blob: 2c125f6aa04e7302f114a0e7ee7231138010dfc4 [file] [log] [blame]
/*
* Copyright (C) 2013 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#ifndef ART_COMPILER_DEX_MIR_GRAPH_H_
#define ART_COMPILER_DEX_MIR_GRAPH_H_
#include <stdint.h>
#include "dex_file.h"
#include "dex_instruction.h"
#include "compiler_ir.h"
#include "invoke_type.h"
#include "mir_field_info.h"
#include "mir_method_info.h"
#include "utils/arena_bit_vector.h"
#include "utils/growable_array.h"
#include "reg_storage.h"
namespace art {
enum InstructionAnalysisAttributePos {
kUninterestingOp = 0,
kArithmeticOp,
kFPOp,
kSingleOp,
kDoubleOp,
kIntOp,
kLongOp,
kBranchOp,
kInvokeOp,
kArrayOp,
kHeavyweightOp,
kSimpleConstOp,
kMoveOp,
kSwitch
};
#define AN_NONE (1 << kUninterestingOp)
#define AN_MATH (1 << kArithmeticOp)
#define AN_FP (1 << kFPOp)
#define AN_LONG (1 << kLongOp)
#define AN_INT (1 << kIntOp)
#define AN_SINGLE (1 << kSingleOp)
#define AN_DOUBLE (1 << kDoubleOp)
#define AN_FLOATMATH (1 << kFPOp)
#define AN_BRANCH (1 << kBranchOp)
#define AN_INVOKE (1 << kInvokeOp)
#define AN_ARRAYOP (1 << kArrayOp)
#define AN_HEAVYWEIGHT (1 << kHeavyweightOp)
#define AN_SIMPLECONST (1 << kSimpleConstOp)
#define AN_MOVE (1 << kMoveOp)
#define AN_SWITCH (1 << kSwitch)
#define AN_COMPUTATIONAL (AN_MATH | AN_ARRAYOP | AN_MOVE | AN_SIMPLECONST)
enum DataFlowAttributePos {
kUA = 0,
kUB,
kUC,
kAWide,
kBWide,
kCWide,
kDA,
kIsMove,
kSetsConst,
kFormat35c,
kFormat3rc,
kNullCheckSrc0, // Null check of uses[0].
kNullCheckSrc1, // Null check of uses[1].
kNullCheckSrc2, // Null check of uses[2].
kNullCheckOut0, // Null check out outgoing arg0.
kDstNonNull, // May assume dst is non-null.
kRetNonNull, // May assume retval is non-null.
kNullTransferSrc0, // Object copy src[0] -> dst.
kNullTransferSrcN, // Phi null check state transfer.
kRangeCheckSrc1, // Range check of uses[1].
kRangeCheckSrc2, // Range check of uses[2].
kRangeCheckSrc3, // Range check of uses[3].
kFPA,
kFPB,
kFPC,
kCoreA,
kCoreB,
kCoreC,
kRefA,
kRefB,
kRefC,
kUsesMethodStar, // Implicit use of Method*.
kUsesIField, // Accesses an instance field (IGET/IPUT).
kUsesSField, // Accesses a static field (SGET/SPUT).
kDoLVN, // Worth computing local value numbers.
};
#define DF_NOP UINT64_C(0)
#define DF_UA (UINT64_C(1) << kUA)
#define DF_UB (UINT64_C(1) << kUB)
#define DF_UC (UINT64_C(1) << kUC)
#define DF_A_WIDE (UINT64_C(1) << kAWide)
#define DF_B_WIDE (UINT64_C(1) << kBWide)
#define DF_C_WIDE (UINT64_C(1) << kCWide)
#define DF_DA (UINT64_C(1) << kDA)
#define DF_IS_MOVE (UINT64_C(1) << kIsMove)
#define DF_SETS_CONST (UINT64_C(1) << kSetsConst)
#define DF_FORMAT_35C (UINT64_C(1) << kFormat35c)
#define DF_FORMAT_3RC (UINT64_C(1) << kFormat3rc)
#define DF_NULL_CHK_0 (UINT64_C(1) << kNullCheckSrc0)
#define DF_NULL_CHK_1 (UINT64_C(1) << kNullCheckSrc1)
#define DF_NULL_CHK_2 (UINT64_C(1) << kNullCheckSrc2)
#define DF_NULL_CHK_OUT0 (UINT64_C(1) << kNullCheckOut0)
#define DF_NON_NULL_DST (UINT64_C(1) << kDstNonNull)
#define DF_NON_NULL_RET (UINT64_C(1) << kRetNonNull)
#define DF_NULL_TRANSFER_0 (UINT64_C(1) << kNullTransferSrc0)
#define DF_NULL_TRANSFER_N (UINT64_C(1) << kNullTransferSrcN)
#define DF_RANGE_CHK_1 (UINT64_C(1) << kRangeCheckSrc1)
#define DF_RANGE_CHK_2 (UINT64_C(1) << kRangeCheckSrc2)
#define DF_RANGE_CHK_3 (UINT64_C(1) << kRangeCheckSrc3)
#define DF_FP_A (UINT64_C(1) << kFPA)
#define DF_FP_B (UINT64_C(1) << kFPB)
#define DF_FP_C (UINT64_C(1) << kFPC)
#define DF_CORE_A (UINT64_C(1) << kCoreA)
#define DF_CORE_B (UINT64_C(1) << kCoreB)
#define DF_CORE_C (UINT64_C(1) << kCoreC)
#define DF_REF_A (UINT64_C(1) << kRefA)
#define DF_REF_B (UINT64_C(1) << kRefB)
#define DF_REF_C (UINT64_C(1) << kRefC)
#define DF_UMS (UINT64_C(1) << kUsesMethodStar)
#define DF_IFIELD (UINT64_C(1) << kUsesIField)
#define DF_SFIELD (UINT64_C(1) << kUsesSField)
#define DF_LVN (UINT64_C(1) << kDoLVN)
#define DF_HAS_USES (DF_UA | DF_UB | DF_UC)
#define DF_HAS_DEFS (DF_DA)
#define DF_HAS_NULL_CHKS (DF_NULL_CHK_0 | \
DF_NULL_CHK_1 | \
DF_NULL_CHK_2 | \
DF_NULL_CHK_OUT0)
#define DF_HAS_RANGE_CHKS (DF_RANGE_CHK_1 | \
DF_RANGE_CHK_2 | \
DF_RANGE_CHK_3)
#define DF_HAS_NR_CHKS (DF_HAS_NULL_CHKS | \
DF_HAS_RANGE_CHKS)
#define DF_A_IS_REG (DF_UA | DF_DA)
#define DF_B_IS_REG (DF_UB)
#define DF_C_IS_REG (DF_UC)
#define DF_IS_GETTER_OR_SETTER (DF_IS_GETTER | DF_IS_SETTER)
#define DF_USES_FP (DF_FP_A | DF_FP_B | DF_FP_C)
#define DF_NULL_TRANSFER (DF_NULL_TRANSFER_0 | DF_NULL_TRANSFER_N)
enum OatMethodAttributes {
kIsLeaf, // Method is leaf.
kHasLoop, // Method contains simple loop.
};
#define METHOD_IS_LEAF (1 << kIsLeaf)
#define METHOD_HAS_LOOP (1 << kHasLoop)
// Minimum field size to contain Dalvik v_reg number.
#define VREG_NUM_WIDTH 16
#define INVALID_SREG (-1)
#define INVALID_VREG (0xFFFFU)
#define INVALID_OFFSET (0xDEADF00FU)
#define MIR_IGNORE_NULL_CHECK (1 << kMIRIgnoreNullCheck)
#define MIR_NULL_CHECK_ONLY (1 << kMIRNullCheckOnly)
#define MIR_IGNORE_RANGE_CHECK (1 << kMIRIgnoreRangeCheck)
#define MIR_RANGE_CHECK_ONLY (1 << kMIRRangeCheckOnly)
#define MIR_IGNORE_CLINIT_CHECK (1 << kMIRIgnoreClInitCheck)
#define MIR_INLINED (1 << kMIRInlined)
#define MIR_INLINED_PRED (1 << kMIRInlinedPred)
#define MIR_CALLEE (1 << kMIRCallee)
#define MIR_IGNORE_SUSPEND_CHECK (1 << kMIRIgnoreSuspendCheck)
#define MIR_DUP (1 << kMIRDup)
#define BLOCK_NAME_LEN 80
typedef uint16_t BasicBlockId;
static const BasicBlockId NullBasicBlockId = 0;
/*
* In general, vreg/sreg describe Dalvik registers that originated with dx. However,
* it is useful to have compiler-generated temporary registers and have them treated
* in the same manner as dx-generated virtual registers. This struct records the SSA
* name of compiler-introduced temporaries.
*/
struct CompilerTemp {
int32_t v_reg; // Virtual register number for temporary.
int32_t s_reg_low; // SSA name for low Dalvik word.
};
enum CompilerTempType {
kCompilerTempVR, // A virtual register temporary.
kCompilerTempSpecialMethodPtr, // Temporary that keeps track of current method pointer.
};
// When debug option enabled, records effectiveness of null and range check elimination.
struct Checkstats {
int32_t null_checks;
int32_t null_checks_eliminated;
int32_t range_checks;
int32_t range_checks_eliminated;
};
// Dataflow attributes of a basic block.
struct BasicBlockDataFlow {
ArenaBitVector* use_v;
ArenaBitVector* def_v;
ArenaBitVector* live_in_v;
ArenaBitVector* phi_v;
int32_t* vreg_to_ssa_map;
ArenaBitVector* ending_check_v; // For null check and class init check elimination.
};
/*
* Normalized use/def for a MIR operation using SSA names rather than vregs. Note that
* uses/defs retain the Dalvik convention that long operations operate on a pair of 32-bit
* vregs. For example, "ADD_LONG v0, v2, v3" would have 2 defs (v0/v1) and 4 uses (v2/v3, v4/v5).
* Following SSA renaming, this is the primary struct used by code generators to locate
* operand and result registers. This is a somewhat confusing and unhelpful convention that
* we may want to revisit in the future.
*/
struct SSARepresentation {
int16_t num_uses;
int16_t num_defs;
int32_t* uses;
bool* fp_use;
int32_t* defs;
bool* fp_def;
};
/*
* The Midlevel Intermediate Representation node, which may be largely considered a
* wrapper around a Dalvik byte code.
*/
struct MIR {
/*
* TODO: remove embedded DecodedInstruction to save space, keeping only opcode. Recover
* additional fields on as-needed basis. Question: how to support MIR Pseudo-ops; probably
* need to carry aux data pointer.
*/
DecodedInstruction dalvikInsn;
uint16_t width; // Note: width can include switch table or fill array data.
NarrowDexOffset offset; // Offset of the instruction in code units.
uint16_t optimization_flags;
int16_t m_unit_index; // From which method was this MIR included
MIR* next;
SSARepresentation* ssa_rep;
union {
// Incoming edges for phi node.
BasicBlockId* phi_incoming;
// Establish link from check instruction (kMirOpCheck) to the actual throwing instruction.
MIR* throw_insn;
// Branch condition for fused cmp or select.
ConditionCode ccode;
// IGET/IPUT lowering info index, points to MIRGraph::ifield_lowering_infos_. Due to limit on
// the number of code points (64K) and size of IGET/IPUT insn (2), this will never exceed 32K.
uint32_t ifield_lowering_info;
// SGET/SPUT lowering info index, points to MIRGraph::sfield_lowering_infos_. Due to limit on
// the number of code points (64K) and size of SGET/SPUT insn (2), this will never exceed 32K.
uint32_t sfield_lowering_info;
// INVOKE data index, points to MIRGraph::method_lowering_infos_.
uint32_t method_lowering_info;
} meta;
};
struct SuccessorBlockInfo;
struct BasicBlock {
BasicBlockId id;
BasicBlockId dfs_id;
NarrowDexOffset start_offset; // Offset in code units.
BasicBlockId fall_through;
BasicBlockId taken;
BasicBlockId i_dom; // Immediate dominator.
uint16_t nesting_depth;
BBType block_type:4;
BlockListType successor_block_list_type:4;
bool visited:1;
bool hidden:1;
bool catch_entry:1;
bool explicit_throw:1;
bool conditional_branch:1;
bool terminated_by_return:1; // Block ends with a Dalvik return opcode.
bool dominates_return:1; // Is a member of return extended basic block.
bool use_lvn:1; // Run local value numbering on this block.
MIR* first_mir_insn;
MIR* last_mir_insn;
BasicBlockDataFlow* data_flow_info;
ArenaBitVector* dominators;
ArenaBitVector* i_dominated; // Set nodes being immediately dominated.
ArenaBitVector* dom_frontier; // Dominance frontier.
GrowableArray<BasicBlockId>* predecessors;
GrowableArray<SuccessorBlockInfo*>* successor_blocks;
void AppendMIR(MIR* mir);
void PrependMIR(MIR* mir);
void InsertMIRAfter(MIR* current_mir, MIR* new_mir);
/**
* @brief Used to obtain the next MIR that follows unconditionally.
* @details The implementation does not guarantee that a MIR does not
* follow even if this method returns nullptr.
* @param mir_graph the MIRGraph.
* @param current The MIR for which to find an unconditional follower.
* @return Returns the following MIR if one can be found.
*/
MIR* GetNextUnconditionalMir(MIRGraph* mir_graph, MIR* current);
};
/*
* The "blocks" field in "successor_block_list" points to an array of elements with the type
* "SuccessorBlockInfo". For catch blocks, key is type index for the exception. For swtich
* blocks, key is the case value.
*/
struct SuccessorBlockInfo {
BasicBlockId block;
int key;
};
/*
* Whereas a SSA name describes a definition of a Dalvik vreg, the RegLocation describes
* the type of an SSA name (and, can also be used by code generators to record where the
* value is located (i.e. - physical register, frame, spill, etc.). For each SSA name (SReg)
* there is a RegLocation.
* A note on SSA names:
* o SSA names for Dalvik vRegs v0..vN will be assigned 0..N. These represent the "vN_0"
* names. Negative SSA names represent special values not present in the Dalvik byte code.
* For example, SSA name -1 represents an invalid SSA name, and SSA name -2 represents the
* the Method pointer. SSA names < -2 are reserved for future use.
* o The vN_0 names for non-argument Dalvik should in practice never be used (as they would
* represent the read of an undefined local variable). The first definition of the
* underlying Dalvik vReg will result in a vN_1 name.
*
* FIXME: The orig_sreg field was added as a workaround for llvm bitcode generation. With
* the latest restructuring, we should be able to remove it and rely on s_reg_low throughout.
*/
struct RegLocation {
RegLocationType location:3;
unsigned wide:1;
unsigned defined:1; // Do we know the type?
unsigned is_const:1; // Constant, value in mir_graph->constant_values[].
unsigned fp:1; // Floating point?
unsigned core:1; // Non-floating point?
unsigned ref:1; // Something GC cares about.
unsigned high_word:1; // High word of pair?
unsigned home:1; // Does this represent the home location?
VectorLengthType vec_len:3; // TODO: remove. Is this value in a vector register, and how big is it?
RegStorage reg; // Encoded physical registers.
int16_t s_reg_low; // SSA name for low Dalvik word.
int16_t orig_sreg; // TODO: remove after Bitcode gen complete
// and consolidate usage w/ s_reg_low.
bool IsVectorScalar() const { return vec_len == kVectorLength4 || vec_len == kVectorLength8;}
};
/*
* Collection of information describing an invoke, and the destination of
* the subsequent MOVE_RESULT (if applicable). Collected as a unit to enable
* more efficient invoke code generation.
*/
struct CallInfo {
int num_arg_words; // Note: word count, not arg count.
RegLocation* args; // One for each word of arguments.
RegLocation result; // Eventual target of MOVE_RESULT.
int opt_flags;
InvokeType type;
uint32_t dex_idx;
uint32_t index; // Method idx for invokes, type idx for FilledNewArray.
uintptr_t direct_code;
uintptr_t direct_method;
RegLocation target; // Target of following move_result.
bool skip_this;
bool is_range;
DexOffset offset; // Offset in code units.
MIR* mir;
};
const RegLocation bad_loc = {kLocDalvikFrame, 0, 0, 0, 0, 0, 0, 0, 0, kVectorNotUsed,
RegStorage(RegStorage::kInvalid), INVALID_SREG, INVALID_SREG};
class MIRGraph {
public:
MIRGraph(CompilationUnit* cu, ArenaAllocator* arena);
~MIRGraph();
/*
* Examine the graph to determine whether it's worthwile to spend the time compiling
* this method.
*/
bool SkipCompilation();
/*
* Should we skip the compilation of this method based on its name?
*/
bool SkipCompilation(const std::string& methodname);
/*
* Parse dex method and add MIR at current insert point. Returns id (which is
* actually the index of the method in the m_units_ array).
*/
void InlineMethod(const DexFile::CodeItem* code_item, uint32_t access_flags,
InvokeType invoke_type, uint16_t class_def_idx,
uint32_t method_idx, jobject class_loader, const DexFile& dex_file);
/* Find existing block */
BasicBlock* FindBlock(DexOffset code_offset) {
return FindBlock(code_offset, false, false, NULL);
}
const uint16_t* GetCurrentInsns() const {
return current_code_item_->insns_;
}
const uint16_t* GetInsns(int m_unit_index) const {
return m_units_[m_unit_index]->GetCodeItem()->insns_;
}
int GetNumBlocks() const {
return num_blocks_;
}
size_t GetNumDalvikInsns() const {
return cu_->code_item->insns_size_in_code_units_;
}
ArenaBitVector* GetTryBlockAddr() const {
return try_block_addr_;
}
BasicBlock* GetEntryBlock() const {
return entry_block_;
}
BasicBlock* GetExitBlock() const {
return exit_block_;
}
BasicBlock* GetBasicBlock(int block_id) const {
return (block_id == NullBasicBlockId) ? NULL : block_list_.Get(block_id);
}
size_t GetBasicBlockListCount() const {
return block_list_.Size();
}
GrowableArray<BasicBlock*>* GetBlockList() {
return &block_list_;
}
GrowableArray<BasicBlockId>* GetDfsOrder() {
return dfs_order_;
}
GrowableArray<BasicBlockId>* GetDfsPostOrder() {
return dfs_post_order_;
}
GrowableArray<BasicBlockId>* GetDomPostOrder() {
return dom_post_order_traversal_;
}
int GetDefCount() const {
return def_count_;
}
ArenaAllocator* GetArena() {
return arena_;
}
void EnableOpcodeCounting() {
opcode_count_ = static_cast<int*>(arena_->Alloc(kNumPackedOpcodes * sizeof(int),
kArenaAllocMisc));
}
void ShowOpcodeStats();
DexCompilationUnit* GetCurrentDexCompilationUnit() const {
return m_units_[current_method_];
}
/**
* @brief Dump a CFG into a dot file format.
* @param dir_prefix the directory the file will be created in.
* @param all_blocks does the dumper use all the basic blocks or use the reachable blocks.
* @param suffix does the filename require a suffix or not (default = nullptr).
*/
void DumpCFG(const char* dir_prefix, bool all_blocks, const char* suffix = nullptr);
bool HasFieldAccess() const {
return (merged_df_flags_ & (DF_IFIELD | DF_SFIELD)) != 0u;
}
bool HasStaticFieldAccess() const {
return (merged_df_flags_ & DF_SFIELD) != 0u;
}
bool HasInvokes() const {
// NOTE: These formats include the rare filled-new-array/range.
return (merged_df_flags_ & (DF_FORMAT_35C | DF_FORMAT_3RC)) != 0u;
}
void DoCacheFieldLoweringInfo();
const MirIFieldLoweringInfo& GetIFieldLoweringInfo(MIR* mir) const {
DCHECK_LT(mir->meta.ifield_lowering_info, ifield_lowering_infos_.Size());
return ifield_lowering_infos_.GetRawStorage()[mir->meta.ifield_lowering_info];
}
const MirSFieldLoweringInfo& GetSFieldLoweringInfo(MIR* mir) const {
DCHECK_LT(mir->meta.sfield_lowering_info, sfield_lowering_infos_.Size());
return sfield_lowering_infos_.GetRawStorage()[mir->meta.sfield_lowering_info];
}
void DoCacheMethodLoweringInfo();
const MirMethodLoweringInfo& GetMethodLoweringInfo(MIR* mir) {
DCHECK_LT(mir->meta.method_lowering_info, method_lowering_infos_.Size());
return method_lowering_infos_.GetRawStorage()[mir->meta.method_lowering_info];
}
void ComputeInlineIFieldLoweringInfo(uint16_t field_idx, MIR* invoke, MIR* iget_or_iput);
void InitRegLocations();
void RemapRegLocations();
void DumpRegLocTable(RegLocation* table, int count);
void BasicBlockOptimization();
bool IsConst(int32_t s_reg) const {
return is_constant_v_->IsBitSet(s_reg);
}
bool IsConst(RegLocation loc) const {
return loc.orig_sreg < 0 ? false : IsConst(loc.orig_sreg);
}
int32_t ConstantValue(RegLocation loc) const {
DCHECK(IsConst(loc));
return constant_values_[loc.orig_sreg];
}
int32_t ConstantValue(int32_t s_reg) const {
DCHECK(IsConst(s_reg));
return constant_values_[s_reg];
}
int64_t ConstantValueWide(RegLocation loc) const {
DCHECK(IsConst(loc));
return (static_cast<int64_t>(constant_values_[loc.orig_sreg + 1]) << 32) |
Low32Bits(static_cast<int64_t>(constant_values_[loc.orig_sreg]));
}
bool IsConstantNullRef(RegLocation loc) const {
return loc.ref && loc.is_const && (ConstantValue(loc) == 0);
}
int GetNumSSARegs() const {
return num_ssa_regs_;
}
void SetNumSSARegs(int new_num) {
/*
* TODO: It's theoretically possible to exceed 32767, though any cases which did
* would be filtered out with current settings. When orig_sreg field is removed
* from RegLocation, expand s_reg_low to handle all possible cases and remove DCHECK().
*/
DCHECK_EQ(new_num, static_cast<int16_t>(new_num));
num_ssa_regs_ = new_num;
}
unsigned int GetNumReachableBlocks() const {
return num_reachable_blocks_;
}
int GetUseCount(int vreg) const {
return use_counts_.Get(vreg);
}
int GetRawUseCount(int vreg) const {
return raw_use_counts_.Get(vreg);
}
int GetSSASubscript(int ssa_reg) const {
return ssa_subscripts_->Get(ssa_reg);
}
RegLocation GetRawSrc(MIR* mir, int num) {
DCHECK(num < mir->ssa_rep->num_uses);
RegLocation res = reg_location_[mir->ssa_rep->uses[num]];
return res;
}
RegLocation GetRawDest(MIR* mir) {
DCHECK_GT(mir->ssa_rep->num_defs, 0);
RegLocation res = reg_location_[mir->ssa_rep->defs[0]];
return res;
}
RegLocation GetDest(MIR* mir) {
RegLocation res = GetRawDest(mir);
DCHECK(!res.wide);
return res;
}
RegLocation GetSrc(MIR* mir, int num) {
RegLocation res = GetRawSrc(mir, num);
DCHECK(!res.wide);
return res;
}
RegLocation GetDestWide(MIR* mir) {
RegLocation res = GetRawDest(mir);
DCHECK(res.wide);
return res;
}
RegLocation GetSrcWide(MIR* mir, int low) {
RegLocation res = GetRawSrc(mir, low);
DCHECK(res.wide);
return res;
}
RegLocation GetBadLoc() {
return bad_loc;
}
int GetMethodSReg() const {
return method_sreg_;
}
/**
* @brief Used to obtain the number of compiler temporaries being used.
* @return Returns the number of compiler temporaries.
*/
size_t GetNumUsedCompilerTemps() const {
size_t total_num_temps = compiler_temps_.Size();
DCHECK_LE(num_non_special_compiler_temps_, total_num_temps);
return total_num_temps;
}
/**
* @brief Used to obtain the number of non-special compiler temporaries being used.
* @return Returns the number of non-special compiler temporaries.
*/
size_t GetNumNonSpecialCompilerTemps() const {
return num_non_special_compiler_temps_;
}
/**
* @brief Used to set the total number of available non-special compiler temporaries.
* @details Can fail setting the new max if there are more temps being used than the new_max.
* @param new_max The new maximum number of non-special compiler temporaries.
* @return Returns true if the max was set and false if failed to set.
*/
bool SetMaxAvailableNonSpecialCompilerTemps(size_t new_max) {
if (new_max < GetNumNonSpecialCompilerTemps()) {
return false;
} else {
max_available_non_special_compiler_temps_ = new_max;
return true;
}
}
/**
* @brief Provides the number of non-special compiler temps available.
* @details Even if this returns zero, special compiler temps are guaranteed to be available.
* @return Returns the number of available temps.
*/
size_t GetNumAvailableNonSpecialCompilerTemps();
/**
* @brief Used to obtain an existing compiler temporary.
* @param index The index of the temporary which must be strictly less than the
* number of temporaries.
* @return Returns the temporary that was asked for.
*/
CompilerTemp* GetCompilerTemp(size_t index) const {
return compiler_temps_.Get(index);
}
/**
* @brief Used to obtain the maximum number of compiler temporaries that can be requested.
* @return Returns the maximum number of compiler temporaries, whether used or not.
*/
size_t GetMaxPossibleCompilerTemps() const {
return max_available_special_compiler_temps_ + max_available_non_special_compiler_temps_;
}
/**
* @brief Used to obtain a new unique compiler temporary.
* @param ct_type Type of compiler temporary requested.
* @param wide Whether we should allocate a wide temporary.
* @return Returns the newly created compiler temporary.
*/
CompilerTemp* GetNewCompilerTemp(CompilerTempType ct_type, bool wide);
bool MethodIsLeaf() {
return attributes_ & METHOD_IS_LEAF;
}
RegLocation GetRegLocation(int index) {
DCHECK((index >= 0) && (index < num_ssa_regs_));
return reg_location_[index];
}
RegLocation GetMethodLoc() {
return reg_location_[method_sreg_];
}
bool IsBackedge(BasicBlock* branch_bb, BasicBlockId target_bb_id) {
return ((target_bb_id != NullBasicBlockId) &&
(GetBasicBlock(target_bb_id)->start_offset <= branch_bb->start_offset));
}
bool IsBackwardsBranch(BasicBlock* branch_bb) {
return IsBackedge(branch_bb, branch_bb->taken) || IsBackedge(branch_bb, branch_bb->fall_through);
}
void CountBranch(DexOffset target_offset) {
if (target_offset <= current_offset_) {
backward_branches_++;
} else {
forward_branches_++;
}
}
int GetBranchCount() {
return backward_branches_ + forward_branches_;
}
bool IsPseudoMirOp(Instruction::Code opcode) {
return static_cast<int>(opcode) >= static_cast<int>(kMirOpFirst);
}
bool IsPseudoMirOp(int opcode) {
return opcode >= static_cast<int>(kMirOpFirst);
}
// Is this vreg in the in set?
bool IsInVReg(int vreg) {
return (vreg >= cu_->num_regs);
}
void DumpCheckStats();
MIR* FindMoveResult(BasicBlock* bb, MIR* mir);
int SRegToVReg(int ssa_reg) const;
void VerifyDataflow();
void CheckForDominanceFrontier(BasicBlock* dom_bb, const BasicBlock* succ_bb);
void EliminateNullChecksAndInferTypesStart();
bool EliminateNullChecksAndInferTypes(BasicBlock *bb);
void EliminateNullChecksAndInferTypesEnd();
bool EliminateClassInitChecksGate();
bool EliminateClassInitChecks(BasicBlock* bb);
void EliminateClassInitChecksEnd();
/*
* Type inference handling helpers. Because Dalvik's bytecode is not fully typed,
* we have to do some work to figure out the sreg type. For some operations it is
* clear based on the opcode (i.e. ADD_FLOAT v0, v1, v2), but for others (MOVE), we
* may never know the "real" type.
*
* We perform the type inference operation by using an iterative walk over
* the graph, propagating types "defined" by typed opcodes to uses and defs in
* non-typed opcodes (such as MOVE). The Setxx(index) helpers are used to set defined
* types on typed opcodes (such as ADD_INT). The Setxx(index, is_xx) form is used to
* propagate types through non-typed opcodes such as PHI and MOVE. The is_xx flag
* tells whether our guess of the type is based on a previously typed definition.
* If so, the defined type takes precedence. Note that it's possible to have the same sreg
* show multiple defined types because dx treats constants as untyped bit patterns.
* The return value of the Setxx() helpers says whether or not the Setxx() action changed
* the current guess, and is used to know when to terminate the iterative walk.
*/
bool SetFp(int index, bool is_fp);
bool SetFp(int index);
bool SetCore(int index, bool is_core);
bool SetCore(int index);
bool SetRef(int index, bool is_ref);
bool SetRef(int index);
bool SetWide(int index, bool is_wide);
bool SetWide(int index);
bool SetHigh(int index, bool is_high);
bool SetHigh(int index);
char* GetDalvikDisassembly(const MIR* mir);
void ReplaceSpecialChars(std::string& str);
std::string GetSSAName(int ssa_reg);
std::string GetSSANameWithConst(int ssa_reg, bool singles_only);
void GetBlockName(BasicBlock* bb, char* name);
const char* GetShortyFromTargetIdx(int);
void DumpMIRGraph();
CallInfo* NewMemCallInfo(BasicBlock* bb, MIR* mir, InvokeType type, bool is_range);
BasicBlock* NewMemBB(BBType block_type, int block_id);
MIR* AdvanceMIR(BasicBlock** p_bb, MIR* mir);
BasicBlock* NextDominatedBlock(BasicBlock* bb);
bool LayoutBlocks(BasicBlock* bb);
bool InlineCallsGate();
void InlineCallsStart();
void InlineCalls(BasicBlock* bb);
void InlineCallsEnd();
/**
* @brief Perform the initial preparation for the Method Uses.
*/
void InitializeMethodUses();
/**
* @brief Perform the initial preparation for the Constant Propagation.
*/
void InitializeConstantPropagation();
/**
* @brief Perform the initial preparation for the SSA Transformation.
*/
void InitializeSSATransformation();
/**
* @brief Insert a the operands for the Phi nodes.
* @param bb the considered BasicBlock.
* @return true
*/
bool InsertPhiNodeOperands(BasicBlock* bb);
/**
* @brief Perform constant propagation on a BasicBlock.
* @param bb the considered BasicBlock.
*/
void DoConstantPropagation(BasicBlock* bb);
/**
* @brief Count the uses in the BasicBlock
* @param bb the BasicBlock
*/
void CountUses(struct BasicBlock* bb);
/**
* @brief Combine BasicBlocks
* @param the BasicBlock we are considering
*/
void CombineBlocks(BasicBlock* bb);
void ClearAllVisitedFlags();
/*
* IsDebugBuild sanity check: keep track of the Dex PCs for catch entries so that later on
* we can verify that all catch entries have native PC entries.
*/
std::set<uint32_t> catches_;
// TODO: make these private.
RegLocation* reg_location_; // Map SSA names to location.
SafeMap<unsigned int, unsigned int> block_id_map_; // Block collapse lookup cache.
static const uint64_t oat_data_flow_attributes_[kMirOpLast];
static const char* extended_mir_op_names_[kMirOpLast - kMirOpFirst];
static const uint32_t analysis_attributes_[kMirOpLast];
private:
int FindCommonParent(int block1, int block2);
void ComputeSuccLineIn(ArenaBitVector* dest, const ArenaBitVector* src1,
const ArenaBitVector* src2);
void HandleLiveInUse(ArenaBitVector* use_v, ArenaBitVector* def_v,
ArenaBitVector* live_in_v, int dalvik_reg_id);
void HandleDef(ArenaBitVector* def_v, int dalvik_reg_id);
void CompilerInitializeSSAConversion();
bool DoSSAConversion(BasicBlock* bb);
bool InvokeUsesMethodStar(MIR* mir);
int ParseInsn(const uint16_t* code_ptr, DecodedInstruction* decoded_instruction);
bool ContentIsInsn(const uint16_t* code_ptr);
BasicBlock* SplitBlock(DexOffset code_offset, BasicBlock* orig_block,
BasicBlock** immed_pred_block_p);
BasicBlock* FindBlock(DexOffset code_offset, bool split, bool create,
BasicBlock** immed_pred_block_p);
void ProcessTryCatchBlocks();
BasicBlock* ProcessCanBranch(BasicBlock* cur_block, MIR* insn, DexOffset cur_offset, int width,
int flags, const uint16_t* code_ptr, const uint16_t* code_end);
BasicBlock* ProcessCanSwitch(BasicBlock* cur_block, MIR* insn, DexOffset cur_offset, int width,
int flags);
BasicBlock* ProcessCanThrow(BasicBlock* cur_block, MIR* insn, DexOffset cur_offset, int width,
int flags, ArenaBitVector* try_block_addr, const uint16_t* code_ptr,
const uint16_t* code_end);
int AddNewSReg(int v_reg);
void HandleSSAUse(int* uses, int dalvik_reg, int reg_index);
void HandleSSADef(int* defs, int dalvik_reg, int reg_index);
void DataFlowSSAFormat35C(MIR* mir);
void DataFlowSSAFormat3RC(MIR* mir);
bool FindLocalLiveIn(BasicBlock* bb);
bool InferTypeAndSize(BasicBlock* bb, MIR* mir, bool changed);
bool VerifyPredInfo(BasicBlock* bb);
BasicBlock* NeedsVisit(BasicBlock* bb);
BasicBlock* NextUnvisitedSuccessor(BasicBlock* bb);
void MarkPreOrder(BasicBlock* bb);
void RecordDFSOrders(BasicBlock* bb);
void ComputeDFSOrders();
void ComputeDefBlockMatrix();
void ComputeDomPostOrderTraversal(BasicBlock* bb);
void ComputeDominators();
void InsertPhiNodes();
void DoDFSPreOrderSSARename(BasicBlock* block);
void SetConstant(int32_t ssa_reg, int value);
void SetConstantWide(int ssa_reg, int64_t value);
int GetSSAUseCount(int s_reg);
bool BasicBlockOpt(BasicBlock* bb);
bool BuildExtendedBBList(struct BasicBlock* bb);
bool FillDefBlockMatrix(BasicBlock* bb);
void InitializeDominationInfo(BasicBlock* bb);
bool ComputeblockIDom(BasicBlock* bb);
bool ComputeBlockDominators(BasicBlock* bb);
bool SetDominators(BasicBlock* bb);
bool ComputeBlockLiveIns(BasicBlock* bb);
bool ComputeDominanceFrontier(BasicBlock* bb);
void CountChecks(BasicBlock* bb);
void AnalyzeBlock(BasicBlock* bb, struct MethodStats* stats);
bool ComputeSkipCompilation(struct MethodStats* stats, bool skip_default);
CompilationUnit* const cu_;
GrowableArray<int>* ssa_base_vregs_;
GrowableArray<int>* ssa_subscripts_;
// Map original Dalvik virtual reg i to the current SSA name.
int* vreg_to_ssa_map_; // length == method->registers_size
int* ssa_last_defs_; // length == method->registers_size
ArenaBitVector* is_constant_v_; // length == num_ssa_reg
int* constant_values_; // length == num_ssa_reg
// Use counts of ssa names.
GrowableArray<uint32_t> use_counts_; // Weighted by nesting depth
GrowableArray<uint32_t> raw_use_counts_; // Not weighted
unsigned int num_reachable_blocks_;
GrowableArray<BasicBlockId>* dfs_order_;
GrowableArray<BasicBlockId>* dfs_post_order_;
GrowableArray<BasicBlockId>* dom_post_order_traversal_;
int* i_dom_list_;
ArenaBitVector** def_block_matrix_; // num_dalvik_register x num_blocks.
ArenaBitVector* temp_dalvik_register_v_;
UniquePtr<ScopedArenaAllocator> temp_scoped_alloc_;
uint16_t* temp_insn_data_;
uint32_t temp_bit_vector_size_;
ArenaBitVector* temp_bit_vector_;
static const int kInvalidEntry = -1;
GrowableArray<BasicBlock*> block_list_;
ArenaBitVector* try_block_addr_;
BasicBlock* entry_block_;
BasicBlock* exit_block_;
int num_blocks_;
const DexFile::CodeItem* current_code_item_;
GrowableArray<uint16_t> dex_pc_to_block_map_; // FindBlock lookup cache.
std::vector<DexCompilationUnit*> m_units_; // List of methods included in this graph
typedef std::pair<int, int> MIRLocation; // Insert point, (m_unit_ index, offset)
std::vector<MIRLocation> method_stack_; // Include stack
int current_method_;
DexOffset current_offset_; // Offset in code units
int def_count_; // Used to estimate size of ssa name storage.
int* opcode_count_; // Dex opcode coverage stats.
int num_ssa_regs_; // Number of names following SSA transformation.
std::vector<BasicBlockId> extended_basic_blocks_; // Heads of block "traces".
int method_sreg_;
unsigned int attributes_;
Checkstats* checkstats_;
ArenaAllocator* arena_;
int backward_branches_;
int forward_branches_;
GrowableArray<CompilerTemp*> compiler_temps_;
size_t num_non_special_compiler_temps_;
size_t max_available_non_special_compiler_temps_;
size_t max_available_special_compiler_temps_;
bool punt_to_interpreter_; // Difficult or not worthwhile - just interpret.
uint64_t merged_df_flags_;
GrowableArray<MirIFieldLoweringInfo> ifield_lowering_infos_;
GrowableArray<MirSFieldLoweringInfo> sfield_lowering_infos_;
GrowableArray<MirMethodLoweringInfo> method_lowering_infos_;
friend class ClassInitCheckEliminationTest;
friend class LocalValueNumberingTest;
};
} // namespace art
#endif // ART_COMPILER_DEX_MIR_GRAPH_H_