalRuns() { |
| // This is called when a mutator thread won't allocate such as at |
| // the Zygote creation time or during the GC pause. |
| MutexLock mu(Thread::Current(), *Locks::runtime_shutdown_lock_); |
| MutexLock mu2(Thread::Current(), *Locks::thread_list_lock_); |
| std::list<Thread*> thread_list = Runtime::Current()->GetThreadList()->GetList(); |
| for (Thread* thread : thread_list) { |
| RevokeThreadLocalRuns(thread); |
| } |
| RevokeThreadUnsafeCurrentRuns(); |
| } |
| |
| void RosAlloc::AssertThreadLocalRunsAreRevoked(Thread* thread) { |
| if (kIsDebugBuild) { |
| Thread* self = Thread::Current(); |
| // Avoid race conditions on the bulk free bit maps with BulkFree() (GC). |
| ReaderMutexLock wmu(self, bulk_free_lock_); |
| for (size_t idx = 0; idx < kNumThreadLocalSizeBrackets; idx++) { |
| MutexLock mu(self, *size_bracket_locks_[idx]); |
| Run* thread_local_run = reinterpret_cast<Run*>(thread->GetRosAllocRun(idx)); |
| DCHECK(thread_local_run == nullptr || thread_local_run == dedicated_full_run_); |
| } |
| } |
| } |
| |
| void RosAlloc::AssertAllThreadLocalRunsAreRevoked() { |
| if (kIsDebugBuild) { |
| Thread* self = Thread::Current(); |
| MutexLock mu(self, *Locks::runtime_shutdown_lock_); |
| MutexLock mu2(self, *Locks::thread_list_lock_); |
| std::list<Thread*> thread_list = Runtime::Current()->GetThreadList()->GetList(); |
| for (Thread* t : thread_list) { |
| AssertThreadLocalRunsAreRevoked(t); |
| } |
| for (size_t idx = 0; idx < kNumThreadLocalSizeBrackets; ++idx) { |
| MutexLock mu(self, *size_bracket_locks_[idx]); |
| CHECK_EQ(current_runs_[idx], dedicated_full_run_); |
| } |
| } |
| } |
| |
| void RosAlloc::Initialize() { |
| // bracketSizes. |
| for (size_t i = 0; i < kNumOfSizeBrackets; i++) { |
| if (i < kNumOfSizeBrackets - 2) { |
| bracketSizes[i] = 16 * (i + 1); |
| } else if (i == kNumOfSizeBrackets - 2) { |
| bracketSizes[i] = 1 * KB; |
| } else { |
| DCHECK_EQ(i, kNumOfSizeBrackets - 1); |
| bracketSizes[i] = 2 * KB; |
| } |
| if (kTraceRosAlloc) { |
| LOG(INFO) << "bracketSizes[" << i << "]=" << bracketSizes[i]; |
| } |
| } |
| // numOfPages. |
| for (size_t i = 0; i < kNumOfSizeBrackets; i++) { |
| if (i < 4) { |
| numOfPages[i] = 1; |
| } else if (i < 8) { |
| numOfPages[i] = 2; |
| } else if (i < 16) { |
| numOfPages[i] = 4; |
| } else if (i < 32) { |
| numOfPages[i] = 8; |
| } else if (i == 32) { |
| DCHECK_EQ(i, kNumOfSizeBrackets - 2); |
| numOfPages[i] = 16; |
| } else { |
| DCHECK_EQ(i, kNumOfSizeBrackets - 1); |
| numOfPages[i] = 32; |
| } |
| if (kTraceRosAlloc) { |
| LOG(INFO) << "numOfPages[" << i << "]=" << numOfPages[i]; |
| } |
| } |
| // Compute numOfSlots and slotOffsets. |
| for (size_t i = 0; i < kNumOfSizeBrackets; i++) { |
| size_t bracket_size = bracketSizes[i]; |
| size_t run_size = kPageSize * numOfPages[i]; |
| size_t max_num_of_slots = run_size / bracket_size; |
| // Compute the actual number of slots by taking the header and |
| // alignment into account. |
| size_t fixed_header_size = RoundUp(Run::fixed_header_size(), sizeof(uint32_t)); |
| DCHECK_EQ(fixed_header_size, static_cast<size_t>(8)); |
| size_t header_size = 0; |
| size_t bulk_free_bit_map_offset = 0; |
| size_t thread_local_free_bit_map_offset = 0; |
| size_t num_of_slots = 0; |
| // Search for the maximum number of slots that allows enough space |
| // for the header (including the bit maps.) |
| for (int s = max_num_of_slots; s >= 0; s--) { |
| size_t tmp_slots_size = bracket_size * s; |
| size_t tmp_bit_map_size = RoundUp(s, sizeof(uint32_t) * kBitsPerByte) / kBitsPerByte; |
| size_t tmp_bulk_free_bit_map_size = tmp_bit_map_size; |
| size_t tmp_bulk_free_bit_map_off = fixed_header_size + tmp_bit_map_size; |
| size_t tmp_thread_local_free_bit_map_size = tmp_bit_map_size; |
| size_t tmp_thread_local_free_bit_map_off = tmp_bulk_free_bit_map_off + tmp_bulk_free_bit_map_size; |
| size_t tmp_unaligned_header_size = tmp_thread_local_free_bit_map_off + tmp_thread_local_free_bit_map_size; |
| // Align up the unaligned header size. bracket_size may not be a power of two. |
| size_t tmp_header_size = (tmp_unaligned_header_size % bracket_size == 0) ? |
| tmp_unaligned_header_size : |
| tmp_unaligned_header_size + (bracket_size - tmp_unaligned_header_size % bracket_size); |
| DCHECK_EQ(tmp_header_size % bracket_size, static_cast<size_t>(0)); |
| DCHECK_EQ(tmp_header_size % 8, static_cast<size_t>(0)); |
| if (tmp_slots_size + tmp_header_size <= run_size) { |
| // Found the right number of slots, that is, there was enough |
| // space for the header (including the bit maps.) |
| num_of_slots = s; |
| header_size = tmp_header_size; |
| bulk_free_bit_map_offset = tmp_bulk_free_bit_map_off; |
| thread_local_free_bit_map_offset = tmp_thread_local_free_bit_map_off; |
| break; |
| } |
| } |
| DCHECK(num_of_slots > 0 && header_size > 0 && bulk_free_bit_map_offset > 0); |
| // Add the padding for the alignment remainder. |
| header_size += run_size % bracket_size; |
| DCHECK_EQ(header_size + num_of_slots * bracket_size, run_size); |
| numOfSlots[i] = num_of_slots; |
| headerSizes[i] = header_size; |
| bulkFreeBitMapOffsets[i] = bulk_free_bit_map_offset; |
| threadLocalFreeBitMapOffsets[i] = thread_local_free_bit_map_offset; |
| if (kTraceRosAlloc) { |
| LOG(INFO) << "numOfSlots[" << i << "]=" << numOfSlots[i] |
| << ", headerSizes[" << i << "]=" << headerSizes[i] |
| << ", bulkFreeBitMapOffsets[" << i << "]=" << bulkFreeBitMapOffsets[i] |
| << ", threadLocalFreeBitMapOffsets[" << i << "]=" << threadLocalFreeBitMapOffsets[i];; |
| } |
| } |
| // Fill the alloc bitmap so nobody can successfully allocate from it. |
| if (kIsDebugBuild) { |
| dedicated_full_run_->magic_num_ = kMagicNum; |
| } |
| // It doesn't matter which size bracket we use since the main goal is to have the allocation |
| // fail 100% of the time you attempt to allocate into the dedicated full run. |
| dedicated_full_run_->size_bracket_idx_ = 0; |
| dedicated_full_run_->FillAllocBitMap(); |
| dedicated_full_run_->SetIsThreadLocal(true); |
| } |
| |
| void RosAlloc::BytesAllocatedCallback(void* start, void* end, size_t used_bytes, void* arg) { |
| if (used_bytes == 0) { |
| return; |
| } |
| size_t* bytes_allocated = reinterpret_cast<size_t*>(arg); |
| *bytes_allocated += used_bytes; |
| } |
| |
| void RosAlloc::ObjectsAllocatedCallback(void* start, void* end, size_t used_bytes, void* arg) { |
| if (used_bytes == 0) { |
| return; |
| } |
| size_t* objects_allocated = reinterpret_cast<size_t*>(arg); |
| ++(*objects_allocated); |
| } |
| |
| void RosAlloc::Verify() { |
| Thread* self = Thread::Current(); |
| CHECK(Locks::mutator_lock_->IsExclusiveHeld(self)) |
| << "The mutator locks isn't exclusively locked at " << __PRETTY_FUNCTION__; |
| MutexLock mu(self, *Locks::thread_list_lock_); |
| ReaderMutexLock wmu(self, bulk_free_lock_); |
| std::vector<Run*> runs; |
| { |
| MutexLock mu(self, lock_); |
| size_t pm_end = page_map_size_; |
| size_t i = 0; |
| while (i < pm_end) { |
| byte pm = page_map_[i]; |
| switch (pm) { |
| case kPageMapReleased: |
| // Fall-through. |
| case kPageMapEmpty: { |
| // The start of a free page run. |
| FreePageRun* fpr = reinterpret_cast<FreePageRun*>(base_ + i * kPageSize); |
| DCHECK_EQ(fpr->magic_num_, kMagicNumFree); |
| CHECK(free_page_runs_.find(fpr) != free_page_runs_.end()) |
| << "An empty page must belong to the free page run set"; |
| size_t fpr_size = fpr->ByteSize(this); |
| CHECK(IsAligned<kPageSize>(fpr_size)) |
| << "A free page run size isn't page-aligned : " << fpr_size; |
| size_t num_pages = fpr_size / kPageSize; |
| CHECK_GT(num_pages, static_cast<uintptr_t>(0)) |
| << "A free page run size must be > 0 : " << fpr_size; |
| for (size_t j = i + 1; j < i + num_pages; ++j) { |
| CHECK(IsFreePage(j)) |
| << "A mismatch between the page map table for kPageMapEmpty " |
| << " at page index " << j |
| << " and the free page run size : page index range : " |
| << i << " to " << (i + num_pages) << std::endl << DumpPageMap(); |
| } |
| i += num_pages; |
| CHECK_LE(i, pm_end) << "Page map index " << i << " out of range < " << pm_end |
| << std::endl << DumpPageMap(); |
| break; |
| } |
| case kPageMapLargeObject: { |
| // The start of a large object. |
| size_t num_pages = 1; |
| size_t idx = i + 1; |
| while (idx < pm_end && page_map_[idx] == kPageMapLargeObjectPart) { |
| num_pages++; |
| idx++; |
| } |
| void* start = base_ + i * kPageSize; |
| mirror::Object* obj = reinterpret_cast<mirror::Object*>(start); |
| size_t obj_size = obj->SizeOf(); |
| CHECK_GT(obj_size, kLargeSizeThreshold) |
| << "A rosalloc large object size must be > " << kLargeSizeThreshold; |
| CHECK_EQ(num_pages, RoundUp(obj_size, kPageSize) / kPageSize) |
| << "A rosalloc large object size " << obj_size |
| << " does not match the page map table " << (num_pages * kPageSize) |
| << std::endl << DumpPageMap(); |
| i += num_pages; |
| CHECK_LE(i, pm_end) << "Page map index " << i << " out of range < " << pm_end |
| << std::endl << DumpPageMap(); |
| break; |
| } |
| case kPageMapLargeObjectPart: |
| LOG(FATAL) << "Unreachable - page map type: " << pm << std::endl << DumpPageMap(); |
| break; |
| case kPageMapRun: { |
| // The start of a run. |
| Run* run = reinterpret_cast<Run*>(base_ + i * kPageSize); |
| DCHECK_EQ(run->magic_num_, kMagicNum); |
| size_t idx = run->size_bracket_idx_; |
| CHECK_LT(idx, kNumOfSizeBrackets) << "Out of range size bracket index : " << idx; |
| size_t num_pages = numOfPages[idx]; |
| CHECK_GT(num_pages, static_cast<uintptr_t>(0)) |
| << "Run size must be > 0 : " << num_pages; |
| for (size_t j = i + 1; j < i + num_pages; ++j) { |
| CHECK_EQ(page_map_[j], kPageMapRunPart) |
| << "A mismatch between the page map table for kPageMapRunPart " |
| << " at page index " << j |
| << " and the run size : page index range " << i << " to " << (i + num_pages) |
| << std::endl << DumpPageMap(); |
| } |
| // Don't verify the dedicated_full_run_ since it doesn't have any real allocations. |
| runs.push_back(run); |
| i += num_pages; |
| CHECK_LE(i, pm_end) << "Page map index " << i << " out of range < " << pm_end |
| << std::endl << DumpPageMap(); |
| break; |
| } |
| case kPageMapRunPart: |
| // Fall-through. |
| default: |
| LOG(FATAL) << "Unreachable - page map type: " << pm << std::endl << DumpPageMap(); |
| break; |
| } |
| } |
| } |
| std::list<Thread*> threads = Runtime::Current()->GetThreadList()->GetList(); |
| for (Thread* thread : threads) { |
| for (size_t i = 0; i < kNumThreadLocalSizeBrackets; ++i) { |
| MutexLock mu(self, *size_bracket_locks_[i]); |
| Run* thread_local_run = reinterpret_cast<Run*>(thread->GetRosAllocRun(i)); |
| CHECK(thread_local_run != nullptr); |
| CHECK(thread_local_run->IsThreadLocal()); |
| CHECK(thread_local_run == dedicated_full_run_ || |
| thread_local_run->size_bracket_idx_ == i); |
| } |
| } |
| for (size_t i = 0; i < kNumOfSizeBrackets; i++) { |
| MutexLock mu(self, *size_bracket_locks_[i]); |
| Run* current_run = current_runs_[i]; |
| CHECK(current_run != nullptr); |
| if (current_run != dedicated_full_run_) { |
| // The dedicated full run is currently marked as thread local. |
| CHECK(!current_run->IsThreadLocal()); |
| CHECK_EQ(current_run->size_bracket_idx_, i); |
| } |
| } |
| // Call Verify() here for the lock order. |
| for (auto& run : runs) { |
| run->Verify(self, this); |
| } |
| } |
| |
| void RosAlloc::Run::Verify(Thread* self, RosAlloc* rosalloc) { |
| DCHECK_EQ(magic_num_, kMagicNum) << "Bad magic number : " << Dump(); |
| const size_t idx = size_bracket_idx_; |
| CHECK_LT(idx, kNumOfSizeBrackets) << "Out of range size bracket index : " << Dump(); |
| byte* slot_base = reinterpret_cast<byte*>(this) + headerSizes[idx]; |
| const size_t num_slots = numOfSlots[idx]; |
| const size_t num_vec = RoundUp(num_slots, 32) / 32; |
| CHECK_GT(num_vec, 0U); |
| size_t bracket_size = IndexToBracketSize(idx); |
| CHECK_EQ(slot_base + num_slots * bracket_size, |
| reinterpret_cast<byte*>(this) + numOfPages[idx] * kPageSize) |
| << "Mismatch in the end address of the run " << Dump(); |
| // Check that the bulk free bitmap is clean. It's only used during BulkFree(). |
| CHECK(IsBulkFreeBitmapClean()) << "The bulk free bit map isn't clean " << Dump(); |
| uint32_t last_word_mask = GetBitmapLastVectorMask(num_slots, num_vec); |
| // Make sure all the bits at the end of the run are set so that we don't allocate there. |
| CHECK_EQ(alloc_bit_map_[num_vec - 1] & last_word_mask, last_word_mask); |
| // Ensure that the first bitmap index is valid. |
| CHECK_LT(first_search_vec_idx_, num_vec); |
| // Check the thread local runs, the current runs, and the run sets. |
| if (IsThreadLocal()) { |
| // If it's a thread local run, then it must be pointed to by an owner thread. |
| bool owner_found = false; |
| std::list<Thread*> thread_list = Runtime::Current()->GetThreadList()->GetList(); |
| for (auto it = thread_list.begin(); it != thread_list.end(); ++it) { |
| Thread* thread = *it; |
| for (size_t i = 0; i < kNumThreadLocalSizeBrackets; i++) { |
| MutexLock mu(self, *rosalloc->size_bracket_locks_[i]); |
| Run* thread_local_run = reinterpret_cast<Run*>(thread->GetRosAllocRun(i)); |
| if (thread_local_run == this) { |
| CHECK(!owner_found) |
| << "A thread local run has more than one owner thread " << Dump(); |
| CHECK_EQ(i, idx) |
| << "A mismatching size bracket index in a thread local run " << Dump(); |
| owner_found = true; |
| } |
| } |
| } |
| CHECK(owner_found) << "A thread local run has no owner thread " << Dump(); |
| } else { |
| // If it's not thread local, check that the thread local free bitmap is clean. |
| CHECK(IsThreadLocalFreeBitmapClean()) |
| << "A non-thread-local run's thread local free bitmap isn't clean " |
| << Dump(); |
| // Check if it's a current run for the size bucket. |
| bool is_current_run = false; |
| for (size_t i = 0; i < kNumOfSizeBrackets; i++) { |
| MutexLock mu(self, *rosalloc->size_bracket_locks_[i]); |
| Run* current_run = rosalloc->current_runs_[i]; |
| if (idx == i) { |
| if (this == current_run) { |
| is_current_run = true; |
| } |
| } else { |
| // If the size bucket index does not match, then it must not |
| // be a current run. |
| CHECK_NE(this, current_run) |
| << "A current run points to a run with a wrong size bracket index " << Dump(); |
| } |
| } |
| // If it's neither a thread local or current run, then it must be |
| // in a run set. |
| if (!is_current_run) { |
| MutexLock mu(self, rosalloc->lock_); |
| std::set<Run*>& non_full_runs = rosalloc->non_full_runs_[idx]; |
| // If it's all free, it must be a free page run rather than a run. |
| CHECK(!IsAllFree()) << "A free run must be in a free page run set " << Dump(); |
| if (!IsFull()) { |
| // If it's not full, it must in the non-full run set. |
| CHECK(non_full_runs.find(this) != non_full_runs.end()) |
| << "A non-full run isn't in the non-full run set " << Dump(); |
| } else { |
| // If it's full, it must in the full run set (debug build only.) |
| if (kIsDebugBuild) { |
| std::unordered_set<Run*, hash_run, eq_run>& full_runs = rosalloc->full_runs_[idx]; |
| CHECK(full_runs.find(this) != full_runs.end()) |
| << " A full run isn't in the full run set " << Dump(); |
| } |
| } |
| } |
| } |
| // Check each slot. |
| size_t slots = 0; |
| for (size_t v = 0; v < num_vec; v++, slots += 32) { |
| DCHECK_GE(num_slots, slots) << "Out of bounds"; |
| uint32_t vec = alloc_bit_map_[v]; |
| uint32_t thread_local_free_vec = ThreadLocalFreeBitMap()[v]; |
| size_t end = std::min(num_slots - slots, static_cast<size_t>(32)); |
| for (size_t i = 0; i < end; ++i) { |
| bool is_allocated = ((vec >> i) & 0x1) != 0; |
| // If a thread local run, slots may be marked freed in the |
| // thread local free bitmap. |
| bool is_thread_local_freed = IsThreadLocal() && ((thread_local_free_vec >> i) & 0x1) != 0; |
| if (is_allocated && !is_thread_local_freed) { |
| byte* slot_addr = slot_base + (slots + i) * bracket_size; |
| mirror::Object* obj = reinterpret_cast<mirror::Object*>(slot_addr); |
| size_t obj_size = obj->SizeOf(); |
| CHECK_LE(obj_size, kLargeSizeThreshold) |
| << "A run slot contains a large object " << Dump(); |
| CHECK_EQ(SizeToIndex(obj_size), idx) |
| << PrettyTypeOf(obj) << " " |
| << "obj_size=" << obj_size << ", idx=" << idx << " " |
| << "A run slot contains an object with wrong size " << Dump(); |
| } |
| } |
| } |
| } |
| |
| size_t RosAlloc::ReleasePages() { |
| VLOG(heap) << "RosAlloc::ReleasePages()"; |
| DCHECK(!DoesReleaseAllPages()); |
| Thread* self = Thread::Current(); |
| size_t reclaimed_bytes = 0; |
| size_t i = 0; |
| // Check the page map size which might have changed due to grow/shrink. |
| while (i < page_map_size_) { |
| // Reading the page map without a lock is racy but the race is benign since it should only |
| // result in occasionally not releasing pages which we could release. |
| byte pm = page_map_[i]; |
| switch (pm) { |
| case kPageMapEmpty: { |
| // Only lock if we have an empty page since we want to prevent other threads racing in. |
| MutexLock mu(self, lock_); |
| // Check that it's still empty after we acquired the lock since another thread could have |
| // raced in and placed an allocation here. |
| pm = page_map_[i]; |
| if (LIKELY(pm == kPageMapEmpty)) { |
| // The start of a free page run. Release pages. |
| FreePageRun* fpr = reinterpret_cast<FreePageRun*>(base_ + i * kPageSize); |
| DCHECK(free_page_runs_.find(fpr) != free_page_runs_.end()); |
| size_t fpr_size = fpr->ByteSize(this); |
| DCHECK(IsAligned<kPageSize>(fpr_size)); |
| byte* start = reinterpret_cast<byte*>(fpr); |
| reclaimed_bytes += ReleasePageRange(start, start + fpr_size); |
| i += fpr_size / kPageSize; |
| DCHECK_LE(i, page_map_size_); |
| } |
| break; |
| } |
| case kPageMapLargeObject: // Fall through. |
| case kPageMapLargeObjectPart: // Fall through. |
| case kPageMapRun: // Fall through. |
| case kPageMapRunPart: // Fall through. |
| case kPageMapReleased: // Fall through since it is already released. |
| ++i; |
| break; // Skip. |
| default: |
| LOG(FATAL) << "Unreachable - page map type: " << pm; |
| break; |
| } |
| } |
| return reclaimed_bytes; |
| } |
| |
| size_t RosAlloc::ReleasePageRange(byte* start, byte* end) { |
| DCHECK_ALIGNED(start, kPageSize); |
| DCHECK_ALIGNED(end, kPageSize); |
| DCHECK_LT(start, end); |
| if (kIsDebugBuild) { |
| // In the debug build, the first page of a free page run |
| // contains a magic number for debugging. Exclude it. |
| start += kPageSize; |
| } |
| if (!kMadviseZeroes) { |
| // TODO: Do this when we resurrect the page instead. |
| memset(start, 0, end - start); |
| } |
| CHECK_EQ(madvise(start, end - start, MADV_DONTNEED), 0); |
| size_t pm_idx = ToPageMapIndex(start); |
| size_t reclaimed_bytes = 0; |
| // Calculate reclaimed bytes and upate page map. |
| const size_t max_idx = pm_idx + (end - start) / kPageSize; |
| for (; pm_idx < max_idx; ++pm_idx) { |
| DCHECK(IsFreePage(pm_idx)); |
| if (page_map_[pm_idx] == kPageMapEmpty) { |
| // Mark the page as released and update how many bytes we released. |
| reclaimed_bytes += kPageSize; |
| page_map_[pm_idx] = kPageMapReleased; |
| } |
| } |
| return reclaimed_bytes; |
| } |
| |
| void RosAlloc::LogFragmentationAllocFailure(std::ostream& os, size_t failed_alloc_bytes) { |
| Thread* self = Thread::Current(); |
| size_t largest_continuous_free_pages = 0; |
| WriterMutexLock wmu(self, bulk_free_lock_); |
| MutexLock mu(self, lock_); |
| for (FreePageRun* fpr : free_page_runs_) { |
| largest_continuous_free_pages = std::max(largest_continuous_free_pages, |
| fpr->ByteSize(this)); |
| } |
| if (failed_alloc_bytes > kLargeSizeThreshold) { |
| // Large allocation. |
| size_t required_bytes = RoundUp(failed_alloc_bytes, kPageSize); |
| if (required_bytes > largest_continuous_free_pages) { |
| os << "; failed due to fragmentation (required continguous free " |
| << required_bytes << " bytes where largest contiguous free " |
| << largest_continuous_free_pages << " bytes)"; |
| } |
| } else { |
| // Non-large allocation. |
| size_t required_bytes = numOfPages[SizeToIndex(failed_alloc_bytes)] * kPageSize; |
| if (required_bytes > largest_continuous_free_pages) { |
| os << "; failed due to fragmentation (required continguous free " |
| << required_bytes << " bytes for a new buffer where largest contiguous free " |
| << largest_continuous_free_pages << " bytes)"; |
| } |
| } |
| } |
| |
| } // namespace allocator |
| } // namespace gc |
| } // namespace art |