| /* |
| * Copyright (C) 2011 The Android Open Source Project |
| * |
| * Licensed under the Apache License, Version 2.0 (the "License"); |
| * you may not use this file except in compliance with the License. |
| * You may obtain a copy of the License at |
| * |
| * http://www.apache.org/licenses/LICENSE-2.0 |
| * |
| * Unless required by applicable law or agreed to in writing, software |
| * distributed under the License is distributed on an "AS IS" BASIS, |
| * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| * See the License for the specific language governing permissions and |
| * limitations under the License. |
| */ |
| |
| #include "utils.h" |
| |
| #include <inttypes.h> |
| #include <pthread.h> |
| #include <sys/stat.h> |
| #include <sys/syscall.h> |
| #include <sys/types.h> |
| #include <sys/wait.h> |
| #include <unistd.h> |
| #include <memory> |
| |
| #include "base/stl_util.h" |
| #include "base/unix_file/fd_file.h" |
| #include "dex_file-inl.h" |
| #include "mirror/art_field-inl.h" |
| #include "mirror/art_method-inl.h" |
| #include "mirror/class-inl.h" |
| #include "mirror/class_loader.h" |
| #include "mirror/object-inl.h" |
| #include "mirror/object_array-inl.h" |
| #include "mirror/string.h" |
| #include "object_utils.h" |
| #include "os.h" |
| #include "scoped_thread_state_change.h" |
| #include "utf-inl.h" |
| |
| #if !defined(HAVE_POSIX_CLOCKS) |
| #include <sys/time.h> |
| #endif |
| |
| #if defined(HAVE_PRCTL) |
| #include <sys/prctl.h> |
| #endif |
| |
| #if defined(__APPLE__) |
| #include "AvailabilityMacros.h" // For MAC_OS_X_VERSION_MAX_ALLOWED |
| #include <sys/syscall.h> |
| #endif |
| |
| #include <backtrace/Backtrace.h> // For DumpNativeStack. |
| |
| #if defined(__linux__) |
| #include <linux/unistd.h> |
| #endif |
| |
| namespace art { |
| |
| pid_t GetTid() { |
| #if defined(__APPLE__) |
| uint64_t owner; |
| CHECK_PTHREAD_CALL(pthread_threadid_np, (NULL, &owner), __FUNCTION__); // Requires Mac OS 10.6 |
| return owner; |
| #else |
| // Neither bionic nor glibc exposes gettid(2). |
| return syscall(__NR_gettid); |
| #endif |
| } |
| |
| std::string GetThreadName(pid_t tid) { |
| std::string result; |
| if (ReadFileToString(StringPrintf("/proc/self/task/%d/comm", tid), &result)) { |
| result.resize(result.size() - 1); // Lose the trailing '\n'. |
| } else { |
| result = "<unknown>"; |
| } |
| return result; |
| } |
| |
| void GetThreadStack(pthread_t thread, void** stack_base, size_t* stack_size) { |
| #if defined(__APPLE__) |
| *stack_size = pthread_get_stacksize_np(thread); |
| void* stack_addr = pthread_get_stackaddr_np(thread); |
| |
| // Check whether stack_addr is the base or end of the stack. |
| // (On Mac OS 10.7, it's the end.) |
| int stack_variable; |
| if (stack_addr > &stack_variable) { |
| *stack_base = reinterpret_cast<byte*>(stack_addr) - *stack_size; |
| } else { |
| *stack_base = stack_addr; |
| } |
| #else |
| pthread_attr_t attributes; |
| CHECK_PTHREAD_CALL(pthread_getattr_np, (thread, &attributes), __FUNCTION__); |
| CHECK_PTHREAD_CALL(pthread_attr_getstack, (&attributes, stack_base, stack_size), __FUNCTION__); |
| CHECK_PTHREAD_CALL(pthread_attr_destroy, (&attributes), __FUNCTION__); |
| #endif |
| } |
| |
| bool ReadFileToString(const std::string& file_name, std::string* result) { |
| std::unique_ptr<File> file(new File); |
| if (!file->Open(file_name, O_RDONLY)) { |
| return false; |
| } |
| |
| std::vector<char> buf(8 * KB); |
| while (true) { |
| int64_t n = TEMP_FAILURE_RETRY(read(file->Fd(), &buf[0], buf.size())); |
| if (n == -1) { |
| return false; |
| } |
| if (n == 0) { |
| return true; |
| } |
| result->append(&buf[0], n); |
| } |
| } |
| |
| std::string GetIsoDate() { |
| time_t now = time(NULL); |
| tm tmbuf; |
| tm* ptm = localtime_r(&now, &tmbuf); |
| return StringPrintf("%04d-%02d-%02d %02d:%02d:%02d", |
| ptm->tm_year + 1900, ptm->tm_mon+1, ptm->tm_mday, |
| ptm->tm_hour, ptm->tm_min, ptm->tm_sec); |
| } |
| |
| uint64_t MilliTime() { |
| #if defined(HAVE_POSIX_CLOCKS) |
| timespec now; |
| clock_gettime(CLOCK_MONOTONIC, &now); |
| return static_cast<uint64_t>(now.tv_sec) * UINT64_C(1000) + now.tv_nsec / UINT64_C(1000000); |
| #else |
| timeval now; |
| gettimeofday(&now, NULL); |
| return static_cast<uint64_t>(now.tv_sec) * UINT64_C(1000) + now.tv_usec / UINT64_C(1000); |
| #endif |
| } |
| |
| uint64_t MicroTime() { |
| #if defined(HAVE_POSIX_CLOCKS) |
| timespec now; |
| clock_gettime(CLOCK_MONOTONIC, &now); |
| return static_cast<uint64_t>(now.tv_sec) * UINT64_C(1000000) + now.tv_nsec / UINT64_C(1000); |
| #else |
| timeval now; |
| gettimeofday(&now, NULL); |
| return static_cast<uint64_t>(now.tv_sec) * UINT64_C(1000000) + now.tv_usec; |
| #endif |
| } |
| |
| uint64_t NanoTime() { |
| #if defined(HAVE_POSIX_CLOCKS) |
| timespec now; |
| clock_gettime(CLOCK_MONOTONIC, &now); |
| return static_cast<uint64_t>(now.tv_sec) * UINT64_C(1000000000) + now.tv_nsec; |
| #else |
| timeval now; |
| gettimeofday(&now, NULL); |
| return static_cast<uint64_t>(now.tv_sec) * UINT64_C(1000000000) + now.tv_usec * UINT64_C(1000); |
| #endif |
| } |
| |
| uint64_t ThreadCpuNanoTime() { |
| #if defined(HAVE_POSIX_CLOCKS) |
| timespec now; |
| clock_gettime(CLOCK_THREAD_CPUTIME_ID, &now); |
| return static_cast<uint64_t>(now.tv_sec) * UINT64_C(1000000000) + now.tv_nsec; |
| #else |
| UNIMPLEMENTED(WARNING); |
| return -1; |
| #endif |
| } |
| |
| void NanoSleep(uint64_t ns) { |
| timespec tm; |
| tm.tv_sec = 0; |
| tm.tv_nsec = ns; |
| nanosleep(&tm, NULL); |
| } |
| |
| void InitTimeSpec(bool absolute, int clock, int64_t ms, int32_t ns, timespec* ts) { |
| int64_t endSec; |
| |
| if (absolute) { |
| #if !defined(__APPLE__) |
| clock_gettime(clock, ts); |
| #else |
| UNUSED(clock); |
| timeval tv; |
| gettimeofday(&tv, NULL); |
| ts->tv_sec = tv.tv_sec; |
| ts->tv_nsec = tv.tv_usec * 1000; |
| #endif |
| } else { |
| ts->tv_sec = 0; |
| ts->tv_nsec = 0; |
| } |
| endSec = ts->tv_sec + ms / 1000; |
| if (UNLIKELY(endSec >= 0x7fffffff)) { |
| std::ostringstream ss; |
| LOG(INFO) << "Note: end time exceeds epoch: " << ss.str(); |
| endSec = 0x7ffffffe; |
| } |
| ts->tv_sec = endSec; |
| ts->tv_nsec = (ts->tv_nsec + (ms % 1000) * 1000000) + ns; |
| |
| // Catch rollover. |
| if (ts->tv_nsec >= 1000000000L) { |
| ts->tv_sec++; |
| ts->tv_nsec -= 1000000000L; |
| } |
| } |
| |
| std::string PrettyDescriptor(mirror::String* java_descriptor) { |
| if (java_descriptor == NULL) { |
| return "null"; |
| } |
| return PrettyDescriptor(java_descriptor->ToModifiedUtf8()); |
| } |
| |
| std::string PrettyDescriptor(mirror::Class* klass) { |
| if (klass == NULL) { |
| return "null"; |
| } |
| return PrettyDescriptor(klass->GetDescriptor()); |
| } |
| |
| std::string PrettyDescriptor(const std::string& descriptor) { |
| // Count the number of '['s to get the dimensionality. |
| const char* c = descriptor.c_str(); |
| size_t dim = 0; |
| while (*c == '[') { |
| dim++; |
| c++; |
| } |
| |
| // Reference or primitive? |
| if (*c == 'L') { |
| // "[[La/b/C;" -> "a.b.C[][]". |
| c++; // Skip the 'L'. |
| } else { |
| // "[[B" -> "byte[][]". |
| // To make life easier, we make primitives look like unqualified |
| // reference types. |
| switch (*c) { |
| case 'B': c = "byte;"; break; |
| case 'C': c = "char;"; break; |
| case 'D': c = "double;"; break; |
| case 'F': c = "float;"; break; |
| case 'I': c = "int;"; break; |
| case 'J': c = "long;"; break; |
| case 'S': c = "short;"; break; |
| case 'Z': c = "boolean;"; break; |
| case 'V': c = "void;"; break; // Used when decoding return types. |
| default: return descriptor; |
| } |
| } |
| |
| // At this point, 'c' is a string of the form "fully/qualified/Type;" |
| // or "primitive;". Rewrite the type with '.' instead of '/': |
| std::string result; |
| const char* p = c; |
| while (*p != ';') { |
| char ch = *p++; |
| if (ch == '/') { |
| ch = '.'; |
| } |
| result.push_back(ch); |
| } |
| // ...and replace the semicolon with 'dim' "[]" pairs: |
| while (dim--) { |
| result += "[]"; |
| } |
| return result; |
| } |
| |
| std::string PrettyDescriptor(Primitive::Type type) { |
| std::string descriptor_string(Primitive::Descriptor(type)); |
| return PrettyDescriptor(descriptor_string); |
| } |
| |
| std::string PrettyField(mirror::ArtField* f, bool with_type) { |
| if (f == NULL) { |
| return "null"; |
| } |
| FieldHelper fh(f); |
| std::string result; |
| if (with_type) { |
| result += PrettyDescriptor(fh.GetTypeDescriptor()); |
| result += ' '; |
| } |
| result += PrettyDescriptor(fh.GetDeclaringClassDescriptor()); |
| result += '.'; |
| result += fh.GetName(); |
| return result; |
| } |
| |
| std::string PrettyField(uint32_t field_idx, const DexFile& dex_file, bool with_type) { |
| if (field_idx >= dex_file.NumFieldIds()) { |
| return StringPrintf("<<invalid-field-idx-%d>>", field_idx); |
| } |
| const DexFile::FieldId& field_id = dex_file.GetFieldId(field_idx); |
| std::string result; |
| if (with_type) { |
| result += dex_file.GetFieldTypeDescriptor(field_id); |
| result += ' '; |
| } |
| result += PrettyDescriptor(dex_file.GetFieldDeclaringClassDescriptor(field_id)); |
| result += '.'; |
| result += dex_file.GetFieldName(field_id); |
| return result; |
| } |
| |
| std::string PrettyType(uint32_t type_idx, const DexFile& dex_file) { |
| if (type_idx >= dex_file.NumTypeIds()) { |
| return StringPrintf("<<invalid-type-idx-%d>>", type_idx); |
| } |
| const DexFile::TypeId& type_id = dex_file.GetTypeId(type_idx); |
| return PrettyDescriptor(dex_file.GetTypeDescriptor(type_id)); |
| } |
| |
| std::string PrettyArguments(const char* signature) { |
| std::string result; |
| result += '('; |
| CHECK_EQ(*signature, '('); |
| ++signature; // Skip the '('. |
| while (*signature != ')') { |
| size_t argument_length = 0; |
| while (signature[argument_length] == '[') { |
| ++argument_length; |
| } |
| if (signature[argument_length] == 'L') { |
| argument_length = (strchr(signature, ';') - signature + 1); |
| } else { |
| ++argument_length; |
| } |
| std::string argument_descriptor(signature, argument_length); |
| result += PrettyDescriptor(argument_descriptor); |
| if (signature[argument_length] != ')') { |
| result += ", "; |
| } |
| signature += argument_length; |
| } |
| CHECK_EQ(*signature, ')'); |
| ++signature; // Skip the ')'. |
| result += ')'; |
| return result; |
| } |
| |
| std::string PrettyReturnType(const char* signature) { |
| const char* return_type = strchr(signature, ')'); |
| CHECK(return_type != NULL); |
| ++return_type; // Skip ')'. |
| return PrettyDescriptor(return_type); |
| } |
| |
| std::string PrettyMethod(mirror::ArtMethod* m, bool with_signature) { |
| if (m == nullptr) { |
| return "null"; |
| } |
| MethodHelper mh(m); |
| std::string result(PrettyDescriptor(mh.GetDeclaringClassDescriptor())); |
| result += '.'; |
| result += mh.GetName(); |
| if (UNLIKELY(m->IsFastNative())) { |
| result += "!"; |
| } |
| if (with_signature) { |
| const Signature signature = mh.GetSignature(); |
| std::string sig_as_string(signature.ToString()); |
| if (signature == Signature::NoSignature()) { |
| return result + sig_as_string; |
| } |
| result = PrettyReturnType(sig_as_string.c_str()) + " " + result + |
| PrettyArguments(sig_as_string.c_str()); |
| } |
| return result; |
| } |
| |
| std::string PrettyMethod(uint32_t method_idx, const DexFile& dex_file, bool with_signature) { |
| if (method_idx >= dex_file.NumMethodIds()) { |
| return StringPrintf("<<invalid-method-idx-%d>>", method_idx); |
| } |
| const DexFile::MethodId& method_id = dex_file.GetMethodId(method_idx); |
| std::string result(PrettyDescriptor(dex_file.GetMethodDeclaringClassDescriptor(method_id))); |
| result += '.'; |
| result += dex_file.GetMethodName(method_id); |
| if (with_signature) { |
| const Signature signature = dex_file.GetMethodSignature(method_id); |
| std::string sig_as_string(signature.ToString()); |
| if (signature == Signature::NoSignature()) { |
| return result + sig_as_string; |
| } |
| result = PrettyReturnType(sig_as_string.c_str()) + " " + result + |
| PrettyArguments(sig_as_string.c_str()); |
| } |
| return result; |
| } |
| |
| std::string PrettyTypeOf(mirror::Object* obj) { |
| if (obj == NULL) { |
| return "null"; |
| } |
| if (obj->GetClass() == NULL) { |
| return "(raw)"; |
| } |
| std::string result(PrettyDescriptor(obj->GetClass()->GetDescriptor())); |
| if (obj->IsClass()) { |
| result += "<" + PrettyDescriptor(obj->AsClass()->GetDescriptor()) + ">"; |
| } |
| return result; |
| } |
| |
| std::string PrettyClass(mirror::Class* c) { |
| if (c == NULL) { |
| return "null"; |
| } |
| std::string result; |
| result += "java.lang.Class<"; |
| result += PrettyDescriptor(c); |
| result += ">"; |
| return result; |
| } |
| |
| std::string PrettyClassAndClassLoader(mirror::Class* c) { |
| if (c == NULL) { |
| return "null"; |
| } |
| std::string result; |
| result += "java.lang.Class<"; |
| result += PrettyDescriptor(c); |
| result += ","; |
| result += PrettyTypeOf(c->GetClassLoader()); |
| // TODO: add an identifying hash value for the loader |
| result += ">"; |
| return result; |
| } |
| |
| std::string PrettySize(int64_t byte_count) { |
| // The byte thresholds at which we display amounts. A byte count is displayed |
| // in unit U when kUnitThresholds[U] <= bytes < kUnitThresholds[U+1]. |
| static const int64_t kUnitThresholds[] = { |
| 0, // B up to... |
| 3*1024, // KB up to... |
| 2*1024*1024, // MB up to... |
| 1024*1024*1024 // GB from here. |
| }; |
| static const int64_t kBytesPerUnit[] = { 1, KB, MB, GB }; |
| static const char* const kUnitStrings[] = { "B", "KB", "MB", "GB" }; |
| const char* negative_str = ""; |
| if (byte_count < 0) { |
| negative_str = "-"; |
| byte_count = -byte_count; |
| } |
| int i = arraysize(kUnitThresholds); |
| while (--i > 0) { |
| if (byte_count >= kUnitThresholds[i]) { |
| break; |
| } |
| } |
| return StringPrintf("%s%" PRId64 "%s", |
| negative_str, byte_count / kBytesPerUnit[i], kUnitStrings[i]); |
| } |
| |
| std::string PrettyDuration(uint64_t nano_duration) { |
| if (nano_duration == 0) { |
| return "0"; |
| } else { |
| return FormatDuration(nano_duration, GetAppropriateTimeUnit(nano_duration)); |
| } |
| } |
| |
| TimeUnit GetAppropriateTimeUnit(uint64_t nano_duration) { |
| const uint64_t one_sec = 1000 * 1000 * 1000; |
| const uint64_t one_ms = 1000 * 1000; |
| const uint64_t one_us = 1000; |
| if (nano_duration >= one_sec) { |
| return kTimeUnitSecond; |
| } else if (nano_duration >= one_ms) { |
| return kTimeUnitMillisecond; |
| } else if (nano_duration >= one_us) { |
| return kTimeUnitMicrosecond; |
| } else { |
| return kTimeUnitNanosecond; |
| } |
| } |
| |
| uint64_t GetNsToTimeUnitDivisor(TimeUnit time_unit) { |
| const uint64_t one_sec = 1000 * 1000 * 1000; |
| const uint64_t one_ms = 1000 * 1000; |
| const uint64_t one_us = 1000; |
| |
| switch (time_unit) { |
| case kTimeUnitSecond: |
| return one_sec; |
| case kTimeUnitMillisecond: |
| return one_ms; |
| case kTimeUnitMicrosecond: |
| return one_us; |
| case kTimeUnitNanosecond: |
| return 1; |
| } |
| return 0; |
| } |
| |
| std::string FormatDuration(uint64_t nano_duration, TimeUnit time_unit) { |
| const char* unit = NULL; |
| uint64_t divisor = GetNsToTimeUnitDivisor(time_unit); |
| uint32_t zero_fill = 1; |
| switch (time_unit) { |
| case kTimeUnitSecond: |
| unit = "s"; |
| zero_fill = 9; |
| break; |
| case kTimeUnitMillisecond: |
| unit = "ms"; |
| zero_fill = 6; |
| break; |
| case kTimeUnitMicrosecond: |
| unit = "us"; |
| zero_fill = 3; |
| break; |
| case kTimeUnitNanosecond: |
| unit = "ns"; |
| zero_fill = 0; |
| break; |
| } |
| |
| uint64_t whole_part = nano_duration / divisor; |
| uint64_t fractional_part = nano_duration % divisor; |
| if (fractional_part == 0) { |
| return StringPrintf("%" PRIu64 "%s", whole_part, unit); |
| } else { |
| while ((fractional_part % 1000) == 0) { |
| zero_fill -= 3; |
| fractional_part /= 1000; |
| } |
| if (zero_fill == 3) { |
| return StringPrintf("%" PRIu64 ".%03" PRIu64 "%s", whole_part, fractional_part, unit); |
| } else if (zero_fill == 6) { |
| return StringPrintf("%" PRIu64 ".%06" PRIu64 "%s", whole_part, fractional_part, unit); |
| } else { |
| return StringPrintf("%" PRIu64 ".%09" PRIu64 "%s", whole_part, fractional_part, unit); |
| } |
| } |
| } |
| |
| std::string PrintableString(const std::string& utf) { |
| std::string result; |
| result += '"'; |
| const char* p = utf.c_str(); |
| size_t char_count = CountModifiedUtf8Chars(p); |
| for (size_t i = 0; i < char_count; ++i) { |
| uint16_t ch = GetUtf16FromUtf8(&p); |
| if (ch == '\\') { |
| result += "\\\\"; |
| } else if (ch == '\n') { |
| result += "\\n"; |
| } else if (ch == '\r') { |
| result += "\\r"; |
| } else if (ch == '\t') { |
| result += "\\t"; |
| } else if (NeedsEscaping(ch)) { |
| StringAppendF(&result, "\\u%04x", ch); |
| } else { |
| result += ch; |
| } |
| } |
| result += '"'; |
| return result; |
| } |
| |
| // See http://java.sun.com/j2se/1.5.0/docs/guide/jni/spec/design.html#wp615 for the full rules. |
| std::string MangleForJni(const std::string& s) { |
| std::string result; |
| size_t char_count = CountModifiedUtf8Chars(s.c_str()); |
| const char* cp = &s[0]; |
| for (size_t i = 0; i < char_count; ++i) { |
| uint16_t ch = GetUtf16FromUtf8(&cp); |
| if ((ch >= 'A' && ch <= 'Z') || (ch >= 'a' && ch <= 'z') || (ch >= '0' && ch <= '9')) { |
| result.push_back(ch); |
| } else if (ch == '.' || ch == '/') { |
| result += "_"; |
| } else if (ch == '_') { |
| result += "_1"; |
| } else if (ch == ';') { |
| result += "_2"; |
| } else if (ch == '[') { |
| result += "_3"; |
| } else { |
| StringAppendF(&result, "_0%04x", ch); |
| } |
| } |
| return result; |
| } |
| |
| std::string DotToDescriptor(const char* class_name) { |
| std::string descriptor(class_name); |
| std::replace(descriptor.begin(), descriptor.end(), '.', '/'); |
| if (descriptor.length() > 0 && descriptor[0] != '[') { |
| descriptor = "L" + descriptor + ";"; |
| } |
| return descriptor; |
| } |
| |
| std::string DescriptorToDot(const char* descriptor) { |
| size_t length = strlen(descriptor); |
| if (descriptor[0] == 'L' && descriptor[length - 1] == ';') { |
| std::string result(descriptor + 1, length - 2); |
| std::replace(result.begin(), result.end(), '/', '.'); |
| return result; |
| } |
| return descriptor; |
| } |
| |
| std::string DescriptorToName(const char* descriptor) { |
| size_t length = strlen(descriptor); |
| if (descriptor[0] == 'L' && descriptor[length - 1] == ';') { |
| std::string result(descriptor + 1, length - 2); |
| return result; |
| } |
| return descriptor; |
| } |
| |
| std::string JniShortName(mirror::ArtMethod* m) { |
| MethodHelper mh(m); |
| std::string class_name(mh.GetDeclaringClassDescriptor()); |
| // Remove the leading 'L' and trailing ';'... |
| CHECK_EQ(class_name[0], 'L') << class_name; |
| CHECK_EQ(class_name[class_name.size() - 1], ';') << class_name; |
| class_name.erase(0, 1); |
| class_name.erase(class_name.size() - 1, 1); |
| |
| std::string method_name(mh.GetName()); |
| |
| std::string short_name; |
| short_name += "Java_"; |
| short_name += MangleForJni(class_name); |
| short_name += "_"; |
| short_name += MangleForJni(method_name); |
| return short_name; |
| } |
| |
| std::string JniLongName(mirror::ArtMethod* m) { |
| std::string long_name; |
| long_name += JniShortName(m); |
| long_name += "__"; |
| |
| std::string signature(MethodHelper(m).GetSignature().ToString()); |
| signature.erase(0, 1); |
| signature.erase(signature.begin() + signature.find(')'), signature.end()); |
| |
| long_name += MangleForJni(signature); |
| |
| return long_name; |
| } |
| |
| // Helper for IsValidPartOfMemberNameUtf8(), a bit vector indicating valid low ascii. |
| uint32_t DEX_MEMBER_VALID_LOW_ASCII[4] = { |
| 0x00000000, // 00..1f low control characters; nothing valid |
| 0x03ff2010, // 20..3f digits and symbols; valid: '0'..'9', '$', '-' |
| 0x87fffffe, // 40..5f uppercase etc.; valid: 'A'..'Z', '_' |
| 0x07fffffe // 60..7f lowercase etc.; valid: 'a'..'z' |
| }; |
| |
| // Helper for IsValidPartOfMemberNameUtf8(); do not call directly. |
| bool IsValidPartOfMemberNameUtf8Slow(const char** pUtf8Ptr) { |
| /* |
| * It's a multibyte encoded character. Decode it and analyze. We |
| * accept anything that isn't (a) an improperly encoded low value, |
| * (b) an improper surrogate pair, (c) an encoded '\0', (d) a high |
| * control character, or (e) a high space, layout, or special |
| * character (U+00a0, U+2000..U+200f, U+2028..U+202f, |
| * U+fff0..U+ffff). This is all specified in the dex format |
| * document. |
| */ |
| |
| uint16_t utf16 = GetUtf16FromUtf8(pUtf8Ptr); |
| |
| // Perform follow-up tests based on the high 8 bits. |
| switch (utf16 >> 8) { |
| case 0x00: |
| // It's only valid if it's above the ISO-8859-1 high space (0xa0). |
| return (utf16 > 0x00a0); |
| case 0xd8: |
| case 0xd9: |
| case 0xda: |
| case 0xdb: |
| // It's a leading surrogate. Check to see that a trailing |
| // surrogate follows. |
| utf16 = GetUtf16FromUtf8(pUtf8Ptr); |
| return (utf16 >= 0xdc00) && (utf16 <= 0xdfff); |
| case 0xdc: |
| case 0xdd: |
| case 0xde: |
| case 0xdf: |
| // It's a trailing surrogate, which is not valid at this point. |
| return false; |
| case 0x20: |
| case 0xff: |
| // It's in the range that has spaces, controls, and specials. |
| switch (utf16 & 0xfff8) { |
| case 0x2000: |
| case 0x2008: |
| case 0x2028: |
| case 0xfff0: |
| case 0xfff8: |
| return false; |
| } |
| break; |
| } |
| return true; |
| } |
| |
| /* Return whether the pointed-at modified-UTF-8 encoded character is |
| * valid as part of a member name, updating the pointer to point past |
| * the consumed character. This will consume two encoded UTF-16 code |
| * points if the character is encoded as a surrogate pair. Also, if |
| * this function returns false, then the given pointer may only have |
| * been partially advanced. |
| */ |
| static bool IsValidPartOfMemberNameUtf8(const char** pUtf8Ptr) { |
| uint8_t c = (uint8_t) **pUtf8Ptr; |
| if (LIKELY(c <= 0x7f)) { |
| // It's low-ascii, so check the table. |
| uint32_t wordIdx = c >> 5; |
| uint32_t bitIdx = c & 0x1f; |
| (*pUtf8Ptr)++; |
| return (DEX_MEMBER_VALID_LOW_ASCII[wordIdx] & (1 << bitIdx)) != 0; |
| } |
| |
| // It's a multibyte encoded character. Call a non-inline function |
| // for the heavy lifting. |
| return IsValidPartOfMemberNameUtf8Slow(pUtf8Ptr); |
| } |
| |
| bool IsValidMemberName(const char* s) { |
| bool angle_name = false; |
| |
| switch (*s) { |
| case '\0': |
| // The empty string is not a valid name. |
| return false; |
| case '<': |
| angle_name = true; |
| s++; |
| break; |
| } |
| |
| while (true) { |
| switch (*s) { |
| case '\0': |
| return !angle_name; |
| case '>': |
| return angle_name && s[1] == '\0'; |
| } |
| |
| if (!IsValidPartOfMemberNameUtf8(&s)) { |
| return false; |
| } |
| } |
| } |
| |
| enum ClassNameType { kName, kDescriptor }; |
| static bool IsValidClassName(const char* s, ClassNameType type, char separator) { |
| int arrayCount = 0; |
| while (*s == '[') { |
| arrayCount++; |
| s++; |
| } |
| |
| if (arrayCount > 255) { |
| // Arrays may have no more than 255 dimensions. |
| return false; |
| } |
| |
| if (arrayCount != 0) { |
| /* |
| * If we're looking at an array of some sort, then it doesn't |
| * matter if what is being asked for is a class name; the |
| * format looks the same as a type descriptor in that case, so |
| * treat it as such. |
| */ |
| type = kDescriptor; |
| } |
| |
| if (type == kDescriptor) { |
| /* |
| * We are looking for a descriptor. Either validate it as a |
| * single-character primitive type, or continue on to check the |
| * embedded class name (bracketed by "L" and ";"). |
| */ |
| switch (*(s++)) { |
| case 'B': |
| case 'C': |
| case 'D': |
| case 'F': |
| case 'I': |
| case 'J': |
| case 'S': |
| case 'Z': |
| // These are all single-character descriptors for primitive types. |
| return (*s == '\0'); |
| case 'V': |
| // Non-array void is valid, but you can't have an array of void. |
| return (arrayCount == 0) && (*s == '\0'); |
| case 'L': |
| // Class name: Break out and continue below. |
| break; |
| default: |
| // Oddball descriptor character. |
| return false; |
| } |
| } |
| |
| /* |
| * We just consumed the 'L' that introduces a class name as part |
| * of a type descriptor, or we are looking for an unadorned class |
| * name. |
| */ |
| |
| bool sepOrFirst = true; // first character or just encountered a separator. |
| for (;;) { |
| uint8_t c = (uint8_t) *s; |
| switch (c) { |
| case '\0': |
| /* |
| * Premature end for a type descriptor, but valid for |
| * a class name as long as we haven't encountered an |
| * empty component (including the degenerate case of |
| * the empty string ""). |
| */ |
| return (type == kName) && !sepOrFirst; |
| case ';': |
| /* |
| * Invalid character for a class name, but the |
| * legitimate end of a type descriptor. In the latter |
| * case, make sure that this is the end of the string |
| * and that it doesn't end with an empty component |
| * (including the degenerate case of "L;"). |
| */ |
| return (type == kDescriptor) && !sepOrFirst && (s[1] == '\0'); |
| case '/': |
| case '.': |
| if (c != separator) { |
| // The wrong separator character. |
| return false; |
| } |
| if (sepOrFirst) { |
| // Separator at start or two separators in a row. |
| return false; |
| } |
| sepOrFirst = true; |
| s++; |
| break; |
| default: |
| if (!IsValidPartOfMemberNameUtf8(&s)) { |
| return false; |
| } |
| sepOrFirst = false; |
| break; |
| } |
| } |
| } |
| |
| bool IsValidBinaryClassName(const char* s) { |
| return IsValidClassName(s, kName, '.'); |
| } |
| |
| bool IsValidJniClassName(const char* s) { |
| return IsValidClassName(s, kName, '/'); |
| } |
| |
| bool IsValidDescriptor(const char* s) { |
| return IsValidClassName(s, kDescriptor, '/'); |
| } |
| |
| void Split(const std::string& s, char separator, std::vector<std::string>& result) { |
| const char* p = s.data(); |
| const char* end = p + s.size(); |
| while (p != end) { |
| if (*p == separator) { |
| ++p; |
| } else { |
| const char* start = p; |
| while (++p != end && *p != separator) { |
| // Skip to the next occurrence of the separator. |
| } |
| result.push_back(std::string(start, p - start)); |
| } |
| } |
| } |
| |
| std::string Trim(std::string s) { |
| std::string result; |
| unsigned int start_index = 0; |
| unsigned int end_index = s.size() - 1; |
| |
| // Skip initial whitespace. |
| while (start_index < s.size()) { |
| if (!isspace(s[start_index])) { |
| break; |
| } |
| start_index++; |
| } |
| |
| // Skip terminating whitespace. |
| while (end_index >= start_index) { |
| if (!isspace(s[end_index])) { |
| break; |
| } |
| end_index--; |
| } |
| |
| // All spaces, no beef. |
| if (end_index < start_index) { |
| return ""; |
| } |
| // Start_index is the first non-space, end_index is the last one. |
| return s.substr(start_index, end_index - start_index + 1); |
| } |
| |
| template <typename StringT> |
| std::string Join(std::vector<StringT>& strings, char separator) { |
| if (strings.empty()) { |
| return ""; |
| } |
| |
| std::string result(strings[0]); |
| for (size_t i = 1; i < strings.size(); ++i) { |
| result += separator; |
| result += strings[i]; |
| } |
| return result; |
| } |
| |
| // Explicit instantiations. |
| template std::string Join<std::string>(std::vector<std::string>& strings, char separator); |
| template std::string Join<const char*>(std::vector<const char*>& strings, char separator); |
| template std::string Join<char*>(std::vector<char*>& strings, char separator); |
| |
| bool StartsWith(const std::string& s, const char* prefix) { |
| return s.compare(0, strlen(prefix), prefix) == 0; |
| } |
| |
| bool EndsWith(const std::string& s, const char* suffix) { |
| size_t suffix_length = strlen(suffix); |
| size_t string_length = s.size(); |
| if (suffix_length > string_length) { |
| return false; |
| } |
| size_t offset = string_length - suffix_length; |
| return s.compare(offset, suffix_length, suffix) == 0; |
| } |
| |
| void SetThreadName(const char* thread_name) { |
| int hasAt = 0; |
| int hasDot = 0; |
| const char* s = thread_name; |
| while (*s) { |
| if (*s == '.') { |
| hasDot = 1; |
| } else if (*s == '@') { |
| hasAt = 1; |
| } |
| s++; |
| } |
| int len = s - thread_name; |
| if (len < 15 || hasAt || !hasDot) { |
| s = thread_name; |
| } else { |
| s = thread_name + len - 15; |
| } |
| #if defined(HAVE_ANDROID_PTHREAD_SETNAME_NP) |
| // pthread_setname_np fails rather than truncating long strings. |
| char buf[16]; // MAX_TASK_COMM_LEN=16 is hard-coded into bionic |
| strncpy(buf, s, sizeof(buf)-1); |
| buf[sizeof(buf)-1] = '\0'; |
| errno = pthread_setname_np(pthread_self(), buf); |
| if (errno != 0) { |
| PLOG(WARNING) << "Unable to set the name of current thread to '" << buf << "'"; |
| } |
| #elif defined(__APPLE__) && MAC_OS_X_VERSION_MAX_ALLOWED >= 1060 |
| pthread_setname_np(thread_name); |
| #elif defined(HAVE_PRCTL) |
| prctl(PR_SET_NAME, (unsigned long) s, 0, 0, 0); // NOLINT (unsigned long) |
| #else |
| UNIMPLEMENTED(WARNING) << thread_name; |
| #endif |
| } |
| |
| void GetTaskStats(pid_t tid, char* state, int* utime, int* stime, int* task_cpu) { |
| *utime = *stime = *task_cpu = 0; |
| std::string stats; |
| if (!ReadFileToString(StringPrintf("/proc/self/task/%d/stat", tid), &stats)) { |
| return; |
| } |
| // Skip the command, which may contain spaces. |
| stats = stats.substr(stats.find(')') + 2); |
| // Extract the three fields we care about. |
| std::vector<std::string> fields; |
| Split(stats, ' ', fields); |
| *state = fields[0][0]; |
| *utime = strtoull(fields[11].c_str(), NULL, 10); |
| *stime = strtoull(fields[12].c_str(), NULL, 10); |
| *task_cpu = strtoull(fields[36].c_str(), NULL, 10); |
| } |
| |
| std::string GetSchedulerGroupName(pid_t tid) { |
| // /proc/<pid>/cgroup looks like this: |
| // 2:devices:/ |
| // 1:cpuacct,cpu:/ |
| // We want the third field from the line whose second field contains the "cpu" token. |
| std::string cgroup_file; |
| if (!ReadFileToString(StringPrintf("/proc/self/task/%d/cgroup", tid), &cgroup_file)) { |
| return ""; |
| } |
| std::vector<std::string> cgroup_lines; |
| Split(cgroup_file, '\n', cgroup_lines); |
| for (size_t i = 0; i < cgroup_lines.size(); ++i) { |
| std::vector<std::string> cgroup_fields; |
| Split(cgroup_lines[i], ':', cgroup_fields); |
| std::vector<std::string> cgroups; |
| Split(cgroup_fields[1], ',', cgroups); |
| for (size_t i = 0; i < cgroups.size(); ++i) { |
| if (cgroups[i] == "cpu") { |
| return cgroup_fields[2].substr(1); // Skip the leading slash. |
| } |
| } |
| } |
| return ""; |
| } |
| |
| void DumpNativeStack(std::ostream& os, pid_t tid, const char* prefix, |
| mirror::ArtMethod* current_method) { |
| // We may be called from contexts where current_method is not null, so we must assert this. |
| if (current_method != nullptr) { |
| Locks::mutator_lock_->AssertSharedHeld(Thread::Current()); |
| } |
| std::unique_ptr<Backtrace> backtrace(Backtrace::Create(BACKTRACE_CURRENT_PROCESS, tid)); |
| if (!backtrace->Unwind(0)) { |
| os << prefix << "(backtrace::Unwind failed for thread " << tid << ")\n"; |
| return; |
| } else if (backtrace->NumFrames() == 0) { |
| os << prefix << "(no native stack frames for thread " << tid << ")\n"; |
| return; |
| } |
| |
| for (Backtrace::const_iterator it = backtrace->begin(); |
| it != backtrace->end(); ++it) { |
| // We produce output like this: |
| // ] #00 pc 000075bb8 /system/lib/libc.so (unwind_backtrace_thread+536) |
| // In order for parsing tools to continue to function, the stack dump |
| // format must at least adhere to this format: |
| // #XX pc <RELATIVE_ADDR> <FULL_PATH_TO_SHARED_LIBRARY> ... |
| // The parsers require a single space before and after pc, and two spaces |
| // after the <RELATIVE_ADDR>. There can be any prefix data before the |
| // #XX. <RELATIVE_ADDR> has to be a hex number but with no 0x prefix. |
| os << prefix << StringPrintf("#%02zu pc ", it->num); |
| if (!it->map) { |
| os << StringPrintf("%08" PRIxPTR " ???", it->pc); |
| } else { |
| os << StringPrintf("%08" PRIxPTR " ", it->pc - it->map->start) |
| << it->map->name << " ("; |
| if (!it->func_name.empty()) { |
| os << it->func_name; |
| if (it->func_offset != 0) { |
| os << "+" << it->func_offset; |
| } |
| } else if (current_method != nullptr && current_method->IsWithinQuickCode(it->pc)) { |
| const void* start_of_code = current_method->GetEntryPointFromQuickCompiledCode(); |
| os << JniLongName(current_method) << "+" |
| << (it->pc - reinterpret_cast<uintptr_t>(start_of_code)); |
| } else { |
| os << "???"; |
| } |
| os << ")"; |
| } |
| os << "\n"; |
| } |
| } |
| |
| #if defined(__APPLE__) |
| |
| // TODO: is there any way to get the kernel stack on Mac OS? |
| void DumpKernelStack(std::ostream&, pid_t, const char*, bool) {} |
| |
| #else |
| |
| void DumpKernelStack(std::ostream& os, pid_t tid, const char* prefix, bool include_count) { |
| if (tid == GetTid()) { |
| // There's no point showing that we're reading our stack out of /proc! |
| return; |
| } |
| |
| std::string kernel_stack_filename(StringPrintf("/proc/self/task/%d/stack", tid)); |
| std::string kernel_stack; |
| if (!ReadFileToString(kernel_stack_filename, &kernel_stack)) { |
| os << prefix << "(couldn't read " << kernel_stack_filename << ")\n"; |
| return; |
| } |
| |
| std::vector<std::string> kernel_stack_frames; |
| Split(kernel_stack, '\n', kernel_stack_frames); |
| // We skip the last stack frame because it's always equivalent to "[<ffffffff>] 0xffffffff", |
| // which looking at the source appears to be the kernel's way of saying "that's all, folks!". |
| kernel_stack_frames.pop_back(); |
| for (size_t i = 0; i < kernel_stack_frames.size(); ++i) { |
| // Turn "[<ffffffff8109156d>] futex_wait_queue_me+0xcd/0x110" |
| // into "futex_wait_queue_me+0xcd/0x110". |
| const char* text = kernel_stack_frames[i].c_str(); |
| const char* close_bracket = strchr(text, ']'); |
| if (close_bracket != NULL) { |
| text = close_bracket + 2; |
| } |
| os << prefix; |
| if (include_count) { |
| os << StringPrintf("#%02zd ", i); |
| } |
| os << text << "\n"; |
| } |
| } |
| |
| #endif |
| |
| const char* GetAndroidRoot() { |
| const char* android_root = getenv("ANDROID_ROOT"); |
| if (android_root == NULL) { |
| if (OS::DirectoryExists("/system")) { |
| android_root = "/system"; |
| } else { |
| LOG(FATAL) << "ANDROID_ROOT not set and /system does not exist"; |
| return ""; |
| } |
| } |
| if (!OS::DirectoryExists(android_root)) { |
| LOG(FATAL) << "Failed to find ANDROID_ROOT directory " << android_root; |
| return ""; |
| } |
| return android_root; |
| } |
| |
| const char* GetAndroidData() { |
| const char* android_data = getenv("ANDROID_DATA"); |
| if (android_data == NULL) { |
| if (OS::DirectoryExists("/data")) { |
| android_data = "/data"; |
| } else { |
| LOG(FATAL) << "ANDROID_DATA not set and /data does not exist"; |
| return ""; |
| } |
| } |
| if (!OS::DirectoryExists(android_data)) { |
| LOG(FATAL) << "Failed to find ANDROID_DATA directory " << android_data; |
| return ""; |
| } |
| return android_data; |
| } |
| |
| std::string GetDalvikCacheOrDie(const char* subdir, const bool create_if_absent) { |
| CHECK(subdir != nullptr); |
| const char* android_data = GetAndroidData(); |
| const std::string dalvik_cache_root(StringPrintf("%s/dalvik-cache/", android_data)); |
| const std::string dalvik_cache = dalvik_cache_root + subdir; |
| if (create_if_absent && !OS::DirectoryExists(dalvik_cache.c_str())) { |
| // Don't create the system's /data/dalvik-cache/... because it needs special permissions. |
| if (strcmp(android_data, "/data") != 0) { |
| int result = mkdir(dalvik_cache_root.c_str(), 0700); |
| if (result != 0 && errno != EEXIST) { |
| PLOG(FATAL) << "Failed to create dalvik-cache directory " << dalvik_cache_root; |
| return ""; |
| } |
| result = mkdir(dalvik_cache.c_str(), 0700); |
| if (result != 0) { |
| PLOG(FATAL) << "Failed to create dalvik-cache directory " << dalvik_cache; |
| return ""; |
| } |
| } else { |
| LOG(FATAL) << "Failed to find dalvik-cache directory " << dalvik_cache; |
| return ""; |
| } |
| } |
| return dalvik_cache; |
| } |
| |
| std::string GetDalvikCacheFilenameOrDie(const char* location, const char* cache_location) { |
| if (location[0] != '/') { |
| LOG(FATAL) << "Expected path in location to be absolute: "<< location; |
| } |
| std::string cache_file(&location[1]); // skip leading slash |
| if (!EndsWith(location, ".dex") && !EndsWith(location, ".art")) { |
| cache_file += "/"; |
| cache_file += DexFile::kClassesDex; |
| } |
| std::replace(cache_file.begin(), cache_file.end(), '/', '@'); |
| return StringPrintf("%s/%s", cache_location, cache_file.c_str()); |
| } |
| |
| static void InsertIsaDirectory(const InstructionSet isa, std::string* filename) { |
| // in = /foo/bar/baz |
| // out = /foo/bar/<isa>/baz |
| size_t pos = filename->rfind('/'); |
| CHECK_NE(pos, std::string::npos) << *filename << " " << isa; |
| filename->insert(pos, "/", 1); |
| filename->insert(pos + 1, GetInstructionSetString(isa)); |
| } |
| |
| std::string GetSystemImageFilename(const char* location, const InstructionSet isa) { |
| // location = /system/framework/boot.art |
| // filename = /system/framework/<isa>/boot.art |
| std::string filename(location); |
| InsertIsaDirectory(isa, &filename); |
| return filename; |
| } |
| |
| std::string DexFilenameToOdexFilename(const std::string& location, const InstructionSet isa) { |
| // location = /foo/bar/baz.jar |
| // odex_location = /foo/bar/<isa>/baz.odex |
| CHECK_GE(location.size(), 4U) << location; // must be at least .123 |
| std::string odex_location(location); |
| InsertIsaDirectory(isa, &odex_location); |
| size_t dot_index = odex_location.size() - 3 - 1; // 3=dex or zip or apk |
| CHECK_EQ('.', odex_location[dot_index]) << location; |
| odex_location.resize(dot_index + 1); |
| CHECK_EQ('.', odex_location[odex_location.size()-1]) << location << " " << odex_location; |
| odex_location += "odex"; |
| return odex_location; |
| } |
| |
| bool IsZipMagic(uint32_t magic) { |
| return (('P' == ((magic >> 0) & 0xff)) && |
| ('K' == ((magic >> 8) & 0xff))); |
| } |
| |
| bool IsDexMagic(uint32_t magic) { |
| return DexFile::IsMagicValid(reinterpret_cast<const byte*>(&magic)); |
| } |
| |
| bool IsOatMagic(uint32_t magic) { |
| return (memcmp(reinterpret_cast<const byte*>(magic), |
| OatHeader::kOatMagic, |
| sizeof(OatHeader::kOatMagic)) == 0); |
| } |
| |
| bool Exec(std::vector<std::string>& arg_vector, std::string* error_msg) { |
| const std::string command_line(Join(arg_vector, ' ')); |
| |
| CHECK_GE(arg_vector.size(), 1U) << command_line; |
| |
| // Convert the args to char pointers. |
| const char* program = arg_vector[0].c_str(); |
| std::vector<char*> args; |
| for (size_t i = 0; i < arg_vector.size(); ++i) { |
| const std::string& arg = arg_vector[i]; |
| char* arg_str = const_cast<char*>(arg.c_str()); |
| CHECK(arg_str != nullptr) << i; |
| args.push_back(arg_str); |
| } |
| args.push_back(NULL); |
| |
| // fork and exec |
| pid_t pid = fork(); |
| if (pid == 0) { |
| // no allocation allowed between fork and exec |
| |
| // change process groups, so we don't get reaped by ProcessManager |
| setpgid(0, 0); |
| |
| execv(program, &args[0]); |
| |
| PLOG(ERROR) << "Failed to execv(" << command_line << ")"; |
| exit(1); |
| } else { |
| if (pid == -1) { |
| *error_msg = StringPrintf("Failed to execv(%s) because fork failed: %s", |
| command_line.c_str(), strerror(errno)); |
| return false; |
| } |
| |
| // wait for subprocess to finish |
| int status; |
| pid_t got_pid = TEMP_FAILURE_RETRY(waitpid(pid, &status, 0)); |
| if (got_pid != pid) { |
| *error_msg = StringPrintf("Failed after fork for execv(%s) because waitpid failed: " |
| "wanted %d, got %d: %s", |
| command_line.c_str(), pid, got_pid, strerror(errno)); |
| return false; |
| } |
| if (!WIFEXITED(status) || WEXITSTATUS(status) != 0) { |
| *error_msg = StringPrintf("Failed execv(%s) because non-0 exit status", |
| command_line.c_str()); |
| return false; |
| } |
| } |
| return true; |
| } |
| |
| } // namespace art |