| /* | 
 |  * Copyright (C) 2014 The Android Open Source Project | 
 |  * | 
 |  * Licensed under the Apache License, Version 2.0 (the "License"); | 
 |  * you may not use this file except in compliance with the License. | 
 |  * You may obtain a copy of the License at | 
 |  * | 
 |  *      http://www.apache.org/licenses/LICENSE-2.0 | 
 |  * | 
 |  * Unless required by applicable law or agreed to in writing, software | 
 |  * distributed under the License is distributed on an "AS IS" BASIS, | 
 |  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | 
 |  * See the License for the specific language governing permissions and | 
 |  * limitations under the License. | 
 |  */ | 
 |  | 
 | #include "ssa_builder.h" | 
 |  | 
 | #include "base/arena_bit_vector.h" | 
 | #include "base/bit_vector-inl.h" | 
 | #include "base/logging.h" | 
 | #include "data_type-inl.h" | 
 | #include "dex/bytecode_utils.h" | 
 | #include "mirror/class-inl.h" | 
 | #include "nodes.h" | 
 | #include "reference_type_propagation.h" | 
 | #include "scoped_thread_state_change-inl.h" | 
 | #include "ssa_phi_elimination.h" | 
 |  | 
 | namespace art { | 
 |  | 
 | void SsaBuilder::FixNullConstantType() { | 
 |   // The order doesn't matter here. | 
 |   for (HBasicBlock* block : graph_->GetReversePostOrder()) { | 
 |     for (HInstructionIterator it(block->GetInstructions()); !it.Done(); it.Advance()) { | 
 |       HInstruction* equality_instr = it.Current(); | 
 |       if (!equality_instr->IsEqual() && !equality_instr->IsNotEqual()) { | 
 |         continue; | 
 |       } | 
 |       HInstruction* left = equality_instr->InputAt(0); | 
 |       HInstruction* right = equality_instr->InputAt(1); | 
 |       HInstruction* int_operand = nullptr; | 
 |  | 
 |       if ((left->GetType() == DataType::Type::kReference) && | 
 |           (right->GetType() == DataType::Type::kInt32)) { | 
 |         int_operand = right; | 
 |       } else if ((right->GetType() == DataType::Type::kReference) && | 
 |                  (left->GetType() == DataType::Type::kInt32)) { | 
 |         int_operand = left; | 
 |       } else { | 
 |         continue; | 
 |       } | 
 |  | 
 |       // If we got here, we are comparing against a reference and the int constant | 
 |       // should be replaced with a null constant. | 
 |       // Both type propagation and redundant phi elimination ensure `int_operand` | 
 |       // can only be the 0 constant. | 
 |       DCHECK(int_operand->IsIntConstant()) << int_operand->DebugName(); | 
 |       DCHECK_EQ(0, int_operand->AsIntConstant()->GetValue()); | 
 |       equality_instr->ReplaceInput(graph_->GetNullConstant(), int_operand == right ? 1 : 0); | 
 |     } | 
 |   } | 
 | } | 
 |  | 
 | void SsaBuilder::EquivalentPhisCleanup() { | 
 |   // The order doesn't matter here. | 
 |   for (HBasicBlock* block : graph_->GetReversePostOrder()) { | 
 |     for (HInstructionIterator it(block->GetPhis()); !it.Done(); it.Advance()) { | 
 |       HPhi* phi = it.Current()->AsPhi(); | 
 |       HPhi* next = phi->GetNextEquivalentPhiWithSameType(); | 
 |       if (next != nullptr) { | 
 |         // Make sure we do not replace a live phi with a dead phi. A live phi | 
 |         // has been handled by the type propagation phase, unlike a dead phi. | 
 |         if (next->IsLive()) { | 
 |           phi->ReplaceWith(next); | 
 |           phi->SetDead(); | 
 |         } else { | 
 |           next->ReplaceWith(phi); | 
 |         } | 
 |         DCHECK(next->GetNextEquivalentPhiWithSameType() == nullptr) | 
 |             << "More then one phi equivalent with type " << phi->GetType() | 
 |             << " found for phi" << phi->GetId(); | 
 |       } | 
 |     } | 
 |   } | 
 | } | 
 |  | 
 | void SsaBuilder::FixEnvironmentPhis() { | 
 |   for (HBasicBlock* block : graph_->GetReversePostOrder()) { | 
 |     for (HInstructionIterator it_phis(block->GetPhis()); !it_phis.Done(); it_phis.Advance()) { | 
 |       HPhi* phi = it_phis.Current()->AsPhi(); | 
 |       // If the phi is not dead, or has no environment uses, there is nothing to do. | 
 |       if (!phi->IsDead() || !phi->HasEnvironmentUses()) continue; | 
 |       HInstruction* next = phi->GetNext(); | 
 |       if (!phi->IsVRegEquivalentOf(next)) continue; | 
 |       if (next->AsPhi()->IsDead()) { | 
 |         // If the phi equivalent is dead, check if there is another one. | 
 |         next = next->GetNext(); | 
 |         if (!phi->IsVRegEquivalentOf(next)) continue; | 
 |         // There can be at most two phi equivalents. | 
 |         DCHECK(!phi->IsVRegEquivalentOf(next->GetNext())); | 
 |         if (next->AsPhi()->IsDead()) continue; | 
 |       } | 
 |       // We found a live phi equivalent. Update the environment uses of `phi` with it. | 
 |       phi->ReplaceWith(next); | 
 |     } | 
 |   } | 
 | } | 
 |  | 
 | static void AddDependentInstructionsToWorklist(HInstruction* instruction, | 
 |                                                ScopedArenaVector<HPhi*>* worklist) { | 
 |   // If `instruction` is a dead phi, type conflict was just identified. All its | 
 |   // live phi users, and transitively users of those users, therefore need to be | 
 |   // marked dead/conflicting too, so we add them to the worklist. Otherwise we | 
 |   // add users whose type does not match and needs to be updated. | 
 |   bool add_all_live_phis = instruction->IsPhi() && instruction->AsPhi()->IsDead(); | 
 |   for (const HUseListNode<HInstruction*>& use : instruction->GetUses()) { | 
 |     HInstruction* user = use.GetUser(); | 
 |     if (user->IsPhi() && user->AsPhi()->IsLive()) { | 
 |       if (add_all_live_phis || user->GetType() != instruction->GetType()) { | 
 |         worklist->push_back(user->AsPhi()); | 
 |       } | 
 |     } | 
 |   } | 
 | } | 
 |  | 
 | // Find a candidate primitive type for `phi` by merging the type of its inputs. | 
 | // Return false if conflict is identified. | 
 | static bool TypePhiFromInputs(HPhi* phi) { | 
 |   DataType::Type common_type = phi->GetType(); | 
 |  | 
 |   for (HInstruction* input : phi->GetInputs()) { | 
 |     if (input->IsPhi() && input->AsPhi()->IsDead()) { | 
 |       // Phis are constructed live so if an input is a dead phi, it must have | 
 |       // been made dead due to type conflict. Mark this phi conflicting too. | 
 |       return false; | 
 |     } | 
 |  | 
 |     DataType::Type input_type = HPhi::ToPhiType(input->GetType()); | 
 |     if (common_type == input_type) { | 
 |       // No change in type. | 
 |     } else if (DataType::Is64BitType(common_type) != DataType::Is64BitType(input_type)) { | 
 |       // Types are of different sizes, e.g. int vs. long. Must be a conflict. | 
 |       return false; | 
 |     } else if (DataType::IsIntegralType(common_type)) { | 
 |       // Previous inputs were integral, this one is not but is of the same size. | 
 |       // This does not imply conflict since some bytecode instruction types are | 
 |       // ambiguous. TypeInputsOfPhi will either type them or detect a conflict. | 
 |       DCHECK(DataType::IsFloatingPointType(input_type) || | 
 |              input_type == DataType::Type::kReference); | 
 |       common_type = input_type; | 
 |     } else if (DataType::IsIntegralType(input_type)) { | 
 |       // Input is integral, common type is not. Same as in the previous case, if | 
 |       // there is a conflict, it will be detected during TypeInputsOfPhi. | 
 |       DCHECK(DataType::IsFloatingPointType(common_type) || | 
 |              common_type == DataType::Type::kReference); | 
 |     } else { | 
 |       // Combining float and reference types. Clearly a conflict. | 
 |       DCHECK( | 
 |           (common_type == DataType::Type::kFloat32 && input_type == DataType::Type::kReference) || | 
 |           (common_type == DataType::Type::kReference && input_type == DataType::Type::kFloat32)); | 
 |       return false; | 
 |     } | 
 |   } | 
 |  | 
 |   // We have found a candidate type for the phi. Set it and return true. We may | 
 |   // still discover conflict whilst typing the individual inputs in TypeInputsOfPhi. | 
 |   phi->SetType(common_type); | 
 |   return true; | 
 | } | 
 |  | 
 | // Replace inputs of `phi` to match its type. Return false if conflict is identified. | 
 | bool SsaBuilder::TypeInputsOfPhi(HPhi* phi, ScopedArenaVector<HPhi*>* worklist) { | 
 |   DataType::Type common_type = phi->GetType(); | 
 |   if (DataType::IsIntegralType(common_type)) { | 
 |     // We do not need to retype ambiguous inputs because they are always constructed | 
 |     // with the integral type candidate. | 
 |     if (kIsDebugBuild) { | 
 |       for (HInstruction* input : phi->GetInputs()) { | 
 |         DCHECK(HPhi::ToPhiType(input->GetType()) == common_type); | 
 |       } | 
 |     } | 
 |     // Inputs did not need to be replaced, hence no conflict. Report success. | 
 |     return true; | 
 |   } else { | 
 |     DCHECK(common_type == DataType::Type::kReference || | 
 |            DataType::IsFloatingPointType(common_type)); | 
 |     HInputsRef inputs = phi->GetInputs(); | 
 |     for (size_t i = 0; i < inputs.size(); ++i) { | 
 |       HInstruction* input = inputs[i]; | 
 |       if (input->GetType() != common_type) { | 
 |         // Input type does not match phi's type. Try to retype the input or | 
 |         // generate a suitably typed equivalent. | 
 |         HInstruction* equivalent = (common_type == DataType::Type::kReference) | 
 |             ? GetReferenceTypeEquivalent(input) | 
 |             : GetFloatOrDoubleEquivalent(input, common_type); | 
 |         if (equivalent == nullptr) { | 
 |           // Input could not be typed. Report conflict. | 
 |           return false; | 
 |         } | 
 |         // Make sure the input did not change its type and we do not need to | 
 |         // update its users. | 
 |         DCHECK_NE(input, equivalent); | 
 |  | 
 |         phi->ReplaceInput(equivalent, i); | 
 |         if (equivalent->IsPhi()) { | 
 |           worklist->push_back(equivalent->AsPhi()); | 
 |         } | 
 |       } | 
 |     } | 
 |     // All inputs either matched the type of the phi or we successfully replaced | 
 |     // them with a suitable equivalent. Report success. | 
 |     return true; | 
 |   } | 
 | } | 
 |  | 
 | // Attempt to set the primitive type of `phi` to match its inputs. Return whether | 
 | // it was changed by the algorithm or not. | 
 | bool SsaBuilder::UpdatePrimitiveType(HPhi* phi, ScopedArenaVector<HPhi*>* worklist) { | 
 |   DCHECK(phi->IsLive()); | 
 |   DataType::Type original_type = phi->GetType(); | 
 |  | 
 |   // Try to type the phi in two stages: | 
 |   // (1) find a candidate type for the phi by merging types of all its inputs, | 
 |   // (2) try to type the phi's inputs to that candidate type. | 
 |   // Either of these stages may detect a type conflict and fail, in which case | 
 |   // we immediately abort. | 
 |   if (!TypePhiFromInputs(phi) || !TypeInputsOfPhi(phi, worklist)) { | 
 |     // Conflict detected. Mark the phi dead and return true because it changed. | 
 |     phi->SetDead(); | 
 |     return true; | 
 |   } | 
 |  | 
 |   // Return true if the type of the phi has changed. | 
 |   return phi->GetType() != original_type; | 
 | } | 
 |  | 
 | void SsaBuilder::RunPrimitiveTypePropagation() { | 
 |   ScopedArenaVector<HPhi*> worklist(local_allocator_->Adapter(kArenaAllocGraphBuilder)); | 
 |  | 
 |   for (HBasicBlock* block : graph_->GetReversePostOrder()) { | 
 |     if (block->IsLoopHeader()) { | 
 |       for (HInstructionIterator phi_it(block->GetPhis()); !phi_it.Done(); phi_it.Advance()) { | 
 |         HPhi* phi = phi_it.Current()->AsPhi(); | 
 |         if (phi->IsLive()) { | 
 |           worklist.push_back(phi); | 
 |         } | 
 |       } | 
 |     } else { | 
 |       for (HInstructionIterator phi_it(block->GetPhis()); !phi_it.Done(); phi_it.Advance()) { | 
 |         // Eagerly compute the type of the phi, for quicker convergence. Note | 
 |         // that we don't need to add users to the worklist because we are | 
 |         // doing a reverse post-order visit, therefore either the phi users are | 
 |         // non-loop phi and will be visited later in the visit, or are loop-phis, | 
 |         // and they are already in the work list. | 
 |         HPhi* phi = phi_it.Current()->AsPhi(); | 
 |         if (phi->IsLive()) { | 
 |           UpdatePrimitiveType(phi, &worklist); | 
 |         } | 
 |       } | 
 |     } | 
 |   } | 
 |  | 
 |   ProcessPrimitiveTypePropagationWorklist(&worklist); | 
 |   EquivalentPhisCleanup(); | 
 | } | 
 |  | 
 | void SsaBuilder::ProcessPrimitiveTypePropagationWorklist(ScopedArenaVector<HPhi*>* worklist) { | 
 |   // Process worklist | 
 |   while (!worklist->empty()) { | 
 |     HPhi* phi = worklist->back(); | 
 |     worklist->pop_back(); | 
 |     // The phi could have been made dead as a result of conflicts while in the | 
 |     // worklist. If it is now dead, there is no point in updating its type. | 
 |     if (phi->IsLive() && UpdatePrimitiveType(phi, worklist)) { | 
 |       AddDependentInstructionsToWorklist(phi, worklist); | 
 |     } | 
 |   } | 
 | } | 
 |  | 
 | static HArrayGet* FindFloatOrDoubleEquivalentOfArrayGet(HArrayGet* aget) { | 
 |   DataType::Type type = aget->GetType(); | 
 |   DCHECK(DataType::IsIntOrLongType(type)); | 
 |   HInstruction* next = aget->GetNext(); | 
 |   if (next != nullptr && next->IsArrayGet()) { | 
 |     HArrayGet* next_aget = next->AsArrayGet(); | 
 |     if (next_aget->IsEquivalentOf(aget)) { | 
 |       return next_aget; | 
 |     } | 
 |   } | 
 |   return nullptr; | 
 | } | 
 |  | 
 | static HArrayGet* CreateFloatOrDoubleEquivalentOfArrayGet(HArrayGet* aget) { | 
 |   DataType::Type type = aget->GetType(); | 
 |   DCHECK(DataType::IsIntOrLongType(type)); | 
 |   DCHECK(FindFloatOrDoubleEquivalentOfArrayGet(aget) == nullptr); | 
 |  | 
 |   HArrayGet* equivalent = new (aget->GetBlock()->GetGraph()->GetAllocator()) HArrayGet( | 
 |       aget->GetArray(), | 
 |       aget->GetIndex(), | 
 |       type == DataType::Type::kInt32 ? DataType::Type::kFloat32 : DataType::Type::kFloat64, | 
 |       aget->GetDexPc()); | 
 |   aget->GetBlock()->InsertInstructionAfter(equivalent, aget); | 
 |   return equivalent; | 
 | } | 
 |  | 
 | static DataType::Type GetPrimitiveArrayComponentType(HInstruction* array) | 
 |     REQUIRES_SHARED(Locks::mutator_lock_) { | 
 |   ReferenceTypeInfo array_type = array->GetReferenceTypeInfo(); | 
 |   DCHECK(array_type.IsPrimitiveArrayClass()); | 
 |   return DataTypeFromPrimitive( | 
 |       array_type.GetTypeHandle()->GetComponentType()->GetPrimitiveType()); | 
 | } | 
 |  | 
 | bool SsaBuilder::FixAmbiguousArrayOps() { | 
 |   if (ambiguous_agets_.empty() && ambiguous_asets_.empty()) { | 
 |     return true; | 
 |   } | 
 |  | 
 |   // The wrong ArrayGet equivalent may still have Phi uses coming from ArraySet | 
 |   // uses (because they are untyped) and environment uses (if --debuggable). | 
 |   // After resolving all ambiguous ArrayGets, we will re-run primitive type | 
 |   // propagation on the Phis which need to be updated. | 
 |   ScopedArenaVector<HPhi*> worklist(local_allocator_->Adapter(kArenaAllocGraphBuilder)); | 
 |  | 
 |   { | 
 |     ScopedObjectAccess soa(Thread::Current()); | 
 |  | 
 |     for (HArrayGet* aget_int : ambiguous_agets_) { | 
 |       HInstruction* array = aget_int->GetArray(); | 
 |       if (!array->GetReferenceTypeInfo().IsPrimitiveArrayClass()) { | 
 |         // RTP did not type the input array. Bail. | 
 |         VLOG(compiler) << "Not compiled: Could not infer an array type for array operation at " | 
 |                        << aget_int->GetDexPc(); | 
 |         return false; | 
 |       } | 
 |  | 
 |       HArrayGet* aget_float = FindFloatOrDoubleEquivalentOfArrayGet(aget_int); | 
 |       DataType::Type array_type = GetPrimitiveArrayComponentType(array); | 
 |       DCHECK_EQ(DataType::Is64BitType(aget_int->GetType()), DataType::Is64BitType(array_type)); | 
 |  | 
 |       if (DataType::IsIntOrLongType(array_type)) { | 
 |         if (aget_float != nullptr) { | 
 |           // There is a float/double equivalent. We must replace it and re-run | 
 |           // primitive type propagation on all dependent instructions. | 
 |           aget_float->ReplaceWith(aget_int); | 
 |           aget_float->GetBlock()->RemoveInstruction(aget_float); | 
 |           AddDependentInstructionsToWorklist(aget_int, &worklist); | 
 |         } | 
 |       } else { | 
 |         DCHECK(DataType::IsFloatingPointType(array_type)); | 
 |         if (aget_float == nullptr) { | 
 |           // This is a float/double ArrayGet but there were no typed uses which | 
 |           // would create the typed equivalent. Create it now. | 
 |           aget_float = CreateFloatOrDoubleEquivalentOfArrayGet(aget_int); | 
 |         } | 
 |         // Replace the original int/long instruction. Note that it may have phi | 
 |         // uses, environment uses, as well as real uses (from untyped ArraySets). | 
 |         // We need to re-run primitive type propagation on its dependent instructions. | 
 |         aget_int->ReplaceWith(aget_float); | 
 |         aget_int->GetBlock()->RemoveInstruction(aget_int); | 
 |         AddDependentInstructionsToWorklist(aget_float, &worklist); | 
 |       } | 
 |     } | 
 |  | 
 |     // Set a flag stating that types of ArrayGets have been resolved. Requesting | 
 |     // equivalent of the wrong type with GetFloatOrDoubleEquivalentOfArrayGet | 
 |     // will fail from now on. | 
 |     agets_fixed_ = true; | 
 |  | 
 |     for (HArraySet* aset : ambiguous_asets_) { | 
 |       HInstruction* array = aset->GetArray(); | 
 |       if (!array->GetReferenceTypeInfo().IsPrimitiveArrayClass()) { | 
 |         // RTP did not type the input array. Bail. | 
 |         VLOG(compiler) << "Not compiled: Could not infer an array type for array operation at " | 
 |                        << aset->GetDexPc(); | 
 |         return false; | 
 |       } | 
 |  | 
 |       HInstruction* value = aset->GetValue(); | 
 |       DataType::Type value_type = value->GetType(); | 
 |       DataType::Type array_type = GetPrimitiveArrayComponentType(array); | 
 |       DCHECK_EQ(DataType::Is64BitType(value_type), DataType::Is64BitType(array_type)); | 
 |  | 
 |       if (DataType::IsFloatingPointType(array_type)) { | 
 |         if (!DataType::IsFloatingPointType(value_type)) { | 
 |           DCHECK(DataType::IsIntegralType(value_type)); | 
 |           // Array elements are floating-point but the value has not been replaced | 
 |           // with its floating-point equivalent. The replacement must always | 
 |           // succeed in code validated by the verifier. | 
 |           HInstruction* equivalent = GetFloatOrDoubleEquivalent(value, array_type); | 
 |           DCHECK(equivalent != nullptr); | 
 |           aset->ReplaceInput(equivalent, /* index= */ 2); | 
 |           if (equivalent->IsPhi()) { | 
 |             // Returned equivalent is a phi which may not have had its inputs | 
 |             // replaced yet. We need to run primitive type propagation on it. | 
 |             worklist.push_back(equivalent->AsPhi()); | 
 |           } | 
 |         } | 
 |         // Refine the side effects of this floating point aset. Note that we do this even if | 
 |         // no replacement occurs, since the right-hand-side may have been corrected already. | 
 |         aset->SetSideEffects(HArraySet::ComputeSideEffects(aset->GetComponentType())); | 
 |       } else { | 
 |         // Array elements are integral and the value assigned to it initially | 
 |         // was integral too. Nothing to do. | 
 |         DCHECK(DataType::IsIntegralType(array_type)); | 
 |         DCHECK(DataType::IsIntegralType(value_type)); | 
 |       } | 
 |     } | 
 |   } | 
 |  | 
 |   if (!worklist.empty()) { | 
 |     ProcessPrimitiveTypePropagationWorklist(&worklist); | 
 |     EquivalentPhisCleanup(); | 
 |   } | 
 |  | 
 |   return true; | 
 | } | 
 |  | 
 | bool SsaBuilder::HasAliasInEnvironments(HInstruction* instruction) { | 
 |   ScopedArenaHashSet<size_t> seen_users( | 
 |       local_allocator_->Adapter(kArenaAllocGraphBuilder)); | 
 |   for (const HUseListNode<HEnvironment*>& use : instruction->GetEnvUses()) { | 
 |     DCHECK(use.GetUser() != nullptr); | 
 |     size_t id = use.GetUser()->GetHolder()->GetId(); | 
 |     if (seen_users.find(id) != seen_users.end()) { | 
 |       return true; | 
 |     } | 
 |     seen_users.insert(id); | 
 |   } | 
 |   return false; | 
 | } | 
 |  | 
 | bool SsaBuilder::ReplaceUninitializedStringPhis() { | 
 |   for (HInvoke* invoke : uninitialized_string_phis_) { | 
 |     HInstruction* str = invoke->InputAt(invoke->InputCount() - 1); | 
 |     if (str->IsPhi()) { | 
 |       // If after redundant phi and dead phi elimination, it's still a phi that feeds | 
 |       // the invoke, then we must be compiling a method with irreducible loops. Just bail. | 
 |       DCHECK(graph_->HasIrreducibleLoops()); | 
 |       return false; | 
 |     } | 
 |     DCHECK(str->IsNewInstance()); | 
 |     AddUninitializedString(str->AsNewInstance()); | 
 |     str->ReplaceUsesDominatedBy(invoke, invoke); | 
 |     str->ReplaceEnvUsesDominatedBy(invoke, invoke); | 
 |     invoke->RemoveInputAt(invoke->InputCount() - 1); | 
 |   } | 
 |   return true; | 
 | } | 
 |  | 
 | void SsaBuilder::RemoveRedundantUninitializedStrings() { | 
 |   if (graph_->IsDebuggable()) { | 
 |     // Do not perform the optimization for consistency with the interpreter | 
 |     // which always allocates an object for new-instance of String. | 
 |     return; | 
 |   } | 
 |  | 
 |   for (HNewInstance* new_instance : uninitialized_strings_) { | 
 |     DCHECK(new_instance->IsInBlock()); | 
 |     DCHECK(new_instance->IsStringAlloc()); | 
 |  | 
 |     // Replace NewInstance of String with NullConstant if not used prior to | 
 |     // calling StringFactory. We check for alias environments in case of deoptimization. | 
 |     // The interpreter is expected to skip null check on the `this` argument of the | 
 |     // StringFactory call. | 
 |     if (!new_instance->HasNonEnvironmentUses() && !HasAliasInEnvironments(new_instance)) { | 
 |       new_instance->ReplaceWith(graph_->GetNullConstant()); | 
 |       new_instance->GetBlock()->RemoveInstruction(new_instance); | 
 |  | 
 |       // Remove LoadClass if not needed any more. | 
 |       HInstruction* input = new_instance->InputAt(0); | 
 |       HLoadClass* load_class = nullptr; | 
 |  | 
 |       // If the class was not present in the dex cache at the point of building | 
 |       // the graph, the builder inserted a HClinitCheck in between. Since the String | 
 |       // class is always initialized at the point of running Java code, we can remove | 
 |       // that check. | 
 |       if (input->IsClinitCheck()) { | 
 |         load_class = input->InputAt(0)->AsLoadClass(); | 
 |         input->ReplaceWith(load_class); | 
 |         input->GetBlock()->RemoveInstruction(input); | 
 |       } else { | 
 |         load_class = input->AsLoadClass(); | 
 |         DCHECK(new_instance->IsStringAlloc()); | 
 |         DCHECK(!load_class->NeedsAccessCheck()) << "String class is always accessible"; | 
 |       } | 
 |       DCHECK(load_class != nullptr); | 
 |       if (!load_class->HasUses()) { | 
 |         // Even if the HLoadClass needs access check, we can remove it, as we know the | 
 |         // String class does not need it. | 
 |         load_class->GetBlock()->RemoveInstruction(load_class); | 
 |       } | 
 |     } | 
 |   } | 
 | } | 
 |  | 
 | static bool HasPhiEquivalentAtLoopEntry(HGraph* graph) { | 
 |   // Phi equivalents for a dex register do not work with OSR, as the phis will | 
 |   // receive two different stack slots but only one is recorded in the stack | 
 |   // map. | 
 |   for (HBasicBlock* block : graph->GetReversePostOrder()) { | 
 |     if (block->IsLoopHeader()) { | 
 |       for (HInstructionIterator it(block->GetPhis()); !it.Done(); it.Advance()) { | 
 |         if (it.Current()->AsPhi()->HasEquivalentPhi()) { | 
 |           return true; | 
 |         } | 
 |       } | 
 |     } | 
 |   } | 
 |   return false; | 
 | } | 
 |  | 
 | GraphAnalysisResult SsaBuilder::BuildSsa() { | 
 |   DCHECK(!graph_->IsInSsaForm()); | 
 |  | 
 |   // Propagate types of phis. At this point, phis are typed void in the general | 
 |   // case, or float/double/reference if we created an equivalent phi. So we need | 
 |   // to propagate the types across phis to give them a correct type. If a type | 
 |   // conflict is detected in this stage, the phi is marked dead. | 
 |   RunPrimitiveTypePropagation(); | 
 |  | 
 |   // Now that the correct primitive types have been assigned, we can get rid | 
 |   // of redundant phis. Note that we cannot do this phase before type propagation, | 
 |   // otherwise we could get rid of phi equivalents, whose presence is a requirement | 
 |   // for the type propagation phase. Note that this is to satisfy statement (a) | 
 |   // of the SsaBuilder (see ssa_builder.h). | 
 |   SsaRedundantPhiElimination(graph_).Run(); | 
 |  | 
 |   // Fix the type for null constants which are part of an equality comparison. | 
 |   // We need to do this after redundant phi elimination, to ensure the only cases | 
 |   // that we can see are reference comparison against 0. The redundant phi | 
 |   // elimination ensures we do not see a phi taking two 0 constants in a HEqual | 
 |   // or HNotEqual. | 
 |   FixNullConstantType(); | 
 |  | 
 |   // Compute type of reference type instructions. The pass assumes that | 
 |   // NullConstant has been fixed up. | 
 |   ReferenceTypePropagation(graph_, | 
 |                            class_loader_, | 
 |                            dex_cache_, | 
 |                            /* is_first_run= */ true).Run(); | 
 |  | 
 |   // HInstructionBuilder duplicated ArrayGet instructions with ambiguous type | 
 |   // (int/float or long/double) and marked ArraySets with ambiguous input type. | 
 |   // Now that RTP computed the type of the array input, the ambiguity can be | 
 |   // resolved and the correct equivalents kept. | 
 |   if (!FixAmbiguousArrayOps()) { | 
 |     return kAnalysisFailAmbiguousArrayOp; | 
 |   } | 
 |  | 
 |   // Mark dead phis. This will mark phis which are not used by instructions | 
 |   // or other live phis. If compiling as debuggable code, phis will also be kept | 
 |   // live if they have an environment use. | 
 |   SsaDeadPhiElimination dead_phi_elimimation(graph_); | 
 |   dead_phi_elimimation.MarkDeadPhis(); | 
 |  | 
 |   // Make sure environments use the right phi equivalent: a phi marked dead | 
 |   // can have a phi equivalent that is not dead. In that case we have to replace | 
 |   // it with the live equivalent because deoptimization and try/catch rely on | 
 |   // environments containing values of all live vregs at that point. Note that | 
 |   // there can be multiple phis for the same Dex register that are live | 
 |   // (for example when merging constants), in which case it is okay for the | 
 |   // environments to just reference one. | 
 |   FixEnvironmentPhis(); | 
 |  | 
 |   // Now that the right phis are used for the environments, we can eliminate | 
 |   // phis we do not need. Regardless of the debuggable status, this phase is | 
 |   /// necessary for statement (b) of the SsaBuilder (see ssa_builder.h), as well | 
 |   // as for the code generation, which does not deal with phis of conflicting | 
 |   // input types. | 
 |   dead_phi_elimimation.EliminateDeadPhis(); | 
 |  | 
 |   // Replace Phis that feed in a String.<init> during instruction building. We | 
 |   // run this after redundant and dead phi elimination to make sure the phi will have | 
 |   // been replaced by the actual allocation. Only with an irreducible loop | 
 |   // a phi can still be the input, in which case we bail. | 
 |   if (!ReplaceUninitializedStringPhis()) { | 
 |     return kAnalysisFailIrreducibleLoopAndStringInit; | 
 |   } | 
 |  | 
 |   // HInstructionBuidler replaced uses of NewInstances of String with the | 
 |   // results of their corresponding StringFactory calls. Unless the String | 
 |   // objects are used before they are initialized, they can be replaced with | 
 |   // NullConstant. Note that this optimization is valid only if unsimplified | 
 |   // code does not use the uninitialized value because we assume execution can | 
 |   // be deoptimized at any safepoint. We must therefore perform it before any | 
 |   // other optimizations. | 
 |   RemoveRedundantUninitializedStrings(); | 
 |  | 
 |   if (graph_->IsCompilingOsr() && HasPhiEquivalentAtLoopEntry(graph_)) { | 
 |     return kAnalysisFailPhiEquivalentInOsr; | 
 |   } | 
 |  | 
 |   graph_->SetInSsaForm(); | 
 |   return kAnalysisSuccess; | 
 | } | 
 |  | 
 | /** | 
 |  * Constants in the Dex format are not typed. So the builder types them as | 
 |  * integers, but when doing the SSA form, we might realize the constant | 
 |  * is used for floating point operations. We create a floating-point equivalent | 
 |  * constant to make the operations correctly typed. | 
 |  */ | 
 | HFloatConstant* SsaBuilder::GetFloatEquivalent(HIntConstant* constant) { | 
 |   // We place the floating point constant next to this constant. | 
 |   HFloatConstant* result = constant->GetNext()->AsFloatConstant(); | 
 |   if (result == nullptr) { | 
 |     float value = bit_cast<float, int32_t>(constant->GetValue()); | 
 |     result = new (graph_->GetAllocator()) HFloatConstant(value); | 
 |     constant->GetBlock()->InsertInstructionBefore(result, constant->GetNext()); | 
 |     graph_->CacheFloatConstant(result); | 
 |   } else { | 
 |     // If there is already a constant with the expected type, we know it is | 
 |     // the floating point equivalent of this constant. | 
 |     DCHECK_EQ((bit_cast<int32_t, float>(result->GetValue())), constant->GetValue()); | 
 |   } | 
 |   return result; | 
 | } | 
 |  | 
 | /** | 
 |  * Wide constants in the Dex format are not typed. So the builder types them as | 
 |  * longs, but when doing the SSA form, we might realize the constant | 
 |  * is used for floating point operations. We create a floating-point equivalent | 
 |  * constant to make the operations correctly typed. | 
 |  */ | 
 | HDoubleConstant* SsaBuilder::GetDoubleEquivalent(HLongConstant* constant) { | 
 |   // We place the floating point constant next to this constant. | 
 |   HDoubleConstant* result = constant->GetNext()->AsDoubleConstant(); | 
 |   if (result == nullptr) { | 
 |     double value = bit_cast<double, int64_t>(constant->GetValue()); | 
 |     result = new (graph_->GetAllocator()) HDoubleConstant(value); | 
 |     constant->GetBlock()->InsertInstructionBefore(result, constant->GetNext()); | 
 |     graph_->CacheDoubleConstant(result); | 
 |   } else { | 
 |     // If there is already a constant with the expected type, we know it is | 
 |     // the floating point equivalent of this constant. | 
 |     DCHECK_EQ((bit_cast<int64_t, double>(result->GetValue())), constant->GetValue()); | 
 |   } | 
 |   return result; | 
 | } | 
 |  | 
 | /** | 
 |  * Because of Dex format, we might end up having the same phi being | 
 |  * used for non floating point operations and floating point / reference operations. | 
 |  * Because we want the graph to be correctly typed (and thereafter avoid moves between | 
 |  * floating point registers and core registers), we need to create a copy of the | 
 |  * phi with a floating point / reference type. | 
 |  */ | 
 | HPhi* SsaBuilder::GetFloatDoubleOrReferenceEquivalentOfPhi(HPhi* phi, DataType::Type type) { | 
 |   DCHECK(phi->IsLive()) << "Cannot get equivalent of a dead phi since it would create a live one."; | 
 |  | 
 |   // We place the floating point /reference phi next to this phi. | 
 |   HInstruction* next = phi->GetNext(); | 
 |   if (next != nullptr | 
 |       && next->AsPhi()->GetRegNumber() == phi->GetRegNumber() | 
 |       && next->GetType() != type) { | 
 |     // Move to the next phi to see if it is the one we are looking for. | 
 |     next = next->GetNext(); | 
 |   } | 
 |  | 
 |   if (next == nullptr | 
 |       || (next->AsPhi()->GetRegNumber() != phi->GetRegNumber()) | 
 |       || (next->GetType() != type)) { | 
 |     ArenaAllocator* allocator = graph_->GetAllocator(); | 
 |     HInputsRef inputs = phi->GetInputs(); | 
 |     HPhi* new_phi = new (allocator) HPhi(allocator, phi->GetRegNumber(), inputs.size(), type); | 
 |     // Copy the inputs. Note that the graph may not be correctly typed | 
 |     // by doing this copy, but the type propagation phase will fix it. | 
 |     ArrayRef<HUserRecord<HInstruction*>> new_input_records = new_phi->GetInputRecords(); | 
 |     for (size_t i = 0; i < inputs.size(); ++i) { | 
 |       new_input_records[i] = HUserRecord<HInstruction*>(inputs[i]); | 
 |     } | 
 |     phi->GetBlock()->InsertPhiAfter(new_phi, phi); | 
 |     DCHECK(new_phi->IsLive()); | 
 |     return new_phi; | 
 |   } else { | 
 |     // An existing equivalent was found. If it is dead, conflict was previously | 
 |     // identified and we return nullptr instead. | 
 |     HPhi* next_phi = next->AsPhi(); | 
 |     DCHECK_EQ(next_phi->GetType(), type); | 
 |     return next_phi->IsLive() ? next_phi : nullptr; | 
 |   } | 
 | } | 
 |  | 
 | HArrayGet* SsaBuilder::GetFloatOrDoubleEquivalentOfArrayGet(HArrayGet* aget) { | 
 |   DCHECK(DataType::IsIntegralType(aget->GetType())); | 
 |  | 
 |   if (!DataType::IsIntOrLongType(aget->GetType())) { | 
 |     // Cannot type boolean, char, byte, short to float/double. | 
 |     return nullptr; | 
 |   } | 
 |  | 
 |   DCHECK(ContainsElement(ambiguous_agets_, aget)); | 
 |   if (agets_fixed_) { | 
 |     // This used to be an ambiguous ArrayGet but its type has been resolved to | 
 |     // int/long. Requesting a float/double equivalent should lead to a conflict. | 
 |     if (kIsDebugBuild) { | 
 |       ScopedObjectAccess soa(Thread::Current()); | 
 |       DCHECK(DataType::IsIntOrLongType(GetPrimitiveArrayComponentType(aget->GetArray()))); | 
 |     } | 
 |     return nullptr; | 
 |   } else { | 
 |     // This is an ambiguous ArrayGet which has not been resolved yet. Return an | 
 |     // equivalent float/double instruction to use until it is resolved. | 
 |     HArrayGet* equivalent = FindFloatOrDoubleEquivalentOfArrayGet(aget); | 
 |     return (equivalent == nullptr) ? CreateFloatOrDoubleEquivalentOfArrayGet(aget) : equivalent; | 
 |   } | 
 | } | 
 |  | 
 | HInstruction* SsaBuilder::GetFloatOrDoubleEquivalent(HInstruction* value, DataType::Type type) { | 
 |   if (value->IsArrayGet()) { | 
 |     return GetFloatOrDoubleEquivalentOfArrayGet(value->AsArrayGet()); | 
 |   } else if (value->IsLongConstant()) { | 
 |     return GetDoubleEquivalent(value->AsLongConstant()); | 
 |   } else if (value->IsIntConstant()) { | 
 |     return GetFloatEquivalent(value->AsIntConstant()); | 
 |   } else if (value->IsPhi()) { | 
 |     return GetFloatDoubleOrReferenceEquivalentOfPhi(value->AsPhi(), type); | 
 |   } else { | 
 |     return nullptr; | 
 |   } | 
 | } | 
 |  | 
 | HInstruction* SsaBuilder::GetReferenceTypeEquivalent(HInstruction* value) { | 
 |   if (value->IsIntConstant() && value->AsIntConstant()->GetValue() == 0) { | 
 |     return graph_->GetNullConstant(); | 
 |   } else if (value->IsPhi()) { | 
 |     return GetFloatDoubleOrReferenceEquivalentOfPhi(value->AsPhi(), DataType::Type::kReference); | 
 |   } else { | 
 |     return nullptr; | 
 |   } | 
 | } | 
 |  | 
 | }  // namespace art |