| /* | 
 |  * Copyright (C) 2016 The Android Open Source Project | 
 |  * | 
 |  * Licensed under the Apache License, Version 2.0 (the "License"); | 
 |  * you may not use this file except in compliance with the License. | 
 |  * You may obtain a copy of the License at | 
 |  * | 
 |  *      http://www.apache.org/licenses/LICENSE-2.0 | 
 |  * | 
 |  * Unless required by applicable law or agreed to in writing, software | 
 |  * distributed under the License is distributed on an "AS IS" BASIS, | 
 |  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | 
 |  * See the License for the specific language governing permissions and | 
 |  * limitations under the License. | 
 |  */ | 
 |  | 
 | #include "instruction_builder.h" | 
 |  | 
 | #include "art_method-inl.h" | 
 | #include "base/arena_bit_vector.h" | 
 | #include "base/bit_vector-inl.h" | 
 | #include "base/logging.h" | 
 | #include "block_builder.h" | 
 | #include "class_linker-inl.h" | 
 | #include "code_generator.h" | 
 | #include "data_type-inl.h" | 
 | #include "dex/bytecode_utils.h" | 
 | #include "dex/dex_instruction-inl.h" | 
 | #include "driver/dex_compilation_unit.h" | 
 | #include "driver/compiler_options.h" | 
 | #include "imtable-inl.h" | 
 | #include "jit/jit.h" | 
 | #include "mirror/dex_cache.h" | 
 | #include "oat_file.h" | 
 | #include "optimizing_compiler_stats.h" | 
 | #include "quicken_info.h" | 
 | #include "reflective_handle_scope-inl.h" | 
 | #include "scoped_thread_state_change-inl.h" | 
 | #include "sharpening.h" | 
 | #include "ssa_builder.h" | 
 | #include "well_known_classes.h" | 
 |  | 
 | namespace art { | 
 |  | 
 | HInstructionBuilder::HInstructionBuilder(HGraph* graph, | 
 |                                          HBasicBlockBuilder* block_builder, | 
 |                                          SsaBuilder* ssa_builder, | 
 |                                          const DexFile* dex_file, | 
 |                                          const CodeItemDebugInfoAccessor& accessor, | 
 |                                          DataType::Type return_type, | 
 |                                          const DexCompilationUnit* dex_compilation_unit, | 
 |                                          const DexCompilationUnit* outer_compilation_unit, | 
 |                                          CodeGenerator* code_generator, | 
 |                                          ArrayRef<const uint8_t> interpreter_metadata, | 
 |                                          OptimizingCompilerStats* compiler_stats, | 
 |                                          ScopedArenaAllocator* local_allocator) | 
 |     : allocator_(graph->GetAllocator()), | 
 |       graph_(graph), | 
 |       dex_file_(dex_file), | 
 |       code_item_accessor_(accessor), | 
 |       return_type_(return_type), | 
 |       block_builder_(block_builder), | 
 |       ssa_builder_(ssa_builder), | 
 |       code_generator_(code_generator), | 
 |       dex_compilation_unit_(dex_compilation_unit), | 
 |       outer_compilation_unit_(outer_compilation_unit), | 
 |       quicken_info_(interpreter_metadata), | 
 |       compilation_stats_(compiler_stats), | 
 |       local_allocator_(local_allocator), | 
 |       locals_for_(local_allocator->Adapter(kArenaAllocGraphBuilder)), | 
 |       current_block_(nullptr), | 
 |       current_locals_(nullptr), | 
 |       latest_result_(nullptr), | 
 |       current_this_parameter_(nullptr), | 
 |       loop_headers_(local_allocator->Adapter(kArenaAllocGraphBuilder)), | 
 |       class_cache_(std::less<dex::TypeIndex>(), local_allocator->Adapter(kArenaAllocGraphBuilder)) { | 
 |   loop_headers_.reserve(kDefaultNumberOfLoops); | 
 | } | 
 |  | 
 | HBasicBlock* HInstructionBuilder::FindBlockStartingAt(uint32_t dex_pc) const { | 
 |   return block_builder_->GetBlockAt(dex_pc); | 
 | } | 
 |  | 
 | inline ScopedArenaVector<HInstruction*>* HInstructionBuilder::GetLocalsFor(HBasicBlock* block) { | 
 |   ScopedArenaVector<HInstruction*>* locals = &locals_for_[block->GetBlockId()]; | 
 |   const size_t vregs = graph_->GetNumberOfVRegs(); | 
 |   if (locals->size() == vregs) { | 
 |     return locals; | 
 |   } | 
 |   return GetLocalsForWithAllocation(block, locals, vregs); | 
 | } | 
 |  | 
 | ScopedArenaVector<HInstruction*>* HInstructionBuilder::GetLocalsForWithAllocation( | 
 |     HBasicBlock* block, | 
 |     ScopedArenaVector<HInstruction*>* locals, | 
 |     const size_t vregs) { | 
 |   DCHECK_NE(locals->size(), vregs); | 
 |   locals->resize(vregs, nullptr); | 
 |   if (block->IsCatchBlock()) { | 
 |     // We record incoming inputs of catch phis at throwing instructions and | 
 |     // must therefore eagerly create the phis. Phis for undefined vregs will | 
 |     // be deleted when the first throwing instruction with the vreg undefined | 
 |     // is encountered. Unused phis will be removed by dead phi analysis. | 
 |     for (size_t i = 0; i < vregs; ++i) { | 
 |       // No point in creating the catch phi if it is already undefined at | 
 |       // the first throwing instruction. | 
 |       HInstruction* current_local_value = (*current_locals_)[i]; | 
 |       if (current_local_value != nullptr) { | 
 |         HPhi* phi = new (allocator_) HPhi( | 
 |             allocator_, | 
 |             i, | 
 |             0, | 
 |             current_local_value->GetType()); | 
 |         block->AddPhi(phi); | 
 |         (*locals)[i] = phi; | 
 |       } | 
 |     } | 
 |   } | 
 |   return locals; | 
 | } | 
 |  | 
 | inline HInstruction* HInstructionBuilder::ValueOfLocalAt(HBasicBlock* block, size_t local) { | 
 |   ScopedArenaVector<HInstruction*>* locals = GetLocalsFor(block); | 
 |   return (*locals)[local]; | 
 | } | 
 |  | 
 | void HInstructionBuilder::InitializeBlockLocals() { | 
 |   current_locals_ = GetLocalsFor(current_block_); | 
 |  | 
 |   if (current_block_->IsCatchBlock()) { | 
 |     // Catch phis were already created and inputs collected from throwing sites. | 
 |     if (kIsDebugBuild) { | 
 |       // Make sure there was at least one throwing instruction which initialized | 
 |       // locals (guaranteed by HGraphBuilder) and that all try blocks have been | 
 |       // visited already (from HTryBoundary scoping and reverse post order). | 
 |       bool catch_block_visited = false; | 
 |       for (HBasicBlock* current : graph_->GetReversePostOrder()) { | 
 |         if (current == current_block_) { | 
 |           catch_block_visited = true; | 
 |         } else if (current->IsTryBlock()) { | 
 |           const HTryBoundary& try_entry = current->GetTryCatchInformation()->GetTryEntry(); | 
 |           if (try_entry.HasExceptionHandler(*current_block_)) { | 
 |             DCHECK(!catch_block_visited) << "Catch block visited before its try block."; | 
 |           } | 
 |         } | 
 |       } | 
 |       DCHECK_EQ(current_locals_->size(), graph_->GetNumberOfVRegs()) | 
 |           << "No instructions throwing into a live catch block."; | 
 |     } | 
 |   } else if (current_block_->IsLoopHeader()) { | 
 |     // If the block is a loop header, we know we only have visited the pre header | 
 |     // because we are visiting in reverse post order. We create phis for all initialized | 
 |     // locals from the pre header. Their inputs will be populated at the end of | 
 |     // the analysis. | 
 |     for (size_t local = 0; local < current_locals_->size(); ++local) { | 
 |       HInstruction* incoming = | 
 |           ValueOfLocalAt(current_block_->GetLoopInformation()->GetPreHeader(), local); | 
 |       if (incoming != nullptr) { | 
 |         HPhi* phi = new (allocator_) HPhi( | 
 |             allocator_, | 
 |             local, | 
 |             0, | 
 |             incoming->GetType()); | 
 |         current_block_->AddPhi(phi); | 
 |         (*current_locals_)[local] = phi; | 
 |       } | 
 |     } | 
 |  | 
 |     // Save the loop header so that the last phase of the analysis knows which | 
 |     // blocks need to be updated. | 
 |     loop_headers_.push_back(current_block_); | 
 |   } else if (current_block_->GetPredecessors().size() > 0) { | 
 |     // All predecessors have already been visited because we are visiting in reverse post order. | 
 |     // We merge the values of all locals, creating phis if those values differ. | 
 |     for (size_t local = 0; local < current_locals_->size(); ++local) { | 
 |       bool one_predecessor_has_no_value = false; | 
 |       bool is_different = false; | 
 |       HInstruction* value = ValueOfLocalAt(current_block_->GetPredecessors()[0], local); | 
 |  | 
 |       for (HBasicBlock* predecessor : current_block_->GetPredecessors()) { | 
 |         HInstruction* current = ValueOfLocalAt(predecessor, local); | 
 |         if (current == nullptr) { | 
 |           one_predecessor_has_no_value = true; | 
 |           break; | 
 |         } else if (current != value) { | 
 |           is_different = true; | 
 |         } | 
 |       } | 
 |  | 
 |       if (one_predecessor_has_no_value) { | 
 |         // If one predecessor has no value for this local, we trust the verifier has | 
 |         // successfully checked that there is a store dominating any read after this block. | 
 |         continue; | 
 |       } | 
 |  | 
 |       if (is_different) { | 
 |         HInstruction* first_input = ValueOfLocalAt(current_block_->GetPredecessors()[0], local); | 
 |         HPhi* phi = new (allocator_) HPhi( | 
 |             allocator_, | 
 |             local, | 
 |             current_block_->GetPredecessors().size(), | 
 |             first_input->GetType()); | 
 |         for (size_t i = 0; i < current_block_->GetPredecessors().size(); i++) { | 
 |           HInstruction* pred_value = ValueOfLocalAt(current_block_->GetPredecessors()[i], local); | 
 |           phi->SetRawInputAt(i, pred_value); | 
 |         } | 
 |         current_block_->AddPhi(phi); | 
 |         value = phi; | 
 |       } | 
 |       (*current_locals_)[local] = value; | 
 |     } | 
 |   } | 
 | } | 
 |  | 
 | void HInstructionBuilder::PropagateLocalsToCatchBlocks() { | 
 |   const HTryBoundary& try_entry = current_block_->GetTryCatchInformation()->GetTryEntry(); | 
 |   for (HBasicBlock* catch_block : try_entry.GetExceptionHandlers()) { | 
 |     ScopedArenaVector<HInstruction*>* handler_locals = GetLocalsFor(catch_block); | 
 |     DCHECK_EQ(handler_locals->size(), current_locals_->size()); | 
 |     for (size_t vreg = 0, e = current_locals_->size(); vreg < e; ++vreg) { | 
 |       HInstruction* handler_value = (*handler_locals)[vreg]; | 
 |       if (handler_value == nullptr) { | 
 |         // Vreg was undefined at a previously encountered throwing instruction | 
 |         // and the catch phi was deleted. Do not record the local value. | 
 |         continue; | 
 |       } | 
 |       DCHECK(handler_value->IsPhi()); | 
 |  | 
 |       HInstruction* local_value = (*current_locals_)[vreg]; | 
 |       if (local_value == nullptr) { | 
 |         // This is the first instruction throwing into `catch_block` where | 
 |         // `vreg` is undefined. Delete the catch phi. | 
 |         catch_block->RemovePhi(handler_value->AsPhi()); | 
 |         (*handler_locals)[vreg] = nullptr; | 
 |       } else { | 
 |         // Vreg has been defined at all instructions throwing into `catch_block` | 
 |         // encountered so far. Record the local value in the catch phi. | 
 |         handler_value->AsPhi()->AddInput(local_value); | 
 |       } | 
 |     } | 
 |   } | 
 | } | 
 |  | 
 | void HInstructionBuilder::AppendInstruction(HInstruction* instruction) { | 
 |   current_block_->AddInstruction(instruction); | 
 |   InitializeInstruction(instruction); | 
 | } | 
 |  | 
 | void HInstructionBuilder::InsertInstructionAtTop(HInstruction* instruction) { | 
 |   if (current_block_->GetInstructions().IsEmpty()) { | 
 |     current_block_->AddInstruction(instruction); | 
 |   } else { | 
 |     current_block_->InsertInstructionBefore(instruction, current_block_->GetFirstInstruction()); | 
 |   } | 
 |   InitializeInstruction(instruction); | 
 | } | 
 |  | 
 | void HInstructionBuilder::InitializeInstruction(HInstruction* instruction) { | 
 |   if (instruction->NeedsEnvironment()) { | 
 |     HEnvironment* environment = new (allocator_) HEnvironment( | 
 |         allocator_, | 
 |         current_locals_->size(), | 
 |         graph_->GetArtMethod(), | 
 |         instruction->GetDexPc(), | 
 |         instruction); | 
 |     environment->CopyFrom(ArrayRef<HInstruction* const>(*current_locals_)); | 
 |     instruction->SetRawEnvironment(environment); | 
 |   } | 
 | } | 
 |  | 
 | HInstruction* HInstructionBuilder::LoadNullCheckedLocal(uint32_t register_index, uint32_t dex_pc) { | 
 |   HInstruction* ref = LoadLocal(register_index, DataType::Type::kReference); | 
 |   if (!ref->CanBeNull()) { | 
 |     return ref; | 
 |   } | 
 |  | 
 |   HNullCheck* null_check = new (allocator_) HNullCheck(ref, dex_pc); | 
 |   AppendInstruction(null_check); | 
 |   return null_check; | 
 | } | 
 |  | 
 | void HInstructionBuilder::SetLoopHeaderPhiInputs() { | 
 |   for (size_t i = loop_headers_.size(); i > 0; --i) { | 
 |     HBasicBlock* block = loop_headers_[i - 1]; | 
 |     for (HInstructionIterator it(block->GetPhis()); !it.Done(); it.Advance()) { | 
 |       HPhi* phi = it.Current()->AsPhi(); | 
 |       size_t vreg = phi->GetRegNumber(); | 
 |       for (HBasicBlock* predecessor : block->GetPredecessors()) { | 
 |         HInstruction* value = ValueOfLocalAt(predecessor, vreg); | 
 |         if (value == nullptr) { | 
 |           // Vreg is undefined at this predecessor. Mark it dead and leave with | 
 |           // fewer inputs than predecessors. SsaChecker will fail if not removed. | 
 |           phi->SetDead(); | 
 |           break; | 
 |         } else { | 
 |           phi->AddInput(value); | 
 |         } | 
 |       } | 
 |     } | 
 |   } | 
 | } | 
 |  | 
 | static bool IsBlockPopulated(HBasicBlock* block) { | 
 |   if (block->IsLoopHeader()) { | 
 |     // Suspend checks were inserted into loop headers during building of dominator tree. | 
 |     DCHECK(block->GetFirstInstruction()->IsSuspendCheck()); | 
 |     return block->GetFirstInstruction() != block->GetLastInstruction(); | 
 |   } else { | 
 |     return !block->GetInstructions().IsEmpty(); | 
 |   } | 
 | } | 
 |  | 
 | bool HInstructionBuilder::Build() { | 
 |   DCHECK(code_item_accessor_.HasCodeItem()); | 
 |   locals_for_.resize( | 
 |       graph_->GetBlocks().size(), | 
 |       ScopedArenaVector<HInstruction*>(local_allocator_->Adapter(kArenaAllocGraphBuilder))); | 
 |  | 
 |   // Find locations where we want to generate extra stackmaps for native debugging. | 
 |   // This allows us to generate the info only at interesting points (for example, | 
 |   // at start of java statement) rather than before every dex instruction. | 
 |   const bool native_debuggable = code_generator_ != nullptr && | 
 |                                  code_generator_->GetCompilerOptions().GetNativeDebuggable(); | 
 |   ArenaBitVector* native_debug_info_locations = nullptr; | 
 |   if (native_debuggable) { | 
 |     native_debug_info_locations = FindNativeDebugInfoLocations(); | 
 |   } | 
 |  | 
 |   for (HBasicBlock* block : graph_->GetReversePostOrder()) { | 
 |     current_block_ = block; | 
 |     uint32_t block_dex_pc = current_block_->GetDexPc(); | 
 |  | 
 |     InitializeBlockLocals(); | 
 |  | 
 |     if (current_block_->IsEntryBlock()) { | 
 |       InitializeParameters(); | 
 |       AppendInstruction(new (allocator_) HSuspendCheck(0u)); | 
 |       AppendInstruction(new (allocator_) HGoto(0u)); | 
 |       continue; | 
 |     } else if (current_block_->IsExitBlock()) { | 
 |       AppendInstruction(new (allocator_) HExit()); | 
 |       continue; | 
 |     } else if (current_block_->IsLoopHeader()) { | 
 |       HSuspendCheck* suspend_check = new (allocator_) HSuspendCheck(current_block_->GetDexPc()); | 
 |       current_block_->GetLoopInformation()->SetSuspendCheck(suspend_check); | 
 |       // This is slightly odd because the loop header might not be empty (TryBoundary). | 
 |       // But we're still creating the environment with locals from the top of the block. | 
 |       InsertInstructionAtTop(suspend_check); | 
 |     } | 
 |  | 
 |     if (block_dex_pc == kNoDexPc || current_block_ != block_builder_->GetBlockAt(block_dex_pc)) { | 
 |       // Synthetic block that does not need to be populated. | 
 |       DCHECK(IsBlockPopulated(current_block_)); | 
 |       continue; | 
 |     } | 
 |  | 
 |     DCHECK(!IsBlockPopulated(current_block_)); | 
 |  | 
 |     uint32_t quicken_index = 0; | 
 |     if (CanDecodeQuickenedInfo()) { | 
 |       quicken_index = block_builder_->GetQuickenIndex(block_dex_pc); | 
 |     } | 
 |  | 
 |     for (const DexInstructionPcPair& pair : code_item_accessor_.InstructionsFrom(block_dex_pc)) { | 
 |       if (current_block_ == nullptr) { | 
 |         // The previous instruction ended this block. | 
 |         break; | 
 |       } | 
 |  | 
 |       const uint32_t dex_pc = pair.DexPc(); | 
 |       if (dex_pc != block_dex_pc && FindBlockStartingAt(dex_pc) != nullptr) { | 
 |         // This dex_pc starts a new basic block. | 
 |         break; | 
 |       } | 
 |  | 
 |       if (current_block_->IsTryBlock() && IsThrowingDexInstruction(pair.Inst())) { | 
 |         PropagateLocalsToCatchBlocks(); | 
 |       } | 
 |  | 
 |       if (native_debuggable && native_debug_info_locations->IsBitSet(dex_pc)) { | 
 |         AppendInstruction(new (allocator_) HNativeDebugInfo(dex_pc)); | 
 |       } | 
 |  | 
 |       // Note: There may be no Thread for gtests. | 
 |       DCHECK(Thread::Current() == nullptr || !Thread::Current()->IsExceptionPending()) | 
 |           << dex_file_->PrettyMethod(dex_compilation_unit_->GetDexMethodIndex()) | 
 |           << " " << pair.Inst().Name() << "@" << dex_pc; | 
 |       if (!ProcessDexInstruction(pair.Inst(), dex_pc, quicken_index)) { | 
 |         return false; | 
 |       } | 
 |       DCHECK(Thread::Current() == nullptr || !Thread::Current()->IsExceptionPending()) | 
 |           << dex_file_->PrettyMethod(dex_compilation_unit_->GetDexMethodIndex()) | 
 |           << " " << pair.Inst().Name() << "@" << dex_pc; | 
 |  | 
 |       if (QuickenInfoTable::NeedsIndexForInstruction(&pair.Inst())) { | 
 |         ++quicken_index; | 
 |       } | 
 |     } | 
 |  | 
 |     if (current_block_ != nullptr) { | 
 |       // Branching instructions clear current_block, so we know the last | 
 |       // instruction of the current block is not a branching instruction. | 
 |       // We add an unconditional Goto to the next block. | 
 |       DCHECK_EQ(current_block_->GetSuccessors().size(), 1u); | 
 |       AppendInstruction(new (allocator_) HGoto()); | 
 |     } | 
 |   } | 
 |  | 
 |   SetLoopHeaderPhiInputs(); | 
 |  | 
 |   return true; | 
 | } | 
 |  | 
 | void HInstructionBuilder::BuildIntrinsic(ArtMethod* method) { | 
 |   DCHECK(!code_item_accessor_.HasCodeItem()); | 
 |   DCHECK(method->IsIntrinsic()); | 
 |  | 
 |   locals_for_.resize( | 
 |       graph_->GetBlocks().size(), | 
 |       ScopedArenaVector<HInstruction*>(local_allocator_->Adapter(kArenaAllocGraphBuilder))); | 
 |  | 
 |   // Fill the entry block. Do not add suspend check, we do not want a suspend | 
 |   // check in intrinsics; intrinsic methods are supposed to be fast. | 
 |   current_block_ = graph_->GetEntryBlock(); | 
 |   InitializeBlockLocals(); | 
 |   InitializeParameters(); | 
 |   AppendInstruction(new (allocator_) HGoto(0u)); | 
 |  | 
 |   // Fill the body. | 
 |   current_block_ = current_block_->GetSingleSuccessor(); | 
 |   InitializeBlockLocals(); | 
 |   DCHECK(!IsBlockPopulated(current_block_)); | 
 |  | 
 |   // Add the intermediate representation, if available, or invoke instruction. | 
 |   size_t in_vregs = graph_->GetNumberOfInVRegs(); | 
 |   size_t number_of_arguments = | 
 |       in_vregs - std::count(current_locals_->end() - in_vregs, current_locals_->end(), nullptr); | 
 |   uint32_t method_idx = dex_compilation_unit_->GetDexMethodIndex(); | 
 |   const char* shorty = dex_file_->GetMethodShorty(method_idx); | 
 |   RangeInstructionOperands operands(graph_->GetNumberOfVRegs() - in_vregs, in_vregs); | 
 |   if (!BuildSimpleIntrinsic(method, kNoDexPc, operands, shorty)) { | 
 |     // Some intrinsics without intermediate representation still yield a leaf method, | 
 |     // so build the invoke. Use HInvokeStaticOrDirect even for methods that would | 
 |     // normally use an HInvokeVirtual (sharpen the call). | 
 |     MethodReference target_method(dex_file_, method_idx); | 
 |     HInvokeStaticOrDirect::DispatchInfo dispatch_info = { | 
 |         HInvokeStaticOrDirect::MethodLoadKind::kRuntimeCall, | 
 |         HInvokeStaticOrDirect::CodePtrLocation::kCallArtMethod, | 
 |         /* method_load_data= */ 0u | 
 |     }; | 
 |     InvokeType invoke_type = dex_compilation_unit_->IsStatic() ? kStatic : kDirect; | 
 |     HInvokeStaticOrDirect* invoke = new (allocator_) HInvokeStaticOrDirect( | 
 |         allocator_, | 
 |         number_of_arguments, | 
 |         return_type_, | 
 |         kNoDexPc, | 
 |         method_idx, | 
 |         method, | 
 |         dispatch_info, | 
 |         invoke_type, | 
 |         target_method, | 
 |         HInvokeStaticOrDirect::ClinitCheckRequirement::kNone); | 
 |     HandleInvoke(invoke, operands, shorty, /* is_unresolved= */ false); | 
 |   } | 
 |  | 
 |   // Add the return instruction. | 
 |   if (return_type_ == DataType::Type::kVoid) { | 
 |     AppendInstruction(new (allocator_) HReturnVoid()); | 
 |   } else { | 
 |     AppendInstruction(new (allocator_) HReturn(latest_result_)); | 
 |   } | 
 |  | 
 |   // Fill the exit block. | 
 |   DCHECK_EQ(current_block_->GetSingleSuccessor(), graph_->GetExitBlock()); | 
 |   current_block_ = graph_->GetExitBlock(); | 
 |   InitializeBlockLocals(); | 
 |   AppendInstruction(new (allocator_) HExit()); | 
 | } | 
 |  | 
 | ArenaBitVector* HInstructionBuilder::FindNativeDebugInfoLocations() { | 
 |   ArenaBitVector* locations = ArenaBitVector::Create(local_allocator_, | 
 |                                                      code_item_accessor_.InsnsSizeInCodeUnits(), | 
 |                                                      /* expandable= */ false, | 
 |                                                      kArenaAllocGraphBuilder); | 
 |   locations->ClearAllBits(); | 
 |   // The visitor gets called when the line number changes. | 
 |   // In other words, it marks the start of new java statement. | 
 |   code_item_accessor_.DecodeDebugPositionInfo([&](const DexFile::PositionInfo& entry) { | 
 |     locations->SetBit(entry.address_); | 
 |     return false; | 
 |   }); | 
 |   // Instruction-specific tweaks. | 
 |   for (const DexInstructionPcPair& inst : code_item_accessor_) { | 
 |     switch (inst->Opcode()) { | 
 |       case Instruction::MOVE_EXCEPTION: { | 
 |         // Stop in native debugger after the exception has been moved. | 
 |         // The compiler also expects the move at the start of basic block so | 
 |         // we do not want to interfere by inserting native-debug-info before it. | 
 |         locations->ClearBit(inst.DexPc()); | 
 |         DexInstructionIterator next = std::next(DexInstructionIterator(inst)); | 
 |         DCHECK(next.DexPc() != inst.DexPc()); | 
 |         if (next != code_item_accessor_.end()) { | 
 |           locations->SetBit(next.DexPc()); | 
 |         } | 
 |         break; | 
 |       } | 
 |       default: | 
 |         break; | 
 |     } | 
 |   } | 
 |   return locations; | 
 | } | 
 |  | 
 | HInstruction* HInstructionBuilder::LoadLocal(uint32_t reg_number, DataType::Type type) const { | 
 |   HInstruction* value = (*current_locals_)[reg_number]; | 
 |   DCHECK(value != nullptr); | 
 |  | 
 |   // If the operation requests a specific type, we make sure its input is of that type. | 
 |   if (type != value->GetType()) { | 
 |     if (DataType::IsFloatingPointType(type)) { | 
 |       value = ssa_builder_->GetFloatOrDoubleEquivalent(value, type); | 
 |     } else if (type == DataType::Type::kReference) { | 
 |       value = ssa_builder_->GetReferenceTypeEquivalent(value); | 
 |     } | 
 |     DCHECK(value != nullptr); | 
 |   } | 
 |  | 
 |   return value; | 
 | } | 
 |  | 
 | void HInstructionBuilder::UpdateLocal(uint32_t reg_number, HInstruction* stored_value) { | 
 |   DataType::Type stored_type = stored_value->GetType(); | 
 |   DCHECK_NE(stored_type, DataType::Type::kVoid); | 
 |  | 
 |   // Storing into vreg `reg_number` may implicitly invalidate the surrounding | 
 |   // registers. Consider the following cases: | 
 |   // (1) Storing a wide value must overwrite previous values in both `reg_number` | 
 |   //     and `reg_number+1`. We store `nullptr` in `reg_number+1`. | 
 |   // (2) If vreg `reg_number-1` holds a wide value, writing into `reg_number` | 
 |   //     must invalidate it. We store `nullptr` in `reg_number-1`. | 
 |   // Consequently, storing a wide value into the high vreg of another wide value | 
 |   // will invalidate both `reg_number-1` and `reg_number+1`. | 
 |  | 
 |   if (reg_number != 0) { | 
 |     HInstruction* local_low = (*current_locals_)[reg_number - 1]; | 
 |     if (local_low != nullptr && DataType::Is64BitType(local_low->GetType())) { | 
 |       // The vreg we are storing into was previously the high vreg of a pair. | 
 |       // We need to invalidate its low vreg. | 
 |       DCHECK((*current_locals_)[reg_number] == nullptr); | 
 |       (*current_locals_)[reg_number - 1] = nullptr; | 
 |     } | 
 |   } | 
 |  | 
 |   (*current_locals_)[reg_number] = stored_value; | 
 |   if (DataType::Is64BitType(stored_type)) { | 
 |     // We are storing a pair. Invalidate the instruction in the high vreg. | 
 |     (*current_locals_)[reg_number + 1] = nullptr; | 
 |   } | 
 | } | 
 |  | 
 | void HInstructionBuilder::InitializeParameters() { | 
 |   DCHECK(current_block_->IsEntryBlock()); | 
 |  | 
 |   // outer_compilation_unit_ is null only when unit testing. | 
 |   if (outer_compilation_unit_ == nullptr) { | 
 |     return; | 
 |   } | 
 |  | 
 |   const char* shorty = dex_compilation_unit_->GetShorty(); | 
 |   uint16_t number_of_parameters = graph_->GetNumberOfInVRegs(); | 
 |   uint16_t locals_index = graph_->GetNumberOfLocalVRegs(); | 
 |   uint16_t parameter_index = 0; | 
 |  | 
 |   const dex::MethodId& referrer_method_id = | 
 |       dex_file_->GetMethodId(dex_compilation_unit_->GetDexMethodIndex()); | 
 |   if (!dex_compilation_unit_->IsStatic()) { | 
 |     // Add the implicit 'this' argument, not expressed in the signature. | 
 |     HParameterValue* parameter = new (allocator_) HParameterValue(*dex_file_, | 
 |                                                               referrer_method_id.class_idx_, | 
 |                                                               parameter_index++, | 
 |                                                               DataType::Type::kReference, | 
 |                                                               /* is_this= */ true); | 
 |     AppendInstruction(parameter); | 
 |     UpdateLocal(locals_index++, parameter); | 
 |     number_of_parameters--; | 
 |     current_this_parameter_ = parameter; | 
 |   } else { | 
 |     DCHECK(current_this_parameter_ == nullptr); | 
 |   } | 
 |  | 
 |   const dex::ProtoId& proto = dex_file_->GetMethodPrototype(referrer_method_id); | 
 |   const dex::TypeList* arg_types = dex_file_->GetProtoParameters(proto); | 
 |   for (int i = 0, shorty_pos = 1; i < number_of_parameters; i++) { | 
 |     HParameterValue* parameter = new (allocator_) HParameterValue( | 
 |         *dex_file_, | 
 |         arg_types->GetTypeItem(shorty_pos - 1).type_idx_, | 
 |         parameter_index++, | 
 |         DataType::FromShorty(shorty[shorty_pos]), | 
 |         /* is_this= */ false); | 
 |     ++shorty_pos; | 
 |     AppendInstruction(parameter); | 
 |     // Store the parameter value in the local that the dex code will use | 
 |     // to reference that parameter. | 
 |     UpdateLocal(locals_index++, parameter); | 
 |     if (DataType::Is64BitType(parameter->GetType())) { | 
 |       i++; | 
 |       locals_index++; | 
 |       parameter_index++; | 
 |     } | 
 |   } | 
 | } | 
 |  | 
 | template<typename T> | 
 | void HInstructionBuilder::If_22t(const Instruction& instruction, uint32_t dex_pc) { | 
 |   HInstruction* first = LoadLocal(instruction.VRegA(), DataType::Type::kInt32); | 
 |   HInstruction* second = LoadLocal(instruction.VRegB(), DataType::Type::kInt32); | 
 |   T* comparison = new (allocator_) T(first, second, dex_pc); | 
 |   AppendInstruction(comparison); | 
 |   AppendInstruction(new (allocator_) HIf(comparison, dex_pc)); | 
 |   current_block_ = nullptr; | 
 | } | 
 |  | 
 | template<typename T> | 
 | void HInstructionBuilder::If_21t(const Instruction& instruction, uint32_t dex_pc) { | 
 |   HInstruction* value = LoadLocal(instruction.VRegA(), DataType::Type::kInt32); | 
 |   T* comparison = new (allocator_) T(value, graph_->GetIntConstant(0, dex_pc), dex_pc); | 
 |   AppendInstruction(comparison); | 
 |   AppendInstruction(new (allocator_) HIf(comparison, dex_pc)); | 
 |   current_block_ = nullptr; | 
 | } | 
 |  | 
 | template<typename T> | 
 | void HInstructionBuilder::Unop_12x(const Instruction& instruction, | 
 |                                    DataType::Type type, | 
 |                                    uint32_t dex_pc) { | 
 |   HInstruction* first = LoadLocal(instruction.VRegB(), type); | 
 |   AppendInstruction(new (allocator_) T(type, first, dex_pc)); | 
 |   UpdateLocal(instruction.VRegA(), current_block_->GetLastInstruction()); | 
 | } | 
 |  | 
 | void HInstructionBuilder::Conversion_12x(const Instruction& instruction, | 
 |                                          DataType::Type input_type, | 
 |                                          DataType::Type result_type, | 
 |                                          uint32_t dex_pc) { | 
 |   HInstruction* first = LoadLocal(instruction.VRegB(), input_type); | 
 |   AppendInstruction(new (allocator_) HTypeConversion(result_type, first, dex_pc)); | 
 |   UpdateLocal(instruction.VRegA(), current_block_->GetLastInstruction()); | 
 | } | 
 |  | 
 | template<typename T> | 
 | void HInstructionBuilder::Binop_23x(const Instruction& instruction, | 
 |                                     DataType::Type type, | 
 |                                     uint32_t dex_pc) { | 
 |   HInstruction* first = LoadLocal(instruction.VRegB(), type); | 
 |   HInstruction* second = LoadLocal(instruction.VRegC(), type); | 
 |   AppendInstruction(new (allocator_) T(type, first, second, dex_pc)); | 
 |   UpdateLocal(instruction.VRegA(), current_block_->GetLastInstruction()); | 
 | } | 
 |  | 
 | template<typename T> | 
 | void HInstructionBuilder::Binop_23x_shift(const Instruction& instruction, | 
 |                                           DataType::Type type, | 
 |                                           uint32_t dex_pc) { | 
 |   HInstruction* first = LoadLocal(instruction.VRegB(), type); | 
 |   HInstruction* second = LoadLocal(instruction.VRegC(), DataType::Type::kInt32); | 
 |   AppendInstruction(new (allocator_) T(type, first, second, dex_pc)); | 
 |   UpdateLocal(instruction.VRegA(), current_block_->GetLastInstruction()); | 
 | } | 
 |  | 
 | void HInstructionBuilder::Binop_23x_cmp(const Instruction& instruction, | 
 |                                         DataType::Type type, | 
 |                                         ComparisonBias bias, | 
 |                                         uint32_t dex_pc) { | 
 |   HInstruction* first = LoadLocal(instruction.VRegB(), type); | 
 |   HInstruction* second = LoadLocal(instruction.VRegC(), type); | 
 |   AppendInstruction(new (allocator_) HCompare(type, first, second, bias, dex_pc)); | 
 |   UpdateLocal(instruction.VRegA(), current_block_->GetLastInstruction()); | 
 | } | 
 |  | 
 | template<typename T> | 
 | void HInstructionBuilder::Binop_12x_shift(const Instruction& instruction, | 
 |                                           DataType::Type type, | 
 |                                           uint32_t dex_pc) { | 
 |   HInstruction* first = LoadLocal(instruction.VRegA(), type); | 
 |   HInstruction* second = LoadLocal(instruction.VRegB(), DataType::Type::kInt32); | 
 |   AppendInstruction(new (allocator_) T(type, first, second, dex_pc)); | 
 |   UpdateLocal(instruction.VRegA(), current_block_->GetLastInstruction()); | 
 | } | 
 |  | 
 | template<typename T> | 
 | void HInstructionBuilder::Binop_12x(const Instruction& instruction, | 
 |                                     DataType::Type type, | 
 |                                     uint32_t dex_pc) { | 
 |   HInstruction* first = LoadLocal(instruction.VRegA(), type); | 
 |   HInstruction* second = LoadLocal(instruction.VRegB(), type); | 
 |   AppendInstruction(new (allocator_) T(type, first, second, dex_pc)); | 
 |   UpdateLocal(instruction.VRegA(), current_block_->GetLastInstruction()); | 
 | } | 
 |  | 
 | template<typename T> | 
 | void HInstructionBuilder::Binop_22s(const Instruction& instruction, bool reverse, uint32_t dex_pc) { | 
 |   HInstruction* first = LoadLocal(instruction.VRegB(), DataType::Type::kInt32); | 
 |   HInstruction* second = graph_->GetIntConstant(instruction.VRegC_22s(), dex_pc); | 
 |   if (reverse) { | 
 |     std::swap(first, second); | 
 |   } | 
 |   AppendInstruction(new (allocator_) T(DataType::Type::kInt32, first, second, dex_pc)); | 
 |   UpdateLocal(instruction.VRegA(), current_block_->GetLastInstruction()); | 
 | } | 
 |  | 
 | template<typename T> | 
 | void HInstructionBuilder::Binop_22b(const Instruction& instruction, bool reverse, uint32_t dex_pc) { | 
 |   HInstruction* first = LoadLocal(instruction.VRegB(), DataType::Type::kInt32); | 
 |   HInstruction* second = graph_->GetIntConstant(instruction.VRegC_22b(), dex_pc); | 
 |   if (reverse) { | 
 |     std::swap(first, second); | 
 |   } | 
 |   AppendInstruction(new (allocator_) T(DataType::Type::kInt32, first, second, dex_pc)); | 
 |   UpdateLocal(instruction.VRegA(), current_block_->GetLastInstruction()); | 
 | } | 
 |  | 
 | // Does the method being compiled need any constructor barriers being inserted? | 
 | // (Always 'false' for methods that aren't <init>.) | 
 | static bool RequiresConstructorBarrier(const DexCompilationUnit* cu) { | 
 |   // Can be null in unit tests only. | 
 |   if (UNLIKELY(cu == nullptr)) { | 
 |     return false; | 
 |   } | 
 |  | 
 |   // Constructor barriers are applicable only for <init> methods. | 
 |   if (LIKELY(!cu->IsConstructor() || cu->IsStatic())) { | 
 |     return false; | 
 |   } | 
 |  | 
 |   return cu->RequiresConstructorBarrier(); | 
 | } | 
 |  | 
 | // Returns true if `block` has only one successor which starts at the next | 
 | // dex_pc after `instruction` at `dex_pc`. | 
 | static bool IsFallthroughInstruction(const Instruction& instruction, | 
 |                                      uint32_t dex_pc, | 
 |                                      HBasicBlock* block) { | 
 |   uint32_t next_dex_pc = dex_pc + instruction.SizeInCodeUnits(); | 
 |   return block->GetSingleSuccessor()->GetDexPc() == next_dex_pc; | 
 | } | 
 |  | 
 | void HInstructionBuilder::BuildSwitch(const Instruction& instruction, uint32_t dex_pc) { | 
 |   HInstruction* value = LoadLocal(instruction.VRegA(), DataType::Type::kInt32); | 
 |   DexSwitchTable table(instruction, dex_pc); | 
 |  | 
 |   if (table.GetNumEntries() == 0) { | 
 |     // Empty Switch. Code falls through to the next block. | 
 |     DCHECK(IsFallthroughInstruction(instruction, dex_pc, current_block_)); | 
 |     AppendInstruction(new (allocator_) HGoto(dex_pc)); | 
 |   } else if (table.ShouldBuildDecisionTree()) { | 
 |     for (DexSwitchTableIterator it(table); !it.Done(); it.Advance()) { | 
 |       HInstruction* case_value = graph_->GetIntConstant(it.CurrentKey(), dex_pc); | 
 |       HEqual* comparison = new (allocator_) HEqual(value, case_value, dex_pc); | 
 |       AppendInstruction(comparison); | 
 |       AppendInstruction(new (allocator_) HIf(comparison, dex_pc)); | 
 |  | 
 |       if (!it.IsLast()) { | 
 |         current_block_ = FindBlockStartingAt(it.GetDexPcForCurrentIndex()); | 
 |       } | 
 |     } | 
 |   } else { | 
 |     AppendInstruction( | 
 |         new (allocator_) HPackedSwitch(table.GetEntryAt(0), table.GetNumEntries(), value, dex_pc)); | 
 |   } | 
 |  | 
 |   current_block_ = nullptr; | 
 | } | 
 |  | 
 | void HInstructionBuilder::BuildReturn(const Instruction& instruction, | 
 |                                       DataType::Type type, | 
 |                                       uint32_t dex_pc) { | 
 |   if (type == DataType::Type::kVoid) { | 
 |     // Only <init> (which is a return-void) could possibly have a constructor fence. | 
 |     // This may insert additional redundant constructor fences from the super constructors. | 
 |     // TODO: remove redundant constructor fences (b/36656456). | 
 |     if (RequiresConstructorBarrier(dex_compilation_unit_)) { | 
 |       // Compiling instance constructor. | 
 |       DCHECK_STREQ("<init>", graph_->GetMethodName()); | 
 |  | 
 |       HInstruction* fence_target = current_this_parameter_; | 
 |       DCHECK(fence_target != nullptr); | 
 |  | 
 |       AppendInstruction(new (allocator_) HConstructorFence(fence_target, dex_pc, allocator_)); | 
 |       MaybeRecordStat( | 
 |           compilation_stats_, | 
 |           MethodCompilationStat::kConstructorFenceGeneratedFinal); | 
 |     } | 
 |     AppendInstruction(new (allocator_) HReturnVoid(dex_pc)); | 
 |   } else { | 
 |     DCHECK(!RequiresConstructorBarrier(dex_compilation_unit_)); | 
 |     HInstruction* value = LoadLocal(instruction.VRegA(), type); | 
 |     AppendInstruction(new (allocator_) HReturn(value, dex_pc)); | 
 |   } | 
 |   current_block_ = nullptr; | 
 | } | 
 |  | 
 | static InvokeType GetInvokeTypeFromOpCode(Instruction::Code opcode) { | 
 |   switch (opcode) { | 
 |     case Instruction::INVOKE_STATIC: | 
 |     case Instruction::INVOKE_STATIC_RANGE: | 
 |       return kStatic; | 
 |     case Instruction::INVOKE_DIRECT: | 
 |     case Instruction::INVOKE_DIRECT_RANGE: | 
 |       return kDirect; | 
 |     case Instruction::INVOKE_VIRTUAL: | 
 |     case Instruction::INVOKE_VIRTUAL_QUICK: | 
 |     case Instruction::INVOKE_VIRTUAL_RANGE: | 
 |     case Instruction::INVOKE_VIRTUAL_RANGE_QUICK: | 
 |       return kVirtual; | 
 |     case Instruction::INVOKE_INTERFACE: | 
 |     case Instruction::INVOKE_INTERFACE_RANGE: | 
 |       return kInterface; | 
 |     case Instruction::INVOKE_SUPER_RANGE: | 
 |     case Instruction::INVOKE_SUPER: | 
 |       return kSuper; | 
 |     default: | 
 |       LOG(FATAL) << "Unexpected invoke opcode: " << opcode; | 
 |       UNREACHABLE(); | 
 |   } | 
 | } | 
 |  | 
 | // Try to resolve a method using the class linker. Return null if a method could | 
 | // not be resolved or the resolved method cannot be used for some reason. | 
 | // Also retrieve method data needed for creating the invoke intermediate | 
 | // representation while we hold the mutator lock here. | 
 | static ArtMethod* ResolveMethod(uint16_t method_idx, | 
 |                                 ArtMethod* referrer, | 
 |                                 const DexCompilationUnit& dex_compilation_unit, | 
 |                                 /*inout*/InvokeType* invoke_type, | 
 |                                 /*out*/MethodReference* target_method, | 
 |                                 /*out*/bool* is_string_constructor) { | 
 |   ScopedObjectAccess soa(Thread::Current()); | 
 |  | 
 |   ClassLinker* class_linker = dex_compilation_unit.GetClassLinker(); | 
 |   Handle<mirror::ClassLoader> class_loader = dex_compilation_unit.GetClassLoader(); | 
 |  | 
 |   ArtMethod* resolved_method = | 
 |       class_linker->ResolveMethod<ClassLinker::ResolveMode::kCheckICCEAndIAE>( | 
 |           method_idx, | 
 |           dex_compilation_unit.GetDexCache(), | 
 |           class_loader, | 
 |           referrer, | 
 |           *invoke_type); | 
 |  | 
 |   if (UNLIKELY(resolved_method == nullptr)) { | 
 |     // Clean up any exception left by type resolution. | 
 |     soa.Self()->ClearException(); | 
 |     return nullptr; | 
 |   } | 
 |   DCHECK(!soa.Self()->IsExceptionPending()); | 
 |  | 
 |   // The referrer may be unresolved for AOT if we're compiling a class that cannot be | 
 |   // resolved because, for example, we don't find a superclass in the classpath. | 
 |   if (referrer == nullptr) { | 
 |     // The class linker cannot check access without a referrer, so we have to do it. | 
 |     // Fall back to HInvokeUnresolved if the method isn't public. | 
 |     if (!resolved_method->IsPublic()) { | 
 |       return nullptr; | 
 |     } | 
 |   } | 
 |  | 
 |   // We have to special case the invoke-super case, as ClassLinker::ResolveMethod does not. | 
 |   // We need to look at the referrer's super class vtable. We need to do this to know if we need to | 
 |   // make this an invoke-unresolved to handle cross-dex invokes or abstract super methods, both of | 
 |   // which require runtime handling. | 
 |   if (*invoke_type == kSuper) { | 
 |     ObjPtr<mirror::Class> compiling_class = dex_compilation_unit.GetCompilingClass().Get(); | 
 |     if (compiling_class == nullptr) { | 
 |       // We could not determine the method's class we need to wait until runtime. | 
 |       DCHECK(Runtime::Current()->IsAotCompiler()); | 
 |       return nullptr; | 
 |     } | 
 |     ObjPtr<mirror::Class> referenced_class = class_linker->LookupResolvedType( | 
 |         dex_compilation_unit.GetDexFile()->GetMethodId(method_idx).class_idx_, | 
 |         dex_compilation_unit.GetDexCache().Get(), | 
 |         class_loader.Get()); | 
 |     DCHECK(referenced_class != nullptr);  // We have already resolved a method from this class. | 
 |     if (!referenced_class->IsAssignableFrom(compiling_class)) { | 
 |       // We cannot statically determine the target method. The runtime will throw a | 
 |       // NoSuchMethodError on this one. | 
 |       return nullptr; | 
 |     } | 
 |     ArtMethod* actual_method; | 
 |     if (referenced_class->IsInterface()) { | 
 |       actual_method = referenced_class->FindVirtualMethodForInterfaceSuper( | 
 |           resolved_method, class_linker->GetImagePointerSize()); | 
 |     } else { | 
 |       uint16_t vtable_index = resolved_method->GetMethodIndex(); | 
 |       actual_method = compiling_class->GetSuperClass()->GetVTableEntry( | 
 |           vtable_index, class_linker->GetImagePointerSize()); | 
 |     } | 
 |     if (actual_method != resolved_method && | 
 |         !IsSameDexFile(*actual_method->GetDexFile(), *dex_compilation_unit.GetDexFile())) { | 
 |       // The back-end code generator relies on this check in order to ensure that it will not | 
 |       // attempt to read the dex_cache with a dex_method_index that is not from the correct | 
 |       // dex_file. If we didn't do this check then the dex_method_index will not be updated in the | 
 |       // builder, which means that the code-generator (and sharpening and inliner, maybe) | 
 |       // might invoke an incorrect method. | 
 |       // TODO: The actual method could still be referenced in the current dex file, so we | 
 |       //       could try locating it. | 
 |       // TODO: Remove the dex_file restriction. | 
 |       return nullptr; | 
 |     } | 
 |     if (!actual_method->IsInvokable()) { | 
 |       // Fail if the actual method cannot be invoked. Otherwise, the runtime resolution stub | 
 |       // could resolve the callee to the wrong method. | 
 |       return nullptr; | 
 |     } | 
 |     resolved_method = actual_method; | 
 |   } | 
 |  | 
 |   if (*invoke_type == kInterface) { | 
 |     if (resolved_method->GetDeclaringClass()->IsObjectClass()) { | 
 |       // If the resolved method is from j.l.Object, emit a virtual call instead. | 
 |       // The IMT conflict stub only handles interface methods. | 
 |       *invoke_type = kVirtual; | 
 |     } else { | 
 |       DCHECK(resolved_method->GetDeclaringClass()->IsInterface()); | 
 |     } | 
 |   } | 
 |  | 
 |   if (*invoke_type == kDirect || *invoke_type == kStatic || *invoke_type == kSuper) { | 
 |     // Record the target method needed for HInvokeStaticOrDirect. | 
 |     *target_method = | 
 |         MethodReference(resolved_method->GetDexFile(), resolved_method->GetDexMethodIndex()); | 
 |   } else if (*invoke_type == kVirtual) { | 
 |     // For HInvokeVirtual we need the vtable index. | 
 |     *target_method = MethodReference(/*file=*/ nullptr, resolved_method->GetVtableIndex()); | 
 |   } else if (*invoke_type == kInterface) { | 
 |     // For HInvokeInterface we need the IMT index. | 
 |     *target_method = MethodReference(/*file=*/ nullptr, ImTable::GetImtIndex(resolved_method)); | 
 |   } else { | 
 |     // For HInvokePolymorphic we don't need the target method yet | 
 |     DCHECK_EQ(*invoke_type, kPolymorphic); | 
 |     DCHECK(target_method == nullptr); | 
 |   } | 
 |  | 
 |   *is_string_constructor = | 
 |       resolved_method->IsConstructor() && resolved_method->GetDeclaringClass()->IsStringClass(); | 
 |  | 
 |   return resolved_method; | 
 | } | 
 |  | 
 | bool HInstructionBuilder::BuildInvoke(const Instruction& instruction, | 
 |                                       uint32_t dex_pc, | 
 |                                       uint32_t method_idx, | 
 |                                       const InstructionOperands& operands) { | 
 |   InvokeType invoke_type = GetInvokeTypeFromOpCode(instruction.Opcode()); | 
 |   const char* shorty = dex_file_->GetMethodShorty(method_idx); | 
 |   DataType::Type return_type = DataType::FromShorty(shorty[0]); | 
 |  | 
 |   // Remove the return type from the 'proto'. | 
 |   size_t number_of_arguments = strlen(shorty) - 1; | 
 |   if (invoke_type != kStatic) {  // instance call | 
 |     // One extra argument for 'this'. | 
 |     number_of_arguments++; | 
 |   } | 
 |  | 
 |   MethodReference target_method(nullptr, 0u); | 
 |   bool is_string_constructor = false; | 
 |   ArtMethod* resolved_method = ResolveMethod(method_idx, | 
 |                                              graph_->GetArtMethod(), | 
 |                                              *dex_compilation_unit_, | 
 |                                              &invoke_type, | 
 |                                              &target_method, | 
 |                                              &is_string_constructor); | 
 |  | 
 |   if (UNLIKELY(resolved_method == nullptr)) { | 
 |     DCHECK(!Thread::Current()->IsExceptionPending()); | 
 |     MaybeRecordStat(compilation_stats_, | 
 |                     MethodCompilationStat::kUnresolvedMethod); | 
 |     HInvoke* invoke = new (allocator_) HInvokeUnresolved(allocator_, | 
 |                                                          number_of_arguments, | 
 |                                                          return_type, | 
 |                                                          dex_pc, | 
 |                                                          method_idx, | 
 |                                                          invoke_type); | 
 |     return HandleInvoke(invoke, operands, shorty, /* is_unresolved= */ true); | 
 |   } | 
 |  | 
 |   // Replace calls to String.<init> with StringFactory. | 
 |   if (is_string_constructor) { | 
 |     uint32_t string_init_entry_point = WellKnownClasses::StringInitToEntryPoint(resolved_method); | 
 |     HInvokeStaticOrDirect::DispatchInfo dispatch_info = { | 
 |         HInvokeStaticOrDirect::MethodLoadKind::kStringInit, | 
 |         HInvokeStaticOrDirect::CodePtrLocation::kCallArtMethod, | 
 |         dchecked_integral_cast<uint64_t>(string_init_entry_point) | 
 |     }; | 
 |     // We pass null for the resolved_method to ensure optimizations | 
 |     // don't rely on it. | 
 |     HInvoke* invoke = new (allocator_) HInvokeStaticOrDirect( | 
 |         allocator_, | 
 |         number_of_arguments - 1, | 
 |         /* return_type= */ DataType::Type::kReference, | 
 |         dex_pc, | 
 |         method_idx, | 
 |         /* resolved_method= */ nullptr, | 
 |         dispatch_info, | 
 |         invoke_type, | 
 |         target_method, | 
 |         HInvokeStaticOrDirect::ClinitCheckRequirement::kImplicit); | 
 |     return HandleStringInit(invoke, operands, shorty); | 
 |   } | 
 |  | 
 |   // Potential class initialization check, in the case of a static method call. | 
 |   HInvokeStaticOrDirect::ClinitCheckRequirement clinit_check_requirement = | 
 |       HInvokeStaticOrDirect::ClinitCheckRequirement::kNone; | 
 |   HClinitCheck* clinit_check = nullptr; | 
 |   if (invoke_type == kStatic) { | 
 |     clinit_check = ProcessClinitCheckForInvoke(dex_pc, resolved_method, &clinit_check_requirement); | 
 |   } | 
 |  | 
 |   // Try to build an HIR replacement for the intrinsic. | 
 |   if (UNLIKELY(resolved_method->IsIntrinsic())) { | 
 |     // All intrinsics are in the primary boot image, so their class can always be referenced | 
 |     // and we do not need to rely on the implicit class initialization check. The class should | 
 |     // be initialized but we do not require that here. | 
 |     DCHECK_NE(clinit_check_requirement, HInvokeStaticOrDirect::ClinitCheckRequirement::kImplicit); | 
 |     if (BuildSimpleIntrinsic(resolved_method, dex_pc, operands, shorty)) { | 
 |       return true; | 
 |     } | 
 |   } | 
 |  | 
 |   HInvoke* invoke = nullptr; | 
 |   if (invoke_type == kDirect || invoke_type == kStatic || invoke_type == kSuper) { | 
 |     if (invoke_type == kSuper) { | 
 |       if (IsSameDexFile(*target_method.dex_file, *dex_compilation_unit_->GetDexFile())) { | 
 |         // Update the method index to the one resolved. Note that this may be a no-op if | 
 |         // we resolved to the method referenced by the instruction. | 
 |         method_idx = target_method.index; | 
 |       } | 
 |     } | 
 |  | 
 |     HInvokeStaticOrDirect::DispatchInfo dispatch_info = | 
 |         HSharpening::SharpenInvokeStaticOrDirect(resolved_method, code_generator_); | 
 |     invoke = new (allocator_) HInvokeStaticOrDirect(allocator_, | 
 |                                                     number_of_arguments, | 
 |                                                     return_type, | 
 |                                                     dex_pc, | 
 |                                                     method_idx, | 
 |                                                     resolved_method, | 
 |                                                     dispatch_info, | 
 |                                                     invoke_type, | 
 |                                                     target_method, | 
 |                                                     clinit_check_requirement); | 
 |     if (clinit_check != nullptr) { | 
 |       // Add the class initialization check as last input of `invoke`. | 
 |       DCHECK_EQ(clinit_check_requirement, HInvokeStaticOrDirect::ClinitCheckRequirement::kExplicit); | 
 |       size_t clinit_check_index = invoke->InputCount() - 1u; | 
 |       DCHECK(invoke->InputAt(clinit_check_index) == nullptr); | 
 |       invoke->SetArgumentAt(clinit_check_index, clinit_check); | 
 |     } | 
 |   } else if (invoke_type == kVirtual) { | 
 |     DCHECK(target_method.dex_file == nullptr); | 
 |     invoke = new (allocator_) HInvokeVirtual(allocator_, | 
 |                                              number_of_arguments, | 
 |                                              return_type, | 
 |                                              dex_pc, | 
 |                                              method_idx, | 
 |                                              resolved_method, | 
 |                                              /*vtable_index=*/ target_method.index); | 
 |   } else { | 
 |     DCHECK_EQ(invoke_type, kInterface); | 
 |     invoke = new (allocator_) HInvokeInterface(allocator_, | 
 |                                                number_of_arguments, | 
 |                                                return_type, | 
 |                                                dex_pc, | 
 |                                                method_idx, | 
 |                                                resolved_method, | 
 |                                                /*imt_index=*/ target_method.index); | 
 |   } | 
 |   return HandleInvoke(invoke, operands, shorty, /* is_unresolved= */ false); | 
 | } | 
 |  | 
 | bool HInstructionBuilder::BuildInvokePolymorphic(uint32_t dex_pc, | 
 |                                                  uint32_t method_idx, | 
 |                                                  dex::ProtoIndex proto_idx, | 
 |                                                  const InstructionOperands& operands) { | 
 |   const char* shorty = dex_file_->GetShorty(proto_idx); | 
 |   DCHECK_EQ(1 + ArtMethod::NumArgRegisters(shorty), operands.GetNumberOfOperands()); | 
 |   DataType::Type return_type = DataType::FromShorty(shorty[0]); | 
 |   size_t number_of_arguments = strlen(shorty); | 
 |   // We use ResolveMethod which is also used in BuildInvoke in order to | 
 |   // not duplicate code. As such, we need to provide is_string_constructor | 
 |   // even if we don't need it afterwards. | 
 |   InvokeType invoke_type = InvokeType::kPolymorphic; | 
 |   bool is_string_constructor = false; | 
 |   ArtMethod* resolved_method = ResolveMethod(method_idx, | 
 |                                             graph_->GetArtMethod(), | 
 |                                             *dex_compilation_unit_, | 
 |                                             &invoke_type, | 
 |                                             /* target_method= */ nullptr, | 
 |                                             &is_string_constructor); | 
 |   HInvoke* invoke = new (allocator_) HInvokePolymorphic(allocator_, | 
 |                                                         number_of_arguments, | 
 |                                                         return_type, | 
 |                                                         dex_pc, | 
 |                                                         method_idx, | 
 |                                                         resolved_method); | 
 |   return HandleInvoke(invoke, operands, shorty, /* is_unresolved= */ false); | 
 | } | 
 |  | 
 |  | 
 | bool HInstructionBuilder::BuildInvokeCustom(uint32_t dex_pc, | 
 |                                             uint32_t call_site_idx, | 
 |                                             const InstructionOperands& operands) { | 
 |   dex::ProtoIndex proto_idx = dex_file_->GetProtoIndexForCallSite(call_site_idx); | 
 |   const char* shorty = dex_file_->GetShorty(proto_idx); | 
 |   DataType::Type return_type = DataType::FromShorty(shorty[0]); | 
 |   size_t number_of_arguments = strlen(shorty) - 1; | 
 |   HInvoke* invoke = new (allocator_) HInvokeCustom(allocator_, | 
 |                                                    number_of_arguments, | 
 |                                                    call_site_idx, | 
 |                                                    return_type, | 
 |                                                    dex_pc); | 
 |   return HandleInvoke(invoke, operands, shorty, /* is_unresolved= */ false); | 
 | } | 
 |  | 
 | HNewInstance* HInstructionBuilder::BuildNewInstance(dex::TypeIndex type_index, uint32_t dex_pc) { | 
 |   ScopedObjectAccess soa(Thread::Current()); | 
 |  | 
 |   HLoadClass* load_class = BuildLoadClass(type_index, dex_pc); | 
 |  | 
 |   HInstruction* cls = load_class; | 
 |   Handle<mirror::Class> klass = load_class->GetClass(); | 
 |  | 
 |   if (!IsInitialized(klass.Get())) { | 
 |     cls = new (allocator_) HClinitCheck(load_class, dex_pc); | 
 |     AppendInstruction(cls); | 
 |   } | 
 |  | 
 |   // Only the access check entrypoint handles the finalizable class case. If we | 
 |   // need access checks, then we haven't resolved the method and the class may | 
 |   // again be finalizable. | 
 |   QuickEntrypointEnum entrypoint = kQuickAllocObjectInitialized; | 
 |   if (load_class->NeedsAccessCheck() || klass->IsFinalizable() || !klass->IsInstantiable()) { | 
 |     entrypoint = kQuickAllocObjectWithChecks; | 
 |   } | 
 |   // We will always be able to resolve the string class since it is in the BCP. | 
 |   if (!klass.IsNull() && klass->IsStringClass()) { | 
 |     entrypoint = kQuickAllocStringObject; | 
 |   } | 
 |  | 
 |   // Consider classes we haven't resolved as potentially finalizable. | 
 |   bool finalizable = (klass == nullptr) || klass->IsFinalizable(); | 
 |  | 
 |   HNewInstance* new_instance = new (allocator_) HNewInstance( | 
 |       cls, | 
 |       dex_pc, | 
 |       type_index, | 
 |       *dex_compilation_unit_->GetDexFile(), | 
 |       finalizable, | 
 |       entrypoint); | 
 |   AppendInstruction(new_instance); | 
 |  | 
 |   return new_instance; | 
 | } | 
 |  | 
 | void HInstructionBuilder::BuildConstructorFenceForAllocation(HInstruction* allocation) { | 
 |   DCHECK(allocation != nullptr && | 
 |              (allocation->IsNewInstance() || | 
 |               allocation->IsNewArray()));  // corresponding to "new" keyword in JLS. | 
 |  | 
 |   if (allocation->IsNewInstance()) { | 
 |     // STRING SPECIAL HANDLING: | 
 |     // ------------------------------- | 
 |     // Strings have a real HNewInstance node but they end up always having 0 uses. | 
 |     // All uses of a String HNewInstance are always transformed to replace their input | 
 |     // of the HNewInstance with an input of the invoke to StringFactory. | 
 |     // | 
 |     // Do not emit an HConstructorFence here since it can inhibit some String new-instance | 
 |     // optimizations (to pass checker tests that rely on those optimizations). | 
 |     HNewInstance* new_inst = allocation->AsNewInstance(); | 
 |     HLoadClass* load_class = new_inst->GetLoadClass(); | 
 |  | 
 |     Thread* self = Thread::Current(); | 
 |     ScopedObjectAccess soa(self); | 
 |     StackHandleScope<1> hs(self); | 
 |     Handle<mirror::Class> klass = load_class->GetClass(); | 
 |     if (klass != nullptr && klass->IsStringClass()) { | 
 |       return; | 
 |       // Note: Do not use allocation->IsStringAlloc which requires | 
 |       // a valid ReferenceTypeInfo, but that doesn't get made until after reference type | 
 |       // propagation (and instruction builder is too early). | 
 |     } | 
 |     // (In terms of correctness, the StringFactory needs to provide its own | 
 |     // default initialization barrier, see below.) | 
 |   } | 
 |  | 
 |   // JLS 17.4.5 "Happens-before Order" describes: | 
 |   // | 
 |   //   The default initialization of any object happens-before any other actions (other than | 
 |   //   default-writes) of a program. | 
 |   // | 
 |   // In our implementation the default initialization of an object to type T means | 
 |   // setting all of its initial data (object[0..size)) to 0, and setting the | 
 |   // object's class header (i.e. object.getClass() == T.class). | 
 |   // | 
 |   // In practice this fence ensures that the writes to the object header | 
 |   // are visible to other threads if this object escapes the current thread. | 
 |   // (and in theory the 0-initializing, but that happens automatically | 
 |   // when new memory pages are mapped in by the OS). | 
 |   HConstructorFence* ctor_fence = | 
 |       new (allocator_) HConstructorFence(allocation, allocation->GetDexPc(), allocator_); | 
 |   AppendInstruction(ctor_fence); | 
 |   MaybeRecordStat( | 
 |       compilation_stats_, | 
 |       MethodCompilationStat::kConstructorFenceGeneratedNew); | 
 | } | 
 |  | 
 | static bool IsInBootImage(ObjPtr<mirror::Class> cls, const CompilerOptions& compiler_options) | 
 |     REQUIRES_SHARED(Locks::mutator_lock_) { | 
 |   if (Runtime::Current()->GetHeap()->ObjectIsInBootImageSpace(cls)) { | 
 |     return true; | 
 |   } | 
 |   if (compiler_options.IsBootImage() || compiler_options.IsBootImageExtension()) { | 
 |     std::string temp; | 
 |     const char* descriptor = cls->GetDescriptor(&temp); | 
 |     return compiler_options.IsImageClass(descriptor); | 
 |   } else { | 
 |     return false; | 
 |   } | 
 | } | 
 |  | 
 | static bool IsSubClass(ObjPtr<mirror::Class> to_test, ObjPtr<mirror::Class> super_class) | 
 |     REQUIRES_SHARED(Locks::mutator_lock_) { | 
 |   return to_test != nullptr && !to_test->IsInterface() && to_test->IsSubClass(super_class); | 
 | } | 
 |  | 
 | static bool HasTrivialClinit(ObjPtr<mirror::Class> klass, PointerSize pointer_size) | 
 |     REQUIRES_SHARED(Locks::mutator_lock_) { | 
 |   // Check if the class has encoded fields that trigger bytecode execution. | 
 |   // (Encoded fields are just a different representation of <clinit>.) | 
 |   if (klass->NumStaticFields() != 0u) { | 
 |     DCHECK(klass->GetClassDef() != nullptr); | 
 |     EncodedStaticFieldValueIterator it(klass->GetDexFile(), *klass->GetClassDef()); | 
 |     for (; it.HasNext(); it.Next()) { | 
 |       switch (it.GetValueType()) { | 
 |         case EncodedArrayValueIterator::ValueType::kBoolean: | 
 |         case EncodedArrayValueIterator::ValueType::kByte: | 
 |         case EncodedArrayValueIterator::ValueType::kShort: | 
 |         case EncodedArrayValueIterator::ValueType::kChar: | 
 |         case EncodedArrayValueIterator::ValueType::kInt: | 
 |         case EncodedArrayValueIterator::ValueType::kLong: | 
 |         case EncodedArrayValueIterator::ValueType::kFloat: | 
 |         case EncodedArrayValueIterator::ValueType::kDouble: | 
 |         case EncodedArrayValueIterator::ValueType::kNull: | 
 |         case EncodedArrayValueIterator::ValueType::kString: | 
 |           // Primitive, null or j.l.String initialization is permitted. | 
 |           break; | 
 |         case EncodedArrayValueIterator::ValueType::kType: | 
 |           // Type initialization can load classes and execute bytecode through a class loader | 
 |           // which can execute arbitrary bytecode. We do not optimize for known class loaders; | 
 |           // kType is rarely used (if ever). | 
 |           return false; | 
 |         default: | 
 |           // Other types in the encoded static field list are rejected by the DexFileVerifier. | 
 |           LOG(FATAL) << "Unexpected type " << it.GetValueType(); | 
 |           UNREACHABLE(); | 
 |       } | 
 |     } | 
 |   } | 
 |   // Check if the class has <clinit> that executes arbitrary code. | 
 |   // Initialization of static fields of the class itself with constants is allowed. | 
 |   ArtMethod* clinit = klass->FindClassInitializer(pointer_size); | 
 |   if (clinit != nullptr) { | 
 |     const DexFile& dex_file = *clinit->GetDexFile(); | 
 |     CodeItemInstructionAccessor accessor(dex_file, clinit->GetCodeItem()); | 
 |     for (DexInstructionPcPair it : accessor) { | 
 |       switch (it->Opcode()) { | 
 |         case Instruction::CONST_4: | 
 |         case Instruction::CONST_16: | 
 |         case Instruction::CONST: | 
 |         case Instruction::CONST_HIGH16: | 
 |         case Instruction::CONST_WIDE_16: | 
 |         case Instruction::CONST_WIDE_32: | 
 |         case Instruction::CONST_WIDE: | 
 |         case Instruction::CONST_WIDE_HIGH16: | 
 |         case Instruction::CONST_STRING: | 
 |         case Instruction::CONST_STRING_JUMBO: | 
 |           // Primitive, null or j.l.String initialization is permitted. | 
 |           break; | 
 |         case Instruction::RETURN_VOID: | 
 |         case Instruction::RETURN_VOID_NO_BARRIER: | 
 |           break; | 
 |         case Instruction::SPUT: | 
 |         case Instruction::SPUT_WIDE: | 
 |         case Instruction::SPUT_OBJECT: | 
 |         case Instruction::SPUT_BOOLEAN: | 
 |         case Instruction::SPUT_BYTE: | 
 |         case Instruction::SPUT_CHAR: | 
 |         case Instruction::SPUT_SHORT: | 
 |           // Only initialization of a static field of the same class is permitted. | 
 |           if (dex_file.GetFieldId(it->VRegB_21c()).class_idx_ != klass->GetDexTypeIndex()) { | 
 |             return false; | 
 |           } | 
 |           break; | 
 |         case Instruction::NEW_ARRAY: | 
 |           // Only primitive arrays are permitted. | 
 |           if (Primitive::GetType(dex_file.GetTypeDescriptor(dex_file.GetTypeId( | 
 |                   dex::TypeIndex(it->VRegC_22c())))[1]) == Primitive::kPrimNot) { | 
 |             return false; | 
 |           } | 
 |           break; | 
 |         case Instruction::APUT: | 
 |         case Instruction::APUT_WIDE: | 
 |         case Instruction::APUT_BOOLEAN: | 
 |         case Instruction::APUT_BYTE: | 
 |         case Instruction::APUT_CHAR: | 
 |         case Instruction::APUT_SHORT: | 
 |         case Instruction::FILL_ARRAY_DATA: | 
 |         case Instruction::NOP: | 
 |           // Allow initialization of primitive arrays (only constants can be stored). | 
 |           // Note: We expect NOPs used for fill-array-data-payload but accept all NOPs | 
 |           // (even unreferenced switch payloads if they make it through the verifier). | 
 |           break; | 
 |         default: | 
 |           return false; | 
 |       } | 
 |     } | 
 |   } | 
 |   return true; | 
 | } | 
 |  | 
 | static bool HasTrivialInitialization(ObjPtr<mirror::Class> cls, | 
 |                                      const CompilerOptions& compiler_options) | 
 |     REQUIRES_SHARED(Locks::mutator_lock_) { | 
 |   Runtime* runtime = Runtime::Current(); | 
 |   PointerSize pointer_size = runtime->GetClassLinker()->GetImagePointerSize(); | 
 |  | 
 |   // Check the superclass chain. | 
 |   for (ObjPtr<mirror::Class> klass = cls; klass != nullptr; klass = klass->GetSuperClass()) { | 
 |     if (klass->IsInitialized() && IsInBootImage(klass, compiler_options)) { | 
 |       break;  // `klass` and its superclasses are already initialized in the boot image. | 
 |     } | 
 |     if (!HasTrivialClinit(klass, pointer_size)) { | 
 |       return false; | 
 |     } | 
 |   } | 
 |  | 
 |   // Also check interfaces with default methods as they need to be initialized as well. | 
 |   ObjPtr<mirror::IfTable> iftable = cls->GetIfTable(); | 
 |   DCHECK(iftable != nullptr); | 
 |   for (int32_t i = 0, count = iftable->Count(); i != count; ++i) { | 
 |     ObjPtr<mirror::Class> iface = iftable->GetInterface(i); | 
 |     if (!iface->HasDefaultMethods()) { | 
 |       continue;  // Initializing `cls` does not initialize this interface. | 
 |     } | 
 |     if (iface->IsInitialized() && IsInBootImage(iface, compiler_options)) { | 
 |       continue;  // This interface is already initialized in the boot image. | 
 |     } | 
 |     if (!HasTrivialClinit(iface, pointer_size)) { | 
 |       return false; | 
 |     } | 
 |   } | 
 |   return true; | 
 | } | 
 |  | 
 | bool HInstructionBuilder::IsInitialized(ObjPtr<mirror::Class> cls) const { | 
 |   if (cls == nullptr) { | 
 |     return false; | 
 |   } | 
 |  | 
 |   // Check if the class will be initialized at runtime. | 
 |   if (cls->IsInitialized()) { | 
 |     const CompilerOptions& compiler_options = code_generator_->GetCompilerOptions(); | 
 |     if (compiler_options.IsAotCompiler()) { | 
 |       // Assume loaded only if klass is in the boot image. App classes cannot be assumed | 
 |       // loaded because we don't even know what class loader will be used to load them. | 
 |       if (IsInBootImage(cls, compiler_options)) { | 
 |         return true; | 
 |       } | 
 |     } else { | 
 |       DCHECK(compiler_options.IsJitCompiler()); | 
 |       if (Runtime::Current()->GetJit()->CanAssumeInitialized( | 
 |               cls, | 
 |               compiler_options.IsJitCompilerForSharedCode())) { | 
 |         // For JIT, the class cannot revert to an uninitialized state. | 
 |         return true; | 
 |       } | 
 |     } | 
 |   } | 
 |  | 
 |   // We can avoid the class initialization check for `cls` in static methods and constructors | 
 |   // in the very same class; invoking a static method involves a class initialization check | 
 |   // and so does the instance allocation that must be executed before invoking a constructor. | 
 |   // Other instance methods of the same class can run on an escaped instance | 
 |   // of an erroneous class. Even a superclass may need to be checked as the subclass | 
 |   // can be completely initialized while the superclass is initializing and the subclass | 
 |   // remains initialized when the superclass initializer throws afterwards. b/62478025 | 
 |   // Note: The HClinitCheck+HInvokeStaticOrDirect merging can still apply. | 
 |   auto is_static_method_or_constructor_of_cls = [cls](const DexCompilationUnit& compilation_unit) | 
 |       REQUIRES_SHARED(Locks::mutator_lock_) { | 
 |     return (compilation_unit.GetAccessFlags() & (kAccStatic | kAccConstructor)) != 0u && | 
 |            compilation_unit.GetCompilingClass().Get() == cls; | 
 |   }; | 
 |   if (is_static_method_or_constructor_of_cls(*outer_compilation_unit_) || | 
 |       // Check also the innermost method. Though excessive copies of ClinitCheck can be | 
 |       // eliminated by GVN, that happens only after the decision whether to inline the | 
 |       // graph or not and that may depend on the presence of the ClinitCheck. | 
 |       // TODO: We should walk over the entire inlined method chain, but we don't pass that | 
 |       // information to the builder. | 
 |       is_static_method_or_constructor_of_cls(*dex_compilation_unit_)) { | 
 |     return true; | 
 |   } | 
 |  | 
 |   // Otherwise, we may be able to avoid the check if `cls` is a superclass of a method being | 
 |   // compiled here (anywhere in the inlining chain) as the `cls` must have started initializing | 
 |   // before calling any `cls` or subclass methods. Static methods require a clinit check and | 
 |   // instance methods require an instance which cannot be created before doing a clinit check. | 
 |   // When a subclass of `cls` starts initializing, it starts initializing its superclass | 
 |   // chain up to `cls` without running any bytecode, i.e. without any opportunity for circular | 
 |   // initialization weirdness. | 
 |   // | 
 |   // If the initialization of `cls` is trivial (`cls` and its superclasses and superinterfaces | 
 |   // with default methods initialize only their own static fields using constant values), it must | 
 |   // complete, either successfully or by throwing and marking `cls` erroneous, without allocating | 
 |   // any instances of `cls` or subclasses (or any other class) and without calling any methods. | 
 |   // If it completes by throwing, no instances of `cls` shall be created and no subclass method | 
 |   // bytecode shall execute (see above), therefore the instruction we're building shall be | 
 |   // unreachable. By reaching the instruction, we know that `cls` was initialized successfully. | 
 |   // | 
 |   // TODO: We should walk over the entire inlined methods chain, but we don't pass that | 
 |   // information to the builder. (We could also check if we're guaranteed a non-null instance | 
 |   // of `cls` at this location but that's outside the scope of the instruction builder.) | 
 |   bool is_subclass = IsSubClass(outer_compilation_unit_->GetCompilingClass().Get(), cls); | 
 |   if (dex_compilation_unit_ != outer_compilation_unit_) { | 
 |     is_subclass = is_subclass || | 
 |                   IsSubClass(dex_compilation_unit_->GetCompilingClass().Get(), cls); | 
 |   } | 
 |   if (is_subclass && HasTrivialInitialization(cls, code_generator_->GetCompilerOptions())) { | 
 |     return true; | 
 |   } | 
 |  | 
 |   return false; | 
 | } | 
 |  | 
 | HClinitCheck* HInstructionBuilder::ProcessClinitCheckForInvoke( | 
 |     uint32_t dex_pc, | 
 |     ArtMethod* resolved_method, | 
 |     HInvokeStaticOrDirect::ClinitCheckRequirement* clinit_check_requirement) { | 
 |   ScopedObjectAccess soa(Thread::Current()); | 
 |   ObjPtr<mirror::Class> klass = resolved_method->GetDeclaringClass(); | 
 |  | 
 |   HClinitCheck* clinit_check = nullptr; | 
 |   if (IsInitialized(klass)) { | 
 |     *clinit_check_requirement = HInvokeStaticOrDirect::ClinitCheckRequirement::kNone; | 
 |   } else { | 
 |     Handle<mirror::Class> h_klass = graph_->GetHandleCache()->NewHandle(klass); | 
 |     HLoadClass* cls = BuildLoadClass(h_klass->GetDexTypeIndex(), | 
 |                                      h_klass->GetDexFile(), | 
 |                                      h_klass, | 
 |                                      dex_pc, | 
 |                                      /* needs_access_check= */ false); | 
 |     if (cls != nullptr) { | 
 |       *clinit_check_requirement = HInvokeStaticOrDirect::ClinitCheckRequirement::kExplicit; | 
 |       clinit_check = new (allocator_) HClinitCheck(cls, dex_pc); | 
 |       AppendInstruction(clinit_check); | 
 |     } else { | 
 |       // Let the invoke handle this with an implicit class initialization check. | 
 |       *clinit_check_requirement = HInvokeStaticOrDirect::ClinitCheckRequirement::kImplicit; | 
 |     } | 
 |   } | 
 |   return clinit_check; | 
 | } | 
 |  | 
 | bool HInstructionBuilder::SetupInvokeArguments(HInstruction* invoke, | 
 |                                                const InstructionOperands& operands, | 
 |                                                const char* shorty, | 
 |                                                ReceiverArg receiver_arg) { | 
 |   // Note: The `invoke` can be an intrinsic replacement, so not necessaritly HInvoke. | 
 |   // In that case, do not log errors, they shall be reported when we try to build the HInvoke. | 
 |   uint32_t shorty_index = 1;  // Skip the return type. | 
 |   const size_t number_of_operands = operands.GetNumberOfOperands(); | 
 |   bool argument_length_error = false; | 
 |  | 
 |   size_t start_index = 0u; | 
 |   size_t argument_index = 0u; | 
 |   if (receiver_arg != ReceiverArg::kNone) { | 
 |     if (number_of_operands == 0u) { | 
 |       argument_length_error = true; | 
 |     } else { | 
 |       start_index = 1u; | 
 |       if (receiver_arg != ReceiverArg::kIgnored) { | 
 |         uint32_t obj_reg = operands.GetOperand(0u); | 
 |         HInstruction* arg = (receiver_arg == ReceiverArg::kPlainArg) | 
 |             ? LoadLocal(obj_reg, DataType::Type::kReference) | 
 |             : LoadNullCheckedLocal(obj_reg, invoke->GetDexPc()); | 
 |         if (receiver_arg != ReceiverArg::kNullCheckedOnly) { | 
 |           invoke->SetRawInputAt(0u, arg); | 
 |           argument_index = 1u; | 
 |         } | 
 |       } | 
 |     } | 
 |   } | 
 |  | 
 |   for (size_t i = start_index; i < number_of_operands; ++i, ++argument_index) { | 
 |     // Make sure we don't go over the expected arguments or over the number of | 
 |     // dex registers given. If the instruction was seen as dead by the verifier, | 
 |     // it hasn't been properly checked. | 
 |     if (UNLIKELY(shorty[shorty_index] == 0)) { | 
 |       argument_length_error = true; | 
 |       break; | 
 |     } | 
 |     DataType::Type type = DataType::FromShorty(shorty[shorty_index++]); | 
 |     bool is_wide = (type == DataType::Type::kInt64) || (type == DataType::Type::kFloat64); | 
 |     if (is_wide && ((i + 1 == number_of_operands) || | 
 |                     (operands.GetOperand(i) + 1 != operands.GetOperand(i + 1)))) { | 
 |       if (invoke->IsInvoke()) { | 
 |         // Longs and doubles should be in pairs, that is, sequential registers. The verifier should | 
 |         // reject any class where this is violated. However, the verifier only does these checks | 
 |         // on non trivially dead instructions, so we just bailout the compilation. | 
 |         VLOG(compiler) << "Did not compile " | 
 |                        << dex_file_->PrettyMethod(dex_compilation_unit_->GetDexMethodIndex()) | 
 |                        << " because of non-sequential dex register pair in wide argument"; | 
 |         MaybeRecordStat(compilation_stats_, | 
 |                         MethodCompilationStat::kNotCompiledMalformedOpcode); | 
 |       } | 
 |       return false; | 
 |     } | 
 |     HInstruction* arg = LoadLocal(operands.GetOperand(i), type); | 
 |     DCHECK(invoke->InputAt(argument_index) == nullptr); | 
 |     invoke->SetRawInputAt(argument_index, arg); | 
 |     if (is_wide) { | 
 |       ++i; | 
 |     } | 
 |   } | 
 |  | 
 |   argument_length_error = argument_length_error || shorty[shorty_index] != 0; | 
 |   if (argument_length_error) { | 
 |     if (invoke->IsInvoke()) { | 
 |       VLOG(compiler) << "Did not compile " | 
 |                      << dex_file_->PrettyMethod(dex_compilation_unit_->GetDexMethodIndex()) | 
 |                      << " because of wrong number of arguments in invoke instruction"; | 
 |       MaybeRecordStat(compilation_stats_, | 
 |                       MethodCompilationStat::kNotCompiledMalformedOpcode); | 
 |     } | 
 |     return false; | 
 |   } | 
 |  | 
 |   if (invoke->IsInvokeStaticOrDirect() && | 
 |       HInvokeStaticOrDirect::NeedsCurrentMethodInput( | 
 |           invoke->AsInvokeStaticOrDirect()->GetDispatchInfo())) { | 
 |     DCHECK_EQ(argument_index, invoke->AsInvokeStaticOrDirect()->GetCurrentMethodIndex()); | 
 |     DCHECK(invoke->InputAt(argument_index) == nullptr); | 
 |     invoke->SetRawInputAt(argument_index, graph_->GetCurrentMethod()); | 
 |   } | 
 |  | 
 |   return true; | 
 | } | 
 |  | 
 | bool HInstructionBuilder::HandleInvoke(HInvoke* invoke, | 
 |                                        const InstructionOperands& operands, | 
 |                                        const char* shorty, | 
 |                                        bool is_unresolved) { | 
 |   DCHECK(!invoke->IsInvokeStaticOrDirect() || !invoke->AsInvokeStaticOrDirect()->IsStringInit()); | 
 |  | 
 |   ReceiverArg receiver_arg = (invoke->GetInvokeType() == InvokeType::kStatic) | 
 |       ? ReceiverArg::kNone | 
 |       : (is_unresolved ? ReceiverArg::kPlainArg : ReceiverArg::kNullCheckedArg); | 
 |   if (!SetupInvokeArguments(invoke, operands, shorty, receiver_arg)) { | 
 |     return false; | 
 |   } | 
 |  | 
 |   AppendInstruction(invoke); | 
 |   latest_result_ = invoke; | 
 |  | 
 |   return true; | 
 | } | 
 |  | 
 | bool HInstructionBuilder::BuildSimpleIntrinsic(ArtMethod* method, | 
 |                                                uint32_t dex_pc, | 
 |                                                const InstructionOperands& operands, | 
 |                                                const char* shorty) { | 
 |   Intrinsics intrinsic = static_cast<Intrinsics>(method->GetIntrinsic()); | 
 |   DCHECK_NE(intrinsic, Intrinsics::kNone); | 
 |   constexpr DataType::Type kInt32 = DataType::Type::kInt32; | 
 |   constexpr DataType::Type kInt64 = DataType::Type::kInt64; | 
 |   constexpr DataType::Type kFloat32 = DataType::Type::kFloat32; | 
 |   constexpr DataType::Type kFloat64 = DataType::Type::kFloat64; | 
 |   ReceiverArg receiver_arg = method->IsStatic() ? ReceiverArg::kNone : ReceiverArg::kNullCheckedArg; | 
 |   HInstruction* instruction = nullptr; | 
 |   switch (intrinsic) { | 
 |     case Intrinsics::kIntegerRotateRight: | 
 |     case Intrinsics::kIntegerRotateLeft: | 
 |       // For rotate left, we negate the distance below. | 
 |       instruction = new (allocator_) HRor(kInt32, /*value=*/ nullptr, /*distance=*/ nullptr); | 
 |       break; | 
 |     case Intrinsics::kLongRotateRight: | 
 |     case Intrinsics::kLongRotateLeft: | 
 |       // For rotate left, we negate the distance below. | 
 |       instruction = new (allocator_) HRor(kInt64, /*value=*/ nullptr, /*distance=*/ nullptr); | 
 |       break; | 
 |     case Intrinsics::kIntegerCompare: | 
 |       instruction = new (allocator_) HCompare( | 
 |           kInt32, /*first=*/ nullptr, /*second=*/ nullptr, ComparisonBias::kNoBias, dex_pc); | 
 |       break; | 
 |     case Intrinsics::kLongCompare: | 
 |       instruction = new (allocator_) HCompare( | 
 |           kInt64, /*first=*/ nullptr, /*second=*/ nullptr, ComparisonBias::kNoBias, dex_pc); | 
 |       break; | 
 |     case Intrinsics::kIntegerSignum: | 
 |       instruction = new (allocator_) HCompare( | 
 |           kInt32, /*first=*/ nullptr, graph_->GetIntConstant(0), ComparisonBias::kNoBias, dex_pc); | 
 |       break; | 
 |     case Intrinsics::kLongSignum: | 
 |       instruction = new (allocator_) HCompare( | 
 |           kInt64, /*first=*/ nullptr, graph_->GetLongConstant(0), ComparisonBias::kNoBias, dex_pc); | 
 |       break; | 
 |     case Intrinsics::kFloatIsNaN: | 
 |     case Intrinsics::kDoubleIsNaN: { | 
 |       // IsNaN(x) is the same as x != x. | 
 |       instruction = new (allocator_) HNotEqual(/*first=*/ nullptr, /*second=*/ nullptr, dex_pc); | 
 |       instruction->AsCondition()->SetBias(ComparisonBias::kLtBias); | 
 |       break; | 
 |     } | 
 |     case Intrinsics::kStringCharAt: | 
 |       // We treat String as an array to allow DCE and BCE to seamlessly work on strings. | 
 |       instruction = new (allocator_) HArrayGet(/*array=*/ nullptr, | 
 |                                                /*index=*/ nullptr, | 
 |                                                DataType::Type::kUint16, | 
 |                                                SideEffects::None(),  // Strings are immutable. | 
 |                                                dex_pc, | 
 |                                                /*is_string_char_at=*/ true); | 
 |       break; | 
 |     case Intrinsics::kStringIsEmpty: | 
 |     case Intrinsics::kStringLength: | 
 |       // We treat String as an array to allow DCE and BCE to seamlessly work on strings. | 
 |       // For String.isEmpty(), we add a comparison with 0 below. | 
 |       instruction = | 
 |           new (allocator_) HArrayLength(/*array=*/ nullptr, dex_pc, /* is_string_length= */ true); | 
 |       break; | 
 |     case Intrinsics::kUnsafeLoadFence: | 
 |       receiver_arg = ReceiverArg::kNullCheckedOnly; | 
 |       instruction = new (allocator_) HMemoryBarrier(MemBarrierKind::kLoadAny, dex_pc); | 
 |       break; | 
 |     case Intrinsics::kUnsafeStoreFence: | 
 |       receiver_arg = ReceiverArg::kNullCheckedOnly; | 
 |       instruction = new (allocator_) HMemoryBarrier(MemBarrierKind::kAnyStore, dex_pc); | 
 |       break; | 
 |     case Intrinsics::kUnsafeFullFence: | 
 |       receiver_arg = ReceiverArg::kNullCheckedOnly; | 
 |       instruction = new (allocator_) HMemoryBarrier(MemBarrierKind::kAnyAny, dex_pc); | 
 |       break; | 
 |     case Intrinsics::kVarHandleFullFence: | 
 |       instruction = new (allocator_) HMemoryBarrier(MemBarrierKind::kAnyAny, dex_pc); | 
 |       break; | 
 |     case Intrinsics::kVarHandleAcquireFence: | 
 |       instruction = new (allocator_) HMemoryBarrier(MemBarrierKind::kLoadAny, dex_pc); | 
 |       break; | 
 |     case Intrinsics::kVarHandleReleaseFence: | 
 |       instruction = new (allocator_) HMemoryBarrier(MemBarrierKind::kAnyStore, dex_pc); | 
 |       break; | 
 |     case Intrinsics::kVarHandleLoadLoadFence: | 
 |       instruction = new (allocator_) HMemoryBarrier(MemBarrierKind::kLoadAny, dex_pc); | 
 |       break; | 
 |     case Intrinsics::kVarHandleStoreStoreFence: | 
 |       instruction = new (allocator_) HMemoryBarrier(MemBarrierKind::kStoreStore, dex_pc); | 
 |       break; | 
 |     case Intrinsics::kMathMinIntInt: | 
 |       instruction = new (allocator_) HMin(kInt32, /*left=*/ nullptr, /*right=*/ nullptr, dex_pc); | 
 |       break; | 
 |     case Intrinsics::kMathMinLongLong: | 
 |       instruction = new (allocator_) HMin(kInt64, /*left=*/ nullptr, /*right=*/ nullptr, dex_pc); | 
 |       break; | 
 |     case Intrinsics::kMathMinFloatFloat: | 
 |       instruction = new (allocator_) HMin(kFloat32, /*left=*/ nullptr, /*right=*/ nullptr, dex_pc); | 
 |       break; | 
 |     case Intrinsics::kMathMinDoubleDouble: | 
 |       instruction = new (allocator_) HMin(kFloat64, /*left=*/ nullptr, /*right=*/ nullptr, dex_pc); | 
 |       break; | 
 |     case Intrinsics::kMathMaxIntInt: | 
 |       instruction = new (allocator_) HMax(kInt32, /*left=*/ nullptr, /*right=*/ nullptr, dex_pc); | 
 |       break; | 
 |     case Intrinsics::kMathMaxLongLong: | 
 |       instruction = new (allocator_) HMax(kInt64, /*left=*/ nullptr, /*right=*/ nullptr, dex_pc); | 
 |       break; | 
 |     case Intrinsics::kMathMaxFloatFloat: | 
 |       instruction = new (allocator_) HMax(kFloat32, /*left=*/ nullptr, /*right=*/ nullptr, dex_pc); | 
 |       break; | 
 |     case Intrinsics::kMathMaxDoubleDouble: | 
 |       instruction = new (allocator_) HMax(kFloat64, /*left=*/ nullptr, /*right=*/ nullptr, dex_pc); | 
 |       break; | 
 |     case Intrinsics::kMathAbsInt: | 
 |       instruction = new (allocator_) HAbs(kInt32, /*input=*/ nullptr, dex_pc); | 
 |       break; | 
 |     case Intrinsics::kMathAbsLong: | 
 |       instruction = new (allocator_) HAbs(kInt64, /*input=*/ nullptr, dex_pc); | 
 |       break; | 
 |     case Intrinsics::kMathAbsFloat: | 
 |       instruction = new (allocator_) HAbs(kFloat32, /*input=*/ nullptr, dex_pc); | 
 |       break; | 
 |     case Intrinsics::kMathAbsDouble: | 
 |       instruction = new (allocator_) HAbs(kFloat64, /*input=*/ nullptr, dex_pc); | 
 |       break; | 
 |     default: | 
 |       // We do not have intermediate representation for other intrinsics. | 
 |       return false; | 
 |   } | 
 |   DCHECK(instruction != nullptr); | 
 |   if (!SetupInvokeArguments(instruction, operands, shorty, receiver_arg)) { | 
 |     return false; | 
 |   } | 
 |  | 
 |   switch (intrinsic) { | 
 |     case Intrinsics::kIntegerRotateLeft: | 
 |     case Intrinsics::kLongRotateLeft: { | 
 |       // Negate the distance value for rotate left. | 
 |       DCHECK(instruction->IsRor()); | 
 |       HNeg* neg = new (allocator_) HNeg(kInt32, instruction->InputAt(1u)); | 
 |       AppendInstruction(neg); | 
 |       instruction->SetRawInputAt(1u, neg); | 
 |       break; | 
 |     } | 
 |     case Intrinsics::kFloatIsNaN: | 
 |     case Intrinsics::kDoubleIsNaN: | 
 |       // Set the second input to be the same as first. | 
 |       DCHECK(instruction->IsNotEqual()); | 
 |       DCHECK(instruction->InputAt(1u) == nullptr); | 
 |       instruction->SetRawInputAt(1u, instruction->InputAt(0u)); | 
 |       break; | 
 |     case Intrinsics::kStringCharAt: { | 
 |       // Add bounds check. | 
 |       HInstruction* array = instruction->InputAt(0u); | 
 |       HInstruction* index = instruction->InputAt(1u); | 
 |       HInstruction* length = | 
 |           new (allocator_) HArrayLength(array, dex_pc, /*is_string_length=*/ true); | 
 |       AppendInstruction(length); | 
 |       HBoundsCheck* bounds_check = | 
 |           new (allocator_) HBoundsCheck(index, length, dex_pc, /*is_string_char_at=*/ true); | 
 |       AppendInstruction(bounds_check); | 
 |       graph_->SetHasBoundsChecks(true); | 
 |       instruction->SetRawInputAt(1u, bounds_check); | 
 |       break; | 
 |     } | 
 |     case Intrinsics::kStringIsEmpty: { | 
 |       // Compare the length with 0. | 
 |       DCHECK(instruction->IsArrayLength()); | 
 |       AppendInstruction(instruction); | 
 |       HEqual* equal = new (allocator_) HEqual(instruction, graph_->GetIntConstant(0), dex_pc); | 
 |       instruction = equal; | 
 |       break; | 
 |     } | 
 |     default: | 
 |       break; | 
 |   } | 
 |  | 
 |   AppendInstruction(instruction); | 
 |   latest_result_ = instruction; | 
 |  | 
 |   return true; | 
 | } | 
 |  | 
 | bool HInstructionBuilder::HandleStringInit(HInvoke* invoke, | 
 |                                            const InstructionOperands& operands, | 
 |                                            const char* shorty) { | 
 |   DCHECK(invoke->IsInvokeStaticOrDirect()); | 
 |   DCHECK(invoke->AsInvokeStaticOrDirect()->IsStringInit()); | 
 |  | 
 |   if (!SetupInvokeArguments(invoke, operands, shorty, ReceiverArg::kIgnored)) { | 
 |     return false; | 
 |   } | 
 |  | 
 |   AppendInstruction(invoke); | 
 |  | 
 |   // This is a StringFactory call, not an actual String constructor. Its result | 
 |   // replaces the empty String pre-allocated by NewInstance. | 
 |   uint32_t orig_this_reg = operands.GetOperand(0); | 
 |   HInstruction* arg_this = LoadLocal(orig_this_reg, DataType::Type::kReference); | 
 |  | 
 |   // Replacing the NewInstance might render it redundant. Keep a list of these | 
 |   // to be visited once it is clear whether it has remaining uses. | 
 |   if (arg_this->IsNewInstance()) { | 
 |     ssa_builder_->AddUninitializedString(arg_this->AsNewInstance()); | 
 |   } else { | 
 |     DCHECK(arg_this->IsPhi()); | 
 |     // We can get a phi as input of a String.<init> if there is a loop between the | 
 |     // allocation and the String.<init> call. As we don't know which other phis might alias | 
 |     // with `arg_this`, we keep a record of those invocations so we can later replace | 
 |     // the allocation with the invocation. | 
 |     // Add the actual 'this' input so the analysis knows what is the allocation instruction. | 
 |     // The input will be removed during the analysis. | 
 |     invoke->AddInput(arg_this); | 
 |     ssa_builder_->AddUninitializedStringPhi(invoke); | 
 |   } | 
 |   // Walk over all vregs and replace any occurrence of `arg_this` with `invoke`. | 
 |   for (size_t vreg = 0, e = current_locals_->size(); vreg < e; ++vreg) { | 
 |     if ((*current_locals_)[vreg] == arg_this) { | 
 |       (*current_locals_)[vreg] = invoke; | 
 |     } | 
 |   } | 
 |   return true; | 
 | } | 
 |  | 
 | static DataType::Type GetFieldAccessType(const DexFile& dex_file, uint16_t field_index) { | 
 |   const dex::FieldId& field_id = dex_file.GetFieldId(field_index); | 
 |   const char* type = dex_file.GetFieldTypeDescriptor(field_id); | 
 |   return DataType::FromShorty(type[0]); | 
 | } | 
 |  | 
 | bool HInstructionBuilder::BuildInstanceFieldAccess(const Instruction& instruction, | 
 |                                                    uint32_t dex_pc, | 
 |                                                    bool is_put, | 
 |                                                    size_t quicken_index) { | 
 |   uint32_t source_or_dest_reg = instruction.VRegA_22c(); | 
 |   uint32_t obj_reg = instruction.VRegB_22c(); | 
 |   uint16_t field_index; | 
 |   if (instruction.IsQuickened()) { | 
 |     if (!CanDecodeQuickenedInfo()) { | 
 |       VLOG(compiler) << "Not compiled: Could not decode quickened instruction " | 
 |                      << instruction.Opcode(); | 
 |       return false; | 
 |     } | 
 |     field_index = LookupQuickenedInfo(quicken_index); | 
 |   } else { | 
 |     field_index = instruction.VRegC_22c(); | 
 |   } | 
 |  | 
 |   ScopedObjectAccess soa(Thread::Current()); | 
 |   ArtField* resolved_field = ResolveField(field_index, /* is_static= */ false, is_put); | 
 |  | 
 |   // Generate an explicit null check on the reference, unless the field access | 
 |   // is unresolved. In that case, we rely on the runtime to perform various | 
 |   // checks first, followed by a null check. | 
 |   HInstruction* object = (resolved_field == nullptr) | 
 |       ? LoadLocal(obj_reg, DataType::Type::kReference) | 
 |       : LoadNullCheckedLocal(obj_reg, dex_pc); | 
 |  | 
 |   DataType::Type field_type = GetFieldAccessType(*dex_file_, field_index); | 
 |   if (is_put) { | 
 |     HInstruction* value = LoadLocal(source_or_dest_reg, field_type); | 
 |     HInstruction* field_set = nullptr; | 
 |     if (resolved_field == nullptr) { | 
 |       MaybeRecordStat(compilation_stats_, | 
 |                       MethodCompilationStat::kUnresolvedField); | 
 |       field_set = new (allocator_) HUnresolvedInstanceFieldSet(object, | 
 |                                                                value, | 
 |                                                                field_type, | 
 |                                                                field_index, | 
 |                                                                dex_pc); | 
 |     } else { | 
 |       uint16_t class_def_index = resolved_field->GetDeclaringClass()->GetDexClassDefIndex(); | 
 |       field_set = new (allocator_) HInstanceFieldSet(object, | 
 |                                                      value, | 
 |                                                      resolved_field, | 
 |                                                      field_type, | 
 |                                                      resolved_field->GetOffset(), | 
 |                                                      resolved_field->IsVolatile(), | 
 |                                                      field_index, | 
 |                                                      class_def_index, | 
 |                                                      *dex_file_, | 
 |                                                      dex_pc); | 
 |     } | 
 |     AppendInstruction(field_set); | 
 |   } else { | 
 |     HInstruction* field_get = nullptr; | 
 |     if (resolved_field == nullptr) { | 
 |       MaybeRecordStat(compilation_stats_, | 
 |                       MethodCompilationStat::kUnresolvedField); | 
 |       field_get = new (allocator_) HUnresolvedInstanceFieldGet(object, | 
 |                                                                field_type, | 
 |                                                                field_index, | 
 |                                                                dex_pc); | 
 |     } else { | 
 |       uint16_t class_def_index = resolved_field->GetDeclaringClass()->GetDexClassDefIndex(); | 
 |       field_get = new (allocator_) HInstanceFieldGet(object, | 
 |                                                      resolved_field, | 
 |                                                      field_type, | 
 |                                                      resolved_field->GetOffset(), | 
 |                                                      resolved_field->IsVolatile(), | 
 |                                                      field_index, | 
 |                                                      class_def_index, | 
 |                                                      *dex_file_, | 
 |                                                      dex_pc); | 
 |     } | 
 |     AppendInstruction(field_get); | 
 |     UpdateLocal(source_or_dest_reg, field_get); | 
 |   } | 
 |  | 
 |   return true; | 
 | } | 
 |  | 
 | void HInstructionBuilder::BuildUnresolvedStaticFieldAccess(const Instruction& instruction, | 
 |                                                            uint32_t dex_pc, | 
 |                                                            bool is_put, | 
 |                                                            DataType::Type field_type) { | 
 |   uint32_t source_or_dest_reg = instruction.VRegA_21c(); | 
 |   uint16_t field_index = instruction.VRegB_21c(); | 
 |  | 
 |   if (is_put) { | 
 |     HInstruction* value = LoadLocal(source_or_dest_reg, field_type); | 
 |     AppendInstruction( | 
 |         new (allocator_) HUnresolvedStaticFieldSet(value, field_type, field_index, dex_pc)); | 
 |   } else { | 
 |     AppendInstruction(new (allocator_) HUnresolvedStaticFieldGet(field_type, field_index, dex_pc)); | 
 |     UpdateLocal(source_or_dest_reg, current_block_->GetLastInstruction()); | 
 |   } | 
 | } | 
 |  | 
 | ArtField* HInstructionBuilder::ResolveField(uint16_t field_idx, bool is_static, bool is_put) { | 
 |   ScopedObjectAccess soa(Thread::Current()); | 
 |  | 
 |   ClassLinker* class_linker = dex_compilation_unit_->GetClassLinker(); | 
 |   Handle<mirror::ClassLoader> class_loader = dex_compilation_unit_->GetClassLoader(); | 
 |  | 
 |   ArtField* resolved_field = class_linker->ResolveField(field_idx, | 
 |                                                         dex_compilation_unit_->GetDexCache(), | 
 |                                                         class_loader, | 
 |                                                         is_static); | 
 |   DCHECK_EQ(resolved_field == nullptr, soa.Self()->IsExceptionPending()) | 
 |       << "field=" | 
 |       << ((resolved_field == nullptr) ? "null" : resolved_field->PrettyField()) | 
 |       << ", exception=" | 
 |       << (soa.Self()->IsExceptionPending() ? soa.Self()->GetException()->Dump() : "null"); | 
 |   if (UNLIKELY(resolved_field == nullptr)) { | 
 |     // Clean up any exception left by field resolution. | 
 |     soa.Self()->ClearException(); | 
 |     return nullptr; | 
 |   } | 
 |  | 
 |   // Check static/instance. The class linker has a fast path for looking into the dex cache | 
 |   // and does not check static/instance if it hits it. | 
 |   if (UNLIKELY(resolved_field->IsStatic() != is_static)) { | 
 |     return nullptr; | 
 |   } | 
 |  | 
 |   // Check access. | 
 |   Handle<mirror::Class> compiling_class = dex_compilation_unit_->GetCompilingClass(); | 
 |   if (compiling_class == nullptr) { | 
 |     if (!resolved_field->IsPublic()) { | 
 |       return nullptr; | 
 |     } | 
 |   } else if (!compiling_class->CanAccessResolvedField(resolved_field->GetDeclaringClass(), | 
 |                                                       resolved_field, | 
 |                                                       dex_compilation_unit_->GetDexCache().Get(), | 
 |                                                       field_idx)) { | 
 |     return nullptr; | 
 |   } | 
 |  | 
 |   if (is_put && | 
 |       resolved_field->IsFinal() && | 
 |       (compiling_class.Get() != resolved_field->GetDeclaringClass())) { | 
 |     // Final fields can only be updated within their own class. | 
 |     // TODO: Only allow it in constructors. b/34966607. | 
 |     return nullptr; | 
 |   } | 
 |  | 
 |   StackArtFieldHandleScope<1> rhs(soa.Self()); | 
 |   ReflectiveHandle<ArtField> resolved_field_handle(rhs.NewHandle(resolved_field)); | 
 |   if (resolved_field->ResolveType().IsNull()) { | 
 |     // ArtField::ResolveType() may fail as evidenced with a dexing bug (b/78788577). | 
 |     soa.Self()->ClearException(); | 
 |     return nullptr;  // Failure | 
 |   } | 
 |   return resolved_field_handle.Get(); | 
 | } | 
 |  | 
 | void HInstructionBuilder::BuildStaticFieldAccess(const Instruction& instruction, | 
 |                                                  uint32_t dex_pc, | 
 |                                                  bool is_put) { | 
 |   uint32_t source_or_dest_reg = instruction.VRegA_21c(); | 
 |   uint16_t field_index = instruction.VRegB_21c(); | 
 |  | 
 |   ScopedObjectAccess soa(Thread::Current()); | 
 |   ArtField* resolved_field = ResolveField(field_index, /* is_static= */ true, is_put); | 
 |  | 
 |   if (resolved_field == nullptr) { | 
 |     MaybeRecordStat(compilation_stats_, | 
 |                     MethodCompilationStat::kUnresolvedField); | 
 |     DataType::Type field_type = GetFieldAccessType(*dex_file_, field_index); | 
 |     BuildUnresolvedStaticFieldAccess(instruction, dex_pc, is_put, field_type); | 
 |     return; | 
 |   } | 
 |  | 
 |   DataType::Type field_type = GetFieldAccessType(*dex_file_, field_index); | 
 |  | 
 |   Handle<mirror::Class> klass = | 
 |       graph_->GetHandleCache()->NewHandle(resolved_field->GetDeclaringClass()); | 
 |   HLoadClass* constant = BuildLoadClass(klass->GetDexTypeIndex(), | 
 |                                         klass->GetDexFile(), | 
 |                                         klass, | 
 |                                         dex_pc, | 
 |                                         /* needs_access_check= */ false); | 
 |  | 
 |   if (constant == nullptr) { | 
 |     // The class cannot be referenced from this compiled code. Generate | 
 |     // an unresolved access. | 
 |     MaybeRecordStat(compilation_stats_, | 
 |                     MethodCompilationStat::kUnresolvedFieldNotAFastAccess); | 
 |     BuildUnresolvedStaticFieldAccess(instruction, dex_pc, is_put, field_type); | 
 |     return; | 
 |   } | 
 |  | 
 |   HInstruction* cls = constant; | 
 |   if (!IsInitialized(klass.Get())) { | 
 |     cls = new (allocator_) HClinitCheck(constant, dex_pc); | 
 |     AppendInstruction(cls); | 
 |   } | 
 |  | 
 |   uint16_t class_def_index = klass->GetDexClassDefIndex(); | 
 |   if (is_put) { | 
 |     // We need to keep the class alive before loading the value. | 
 |     HInstruction* value = LoadLocal(source_or_dest_reg, field_type); | 
 |     DCHECK_EQ(HPhi::ToPhiType(value->GetType()), HPhi::ToPhiType(field_type)); | 
 |     AppendInstruction(new (allocator_) HStaticFieldSet(cls, | 
 |                                                        value, | 
 |                                                        resolved_field, | 
 |                                                        field_type, | 
 |                                                        resolved_field->GetOffset(), | 
 |                                                        resolved_field->IsVolatile(), | 
 |                                                        field_index, | 
 |                                                        class_def_index, | 
 |                                                        *dex_file_, | 
 |                                                        dex_pc)); | 
 |   } else { | 
 |     AppendInstruction(new (allocator_) HStaticFieldGet(cls, | 
 |                                                        resolved_field, | 
 |                                                        field_type, | 
 |                                                        resolved_field->GetOffset(), | 
 |                                                        resolved_field->IsVolatile(), | 
 |                                                        field_index, | 
 |                                                        class_def_index, | 
 |                                                        *dex_file_, | 
 |                                                        dex_pc)); | 
 |     UpdateLocal(source_or_dest_reg, current_block_->GetLastInstruction()); | 
 |   } | 
 | } | 
 |  | 
 | void HInstructionBuilder::BuildCheckedDivRem(uint16_t out_vreg, | 
 |                                              uint16_t first_vreg, | 
 |                                              int64_t second_vreg_or_constant, | 
 |                                              uint32_t dex_pc, | 
 |                                              DataType::Type type, | 
 |                                              bool second_is_constant, | 
 |                                              bool isDiv) { | 
 |   DCHECK(type == DataType::Type::kInt32 || type == DataType::Type::kInt64); | 
 |  | 
 |   HInstruction* first = LoadLocal(first_vreg, type); | 
 |   HInstruction* second = nullptr; | 
 |   if (second_is_constant) { | 
 |     if (type == DataType::Type::kInt32) { | 
 |       second = graph_->GetIntConstant(second_vreg_or_constant, dex_pc); | 
 |     } else { | 
 |       second = graph_->GetLongConstant(second_vreg_or_constant, dex_pc); | 
 |     } | 
 |   } else { | 
 |     second = LoadLocal(second_vreg_or_constant, type); | 
 |   } | 
 |  | 
 |   if (!second_is_constant | 
 |       || (type == DataType::Type::kInt32 && second->AsIntConstant()->GetValue() == 0) | 
 |       || (type == DataType::Type::kInt64 && second->AsLongConstant()->GetValue() == 0)) { | 
 |     second = new (allocator_) HDivZeroCheck(second, dex_pc); | 
 |     AppendInstruction(second); | 
 |   } | 
 |  | 
 |   if (isDiv) { | 
 |     AppendInstruction(new (allocator_) HDiv(type, first, second, dex_pc)); | 
 |   } else { | 
 |     AppendInstruction(new (allocator_) HRem(type, first, second, dex_pc)); | 
 |   } | 
 |   UpdateLocal(out_vreg, current_block_->GetLastInstruction()); | 
 | } | 
 |  | 
 | void HInstructionBuilder::BuildArrayAccess(const Instruction& instruction, | 
 |                                            uint32_t dex_pc, | 
 |                                            bool is_put, | 
 |                                            DataType::Type anticipated_type) { | 
 |   uint8_t source_or_dest_reg = instruction.VRegA_23x(); | 
 |   uint8_t array_reg = instruction.VRegB_23x(); | 
 |   uint8_t index_reg = instruction.VRegC_23x(); | 
 |  | 
 |   HInstruction* object = LoadNullCheckedLocal(array_reg, dex_pc); | 
 |   HInstruction* length = new (allocator_) HArrayLength(object, dex_pc); | 
 |   AppendInstruction(length); | 
 |   HInstruction* index = LoadLocal(index_reg, DataType::Type::kInt32); | 
 |   index = new (allocator_) HBoundsCheck(index, length, dex_pc); | 
 |   AppendInstruction(index); | 
 |   if (is_put) { | 
 |     HInstruction* value = LoadLocal(source_or_dest_reg, anticipated_type); | 
 |     // TODO: Insert a type check node if the type is Object. | 
 |     HArraySet* aset = new (allocator_) HArraySet(object, index, value, anticipated_type, dex_pc); | 
 |     ssa_builder_->MaybeAddAmbiguousArraySet(aset); | 
 |     AppendInstruction(aset); | 
 |   } else { | 
 |     HArrayGet* aget = new (allocator_) HArrayGet(object, index, anticipated_type, dex_pc); | 
 |     ssa_builder_->MaybeAddAmbiguousArrayGet(aget); | 
 |     AppendInstruction(aget); | 
 |     UpdateLocal(source_or_dest_reg, current_block_->GetLastInstruction()); | 
 |   } | 
 |   graph_->SetHasBoundsChecks(true); | 
 | } | 
 |  | 
 | HNewArray* HInstructionBuilder::BuildNewArray(uint32_t dex_pc, | 
 |                                               dex::TypeIndex type_index, | 
 |                                               HInstruction* length) { | 
 |   HLoadClass* cls = BuildLoadClass(type_index, dex_pc); | 
 |  | 
 |   const char* descriptor = dex_file_->GetTypeDescriptor(dex_file_->GetTypeId(type_index)); | 
 |   DCHECK_EQ(descriptor[0], '['); | 
 |   size_t component_type_shift = Primitive::ComponentSizeShift(Primitive::GetType(descriptor[1])); | 
 |  | 
 |   HNewArray* new_array = new (allocator_) HNewArray(cls, length, dex_pc, component_type_shift); | 
 |   AppendInstruction(new_array); | 
 |   return new_array; | 
 | } | 
 |  | 
 | HNewArray* HInstructionBuilder::BuildFilledNewArray(uint32_t dex_pc, | 
 |                                                     dex::TypeIndex type_index, | 
 |                                                     const InstructionOperands& operands) { | 
 |   const size_t number_of_operands = operands.GetNumberOfOperands(); | 
 |   HInstruction* length = graph_->GetIntConstant(number_of_operands, dex_pc); | 
 |  | 
 |   HNewArray* new_array = BuildNewArray(dex_pc, type_index, length); | 
 |   const char* descriptor = dex_file_->StringByTypeIdx(type_index); | 
 |   DCHECK_EQ(descriptor[0], '[') << descriptor; | 
 |   char primitive = descriptor[1]; | 
 |   DCHECK(primitive == 'I' | 
 |       || primitive == 'L' | 
 |       || primitive == '[') << descriptor; | 
 |   bool is_reference_array = (primitive == 'L') || (primitive == '['); | 
 |   DataType::Type type = is_reference_array ? DataType::Type::kReference : DataType::Type::kInt32; | 
 |  | 
 |   for (size_t i = 0; i < number_of_operands; ++i) { | 
 |     HInstruction* value = LoadLocal(operands.GetOperand(i), type); | 
 |     HInstruction* index = graph_->GetIntConstant(i, dex_pc); | 
 |     HArraySet* aset = new (allocator_) HArraySet(new_array, index, value, type, dex_pc); | 
 |     ssa_builder_->MaybeAddAmbiguousArraySet(aset); | 
 |     AppendInstruction(aset); | 
 |   } | 
 |   latest_result_ = new_array; | 
 |  | 
 |   return new_array; | 
 | } | 
 |  | 
 | template <typename T> | 
 | void HInstructionBuilder::BuildFillArrayData(HInstruction* object, | 
 |                                              const T* data, | 
 |                                              uint32_t element_count, | 
 |                                              DataType::Type anticipated_type, | 
 |                                              uint32_t dex_pc) { | 
 |   for (uint32_t i = 0; i < element_count; ++i) { | 
 |     HInstruction* index = graph_->GetIntConstant(i, dex_pc); | 
 |     HInstruction* value = graph_->GetIntConstant(data[i], dex_pc); | 
 |     HArraySet* aset = new (allocator_) HArraySet(object, index, value, anticipated_type, dex_pc); | 
 |     ssa_builder_->MaybeAddAmbiguousArraySet(aset); | 
 |     AppendInstruction(aset); | 
 |   } | 
 | } | 
 |  | 
 | void HInstructionBuilder::BuildFillArrayData(const Instruction& instruction, uint32_t dex_pc) { | 
 |   HInstruction* array = LoadNullCheckedLocal(instruction.VRegA_31t(), dex_pc); | 
 |  | 
 |   int32_t payload_offset = instruction.VRegB_31t() + dex_pc; | 
 |   const Instruction::ArrayDataPayload* payload = | 
 |       reinterpret_cast<const Instruction::ArrayDataPayload*>( | 
 |           code_item_accessor_.Insns() + payload_offset); | 
 |   const uint8_t* data = payload->data; | 
 |   uint32_t element_count = payload->element_count; | 
 |  | 
 |   if (element_count == 0u) { | 
 |     // For empty payload we emit only the null check above. | 
 |     return; | 
 |   } | 
 |  | 
 |   HInstruction* length = new (allocator_) HArrayLength(array, dex_pc); | 
 |   AppendInstruction(length); | 
 |  | 
 |   // Implementation of this DEX instruction seems to be that the bounds check is | 
 |   // done before doing any stores. | 
 |   HInstruction* last_index = graph_->GetIntConstant(payload->element_count - 1, dex_pc); | 
 |   AppendInstruction(new (allocator_) HBoundsCheck(last_index, length, dex_pc)); | 
 |  | 
 |   switch (payload->element_width) { | 
 |     case 1: | 
 |       BuildFillArrayData(array, | 
 |                          reinterpret_cast<const int8_t*>(data), | 
 |                          element_count, | 
 |                          DataType::Type::kInt8, | 
 |                          dex_pc); | 
 |       break; | 
 |     case 2: | 
 |       BuildFillArrayData(array, | 
 |                          reinterpret_cast<const int16_t*>(data), | 
 |                          element_count, | 
 |                          DataType::Type::kInt16, | 
 |                          dex_pc); | 
 |       break; | 
 |     case 4: | 
 |       BuildFillArrayData(array, | 
 |                          reinterpret_cast<const int32_t*>(data), | 
 |                          element_count, | 
 |                          DataType::Type::kInt32, | 
 |                          dex_pc); | 
 |       break; | 
 |     case 8: | 
 |       BuildFillWideArrayData(array, | 
 |                              reinterpret_cast<const int64_t*>(data), | 
 |                              element_count, | 
 |                              dex_pc); | 
 |       break; | 
 |     default: | 
 |       LOG(FATAL) << "Unknown element width for " << payload->element_width; | 
 |   } | 
 |   graph_->SetHasBoundsChecks(true); | 
 | } | 
 |  | 
 | void HInstructionBuilder::BuildFillWideArrayData(HInstruction* object, | 
 |                                                  const int64_t* data, | 
 |                                                  uint32_t element_count, | 
 |                                                  uint32_t dex_pc) { | 
 |   for (uint32_t i = 0; i < element_count; ++i) { | 
 |     HInstruction* index = graph_->GetIntConstant(i, dex_pc); | 
 |     HInstruction* value = graph_->GetLongConstant(data[i], dex_pc); | 
 |     HArraySet* aset = | 
 |         new (allocator_) HArraySet(object, index, value, DataType::Type::kInt64, dex_pc); | 
 |     ssa_builder_->MaybeAddAmbiguousArraySet(aset); | 
 |     AppendInstruction(aset); | 
 |   } | 
 | } | 
 |  | 
 | void HInstructionBuilder::BuildLoadString(dex::StringIndex string_index, uint32_t dex_pc) { | 
 |   HLoadString* load_string = | 
 |       new (allocator_) HLoadString(graph_->GetCurrentMethod(), string_index, *dex_file_, dex_pc); | 
 |   HSharpening::ProcessLoadString(load_string, | 
 |                                  code_generator_, | 
 |                                  *dex_compilation_unit_, | 
 |                                  graph_->GetHandleCache()->GetHandles()); | 
 |   AppendInstruction(load_string); | 
 | } | 
 |  | 
 | HLoadClass* HInstructionBuilder::BuildLoadClass(dex::TypeIndex type_index, uint32_t dex_pc) { | 
 |   ScopedObjectAccess soa(Thread::Current()); | 
 |   const DexFile& dex_file = *dex_compilation_unit_->GetDexFile(); | 
 |   Handle<mirror::Class> klass = ResolveClass(soa, type_index); | 
 |   bool needs_access_check = LoadClassNeedsAccessCheck(klass.Get()); | 
 |   return BuildLoadClass(type_index, dex_file, klass, dex_pc, needs_access_check); | 
 | } | 
 |  | 
 | HLoadClass* HInstructionBuilder::BuildLoadClass(dex::TypeIndex type_index, | 
 |                                                 const DexFile& dex_file, | 
 |                                                 Handle<mirror::Class> klass, | 
 |                                                 uint32_t dex_pc, | 
 |                                                 bool needs_access_check) { | 
 |   // Try to find a reference in the compiling dex file. | 
 |   const DexFile* actual_dex_file = &dex_file; | 
 |   if (!IsSameDexFile(dex_file, *dex_compilation_unit_->GetDexFile())) { | 
 |     dex::TypeIndex local_type_index = | 
 |         klass->FindTypeIndexInOtherDexFile(*dex_compilation_unit_->GetDexFile()); | 
 |     if (local_type_index.IsValid()) { | 
 |       type_index = local_type_index; | 
 |       actual_dex_file = dex_compilation_unit_->GetDexFile(); | 
 |     } | 
 |   } | 
 |  | 
 |   // Note: `klass` must be from `graph_->GetHandleCache()`. | 
 |   bool is_referrers_class = | 
 |       (klass != nullptr) && (outer_compilation_unit_->GetCompilingClass().Get() == klass.Get()); | 
 |   HLoadClass* load_class = new (allocator_) HLoadClass( | 
 |       graph_->GetCurrentMethod(), | 
 |       type_index, | 
 |       *actual_dex_file, | 
 |       klass, | 
 |       is_referrers_class, | 
 |       dex_pc, | 
 |       needs_access_check); | 
 |  | 
 |   HLoadClass::LoadKind load_kind = HSharpening::ComputeLoadClassKind(load_class, | 
 |                                                                      code_generator_, | 
 |                                                                      *dex_compilation_unit_); | 
 |  | 
 |   if (load_kind == HLoadClass::LoadKind::kInvalid) { | 
 |     // We actually cannot reference this class, we're forced to bail. | 
 |     return nullptr; | 
 |   } | 
 |   // Load kind must be set before inserting the instruction into the graph. | 
 |   load_class->SetLoadKind(load_kind); | 
 |   AppendInstruction(load_class); | 
 |   return load_class; | 
 | } | 
 |  | 
 | Handle<mirror::Class> HInstructionBuilder::ResolveClass(ScopedObjectAccess& soa, | 
 |                                                         dex::TypeIndex type_index) { | 
 |   auto it = class_cache_.find(type_index); | 
 |   if (it != class_cache_.end()) { | 
 |     return it->second; | 
 |   } | 
 |  | 
 |   ObjPtr<mirror::Class> klass = dex_compilation_unit_->GetClassLinker()->ResolveType( | 
 |       type_index, dex_compilation_unit_->GetDexCache(), dex_compilation_unit_->GetClassLoader()); | 
 |   DCHECK_EQ(klass == nullptr, soa.Self()->IsExceptionPending()); | 
 |   soa.Self()->ClearException();  // Clean up the exception left by type resolution if any. | 
 |  | 
 |   Handle<mirror::Class> h_klass = graph_->GetHandleCache()->NewHandle(klass); | 
 |   class_cache_.Put(type_index, h_klass); | 
 |   return h_klass; | 
 | } | 
 |  | 
 | bool HInstructionBuilder::LoadClassNeedsAccessCheck(ObjPtr<mirror::Class> klass) { | 
 |   if (klass == nullptr) { | 
 |     return true; | 
 |   } else if (klass->IsPublic()) { | 
 |     return false; | 
 |   } else { | 
 |     ObjPtr<mirror::Class> compiling_class = dex_compilation_unit_->GetCompilingClass().Get(); | 
 |     return compiling_class == nullptr || !compiling_class->CanAccess(klass); | 
 |   } | 
 | } | 
 |  | 
 | void HInstructionBuilder::BuildLoadMethodHandle(uint16_t method_handle_index, uint32_t dex_pc) { | 
 |   const DexFile& dex_file = *dex_compilation_unit_->GetDexFile(); | 
 |   HLoadMethodHandle* load_method_handle = new (allocator_) HLoadMethodHandle( | 
 |       graph_->GetCurrentMethod(), method_handle_index, dex_file, dex_pc); | 
 |   AppendInstruction(load_method_handle); | 
 | } | 
 |  | 
 | void HInstructionBuilder::BuildLoadMethodType(dex::ProtoIndex proto_index, uint32_t dex_pc) { | 
 |   const DexFile& dex_file = *dex_compilation_unit_->GetDexFile(); | 
 |   HLoadMethodType* load_method_type = | 
 |       new (allocator_) HLoadMethodType(graph_->GetCurrentMethod(), proto_index, dex_file, dex_pc); | 
 |   AppendInstruction(load_method_type); | 
 | } | 
 |  | 
 | void HInstructionBuilder::BuildTypeCheck(const Instruction& instruction, | 
 |                                          uint8_t destination, | 
 |                                          uint8_t reference, | 
 |                                          dex::TypeIndex type_index, | 
 |                                          uint32_t dex_pc) { | 
 |   HInstruction* object = LoadLocal(reference, DataType::Type::kReference); | 
 |  | 
 |   ScopedObjectAccess soa(Thread::Current()); | 
 |   const DexFile& dex_file = *dex_compilation_unit_->GetDexFile(); | 
 |   Handle<mirror::Class> klass = ResolveClass(soa, type_index); | 
 |   bool needs_access_check = LoadClassNeedsAccessCheck(klass.Get()); | 
 |   TypeCheckKind check_kind = HSharpening::ComputeTypeCheckKind( | 
 |       klass.Get(), code_generator_, needs_access_check); | 
 |  | 
 |   HInstruction* class_or_null = nullptr; | 
 |   HIntConstant* bitstring_path_to_root = nullptr; | 
 |   HIntConstant* bitstring_mask = nullptr; | 
 |   if (check_kind == TypeCheckKind::kBitstringCheck) { | 
 |     // TODO: Allow using the bitstring check also if we need an access check. | 
 |     DCHECK(!needs_access_check); | 
 |     class_or_null = graph_->GetNullConstant(dex_pc); | 
 |     MutexLock subtype_check_lock(Thread::Current(), *Locks::subtype_check_lock_); | 
 |     uint32_t path_to_root = | 
 |         SubtypeCheck<ObjPtr<mirror::Class>>::GetEncodedPathToRootForTarget(klass.Get()); | 
 |     uint32_t mask = SubtypeCheck<ObjPtr<mirror::Class>>::GetEncodedPathToRootMask(klass.Get()); | 
 |     bitstring_path_to_root = graph_->GetIntConstant(static_cast<int32_t>(path_to_root), dex_pc); | 
 |     bitstring_mask = graph_->GetIntConstant(static_cast<int32_t>(mask), dex_pc); | 
 |   } else { | 
 |     class_or_null = BuildLoadClass(type_index, dex_file, klass, dex_pc, needs_access_check); | 
 |   } | 
 |   DCHECK(class_or_null != nullptr); | 
 |  | 
 |   if (instruction.Opcode() == Instruction::INSTANCE_OF) { | 
 |     AppendInstruction(new (allocator_) HInstanceOf(object, | 
 |                                                    class_or_null, | 
 |                                                    check_kind, | 
 |                                                    klass, | 
 |                                                    dex_pc, | 
 |                                                    allocator_, | 
 |                                                    bitstring_path_to_root, | 
 |                                                    bitstring_mask)); | 
 |     UpdateLocal(destination, current_block_->GetLastInstruction()); | 
 |   } else { | 
 |     DCHECK_EQ(instruction.Opcode(), Instruction::CHECK_CAST); | 
 |     // We emit a CheckCast followed by a BoundType. CheckCast is a statement | 
 |     // which may throw. If it succeeds BoundType sets the new type of `object` | 
 |     // for all subsequent uses. | 
 |     AppendInstruction( | 
 |         new (allocator_) HCheckCast(object, | 
 |                                     class_or_null, | 
 |                                     check_kind, | 
 |                                     klass, | 
 |                                     dex_pc, | 
 |                                     allocator_, | 
 |                                     bitstring_path_to_root, | 
 |                                     bitstring_mask)); | 
 |     AppendInstruction(new (allocator_) HBoundType(object, dex_pc)); | 
 |     UpdateLocal(reference, current_block_->GetLastInstruction()); | 
 |   } | 
 | } | 
 |  | 
 | bool HInstructionBuilder::CanDecodeQuickenedInfo() const { | 
 |   return !quicken_info_.IsNull(); | 
 | } | 
 |  | 
 | uint16_t HInstructionBuilder::LookupQuickenedInfo(uint32_t quicken_index) { | 
 |   DCHECK(CanDecodeQuickenedInfo()); | 
 |   return quicken_info_.GetData(quicken_index); | 
 | } | 
 |  | 
 | bool HInstructionBuilder::ProcessDexInstruction(const Instruction& instruction, | 
 |                                                 uint32_t dex_pc, | 
 |                                                 size_t quicken_index) { | 
 |   switch (instruction.Opcode()) { | 
 |     case Instruction::CONST_4: { | 
 |       int32_t register_index = instruction.VRegA(); | 
 |       HIntConstant* constant = graph_->GetIntConstant(instruction.VRegB_11n(), dex_pc); | 
 |       UpdateLocal(register_index, constant); | 
 |       break; | 
 |     } | 
 |  | 
 |     case Instruction::CONST_16: { | 
 |       int32_t register_index = instruction.VRegA(); | 
 |       HIntConstant* constant = graph_->GetIntConstant(instruction.VRegB_21s(), dex_pc); | 
 |       UpdateLocal(register_index, constant); | 
 |       break; | 
 |     } | 
 |  | 
 |     case Instruction::CONST: { | 
 |       int32_t register_index = instruction.VRegA(); | 
 |       HIntConstant* constant = graph_->GetIntConstant(instruction.VRegB_31i(), dex_pc); | 
 |       UpdateLocal(register_index, constant); | 
 |       break; | 
 |     } | 
 |  | 
 |     case Instruction::CONST_HIGH16: { | 
 |       int32_t register_index = instruction.VRegA(); | 
 |       HIntConstant* constant = graph_->GetIntConstant(instruction.VRegB_21h() << 16, dex_pc); | 
 |       UpdateLocal(register_index, constant); | 
 |       break; | 
 |     } | 
 |  | 
 |     case Instruction::CONST_WIDE_16: { | 
 |       int32_t register_index = instruction.VRegA(); | 
 |       // Get 16 bits of constant value, sign extended to 64 bits. | 
 |       int64_t value = instruction.VRegB_21s(); | 
 |       value <<= 48; | 
 |       value >>= 48; | 
 |       HLongConstant* constant = graph_->GetLongConstant(value, dex_pc); | 
 |       UpdateLocal(register_index, constant); | 
 |       break; | 
 |     } | 
 |  | 
 |     case Instruction::CONST_WIDE_32: { | 
 |       int32_t register_index = instruction.VRegA(); | 
 |       // Get 32 bits of constant value, sign extended to 64 bits. | 
 |       int64_t value = instruction.VRegB_31i(); | 
 |       value <<= 32; | 
 |       value >>= 32; | 
 |       HLongConstant* constant = graph_->GetLongConstant(value, dex_pc); | 
 |       UpdateLocal(register_index, constant); | 
 |       break; | 
 |     } | 
 |  | 
 |     case Instruction::CONST_WIDE: { | 
 |       int32_t register_index = instruction.VRegA(); | 
 |       HLongConstant* constant = graph_->GetLongConstant(instruction.VRegB_51l(), dex_pc); | 
 |       UpdateLocal(register_index, constant); | 
 |       break; | 
 |     } | 
 |  | 
 |     case Instruction::CONST_WIDE_HIGH16: { | 
 |       int32_t register_index = instruction.VRegA(); | 
 |       int64_t value = static_cast<int64_t>(instruction.VRegB_21h()) << 48; | 
 |       HLongConstant* constant = graph_->GetLongConstant(value, dex_pc); | 
 |       UpdateLocal(register_index, constant); | 
 |       break; | 
 |     } | 
 |  | 
 |     // Note that the SSA building will refine the types. | 
 |     case Instruction::MOVE: | 
 |     case Instruction::MOVE_FROM16: | 
 |     case Instruction::MOVE_16: { | 
 |       HInstruction* value = LoadLocal(instruction.VRegB(), DataType::Type::kInt32); | 
 |       UpdateLocal(instruction.VRegA(), value); | 
 |       break; | 
 |     } | 
 |  | 
 |     // Note that the SSA building will refine the types. | 
 |     case Instruction::MOVE_WIDE: | 
 |     case Instruction::MOVE_WIDE_FROM16: | 
 |     case Instruction::MOVE_WIDE_16: { | 
 |       HInstruction* value = LoadLocal(instruction.VRegB(), DataType::Type::kInt64); | 
 |       UpdateLocal(instruction.VRegA(), value); | 
 |       break; | 
 |     } | 
 |  | 
 |     case Instruction::MOVE_OBJECT: | 
 |     case Instruction::MOVE_OBJECT_16: | 
 |     case Instruction::MOVE_OBJECT_FROM16: { | 
 |       // The verifier has no notion of a null type, so a move-object of constant 0 | 
 |       // will lead to the same constant 0 in the destination register. To mimic | 
 |       // this behavior, we just pretend we haven't seen a type change (int to reference) | 
 |       // for the 0 constant and phis. We rely on our type propagation to eventually get the | 
 |       // types correct. | 
 |       uint32_t reg_number = instruction.VRegB(); | 
 |       HInstruction* value = (*current_locals_)[reg_number]; | 
 |       if (value->IsIntConstant()) { | 
 |         DCHECK_EQ(value->AsIntConstant()->GetValue(), 0); | 
 |       } else if (value->IsPhi()) { | 
 |         DCHECK(value->GetType() == DataType::Type::kInt32 || | 
 |                value->GetType() == DataType::Type::kReference); | 
 |       } else { | 
 |         value = LoadLocal(reg_number, DataType::Type::kReference); | 
 |       } | 
 |       UpdateLocal(instruction.VRegA(), value); | 
 |       break; | 
 |     } | 
 |  | 
 |     case Instruction::RETURN_VOID_NO_BARRIER: | 
 |     case Instruction::RETURN_VOID: { | 
 |       BuildReturn(instruction, DataType::Type::kVoid, dex_pc); | 
 |       break; | 
 |     } | 
 |  | 
 | #define IF_XX(comparison, cond) \ | 
 |     case Instruction::IF_##cond: If_22t<comparison>(instruction, dex_pc); break; \ | 
 |     case Instruction::IF_##cond##Z: If_21t<comparison>(instruction, dex_pc); break | 
 |  | 
 |     IF_XX(HEqual, EQ); | 
 |     IF_XX(HNotEqual, NE); | 
 |     IF_XX(HLessThan, LT); | 
 |     IF_XX(HLessThanOrEqual, LE); | 
 |     IF_XX(HGreaterThan, GT); | 
 |     IF_XX(HGreaterThanOrEqual, GE); | 
 |  | 
 |     case Instruction::GOTO: | 
 |     case Instruction::GOTO_16: | 
 |     case Instruction::GOTO_32: { | 
 |       AppendInstruction(new (allocator_) HGoto(dex_pc)); | 
 |       current_block_ = nullptr; | 
 |       break; | 
 |     } | 
 |  | 
 |     case Instruction::RETURN: { | 
 |       BuildReturn(instruction, return_type_, dex_pc); | 
 |       break; | 
 |     } | 
 |  | 
 |     case Instruction::RETURN_OBJECT: { | 
 |       BuildReturn(instruction, return_type_, dex_pc); | 
 |       break; | 
 |     } | 
 |  | 
 |     case Instruction::RETURN_WIDE: { | 
 |       BuildReturn(instruction, return_type_, dex_pc); | 
 |       break; | 
 |     } | 
 |  | 
 |     case Instruction::INVOKE_DIRECT: | 
 |     case Instruction::INVOKE_INTERFACE: | 
 |     case Instruction::INVOKE_STATIC: | 
 |     case Instruction::INVOKE_SUPER: | 
 |     case Instruction::INVOKE_VIRTUAL: | 
 |     case Instruction::INVOKE_VIRTUAL_QUICK: { | 
 |       uint16_t method_idx; | 
 |       if (instruction.Opcode() == Instruction::INVOKE_VIRTUAL_QUICK) { | 
 |         if (!CanDecodeQuickenedInfo()) { | 
 |           VLOG(compiler) << "Not compiled: Could not decode quickened instruction " | 
 |                          << instruction.Opcode(); | 
 |           return false; | 
 |         } | 
 |         method_idx = LookupQuickenedInfo(quicken_index); | 
 |       } else { | 
 |         method_idx = instruction.VRegB_35c(); | 
 |       } | 
 |       uint32_t args[5]; | 
 |       uint32_t number_of_vreg_arguments = instruction.GetVarArgs(args); | 
 |       VarArgsInstructionOperands operands(args, number_of_vreg_arguments); | 
 |       if (!BuildInvoke(instruction, dex_pc, method_idx, operands)) { | 
 |         return false; | 
 |       } | 
 |       break; | 
 |     } | 
 |  | 
 |     case Instruction::INVOKE_DIRECT_RANGE: | 
 |     case Instruction::INVOKE_INTERFACE_RANGE: | 
 |     case Instruction::INVOKE_STATIC_RANGE: | 
 |     case Instruction::INVOKE_SUPER_RANGE: | 
 |     case Instruction::INVOKE_VIRTUAL_RANGE: | 
 |     case Instruction::INVOKE_VIRTUAL_RANGE_QUICK: { | 
 |       uint16_t method_idx; | 
 |       if (instruction.Opcode() == Instruction::INVOKE_VIRTUAL_RANGE_QUICK) { | 
 |         if (!CanDecodeQuickenedInfo()) { | 
 |           VLOG(compiler) << "Not compiled: Could not decode quickened instruction " | 
 |                          << instruction.Opcode(); | 
 |           return false; | 
 |         } | 
 |         method_idx = LookupQuickenedInfo(quicken_index); | 
 |       } else { | 
 |         method_idx = instruction.VRegB_3rc(); | 
 |       } | 
 |       RangeInstructionOperands operands(instruction.VRegC(), instruction.VRegA_3rc()); | 
 |       if (!BuildInvoke(instruction, dex_pc, method_idx, operands)) { | 
 |         return false; | 
 |       } | 
 |       break; | 
 |     } | 
 |  | 
 |     case Instruction::INVOKE_POLYMORPHIC: { | 
 |       uint16_t method_idx = instruction.VRegB_45cc(); | 
 |       dex::ProtoIndex proto_idx(instruction.VRegH_45cc()); | 
 |       uint32_t args[5]; | 
 |       uint32_t number_of_vreg_arguments = instruction.GetVarArgs(args); | 
 |       VarArgsInstructionOperands operands(args, number_of_vreg_arguments); | 
 |       return BuildInvokePolymorphic(dex_pc, method_idx, proto_idx, operands); | 
 |     } | 
 |  | 
 |     case Instruction::INVOKE_POLYMORPHIC_RANGE: { | 
 |       uint16_t method_idx = instruction.VRegB_4rcc(); | 
 |       dex::ProtoIndex proto_idx(instruction.VRegH_4rcc()); | 
 |       RangeInstructionOperands operands(instruction.VRegC_4rcc(), instruction.VRegA_4rcc()); | 
 |       return BuildInvokePolymorphic(dex_pc, method_idx, proto_idx, operands); | 
 |     } | 
 |  | 
 |     case Instruction::INVOKE_CUSTOM: { | 
 |       uint16_t call_site_idx = instruction.VRegB_35c(); | 
 |       uint32_t args[5]; | 
 |       uint32_t number_of_vreg_arguments = instruction.GetVarArgs(args); | 
 |       VarArgsInstructionOperands operands(args, number_of_vreg_arguments); | 
 |       return BuildInvokeCustom(dex_pc, call_site_idx, operands); | 
 |     } | 
 |  | 
 |     case Instruction::INVOKE_CUSTOM_RANGE: { | 
 |       uint16_t call_site_idx = instruction.VRegB_3rc(); | 
 |       RangeInstructionOperands operands(instruction.VRegC_3rc(), instruction.VRegA_3rc()); | 
 |       return BuildInvokeCustom(dex_pc, call_site_idx, operands); | 
 |     } | 
 |  | 
 |     case Instruction::NEG_INT: { | 
 |       Unop_12x<HNeg>(instruction, DataType::Type::kInt32, dex_pc); | 
 |       break; | 
 |     } | 
 |  | 
 |     case Instruction::NEG_LONG: { | 
 |       Unop_12x<HNeg>(instruction, DataType::Type::kInt64, dex_pc); | 
 |       break; | 
 |     } | 
 |  | 
 |     case Instruction::NEG_FLOAT: { | 
 |       Unop_12x<HNeg>(instruction, DataType::Type::kFloat32, dex_pc); | 
 |       break; | 
 |     } | 
 |  | 
 |     case Instruction::NEG_DOUBLE: { | 
 |       Unop_12x<HNeg>(instruction, DataType::Type::kFloat64, dex_pc); | 
 |       break; | 
 |     } | 
 |  | 
 |     case Instruction::NOT_INT: { | 
 |       Unop_12x<HNot>(instruction, DataType::Type::kInt32, dex_pc); | 
 |       break; | 
 |     } | 
 |  | 
 |     case Instruction::NOT_LONG: { | 
 |       Unop_12x<HNot>(instruction, DataType::Type::kInt64, dex_pc); | 
 |       break; | 
 |     } | 
 |  | 
 |     case Instruction::INT_TO_LONG: { | 
 |       Conversion_12x(instruction, DataType::Type::kInt32, DataType::Type::kInt64, dex_pc); | 
 |       break; | 
 |     } | 
 |  | 
 |     case Instruction::INT_TO_FLOAT: { | 
 |       Conversion_12x(instruction, DataType::Type::kInt32, DataType::Type::kFloat32, dex_pc); | 
 |       break; | 
 |     } | 
 |  | 
 |     case Instruction::INT_TO_DOUBLE: { | 
 |       Conversion_12x(instruction, DataType::Type::kInt32, DataType::Type::kFloat64, dex_pc); | 
 |       break; | 
 |     } | 
 |  | 
 |     case Instruction::LONG_TO_INT: { | 
 |       Conversion_12x(instruction, DataType::Type::kInt64, DataType::Type::kInt32, dex_pc); | 
 |       break; | 
 |     } | 
 |  | 
 |     case Instruction::LONG_TO_FLOAT: { | 
 |       Conversion_12x(instruction, DataType::Type::kInt64, DataType::Type::kFloat32, dex_pc); | 
 |       break; | 
 |     } | 
 |  | 
 |     case Instruction::LONG_TO_DOUBLE: { | 
 |       Conversion_12x(instruction, DataType::Type::kInt64, DataType::Type::kFloat64, dex_pc); | 
 |       break; | 
 |     } | 
 |  | 
 |     case Instruction::FLOAT_TO_INT: { | 
 |       Conversion_12x(instruction, DataType::Type::kFloat32, DataType::Type::kInt32, dex_pc); | 
 |       break; | 
 |     } | 
 |  | 
 |     case Instruction::FLOAT_TO_LONG: { | 
 |       Conversion_12x(instruction, DataType::Type::kFloat32, DataType::Type::kInt64, dex_pc); | 
 |       break; | 
 |     } | 
 |  | 
 |     case Instruction::FLOAT_TO_DOUBLE: { | 
 |       Conversion_12x(instruction, DataType::Type::kFloat32, DataType::Type::kFloat64, dex_pc); | 
 |       break; | 
 |     } | 
 |  | 
 |     case Instruction::DOUBLE_TO_INT: { | 
 |       Conversion_12x(instruction, DataType::Type::kFloat64, DataType::Type::kInt32, dex_pc); | 
 |       break; | 
 |     } | 
 |  | 
 |     case Instruction::DOUBLE_TO_LONG: { | 
 |       Conversion_12x(instruction, DataType::Type::kFloat64, DataType::Type::kInt64, dex_pc); | 
 |       break; | 
 |     } | 
 |  | 
 |     case Instruction::DOUBLE_TO_FLOAT: { | 
 |       Conversion_12x(instruction, DataType::Type::kFloat64, DataType::Type::kFloat32, dex_pc); | 
 |       break; | 
 |     } | 
 |  | 
 |     case Instruction::INT_TO_BYTE: { | 
 |       Conversion_12x(instruction, DataType::Type::kInt32, DataType::Type::kInt8, dex_pc); | 
 |       break; | 
 |     } | 
 |  | 
 |     case Instruction::INT_TO_SHORT: { | 
 |       Conversion_12x(instruction, DataType::Type::kInt32, DataType::Type::kInt16, dex_pc); | 
 |       break; | 
 |     } | 
 |  | 
 |     case Instruction::INT_TO_CHAR: { | 
 |       Conversion_12x(instruction, DataType::Type::kInt32, DataType::Type::kUint16, dex_pc); | 
 |       break; | 
 |     } | 
 |  | 
 |     case Instruction::ADD_INT: { | 
 |       Binop_23x<HAdd>(instruction, DataType::Type::kInt32, dex_pc); | 
 |       break; | 
 |     } | 
 |  | 
 |     case Instruction::ADD_LONG: { | 
 |       Binop_23x<HAdd>(instruction, DataType::Type::kInt64, dex_pc); | 
 |       break; | 
 |     } | 
 |  | 
 |     case Instruction::ADD_DOUBLE: { | 
 |       Binop_23x<HAdd>(instruction, DataType::Type::kFloat64, dex_pc); | 
 |       break; | 
 |     } | 
 |  | 
 |     case Instruction::ADD_FLOAT: { | 
 |       Binop_23x<HAdd>(instruction, DataType::Type::kFloat32, dex_pc); | 
 |       break; | 
 |     } | 
 |  | 
 |     case Instruction::SUB_INT: { | 
 |       Binop_23x<HSub>(instruction, DataType::Type::kInt32, dex_pc); | 
 |       break; | 
 |     } | 
 |  | 
 |     case Instruction::SUB_LONG: { | 
 |       Binop_23x<HSub>(instruction, DataType::Type::kInt64, dex_pc); | 
 |       break; | 
 |     } | 
 |  | 
 |     case Instruction::SUB_FLOAT: { | 
 |       Binop_23x<HSub>(instruction, DataType::Type::kFloat32, dex_pc); | 
 |       break; | 
 |     } | 
 |  | 
 |     case Instruction::SUB_DOUBLE: { | 
 |       Binop_23x<HSub>(instruction, DataType::Type::kFloat64, dex_pc); | 
 |       break; | 
 |     } | 
 |  | 
 |     case Instruction::ADD_INT_2ADDR: { | 
 |       Binop_12x<HAdd>(instruction, DataType::Type::kInt32, dex_pc); | 
 |       break; | 
 |     } | 
 |  | 
 |     case Instruction::MUL_INT: { | 
 |       Binop_23x<HMul>(instruction, DataType::Type::kInt32, dex_pc); | 
 |       break; | 
 |     } | 
 |  | 
 |     case Instruction::MUL_LONG: { | 
 |       Binop_23x<HMul>(instruction, DataType::Type::kInt64, dex_pc); | 
 |       break; | 
 |     } | 
 |  | 
 |     case Instruction::MUL_FLOAT: { | 
 |       Binop_23x<HMul>(instruction, DataType::Type::kFloat32, dex_pc); | 
 |       break; | 
 |     } | 
 |  | 
 |     case Instruction::MUL_DOUBLE: { | 
 |       Binop_23x<HMul>(instruction, DataType::Type::kFloat64, dex_pc); | 
 |       break; | 
 |     } | 
 |  | 
 |     case Instruction::DIV_INT: { | 
 |       BuildCheckedDivRem(instruction.VRegA(), instruction.VRegB(), instruction.VRegC(), | 
 |                          dex_pc, DataType::Type::kInt32, false, true); | 
 |       break; | 
 |     } | 
 |  | 
 |     case Instruction::DIV_LONG: { | 
 |       BuildCheckedDivRem(instruction.VRegA(), instruction.VRegB(), instruction.VRegC(), | 
 |                          dex_pc, DataType::Type::kInt64, false, true); | 
 |       break; | 
 |     } | 
 |  | 
 |     case Instruction::DIV_FLOAT: { | 
 |       Binop_23x<HDiv>(instruction, DataType::Type::kFloat32, dex_pc); | 
 |       break; | 
 |     } | 
 |  | 
 |     case Instruction::DIV_DOUBLE: { | 
 |       Binop_23x<HDiv>(instruction, DataType::Type::kFloat64, dex_pc); | 
 |       break; | 
 |     } | 
 |  | 
 |     case Instruction::REM_INT: { | 
 |       BuildCheckedDivRem(instruction.VRegA(), instruction.VRegB(), instruction.VRegC(), | 
 |                          dex_pc, DataType::Type::kInt32, false, false); | 
 |       break; | 
 |     } | 
 |  | 
 |     case Instruction::REM_LONG: { | 
 |       BuildCheckedDivRem(instruction.VRegA(), instruction.VRegB(), instruction.VRegC(), | 
 |                          dex_pc, DataType::Type::kInt64, false, false); | 
 |       break; | 
 |     } | 
 |  | 
 |     case Instruction::REM_FLOAT: { | 
 |       Binop_23x<HRem>(instruction, DataType::Type::kFloat32, dex_pc); | 
 |       break; | 
 |     } | 
 |  | 
 |     case Instruction::REM_DOUBLE: { | 
 |       Binop_23x<HRem>(instruction, DataType::Type::kFloat64, dex_pc); | 
 |       break; | 
 |     } | 
 |  | 
 |     case Instruction::AND_INT: { | 
 |       Binop_23x<HAnd>(instruction, DataType::Type::kInt32, dex_pc); | 
 |       break; | 
 |     } | 
 |  | 
 |     case Instruction::AND_LONG: { | 
 |       Binop_23x<HAnd>(instruction, DataType::Type::kInt64, dex_pc); | 
 |       break; | 
 |     } | 
 |  | 
 |     case Instruction::SHL_INT: { | 
 |       Binop_23x_shift<HShl>(instruction, DataType::Type::kInt32, dex_pc); | 
 |       break; | 
 |     } | 
 |  | 
 |     case Instruction::SHL_LONG: { | 
 |       Binop_23x_shift<HShl>(instruction, DataType::Type::kInt64, dex_pc); | 
 |       break; | 
 |     } | 
 |  | 
 |     case Instruction::SHR_INT: { | 
 |       Binop_23x_shift<HShr>(instruction, DataType::Type::kInt32, dex_pc); | 
 |       break; | 
 |     } | 
 |  | 
 |     case Instruction::SHR_LONG: { | 
 |       Binop_23x_shift<HShr>(instruction, DataType::Type::kInt64, dex_pc); | 
 |       break; | 
 |     } | 
 |  | 
 |     case Instruction::USHR_INT: { | 
 |       Binop_23x_shift<HUShr>(instruction, DataType::Type::kInt32, dex_pc); | 
 |       break; | 
 |     } | 
 |  | 
 |     case Instruction::USHR_LONG: { | 
 |       Binop_23x_shift<HUShr>(instruction, DataType::Type::kInt64, dex_pc); | 
 |       break; | 
 |     } | 
 |  | 
 |     case Instruction::OR_INT: { | 
 |       Binop_23x<HOr>(instruction, DataType::Type::kInt32, dex_pc); | 
 |       break; | 
 |     } | 
 |  | 
 |     case Instruction::OR_LONG: { | 
 |       Binop_23x<HOr>(instruction, DataType::Type::kInt64, dex_pc); | 
 |       break; | 
 |     } | 
 |  | 
 |     case Instruction::XOR_INT: { | 
 |       Binop_23x<HXor>(instruction, DataType::Type::kInt32, dex_pc); | 
 |       break; | 
 |     } | 
 |  | 
 |     case Instruction::XOR_LONG: { | 
 |       Binop_23x<HXor>(instruction, DataType::Type::kInt64, dex_pc); | 
 |       break; | 
 |     } | 
 |  | 
 |     case Instruction::ADD_LONG_2ADDR: { | 
 |       Binop_12x<HAdd>(instruction, DataType::Type::kInt64, dex_pc); | 
 |       break; | 
 |     } | 
 |  | 
 |     case Instruction::ADD_DOUBLE_2ADDR: { | 
 |       Binop_12x<HAdd>(instruction, DataType::Type::kFloat64, dex_pc); | 
 |       break; | 
 |     } | 
 |  | 
 |     case Instruction::ADD_FLOAT_2ADDR: { | 
 |       Binop_12x<HAdd>(instruction, DataType::Type::kFloat32, dex_pc); | 
 |       break; | 
 |     } | 
 |  | 
 |     case Instruction::SUB_INT_2ADDR: { | 
 |       Binop_12x<HSub>(instruction, DataType::Type::kInt32, dex_pc); | 
 |       break; | 
 |     } | 
 |  | 
 |     case Instruction::SUB_LONG_2ADDR: { | 
 |       Binop_12x<HSub>(instruction, DataType::Type::kInt64, dex_pc); | 
 |       break; | 
 |     } | 
 |  | 
 |     case Instruction::SUB_FLOAT_2ADDR: { | 
 |       Binop_12x<HSub>(instruction, DataType::Type::kFloat32, dex_pc); | 
 |       break; | 
 |     } | 
 |  | 
 |     case Instruction::SUB_DOUBLE_2ADDR: { | 
 |       Binop_12x<HSub>(instruction, DataType::Type::kFloat64, dex_pc); | 
 |       break; | 
 |     } | 
 |  | 
 |     case Instruction::MUL_INT_2ADDR: { | 
 |       Binop_12x<HMul>(instruction, DataType::Type::kInt32, dex_pc); | 
 |       break; | 
 |     } | 
 |  | 
 |     case Instruction::MUL_LONG_2ADDR: { | 
 |       Binop_12x<HMul>(instruction, DataType::Type::kInt64, dex_pc); | 
 |       break; | 
 |     } | 
 |  | 
 |     case Instruction::MUL_FLOAT_2ADDR: { | 
 |       Binop_12x<HMul>(instruction, DataType::Type::kFloat32, dex_pc); | 
 |       break; | 
 |     } | 
 |  | 
 |     case Instruction::MUL_DOUBLE_2ADDR: { | 
 |       Binop_12x<HMul>(instruction, DataType::Type::kFloat64, dex_pc); | 
 |       break; | 
 |     } | 
 |  | 
 |     case Instruction::DIV_INT_2ADDR: { | 
 |       BuildCheckedDivRem(instruction.VRegA(), instruction.VRegA(), instruction.VRegB(), | 
 |                          dex_pc, DataType::Type::kInt32, false, true); | 
 |       break; | 
 |     } | 
 |  | 
 |     case Instruction::DIV_LONG_2ADDR: { | 
 |       BuildCheckedDivRem(instruction.VRegA(), instruction.VRegA(), instruction.VRegB(), | 
 |                          dex_pc, DataType::Type::kInt64, false, true); | 
 |       break; | 
 |     } | 
 |  | 
 |     case Instruction::REM_INT_2ADDR: { | 
 |       BuildCheckedDivRem(instruction.VRegA(), instruction.VRegA(), instruction.VRegB(), | 
 |                          dex_pc, DataType::Type::kInt32, false, false); | 
 |       break; | 
 |     } | 
 |  | 
 |     case Instruction::REM_LONG_2ADDR: { | 
 |       BuildCheckedDivRem(instruction.VRegA(), instruction.VRegA(), instruction.VRegB(), | 
 |                          dex_pc, DataType::Type::kInt64, false, false); | 
 |       break; | 
 |     } | 
 |  | 
 |     case Instruction::REM_FLOAT_2ADDR: { | 
 |       Binop_12x<HRem>(instruction, DataType::Type::kFloat32, dex_pc); | 
 |       break; | 
 |     } | 
 |  | 
 |     case Instruction::REM_DOUBLE_2ADDR: { | 
 |       Binop_12x<HRem>(instruction, DataType::Type::kFloat64, dex_pc); | 
 |       break; | 
 |     } | 
 |  | 
 |     case Instruction::SHL_INT_2ADDR: { | 
 |       Binop_12x_shift<HShl>(instruction, DataType::Type::kInt32, dex_pc); | 
 |       break; | 
 |     } | 
 |  | 
 |     case Instruction::SHL_LONG_2ADDR: { | 
 |       Binop_12x_shift<HShl>(instruction, DataType::Type::kInt64, dex_pc); | 
 |       break; | 
 |     } | 
 |  | 
 |     case Instruction::SHR_INT_2ADDR: { | 
 |       Binop_12x_shift<HShr>(instruction, DataType::Type::kInt32, dex_pc); | 
 |       break; | 
 |     } | 
 |  | 
 |     case Instruction::SHR_LONG_2ADDR: { | 
 |       Binop_12x_shift<HShr>(instruction, DataType::Type::kInt64, dex_pc); | 
 |       break; | 
 |     } | 
 |  | 
 |     case Instruction::USHR_INT_2ADDR: { | 
 |       Binop_12x_shift<HUShr>(instruction, DataType::Type::kInt32, dex_pc); | 
 |       break; | 
 |     } | 
 |  | 
 |     case Instruction::USHR_LONG_2ADDR: { | 
 |       Binop_12x_shift<HUShr>(instruction, DataType::Type::kInt64, dex_pc); | 
 |       break; | 
 |     } | 
 |  | 
 |     case Instruction::DIV_FLOAT_2ADDR: { | 
 |       Binop_12x<HDiv>(instruction, DataType::Type::kFloat32, dex_pc); | 
 |       break; | 
 |     } | 
 |  | 
 |     case Instruction::DIV_DOUBLE_2ADDR: { | 
 |       Binop_12x<HDiv>(instruction, DataType::Type::kFloat64, dex_pc); | 
 |       break; | 
 |     } | 
 |  | 
 |     case Instruction::AND_INT_2ADDR: { | 
 |       Binop_12x<HAnd>(instruction, DataType::Type::kInt32, dex_pc); | 
 |       break; | 
 |     } | 
 |  | 
 |     case Instruction::AND_LONG_2ADDR: { | 
 |       Binop_12x<HAnd>(instruction, DataType::Type::kInt64, dex_pc); | 
 |       break; | 
 |     } | 
 |  | 
 |     case Instruction::OR_INT_2ADDR: { | 
 |       Binop_12x<HOr>(instruction, DataType::Type::kInt32, dex_pc); | 
 |       break; | 
 |     } | 
 |  | 
 |     case Instruction::OR_LONG_2ADDR: { | 
 |       Binop_12x<HOr>(instruction, DataType::Type::kInt64, dex_pc); | 
 |       break; | 
 |     } | 
 |  | 
 |     case Instruction::XOR_INT_2ADDR: { | 
 |       Binop_12x<HXor>(instruction, DataType::Type::kInt32, dex_pc); | 
 |       break; | 
 |     } | 
 |  | 
 |     case Instruction::XOR_LONG_2ADDR: { | 
 |       Binop_12x<HXor>(instruction, DataType::Type::kInt64, dex_pc); | 
 |       break; | 
 |     } | 
 |  | 
 |     case Instruction::ADD_INT_LIT16: { | 
 |       Binop_22s<HAdd>(instruction, false, dex_pc); | 
 |       break; | 
 |     } | 
 |  | 
 |     case Instruction::AND_INT_LIT16: { | 
 |       Binop_22s<HAnd>(instruction, false, dex_pc); | 
 |       break; | 
 |     } | 
 |  | 
 |     case Instruction::OR_INT_LIT16: { | 
 |       Binop_22s<HOr>(instruction, false, dex_pc); | 
 |       break; | 
 |     } | 
 |  | 
 |     case Instruction::XOR_INT_LIT16: { | 
 |       Binop_22s<HXor>(instruction, false, dex_pc); | 
 |       break; | 
 |     } | 
 |  | 
 |     case Instruction::RSUB_INT: { | 
 |       Binop_22s<HSub>(instruction, true, dex_pc); | 
 |       break; | 
 |     } | 
 |  | 
 |     case Instruction::MUL_INT_LIT16: { | 
 |       Binop_22s<HMul>(instruction, false, dex_pc); | 
 |       break; | 
 |     } | 
 |  | 
 |     case Instruction::ADD_INT_LIT8: { | 
 |       Binop_22b<HAdd>(instruction, false, dex_pc); | 
 |       break; | 
 |     } | 
 |  | 
 |     case Instruction::AND_INT_LIT8: { | 
 |       Binop_22b<HAnd>(instruction, false, dex_pc); | 
 |       break; | 
 |     } | 
 |  | 
 |     case Instruction::OR_INT_LIT8: { | 
 |       Binop_22b<HOr>(instruction, false, dex_pc); | 
 |       break; | 
 |     } | 
 |  | 
 |     case Instruction::XOR_INT_LIT8: { | 
 |       Binop_22b<HXor>(instruction, false, dex_pc); | 
 |       break; | 
 |     } | 
 |  | 
 |     case Instruction::RSUB_INT_LIT8: { | 
 |       Binop_22b<HSub>(instruction, true, dex_pc); | 
 |       break; | 
 |     } | 
 |  | 
 |     case Instruction::MUL_INT_LIT8: { | 
 |       Binop_22b<HMul>(instruction, false, dex_pc); | 
 |       break; | 
 |     } | 
 |  | 
 |     case Instruction::DIV_INT_LIT16: | 
 |     case Instruction::DIV_INT_LIT8: { | 
 |       BuildCheckedDivRem(instruction.VRegA(), instruction.VRegB(), instruction.VRegC(), | 
 |                          dex_pc, DataType::Type::kInt32, true, true); | 
 |       break; | 
 |     } | 
 |  | 
 |     case Instruction::REM_INT_LIT16: | 
 |     case Instruction::REM_INT_LIT8: { | 
 |       BuildCheckedDivRem(instruction.VRegA(), instruction.VRegB(), instruction.VRegC(), | 
 |                          dex_pc, DataType::Type::kInt32, true, false); | 
 |       break; | 
 |     } | 
 |  | 
 |     case Instruction::SHL_INT_LIT8: { | 
 |       Binop_22b<HShl>(instruction, false, dex_pc); | 
 |       break; | 
 |     } | 
 |  | 
 |     case Instruction::SHR_INT_LIT8: { | 
 |       Binop_22b<HShr>(instruction, false, dex_pc); | 
 |       break; | 
 |     } | 
 |  | 
 |     case Instruction::USHR_INT_LIT8: { | 
 |       Binop_22b<HUShr>(instruction, false, dex_pc); | 
 |       break; | 
 |     } | 
 |  | 
 |     case Instruction::NEW_INSTANCE: { | 
 |       HNewInstance* new_instance = | 
 |           BuildNewInstance(dex::TypeIndex(instruction.VRegB_21c()), dex_pc); | 
 |       DCHECK(new_instance != nullptr); | 
 |  | 
 |       UpdateLocal(instruction.VRegA(), current_block_->GetLastInstruction()); | 
 |       BuildConstructorFenceForAllocation(new_instance); | 
 |       break; | 
 |     } | 
 |  | 
 |     case Instruction::NEW_ARRAY: { | 
 |       dex::TypeIndex type_index(instruction.VRegC_22c()); | 
 |       HInstruction* length = LoadLocal(instruction.VRegB_22c(), DataType::Type::kInt32); | 
 |       HNewArray* new_array = BuildNewArray(dex_pc, type_index, length); | 
 |  | 
 |       UpdateLocal(instruction.VRegA_22c(), current_block_->GetLastInstruction()); | 
 |       BuildConstructorFenceForAllocation(new_array); | 
 |       break; | 
 |     } | 
 |  | 
 |     case Instruction::FILLED_NEW_ARRAY: { | 
 |       dex::TypeIndex type_index(instruction.VRegB_35c()); | 
 |       uint32_t args[5]; | 
 |       uint32_t number_of_vreg_arguments = instruction.GetVarArgs(args); | 
 |       VarArgsInstructionOperands operands(args, number_of_vreg_arguments); | 
 |       HNewArray* new_array = BuildFilledNewArray(dex_pc, type_index, operands); | 
 |       BuildConstructorFenceForAllocation(new_array); | 
 |       break; | 
 |     } | 
 |  | 
 |     case Instruction::FILLED_NEW_ARRAY_RANGE: { | 
 |       dex::TypeIndex type_index(instruction.VRegB_3rc()); | 
 |       RangeInstructionOperands operands(instruction.VRegC_3rc(), instruction.VRegA_3rc()); | 
 |       HNewArray* new_array = BuildFilledNewArray(dex_pc, type_index, operands); | 
 |       BuildConstructorFenceForAllocation(new_array); | 
 |       break; | 
 |     } | 
 |  | 
 |     case Instruction::FILL_ARRAY_DATA: { | 
 |       BuildFillArrayData(instruction, dex_pc); | 
 |       break; | 
 |     } | 
 |  | 
 |     case Instruction::MOVE_RESULT: | 
 |     case Instruction::MOVE_RESULT_WIDE: | 
 |     case Instruction::MOVE_RESULT_OBJECT: { | 
 |       DCHECK(latest_result_ != nullptr); | 
 |       UpdateLocal(instruction.VRegA(), latest_result_); | 
 |       latest_result_ = nullptr; | 
 |       break; | 
 |     } | 
 |  | 
 |     case Instruction::CMP_LONG: { | 
 |       Binop_23x_cmp(instruction, DataType::Type::kInt64, ComparisonBias::kNoBias, dex_pc); | 
 |       break; | 
 |     } | 
 |  | 
 |     case Instruction::CMPG_FLOAT: { | 
 |       Binop_23x_cmp(instruction, DataType::Type::kFloat32, ComparisonBias::kGtBias, dex_pc); | 
 |       break; | 
 |     } | 
 |  | 
 |     case Instruction::CMPG_DOUBLE: { | 
 |       Binop_23x_cmp(instruction, DataType::Type::kFloat64, ComparisonBias::kGtBias, dex_pc); | 
 |       break; | 
 |     } | 
 |  | 
 |     case Instruction::CMPL_FLOAT: { | 
 |       Binop_23x_cmp(instruction, DataType::Type::kFloat32, ComparisonBias::kLtBias, dex_pc); | 
 |       break; | 
 |     } | 
 |  | 
 |     case Instruction::CMPL_DOUBLE: { | 
 |       Binop_23x_cmp(instruction, DataType::Type::kFloat64, ComparisonBias::kLtBias, dex_pc); | 
 |       break; | 
 |     } | 
 |  | 
 |     case Instruction::NOP: | 
 |       break; | 
 |  | 
 |     case Instruction::IGET: | 
 |     case Instruction::IGET_QUICK: | 
 |     case Instruction::IGET_WIDE: | 
 |     case Instruction::IGET_WIDE_QUICK: | 
 |     case Instruction::IGET_OBJECT: | 
 |     case Instruction::IGET_OBJECT_QUICK: | 
 |     case Instruction::IGET_BOOLEAN: | 
 |     case Instruction::IGET_BOOLEAN_QUICK: | 
 |     case Instruction::IGET_BYTE: | 
 |     case Instruction::IGET_BYTE_QUICK: | 
 |     case Instruction::IGET_CHAR: | 
 |     case Instruction::IGET_CHAR_QUICK: | 
 |     case Instruction::IGET_SHORT: | 
 |     case Instruction::IGET_SHORT_QUICK: { | 
 |       if (!BuildInstanceFieldAccess(instruction, dex_pc, /* is_put= */ false, quicken_index)) { | 
 |         return false; | 
 |       } | 
 |       break; | 
 |     } | 
 |  | 
 |     case Instruction::IPUT: | 
 |     case Instruction::IPUT_QUICK: | 
 |     case Instruction::IPUT_WIDE: | 
 |     case Instruction::IPUT_WIDE_QUICK: | 
 |     case Instruction::IPUT_OBJECT: | 
 |     case Instruction::IPUT_OBJECT_QUICK: | 
 |     case Instruction::IPUT_BOOLEAN: | 
 |     case Instruction::IPUT_BOOLEAN_QUICK: | 
 |     case Instruction::IPUT_BYTE: | 
 |     case Instruction::IPUT_BYTE_QUICK: | 
 |     case Instruction::IPUT_CHAR: | 
 |     case Instruction::IPUT_CHAR_QUICK: | 
 |     case Instruction::IPUT_SHORT: | 
 |     case Instruction::IPUT_SHORT_QUICK: { | 
 |       if (!BuildInstanceFieldAccess(instruction, dex_pc, /* is_put= */ true, quicken_index)) { | 
 |         return false; | 
 |       } | 
 |       break; | 
 |     } | 
 |  | 
 |     case Instruction::SGET: | 
 |     case Instruction::SGET_WIDE: | 
 |     case Instruction::SGET_OBJECT: | 
 |     case Instruction::SGET_BOOLEAN: | 
 |     case Instruction::SGET_BYTE: | 
 |     case Instruction::SGET_CHAR: | 
 |     case Instruction::SGET_SHORT: { | 
 |       BuildStaticFieldAccess(instruction, dex_pc, /* is_put= */ false); | 
 |       break; | 
 |     } | 
 |  | 
 |     case Instruction::SPUT: | 
 |     case Instruction::SPUT_WIDE: | 
 |     case Instruction::SPUT_OBJECT: | 
 |     case Instruction::SPUT_BOOLEAN: | 
 |     case Instruction::SPUT_BYTE: | 
 |     case Instruction::SPUT_CHAR: | 
 |     case Instruction::SPUT_SHORT: { | 
 |       BuildStaticFieldAccess(instruction, dex_pc, /* is_put= */ true); | 
 |       break; | 
 |     } | 
 |  | 
 | #define ARRAY_XX(kind, anticipated_type)                                          \ | 
 |     case Instruction::AGET##kind: {                                               \ | 
 |       BuildArrayAccess(instruction, dex_pc, false, anticipated_type);         \ | 
 |       break;                                                                      \ | 
 |     }                                                                             \ | 
 |     case Instruction::APUT##kind: {                                               \ | 
 |       BuildArrayAccess(instruction, dex_pc, true, anticipated_type);          \ | 
 |       break;                                                                      \ | 
 |     } | 
 |  | 
 |     ARRAY_XX(, DataType::Type::kInt32); | 
 |     ARRAY_XX(_WIDE, DataType::Type::kInt64); | 
 |     ARRAY_XX(_OBJECT, DataType::Type::kReference); | 
 |     ARRAY_XX(_BOOLEAN, DataType::Type::kBool); | 
 |     ARRAY_XX(_BYTE, DataType::Type::kInt8); | 
 |     ARRAY_XX(_CHAR, DataType::Type::kUint16); | 
 |     ARRAY_XX(_SHORT, DataType::Type::kInt16); | 
 |  | 
 |     case Instruction::ARRAY_LENGTH: { | 
 |       HInstruction* object = LoadNullCheckedLocal(instruction.VRegB_12x(), dex_pc); | 
 |       AppendInstruction(new (allocator_) HArrayLength(object, dex_pc)); | 
 |       UpdateLocal(instruction.VRegA_12x(), current_block_->GetLastInstruction()); | 
 |       break; | 
 |     } | 
 |  | 
 |     case Instruction::CONST_STRING: { | 
 |       dex::StringIndex string_index(instruction.VRegB_21c()); | 
 |       BuildLoadString(string_index, dex_pc); | 
 |       UpdateLocal(instruction.VRegA_21c(), current_block_->GetLastInstruction()); | 
 |       break; | 
 |     } | 
 |  | 
 |     case Instruction::CONST_STRING_JUMBO: { | 
 |       dex::StringIndex string_index(instruction.VRegB_31c()); | 
 |       BuildLoadString(string_index, dex_pc); | 
 |       UpdateLocal(instruction.VRegA_31c(), current_block_->GetLastInstruction()); | 
 |       break; | 
 |     } | 
 |  | 
 |     case Instruction::CONST_CLASS: { | 
 |       dex::TypeIndex type_index(instruction.VRegB_21c()); | 
 |       BuildLoadClass(type_index, dex_pc); | 
 |       UpdateLocal(instruction.VRegA_21c(), current_block_->GetLastInstruction()); | 
 |       break; | 
 |     } | 
 |  | 
 |     case Instruction::CONST_METHOD_HANDLE: { | 
 |       uint16_t method_handle_idx = instruction.VRegB_21c(); | 
 |       BuildLoadMethodHandle(method_handle_idx, dex_pc); | 
 |       UpdateLocal(instruction.VRegA_21c(), current_block_->GetLastInstruction()); | 
 |       break; | 
 |     } | 
 |  | 
 |     case Instruction::CONST_METHOD_TYPE: { | 
 |       dex::ProtoIndex proto_idx(instruction.VRegB_21c()); | 
 |       BuildLoadMethodType(proto_idx, dex_pc); | 
 |       UpdateLocal(instruction.VRegA_21c(), current_block_->GetLastInstruction()); | 
 |       break; | 
 |     } | 
 |  | 
 |     case Instruction::MOVE_EXCEPTION: { | 
 |       AppendInstruction(new (allocator_) HLoadException(dex_pc)); | 
 |       UpdateLocal(instruction.VRegA_11x(), current_block_->GetLastInstruction()); | 
 |       AppendInstruction(new (allocator_) HClearException(dex_pc)); | 
 |       break; | 
 |     } | 
 |  | 
 |     case Instruction::THROW: { | 
 |       HInstruction* exception = LoadLocal(instruction.VRegA_11x(), DataType::Type::kReference); | 
 |       AppendInstruction(new (allocator_) HThrow(exception, dex_pc)); | 
 |       // We finished building this block. Set the current block to null to avoid | 
 |       // adding dead instructions to it. | 
 |       current_block_ = nullptr; | 
 |       break; | 
 |     } | 
 |  | 
 |     case Instruction::INSTANCE_OF: { | 
 |       uint8_t destination = instruction.VRegA_22c(); | 
 |       uint8_t reference = instruction.VRegB_22c(); | 
 |       dex::TypeIndex type_index(instruction.VRegC_22c()); | 
 |       BuildTypeCheck(instruction, destination, reference, type_index, dex_pc); | 
 |       break; | 
 |     } | 
 |  | 
 |     case Instruction::CHECK_CAST: { | 
 |       uint8_t reference = instruction.VRegA_21c(); | 
 |       dex::TypeIndex type_index(instruction.VRegB_21c()); | 
 |       BuildTypeCheck(instruction, -1, reference, type_index, dex_pc); | 
 |       break; | 
 |     } | 
 |  | 
 |     case Instruction::MONITOR_ENTER: { | 
 |       AppendInstruction(new (allocator_) HMonitorOperation( | 
 |           LoadLocal(instruction.VRegA_11x(), DataType::Type::kReference), | 
 |           HMonitorOperation::OperationKind::kEnter, | 
 |           dex_pc)); | 
 |       graph_->SetHasMonitorOperations(true); | 
 |       break; | 
 |     } | 
 |  | 
 |     case Instruction::MONITOR_EXIT: { | 
 |       AppendInstruction(new (allocator_) HMonitorOperation( | 
 |           LoadLocal(instruction.VRegA_11x(), DataType::Type::kReference), | 
 |           HMonitorOperation::OperationKind::kExit, | 
 |           dex_pc)); | 
 |       graph_->SetHasMonitorOperations(true); | 
 |       break; | 
 |     } | 
 |  | 
 |     case Instruction::SPARSE_SWITCH: | 
 |     case Instruction::PACKED_SWITCH: { | 
 |       BuildSwitch(instruction, dex_pc); | 
 |       break; | 
 |     } | 
 |  | 
 |     case Instruction::UNUSED_3E: | 
 |     case Instruction::UNUSED_3F: | 
 |     case Instruction::UNUSED_40: | 
 |     case Instruction::UNUSED_41: | 
 |     case Instruction::UNUSED_42: | 
 |     case Instruction::UNUSED_43: | 
 |     case Instruction::UNUSED_79: | 
 |     case Instruction::UNUSED_7A: | 
 |     case Instruction::UNUSED_F3: | 
 |     case Instruction::UNUSED_F4: | 
 |     case Instruction::UNUSED_F5: | 
 |     case Instruction::UNUSED_F6: | 
 |     case Instruction::UNUSED_F7: | 
 |     case Instruction::UNUSED_F8: | 
 |     case Instruction::UNUSED_F9: { | 
 |       VLOG(compiler) << "Did not compile " | 
 |                      << dex_file_->PrettyMethod(dex_compilation_unit_->GetDexMethodIndex()) | 
 |                      << " because of unhandled instruction " | 
 |                      << instruction.Name(); | 
 |       MaybeRecordStat(compilation_stats_, | 
 |                       MethodCompilationStat::kNotCompiledUnhandledInstruction); | 
 |       return false; | 
 |     } | 
 |   } | 
 |   return true; | 
 | }  // NOLINT(readability/fn_size) | 
 |  | 
 | ObjPtr<mirror::Class> HInstructionBuilder::LookupResolvedType( | 
 |     dex::TypeIndex type_index, | 
 |     const DexCompilationUnit& compilation_unit) const { | 
 |   return compilation_unit.GetClassLinker()->LookupResolvedType( | 
 |         type_index, compilation_unit.GetDexCache().Get(), compilation_unit.GetClassLoader().Get()); | 
 | } | 
 |  | 
 | ObjPtr<mirror::Class> HInstructionBuilder::LookupReferrerClass() const { | 
 |   // TODO: Cache the result in a Handle<mirror::Class>. | 
 |   const dex::MethodId& method_id = | 
 |       dex_compilation_unit_->GetDexFile()->GetMethodId(dex_compilation_unit_->GetDexMethodIndex()); | 
 |   return LookupResolvedType(method_id.class_idx_, *dex_compilation_unit_); | 
 | } | 
 |  | 
 | }  // namespace art |