| /* |
| * Copyright (C) 2016 The Android Open Source Project |
| * |
| * Licensed under the Apache License, Version 2.0 (the "License"); |
| * you may not use this file except in compliance with the License. |
| * You may obtain a copy of the License at |
| * |
| * http://www.apache.org/licenses/LICENSE-2.0 |
| * |
| * Unless required by applicable law or agreed to in writing, software |
| * distributed under the License is distributed on an "AS IS" BASIS, |
| * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| * See the License for the specific language governing permissions and |
| * limitations under the License. |
| */ |
| |
| #ifndef ART_COMPILER_DEBUG_ELF_DEBUG_FRAME_WRITER_H_ |
| #define ART_COMPILER_DEBUG_ELF_DEBUG_FRAME_WRITER_H_ |
| |
| #include <vector> |
| |
| #include "arch/instruction_set.h" |
| #include "debug/dwarf/debug_frame_opcode_writer.h" |
| #include "debug/dwarf/dwarf_constants.h" |
| #include "debug/dwarf/headers.h" |
| #include "debug/method_debug_info.h" |
| #include "elf_builder.h" |
| |
| namespace art { |
| namespace debug { |
| |
| static void WriteCIE(InstructionSet isa, |
| dwarf::CFIFormat format, |
| std::vector<uint8_t>* buffer) { |
| using Reg = dwarf::Reg; |
| // Scratch registers should be marked as undefined. This tells the |
| // debugger that its value in the previous frame is not recoverable. |
| bool is64bit = Is64BitInstructionSet(isa); |
| switch (isa) { |
| case kArm: |
| case kThumb2: { |
| dwarf::DebugFrameOpCodeWriter<> opcodes; |
| opcodes.DefCFA(Reg::ArmCore(13), 0); // R13(SP). |
| // core registers. |
| for (int reg = 0; reg < 13; reg++) { |
| if (reg < 4 || reg == 12) { |
| opcodes.Undefined(Reg::ArmCore(reg)); |
| } else { |
| opcodes.SameValue(Reg::ArmCore(reg)); |
| } |
| } |
| // fp registers. |
| for (int reg = 0; reg < 32; reg++) { |
| if (reg < 16) { |
| opcodes.Undefined(Reg::ArmFp(reg)); |
| } else { |
| opcodes.SameValue(Reg::ArmFp(reg)); |
| } |
| } |
| auto return_reg = Reg::ArmCore(14); // R14(LR). |
| WriteCIE(is64bit, return_reg, opcodes, format, buffer); |
| return; |
| } |
| case kArm64: { |
| dwarf::DebugFrameOpCodeWriter<> opcodes; |
| opcodes.DefCFA(Reg::Arm64Core(31), 0); // R31(SP). |
| // core registers. |
| for (int reg = 0; reg < 30; reg++) { |
| if (reg < 8 || reg == 16 || reg == 17) { |
| opcodes.Undefined(Reg::Arm64Core(reg)); |
| } else { |
| opcodes.SameValue(Reg::Arm64Core(reg)); |
| } |
| } |
| // fp registers. |
| for (int reg = 0; reg < 32; reg++) { |
| if (reg < 8 || reg >= 16) { |
| opcodes.Undefined(Reg::Arm64Fp(reg)); |
| } else { |
| opcodes.SameValue(Reg::Arm64Fp(reg)); |
| } |
| } |
| auto return_reg = Reg::Arm64Core(30); // R30(LR). |
| WriteCIE(is64bit, return_reg, opcodes, format, buffer); |
| return; |
| } |
| case kMips: |
| case kMips64: { |
| dwarf::DebugFrameOpCodeWriter<> opcodes; |
| opcodes.DefCFA(Reg::MipsCore(29), 0); // R29(SP). |
| // core registers. |
| for (int reg = 1; reg < 26; reg++) { |
| if (reg < 16 || reg == 24 || reg == 25) { // AT, V*, A*, T*. |
| opcodes.Undefined(Reg::MipsCore(reg)); |
| } else { |
| opcodes.SameValue(Reg::MipsCore(reg)); |
| } |
| } |
| // fp registers. |
| for (int reg = 0; reg < 32; reg++) { |
| if (reg < 24) { |
| opcodes.Undefined(Reg::Mips64Fp(reg)); |
| } else { |
| opcodes.SameValue(Reg::Mips64Fp(reg)); |
| } |
| } |
| auto return_reg = Reg::MipsCore(31); // R31(RA). |
| WriteCIE(is64bit, return_reg, opcodes, format, buffer); |
| return; |
| } |
| case kX86: { |
| // FIXME: Add fp registers once libunwind adds support for them. Bug: 20491296 |
| constexpr bool generate_opcodes_for_x86_fp = false; |
| dwarf::DebugFrameOpCodeWriter<> opcodes; |
| opcodes.DefCFA(Reg::X86Core(4), 4); // R4(ESP). |
| opcodes.Offset(Reg::X86Core(8), -4); // R8(EIP). |
| // core registers. |
| for (int reg = 0; reg < 8; reg++) { |
| if (reg <= 3) { |
| opcodes.Undefined(Reg::X86Core(reg)); |
| } else if (reg == 4) { |
| // Stack pointer. |
| } else { |
| opcodes.SameValue(Reg::X86Core(reg)); |
| } |
| } |
| // fp registers. |
| if (generate_opcodes_for_x86_fp) { |
| for (int reg = 0; reg < 8; reg++) { |
| opcodes.Undefined(Reg::X86Fp(reg)); |
| } |
| } |
| auto return_reg = Reg::X86Core(8); // R8(EIP). |
| WriteCIE(is64bit, return_reg, opcodes, format, buffer); |
| return; |
| } |
| case kX86_64: { |
| dwarf::DebugFrameOpCodeWriter<> opcodes; |
| opcodes.DefCFA(Reg::X86_64Core(4), 8); // R4(RSP). |
| opcodes.Offset(Reg::X86_64Core(16), -8); // R16(RIP). |
| // core registers. |
| for (int reg = 0; reg < 16; reg++) { |
| if (reg == 4) { |
| // Stack pointer. |
| } else if (reg < 12 && reg != 3 && reg != 5) { // except EBX and EBP. |
| opcodes.Undefined(Reg::X86_64Core(reg)); |
| } else { |
| opcodes.SameValue(Reg::X86_64Core(reg)); |
| } |
| } |
| // fp registers. |
| for (int reg = 0; reg < 16; reg++) { |
| if (reg < 12) { |
| opcodes.Undefined(Reg::X86_64Fp(reg)); |
| } else { |
| opcodes.SameValue(Reg::X86_64Fp(reg)); |
| } |
| } |
| auto return_reg = Reg::X86_64Core(16); // R16(RIP). |
| WriteCIE(is64bit, return_reg, opcodes, format, buffer); |
| return; |
| } |
| case kNone: |
| break; |
| } |
| LOG(FATAL) << "Cannot write CIE frame for ISA " << isa; |
| UNREACHABLE(); |
| } |
| |
| template<typename ElfTypes> |
| void WriteCFISection(ElfBuilder<ElfTypes>* builder, |
| const ArrayRef<const MethodDebugInfo>& method_infos, |
| dwarf::CFIFormat format, |
| bool write_oat_patches) { |
| CHECK(format == dwarf::DW_DEBUG_FRAME_FORMAT || format == dwarf::DW_EH_FRAME_FORMAT); |
| typedef typename ElfTypes::Addr Elf_Addr; |
| |
| // The methods can be written in any order. |
| // Let's therefore sort them in the lexicographical order of the opcodes. |
| // This has no effect on its own. However, if the final .debug_frame section is |
| // compressed it reduces the size since similar opcodes sequences are grouped. |
| std::vector<const MethodDebugInfo*> sorted_method_infos; |
| sorted_method_infos.reserve(method_infos.size()); |
| for (size_t i = 0; i < method_infos.size(); i++) { |
| if (!method_infos[i].cfi.empty() && !method_infos[i].deduped) { |
| sorted_method_infos.push_back(&method_infos[i]); |
| } |
| } |
| if (sorted_method_infos.empty()) { |
| return; |
| } |
| std::stable_sort( |
| sorted_method_infos.begin(), |
| sorted_method_infos.end(), |
| [](const MethodDebugInfo* lhs, const MethodDebugInfo* rhs) { |
| ArrayRef<const uint8_t> l = lhs->cfi; |
| ArrayRef<const uint8_t> r = rhs->cfi; |
| return std::lexicographical_compare(l.begin(), l.end(), r.begin(), r.end()); |
| }); |
| |
| std::vector<uint32_t> binary_search_table; |
| std::vector<uintptr_t> patch_locations; |
| if (format == dwarf::DW_EH_FRAME_FORMAT) { |
| binary_search_table.reserve(2 * sorted_method_infos.size()); |
| } else { |
| patch_locations.reserve(sorted_method_infos.size()); |
| } |
| |
| // Write .eh_frame/.debug_frame section. |
| auto* cfi_section = (format == dwarf::DW_DEBUG_FRAME_FORMAT |
| ? builder->GetDebugFrame() |
| : builder->GetEhFrame()); |
| { |
| cfi_section->Start(); |
| const bool is64bit = Is64BitInstructionSet(builder->GetIsa()); |
| const Elf_Addr cfi_address = cfi_section->GetAddress(); |
| const Elf_Addr cie_address = cfi_address; |
| Elf_Addr buffer_address = cfi_address; |
| std::vector<uint8_t> buffer; // Small temporary buffer. |
| WriteCIE(builder->GetIsa(), format, &buffer); |
| cfi_section->WriteFully(buffer.data(), buffer.size()); |
| buffer_address += buffer.size(); |
| buffer.clear(); |
| for (const MethodDebugInfo* mi : sorted_method_infos) { |
| DCHECK(!mi->deduped); |
| DCHECK(!mi->cfi.empty()); |
| const Elf_Addr code_address = mi->code_address + |
| (mi->is_code_address_text_relative ? builder->GetText()->GetAddress() : 0); |
| if (format == dwarf::DW_EH_FRAME_FORMAT) { |
| binary_search_table.push_back(dchecked_integral_cast<uint32_t>(code_address)); |
| binary_search_table.push_back(dchecked_integral_cast<uint32_t>(buffer_address)); |
| } |
| WriteFDE(is64bit, cfi_address, cie_address, |
| code_address, mi->code_size, |
| mi->cfi, format, buffer_address, &buffer, |
| &patch_locations); |
| cfi_section->WriteFully(buffer.data(), buffer.size()); |
| buffer_address += buffer.size(); |
| buffer.clear(); |
| } |
| cfi_section->End(); |
| } |
| |
| if (format == dwarf::DW_EH_FRAME_FORMAT) { |
| auto* header_section = builder->GetEhFrameHdr(); |
| header_section->Start(); |
| uint32_t header_address = dchecked_integral_cast<int32_t>(header_section->GetAddress()); |
| // Write .eh_frame_hdr section. |
| std::vector<uint8_t> buffer; |
| dwarf::Writer<> header(&buffer); |
| header.PushUint8(1); // Version. |
| // Encoding of .eh_frame pointer - libunwind does not honor datarel here, |
| // so we have to use pcrel which means relative to the pointer's location. |
| header.PushUint8(dwarf::DW_EH_PE_pcrel | dwarf::DW_EH_PE_sdata4); |
| // Encoding of binary search table size. |
| header.PushUint8(dwarf::DW_EH_PE_udata4); |
| // Encoding of binary search table addresses - libunwind supports only this |
| // specific combination, which means relative to the start of .eh_frame_hdr. |
| header.PushUint8(dwarf::DW_EH_PE_datarel | dwarf::DW_EH_PE_sdata4); |
| // .eh_frame pointer |
| header.PushInt32(cfi_section->GetAddress() - (header_address + 4u)); |
| // Binary search table size (number of entries). |
| header.PushUint32(dchecked_integral_cast<uint32_t>(binary_search_table.size()/2)); |
| header_section->WriteFully(buffer.data(), buffer.size()); |
| // Binary search table. |
| for (size_t i = 0; i < binary_search_table.size(); i++) { |
| // Make addresses section-relative since we know the header address now. |
| binary_search_table[i] -= header_address; |
| } |
| header_section->WriteFully(binary_search_table.data(), binary_search_table.size()); |
| header_section->End(); |
| } else { |
| if (write_oat_patches) { |
| builder->WritePatches(".debug_frame.oat_patches", |
| ArrayRef<const uintptr_t>(patch_locations)); |
| } |
| } |
| } |
| |
| } // namespace debug |
| } // namespace art |
| |
| #endif // ART_COMPILER_DEBUG_ELF_DEBUG_FRAME_WRITER_H_ |
| |