| /* |
| * Copyright (C) 2011 The Android Open Source Project |
| * |
| * Licensed under the Apache License, Version 2.0 (the "License"); |
| * you may not use this file except in compliance with the License. |
| * You may obtain a copy of the License at |
| * |
| * http://www.apache.org/licenses/LICENSE-2.0 |
| * |
| * Unless required by applicable law or agreed to in writing, software |
| * distributed under the License is distributed on an "AS IS" BASIS, |
| * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| * See the License for the specific language governing permissions and |
| * limitations under the License. |
| */ |
| |
| #include "compiler/compiler_internals.h" |
| #include "gc_map.h" |
| #include "verifier/dex_gc_map.h" |
| #include "verifier/method_verifier.h" |
| #include "ralloc_util.h" |
| #include "codegen_util.h" |
| |
| namespace art { |
| |
| bool IsInexpensiveConstant(CompilationUnit* cu, RegLocation rl_src) |
| { |
| bool res = false; |
| if (rl_src.is_const) { |
| if (rl_src.wide) { |
| if (rl_src.fp) { |
| res = cu->cg->InexpensiveConstantDouble(ConstantValueWide(cu, rl_src)); |
| } else { |
| res = cu->cg->InexpensiveConstantLong(ConstantValueWide(cu, rl_src)); |
| } |
| } else { |
| if (rl_src.fp) { |
| res = cu->cg->InexpensiveConstantFloat(ConstantValue(cu, rl_src)); |
| } else { |
| res = cu->cg->InexpensiveConstantInt(ConstantValue(cu, rl_src)); |
| } |
| } |
| } |
| return res; |
| } |
| |
| void MarkSafepointPC(CompilationUnit* cu, LIR* inst) |
| { |
| inst->def_mask = ENCODE_ALL; |
| LIR* safepoint_pc = NewLIR0(cu, kPseudoSafepointPC); |
| DCHECK_EQ(safepoint_pc->def_mask, ENCODE_ALL); |
| } |
| |
| bool FastInstance(CompilationUnit* cu, uint32_t field_idx, |
| int& field_offset, bool& is_volatile, bool is_put) |
| { |
| OatCompilationUnit m_unit(cu->class_loader, cu->class_linker, |
| *cu->dex_file, cu->code_item, |
| cu->class_def_idx, cu->method_idx, |
| cu->access_flags); |
| return cu->compiler->ComputeInstanceFieldInfo(field_idx, &m_unit, |
| field_offset, is_volatile, is_put); |
| } |
| |
| /* Convert an instruction to a NOP */ |
| void NopLIR( LIR* lir) |
| { |
| lir->flags.is_nop = true; |
| } |
| |
| void SetMemRefType(CompilationUnit* cu, LIR* lir, bool is_load, int mem_type) |
| { |
| uint64_t *mask_ptr; |
| uint64_t mask = ENCODE_MEM;; |
| Codegen* cg = cu->cg.get(); |
| DCHECK(cg->GetTargetInstFlags(lir->opcode) & (IS_LOAD | IS_STORE)); |
| if (is_load) { |
| mask_ptr = &lir->use_mask; |
| } else { |
| mask_ptr = &lir->def_mask; |
| } |
| /* Clear out the memref flags */ |
| *mask_ptr &= ~mask; |
| /* ..and then add back the one we need */ |
| switch (mem_type) { |
| case kLiteral: |
| DCHECK(is_load); |
| *mask_ptr |= ENCODE_LITERAL; |
| break; |
| case kDalvikReg: |
| *mask_ptr |= ENCODE_DALVIK_REG; |
| break; |
| case kHeapRef: |
| *mask_ptr |= ENCODE_HEAP_REF; |
| break; |
| case kMustNotAlias: |
| /* Currently only loads can be marked as kMustNotAlias */ |
| DCHECK(!(cg->GetTargetInstFlags(lir->opcode) & IS_STORE)); |
| *mask_ptr |= ENCODE_MUST_NOT_ALIAS; |
| break; |
| default: |
| LOG(FATAL) << "Oat: invalid memref kind - " << mem_type; |
| } |
| } |
| |
| /* |
| * Mark load/store instructions that access Dalvik registers through the stack. |
| */ |
| void AnnotateDalvikRegAccess(CompilationUnit* cu, LIR* lir, int reg_id, bool is_load, bool is64bit) |
| { |
| SetMemRefType(cu, lir, is_load, kDalvikReg); |
| |
| /* |
| * Store the Dalvik register id in alias_info. Mark the MSB if it is a 64-bit |
| * access. |
| */ |
| lir->alias_info = ENCODE_ALIAS_INFO(reg_id, is64bit); |
| } |
| |
| /* |
| * Mark the corresponding bit(s). |
| */ |
| void SetupRegMask(CompilationUnit* cu, uint64_t* mask, int reg) |
| { |
| Codegen* cg = cu->cg.get(); |
| *mask |= cg->GetRegMaskCommon(cu, reg); |
| } |
| |
| /* |
| * Set up the proper fields in the resource mask |
| */ |
| void SetupResourceMasks(CompilationUnit* cu, LIR* lir) |
| { |
| int opcode = lir->opcode; |
| Codegen* cg = cu->cg.get(); |
| |
| if (opcode <= 0) { |
| lir->use_mask = lir->def_mask = 0; |
| return; |
| } |
| |
| uint64_t flags = cg->GetTargetInstFlags(opcode); |
| |
| if (flags & NEEDS_FIXUP) { |
| lir->flags.pcRelFixup = true; |
| } |
| |
| /* Get the starting size of the instruction's template */ |
| lir->flags.size = cg->GetInsnSize(lir); |
| |
| /* Set up the mask for resources that are updated */ |
| if (flags & (IS_LOAD | IS_STORE)) { |
| /* Default to heap - will catch specialized classes later */ |
| SetMemRefType(cu, lir, flags & IS_LOAD, kHeapRef); |
| } |
| |
| /* |
| * Conservatively assume the branch here will call out a function that in |
| * turn will trash everything. |
| */ |
| if (flags & IS_BRANCH) { |
| lir->def_mask = lir->use_mask = ENCODE_ALL; |
| return; |
| } |
| |
| if (flags & REG_DEF0) { |
| SetupRegMask(cu, &lir->def_mask, lir->operands[0]); |
| } |
| |
| if (flags & REG_DEF1) { |
| SetupRegMask(cu, &lir->def_mask, lir->operands[1]); |
| } |
| |
| |
| if (flags & SETS_CCODES) { |
| lir->def_mask |= ENCODE_CCODE; |
| } |
| |
| if (flags & (REG_USE0 | REG_USE1 | REG_USE2 | REG_USE3)) { |
| int i; |
| |
| for (i = 0; i < 4; i++) { |
| if (flags & (1 << (kRegUse0 + i))) { |
| SetupRegMask(cu, &lir->use_mask, lir->operands[i]); |
| } |
| } |
| } |
| |
| if (flags & USES_CCODES) { |
| lir->use_mask |= ENCODE_CCODE; |
| } |
| |
| // Handle target-specific actions |
| cg->SetupTargetResourceMasks(cu, lir); |
| } |
| |
| /* |
| * Debugging macros |
| */ |
| #define DUMP_RESOURCE_MASK(X) |
| |
| /* Pretty-print a LIR instruction */ |
| void DumpLIRInsn(CompilationUnit* cu, LIR* lir, unsigned char* base_addr) |
| { |
| int offset = lir->offset; |
| int dest = lir->operands[0]; |
| const bool dump_nop = (cu->enable_debug & (1 << kDebugShowNops)); |
| Codegen* cg = cu->cg.get(); |
| |
| /* Handle pseudo-ops individually, and all regular insns as a group */ |
| switch (lir->opcode) { |
| case kPseudoMethodEntry: |
| LOG(INFO) << "-------- method entry " |
| << PrettyMethod(cu->method_idx, *cu->dex_file); |
| break; |
| case kPseudoMethodExit: |
| LOG(INFO) << "-------- Method_Exit"; |
| break; |
| case kPseudoBarrier: |
| LOG(INFO) << "-------- BARRIER"; |
| break; |
| case kPseudoEntryBlock: |
| LOG(INFO) << "-------- entry offset: 0x" << std::hex << dest; |
| break; |
| case kPseudoDalvikByteCodeBoundary: |
| if (lir->operands[0] == 0) { |
| lir->operands[0] = reinterpret_cast<uintptr_t>("No instruction string"); |
| } |
| LOG(INFO) << "-------- dalvik offset: 0x" << std::hex |
| << lir->dalvik_offset << " @ " << reinterpret_cast<char*>(lir->operands[0]); |
| break; |
| case kPseudoExitBlock: |
| LOG(INFO) << "-------- exit offset: 0x" << std::hex << dest; |
| break; |
| case kPseudoPseudoAlign4: |
| LOG(INFO) << reinterpret_cast<uintptr_t>(base_addr) + offset << " (0x" << std::hex |
| << offset << "): .align4"; |
| break; |
| case kPseudoEHBlockLabel: |
| LOG(INFO) << "Exception_Handling:"; |
| break; |
| case kPseudoTargetLabel: |
| case kPseudoNormalBlockLabel: |
| LOG(INFO) << "L" << reinterpret_cast<void*>(lir) << ":"; |
| break; |
| case kPseudoThrowTarget: |
| LOG(INFO) << "LT" << reinterpret_cast<void*>(lir) << ":"; |
| break; |
| case kPseudoIntrinsicRetry: |
| LOG(INFO) << "IR" << reinterpret_cast<void*>(lir) << ":"; |
| break; |
| case kPseudoSuspendTarget: |
| LOG(INFO) << "LS" << reinterpret_cast<void*>(lir) << ":"; |
| break; |
| case kPseudoSafepointPC: |
| LOG(INFO) << "LsafepointPC_0x" << std::hex << lir->offset << "_" << lir->dalvik_offset << ":"; |
| break; |
| case kPseudoExportedPC: |
| LOG(INFO) << "LexportedPC_0x" << std::hex << lir->offset << "_" << lir->dalvik_offset << ":"; |
| break; |
| case kPseudoCaseLabel: |
| LOG(INFO) << "LC" << reinterpret_cast<void*>(lir) << ": Case target 0x" |
| << std::hex << lir->operands[0] << "|" << std::dec << |
| lir->operands[0]; |
| break; |
| default: |
| if (lir->flags.is_nop && !dump_nop) { |
| break; |
| } else { |
| std::string op_name(cg->BuildInsnString(cg->GetTargetInstName(lir->opcode), |
| lir, base_addr)); |
| std::string op_operands(cg->BuildInsnString(cg->GetTargetInstFmt(lir->opcode), |
| lir, base_addr)); |
| LOG(INFO) << StringPrintf("%05x: %-9s%s%s", |
| reinterpret_cast<unsigned int>(base_addr + offset), |
| op_name.c_str(), op_operands.c_str(), |
| lir->flags.is_nop ? "(nop)" : ""); |
| } |
| break; |
| } |
| |
| if (lir->use_mask && (!lir->flags.is_nop || dump_nop)) { |
| DUMP_RESOURCE_MASK(DumpResourceMask((LIR* ) lir, lir->use_mask, "use")); |
| } |
| if (lir->def_mask && (!lir->flags.is_nop || dump_nop)) { |
| DUMP_RESOURCE_MASK(DumpResourceMask((LIR* ) lir, lir->def_mask, "def")); |
| } |
| } |
| |
| void DumpPromotionMap(CompilationUnit *cu) |
| { |
| Codegen* cg = cu->cg.get(); |
| int num_regs = cu->num_dalvik_registers + cu->num_compiler_temps + 1; |
| for (int i = 0; i < num_regs; i++) { |
| PromotionMap v_reg_map = cu->promotion_map[i]; |
| std::string buf; |
| if (v_reg_map.fp_location == kLocPhysReg) { |
| StringAppendF(&buf, " : s%d", v_reg_map.FpReg & cg->FpRegMask()); |
| } |
| |
| std::string buf3; |
| if (i < cu->num_dalvik_registers) { |
| StringAppendF(&buf3, "%02d", i); |
| } else if (i == cu->method_sreg) { |
| buf3 = "Method*"; |
| } else { |
| StringAppendF(&buf3, "ct%d", i - cu->num_dalvik_registers); |
| } |
| |
| LOG(INFO) << StringPrintf("V[%s] -> %s%d%s", buf3.c_str(), |
| v_reg_map.core_location == kLocPhysReg ? |
| "r" : "SP+", v_reg_map.core_location == kLocPhysReg ? |
| v_reg_map.core_reg : SRegOffset(cu, i), |
| buf.c_str()); |
| } |
| } |
| |
| /* Dump a mapping table */ |
| static void DumpMappingTable(const char* table_name, const std::string& descriptor, |
| const std::string& name, const std::string& signature, |
| const std::vector<uint32_t>& v) { |
| if (v.size() > 0) { |
| std::string line(StringPrintf("\n %s %s%s_%s_table[%zu] = {", table_name, |
| descriptor.c_str(), name.c_str(), signature.c_str(), v.size())); |
| std::replace(line.begin(), line.end(), ';', '_'); |
| LOG(INFO) << line; |
| for (uint32_t i = 0; i < v.size(); i+=2) { |
| line = StringPrintf(" {0x%05x, 0x%04x},", v[i], v[i+1]); |
| LOG(INFO) << line; |
| } |
| LOG(INFO) <<" };\n\n"; |
| } |
| } |
| |
| /* Dump instructions and constant pool contents */ |
| void CodegenDump(CompilationUnit* cu) |
| { |
| LOG(INFO) << "Dumping LIR insns for " |
| << PrettyMethod(cu->method_idx, *cu->dex_file); |
| LIR* lir_insn; |
| int insns_size = cu->insns_size; |
| |
| LOG(INFO) << "Regs (excluding ins) : " << cu->num_regs; |
| LOG(INFO) << "Ins : " << cu->num_ins; |
| LOG(INFO) << "Outs : " << cu->num_outs; |
| LOG(INFO) << "CoreSpills : " << cu->num_core_spills; |
| LOG(INFO) << "FPSpills : " << cu->num_fp_spills; |
| LOG(INFO) << "CompilerTemps : " << cu->num_compiler_temps; |
| LOG(INFO) << "Frame size : " << cu->frame_size; |
| LOG(INFO) << "code size is " << cu->total_size << |
| " bytes, Dalvik size is " << insns_size * 2; |
| LOG(INFO) << "expansion factor: " |
| << static_cast<float>(cu->total_size) / static_cast<float>(insns_size * 2); |
| DumpPromotionMap(cu); |
| for (lir_insn = cu->first_lir_insn; lir_insn != NULL; lir_insn = lir_insn->next) { |
| DumpLIRInsn(cu, lir_insn, 0); |
| } |
| for (lir_insn = cu->literal_list; lir_insn != NULL; lir_insn = lir_insn->next) { |
| LOG(INFO) << StringPrintf("%x (%04x): .word (%#x)", lir_insn->offset, lir_insn->offset, |
| lir_insn->operands[0]); |
| } |
| |
| const DexFile::MethodId& method_id = |
| cu->dex_file->GetMethodId(cu->method_idx); |
| std::string signature(cu->dex_file->GetMethodSignature(method_id)); |
| std::string name(cu->dex_file->GetMethodName(method_id)); |
| std::string descriptor(cu->dex_file->GetMethodDeclaringClassDescriptor(method_id)); |
| |
| // Dump mapping tables |
| DumpMappingTable("PC2Dex_MappingTable", descriptor, name, signature, cu->pc2dexMappingTable); |
| DumpMappingTable("Dex2PC_MappingTable", descriptor, name, signature, cu->dex2pcMappingTable); |
| } |
| |
| |
| LIR* RawLIR(CompilationUnit* cu, int dalvik_offset, int opcode, int op0, |
| int op1, int op2, int op3, int op4, LIR* target) |
| { |
| LIR* insn = static_cast<LIR*>(NewMem(cu, sizeof(LIR), true, kAllocLIR)); |
| insn->dalvik_offset = dalvik_offset; |
| insn->opcode = opcode; |
| insn->operands[0] = op0; |
| insn->operands[1] = op1; |
| insn->operands[2] = op2; |
| insn->operands[3] = op3; |
| insn->operands[4] = op4; |
| insn->target = target; |
| SetupResourceMasks(cu, insn); |
| if ((opcode == kPseudoTargetLabel) || (opcode == kPseudoSafepointPC) || |
| (opcode == kPseudoExportedPC)) { |
| // Always make labels scheduling barriers |
| insn->use_mask = insn->def_mask = ENCODE_ALL; |
| } |
| return insn; |
| } |
| |
| /* |
| * The following are building blocks to construct low-level IRs with 0 - 4 |
| * operands. |
| */ |
| LIR* NewLIR0(CompilationUnit* cu, int opcode) |
| { |
| Codegen* cg = cu->cg.get(); |
| DCHECK(is_pseudo_opcode(opcode) || (cg->GetTargetInstFlags(opcode) & NO_OPERAND)) |
| << cg->GetTargetInstName(opcode) << " " << opcode << " " |
| << PrettyMethod(cu->method_idx, *cu->dex_file) << " " |
| << cu->current_dalvik_offset; |
| LIR* insn = RawLIR(cu, cu->current_dalvik_offset, opcode); |
| AppendLIR(cu, insn); |
| return insn; |
| } |
| |
| LIR* NewLIR1(CompilationUnit* cu, int opcode, |
| int dest) |
| { |
| Codegen* cg = cu->cg.get(); |
| DCHECK(is_pseudo_opcode(opcode) || (cg->GetTargetInstFlags(opcode) & IS_UNARY_OP)) |
| << cg->GetTargetInstName(opcode) << " " << opcode << " " |
| << PrettyMethod(cu->method_idx, *cu->dex_file) << " " |
| << cu->current_dalvik_offset; |
| LIR* insn = RawLIR(cu, cu->current_dalvik_offset, opcode, dest); |
| AppendLIR(cu, insn); |
| return insn; |
| } |
| |
| LIR* NewLIR2(CompilationUnit* cu, int opcode, |
| int dest, int src1) |
| { |
| Codegen* cg = cu->cg.get(); |
| DCHECK(is_pseudo_opcode(opcode) || (cg->GetTargetInstFlags(opcode) & IS_BINARY_OP)) |
| << cg->GetTargetInstName(opcode) << " " << opcode << " " |
| << PrettyMethod(cu->method_idx, *cu->dex_file) << " " |
| << cu->current_dalvik_offset; |
| LIR* insn = RawLIR(cu, cu->current_dalvik_offset, opcode, dest, src1); |
| AppendLIR(cu, insn); |
| return insn; |
| } |
| |
| LIR* NewLIR3(CompilationUnit* cu, int opcode, |
| int dest, int src1, int src2) |
| { |
| Codegen* cg = cu->cg.get(); |
| DCHECK(is_pseudo_opcode(opcode) || (cg->GetTargetInstFlags(opcode) & IS_TERTIARY_OP)) |
| << cg->GetTargetInstName(opcode) << " " << opcode << " " |
| << PrettyMethod(cu->method_idx, *cu->dex_file) << " " |
| << cu->current_dalvik_offset; |
| LIR* insn = RawLIR(cu, cu->current_dalvik_offset, opcode, dest, src1, src2); |
| AppendLIR(cu, insn); |
| return insn; |
| } |
| |
| LIR* NewLIR4(CompilationUnit* cu, int opcode, |
| int dest, int src1, int src2, int info) |
| { |
| Codegen* cg = cu->cg.get(); |
| DCHECK(is_pseudo_opcode(opcode) || (cg->GetTargetInstFlags(opcode) & IS_QUAD_OP)) |
| << cg->GetTargetInstName(opcode) << " " << opcode << " " |
| << PrettyMethod(cu->method_idx, *cu->dex_file) << " " |
| << cu->current_dalvik_offset; |
| LIR* insn = RawLIR(cu, cu->current_dalvik_offset, opcode, dest, src1, src2, info); |
| AppendLIR(cu, insn); |
| return insn; |
| } |
| |
| LIR* NewLIR5(CompilationUnit* cu, int opcode, |
| int dest, int src1, int src2, int info1, int info2) |
| { |
| Codegen* cg = cu->cg.get(); |
| DCHECK(is_pseudo_opcode(opcode) || (cg->GetTargetInstFlags(opcode) & IS_QUIN_OP)) |
| << cg->GetTargetInstName(opcode) << " " << opcode << " " |
| << PrettyMethod(cu->method_idx, *cu->dex_file) << " " |
| << cu->current_dalvik_offset; |
| LIR* insn = RawLIR(cu, cu->current_dalvik_offset, opcode, dest, src1, src2, info1, info2); |
| AppendLIR(cu, insn); |
| return insn; |
| } |
| |
| /* |
| * Search the existing constants in the literal pool for an exact or close match |
| * within specified delta (greater or equal to 0). |
| */ |
| LIR* ScanLiteralPool(LIR* data_target, int value, unsigned int delta) |
| { |
| while (data_target) { |
| if ((static_cast<unsigned>(value - data_target->operands[0])) <= delta) |
| return data_target; |
| data_target = data_target->next; |
| } |
| return NULL; |
| } |
| |
| /* Search the existing constants in the literal pool for an exact wide match */ |
| LIR* ScanLiteralPoolWide(LIR* data_target, int val_lo, int val_hi) |
| { |
| bool lo_match = false; |
| LIR* lo_target = NULL; |
| while (data_target) { |
| if (lo_match && (data_target->operands[0] == val_hi)) { |
| // Record high word in case we need to expand this later. |
| lo_target->operands[1] = val_hi; |
| return lo_target; |
| } |
| lo_match = false; |
| if (data_target->operands[0] == val_lo) { |
| lo_match = true; |
| lo_target = data_target; |
| } |
| data_target = data_target->next; |
| } |
| return NULL; |
| } |
| |
| /* |
| * The following are building blocks to insert constants into the pool or |
| * instruction streams. |
| */ |
| |
| /* Add a 32-bit constant to the constant pool */ |
| LIR* AddWordData(CompilationUnit* cu, LIR* *constant_list_p, int value) |
| { |
| /* Add the constant to the literal pool */ |
| if (constant_list_p) { |
| LIR* new_value = static_cast<LIR*>(NewMem(cu, sizeof(LIR), true, kAllocData)); |
| new_value->operands[0] = value; |
| new_value->next = *constant_list_p; |
| *constant_list_p = new_value; |
| return new_value; |
| } |
| return NULL; |
| } |
| |
| /* Add a 64-bit constant to the constant pool or mixed with code */ |
| LIR* AddWideData(CompilationUnit* cu, LIR* *constant_list_p, |
| int val_lo, int val_hi) |
| { |
| AddWordData(cu, constant_list_p, val_hi); |
| return AddWordData(cu, constant_list_p, val_lo); |
| } |
| |
| static void PushWord(std::vector<uint8_t>&buf, int data) { |
| buf.push_back( data & 0xff); |
| buf.push_back( (data >> 8) & 0xff); |
| buf.push_back( (data >> 16) & 0xff); |
| buf.push_back( (data >> 24) & 0xff); |
| } |
| |
| static void AlignBuffer(std::vector<uint8_t>&buf, size_t offset) { |
| while (buf.size() < offset) { |
| buf.push_back(0); |
| } |
| } |
| |
| /* Write the literal pool to the output stream */ |
| static void InstallLiteralPools(CompilationUnit* cu) |
| { |
| AlignBuffer(cu->code_buffer, cu->data_offset); |
| LIR* data_lir = cu->literal_list; |
| while (data_lir != NULL) { |
| PushWord(cu->code_buffer, data_lir->operands[0]); |
| data_lir = NEXT_LIR(data_lir); |
| } |
| // Push code and method literals, record offsets for the compiler to patch. |
| data_lir = cu->code_literal_list; |
| while (data_lir != NULL) { |
| uint32_t target = data_lir->operands[0]; |
| cu->compiler->AddCodePatch(cu->dex_file, |
| cu->method_idx, |
| cu->invoke_type, |
| target, |
| static_cast<InvokeType>(data_lir->operands[1]), |
| cu->code_buffer.size()); |
| const DexFile::MethodId& id = cu->dex_file->GetMethodId(target); |
| // unique based on target to ensure code deduplication works |
| uint32_t unique_patch_value = reinterpret_cast<uint32_t>(&id); |
| PushWord(cu->code_buffer, unique_patch_value); |
| data_lir = NEXT_LIR(data_lir); |
| } |
| data_lir = cu->method_literal_list; |
| while (data_lir != NULL) { |
| uint32_t target = data_lir->operands[0]; |
| cu->compiler->AddMethodPatch(cu->dex_file, |
| cu->method_idx, |
| cu->invoke_type, |
| target, |
| static_cast<InvokeType>(data_lir->operands[1]), |
| cu->code_buffer.size()); |
| const DexFile::MethodId& id = cu->dex_file->GetMethodId(target); |
| // unique based on target to ensure code deduplication works |
| uint32_t unique_patch_value = reinterpret_cast<uint32_t>(&id); |
| PushWord(cu->code_buffer, unique_patch_value); |
| data_lir = NEXT_LIR(data_lir); |
| } |
| } |
| |
| /* Write the switch tables to the output stream */ |
| static void InstallSwitchTables(CompilationUnit* cu) |
| { |
| GrowableListIterator iterator; |
| GrowableListIteratorInit(&cu->switch_tables, &iterator); |
| while (true) { |
| SwitchTable* tab_rec = reinterpret_cast<SwitchTable*>(GrowableListIteratorNext( &iterator)); |
| if (tab_rec == NULL) break; |
| AlignBuffer(cu->code_buffer, tab_rec->offset); |
| /* |
| * For Arm, our reference point is the address of the bx |
| * instruction that does the launch, so we have to subtract |
| * the auto pc-advance. For other targets the reference point |
| * is a label, so we can use the offset as-is. |
| */ |
| int bx_offset = INVALID_OFFSET; |
| switch (cu->instruction_set) { |
| case kThumb2: |
| bx_offset = tab_rec->anchor->offset + 4; |
| break; |
| case kX86: |
| bx_offset = 0; |
| break; |
| case kMips: |
| bx_offset = tab_rec->anchor->offset; |
| break; |
| default: LOG(FATAL) << "Unexpected instruction set: " << cu->instruction_set; |
| } |
| if (cu->verbose) { |
| LOG(INFO) << "Switch table for offset 0x" << std::hex << bx_offset; |
| } |
| if (tab_rec->table[0] == Instruction::kSparseSwitchSignature) { |
| const int* keys = reinterpret_cast<const int*>(&(tab_rec->table[2])); |
| for (int elems = 0; elems < tab_rec->table[1]; elems++) { |
| int disp = tab_rec->targets[elems]->offset - bx_offset; |
| if (cu->verbose) { |
| LOG(INFO) << " Case[" << elems << "] key: 0x" |
| << std::hex << keys[elems] << ", disp: 0x" |
| << std::hex << disp; |
| } |
| PushWord(cu->code_buffer, keys[elems]); |
| PushWord(cu->code_buffer, |
| tab_rec->targets[elems]->offset - bx_offset); |
| } |
| } else { |
| DCHECK_EQ(static_cast<int>(tab_rec->table[0]), |
| static_cast<int>(Instruction::kPackedSwitchSignature)); |
| for (int elems = 0; elems < tab_rec->table[1]; elems++) { |
| int disp = tab_rec->targets[elems]->offset - bx_offset; |
| if (cu->verbose) { |
| LOG(INFO) << " Case[" << elems << "] disp: 0x" |
| << std::hex << disp; |
| } |
| PushWord(cu->code_buffer, tab_rec->targets[elems]->offset - bx_offset); |
| } |
| } |
| } |
| } |
| |
| /* Write the fill array dta to the output stream */ |
| static void InstallFillArrayData(CompilationUnit* cu) |
| { |
| GrowableListIterator iterator; |
| GrowableListIteratorInit(&cu->fill_array_data, &iterator); |
| while (true) { |
| FillArrayData *tab_rec = |
| reinterpret_cast<FillArrayData*>(GrowableListIteratorNext( &iterator)); |
| if (tab_rec == NULL) break; |
| AlignBuffer(cu->code_buffer, tab_rec->offset); |
| for (int i = 0; i < (tab_rec->size + 1) / 2; i++) { |
| cu->code_buffer.push_back( tab_rec->table[i] & 0xFF); |
| cu->code_buffer.push_back( (tab_rec->table[i] >> 8) & 0xFF); |
| } |
| } |
| } |
| |
| static int AssignLiteralOffsetCommon(LIR* lir, int offset) |
| { |
| for (;lir != NULL; lir = lir->next) { |
| lir->offset = offset; |
| offset += 4; |
| } |
| return offset; |
| } |
| |
| // Make sure we have a code address for every declared catch entry |
| static bool VerifyCatchEntries(CompilationUnit* cu) |
| { |
| bool success = true; |
| for (std::set<uint32_t>::const_iterator it = cu->catches.begin(); it != cu->catches.end(); ++it) { |
| uint32_t dex_pc = *it; |
| bool found = false; |
| for (size_t i = 0; i < cu->dex2pcMappingTable.size(); i += 2) { |
| if (dex_pc == cu->dex2pcMappingTable[i+1]) { |
| found = true; |
| break; |
| } |
| } |
| if (!found) { |
| LOG(INFO) << "Missing native PC for catch entry @ 0x" << std::hex << dex_pc; |
| success = false; |
| } |
| } |
| // Now, try in the other direction |
| for (size_t i = 0; i < cu->dex2pcMappingTable.size(); i += 2) { |
| uint32_t dex_pc = cu->dex2pcMappingTable[i+1]; |
| if (cu->catches.find(dex_pc) == cu->catches.end()) { |
| LOG(INFO) << "Unexpected catch entry @ dex pc 0x" << std::hex << dex_pc; |
| success = false; |
| } |
| } |
| if (!success) { |
| LOG(INFO) << "Bad dex2pcMapping table in " << PrettyMethod(cu->method_idx, *cu->dex_file); |
| LOG(INFO) << "Entries @ decode: " << cu->catches.size() << ", Entries in table: " |
| << cu->dex2pcMappingTable.size()/2; |
| } |
| return success; |
| } |
| |
| static void CreateMappingTables(CompilationUnit* cu) |
| { |
| for (LIR* tgt_lir = cu->first_lir_insn; tgt_lir != NULL; tgt_lir = NEXT_LIR(tgt_lir)) { |
| if (!tgt_lir->flags.is_nop && (tgt_lir->opcode == kPseudoSafepointPC)) { |
| cu->pc2dexMappingTable.push_back(tgt_lir->offset); |
| cu->pc2dexMappingTable.push_back(tgt_lir->dalvik_offset); |
| } |
| if (!tgt_lir->flags.is_nop && (tgt_lir->opcode == kPseudoExportedPC)) { |
| cu->dex2pcMappingTable.push_back(tgt_lir->offset); |
| cu->dex2pcMappingTable.push_back(tgt_lir->dalvik_offset); |
| } |
| } |
| DCHECK(VerifyCatchEntries(cu)); |
| cu->combined_mapping_table.push_back(cu->pc2dexMappingTable.size() + |
| cu->dex2pcMappingTable.size()); |
| cu->combined_mapping_table.push_back(cu->pc2dexMappingTable.size()); |
| cu->combined_mapping_table.insert(cu->combined_mapping_table.end(), |
| cu->pc2dexMappingTable.begin(), |
| cu->pc2dexMappingTable.end()); |
| cu->combined_mapping_table.insert(cu->combined_mapping_table.end(), |
| cu->dex2pcMappingTable.begin(), |
| cu->dex2pcMappingTable.end()); |
| } |
| |
| class NativePcToReferenceMapBuilder { |
| public: |
| NativePcToReferenceMapBuilder(std::vector<uint8_t>* table, |
| size_t entries, uint32_t max_native_offset, |
| size_t references_width) : entries_(entries), |
| references_width_(references_width), in_use_(entries), |
| table_(table) { |
| // Compute width in bytes needed to hold max_native_offset. |
| native_offset_width_ = 0; |
| while (max_native_offset != 0) { |
| native_offset_width_++; |
| max_native_offset >>= 8; |
| } |
| // Resize table and set up header. |
| table->resize((EntryWidth() * entries) + sizeof(uint32_t)); |
| CHECK_LT(native_offset_width_, 1U << 3); |
| (*table)[0] = native_offset_width_ & 7; |
| CHECK_LT(references_width_, 1U << 13); |
| (*table)[0] |= (references_width_ << 3) & 0xFF; |
| (*table)[1] = (references_width_ >> 5) & 0xFF; |
| CHECK_LT(entries, 1U << 16); |
| (*table)[2] = entries & 0xFF; |
| (*table)[3] = (entries >> 8) & 0xFF; |
| } |
| |
| void AddEntry(uint32_t native_offset, const uint8_t* references) { |
| size_t table_index = TableIndex(native_offset); |
| while (in_use_[table_index]) { |
| table_index = (table_index + 1) % entries_; |
| } |
| in_use_[table_index] = true; |
| SetNativeOffset(table_index, native_offset); |
| DCHECK_EQ(native_offset, GetNativeOffset(table_index)); |
| SetReferences(table_index, references); |
| } |
| |
| private: |
| size_t TableIndex(uint32_t native_offset) { |
| return NativePcOffsetToReferenceMap::Hash(native_offset) % entries_; |
| } |
| |
| uint32_t GetNativeOffset(size_t table_index) { |
| uint32_t native_offset = 0; |
| size_t table_offset = (table_index * EntryWidth()) + sizeof(uint32_t); |
| for (size_t i = 0; i < native_offset_width_; i++) { |
| native_offset |= (*table_)[table_offset + i] << (i * 8); |
| } |
| return native_offset; |
| } |
| |
| void SetNativeOffset(size_t table_index, uint32_t native_offset) { |
| size_t table_offset = (table_index * EntryWidth()) + sizeof(uint32_t); |
| for (size_t i = 0; i < native_offset_width_; i++) { |
| (*table_)[table_offset + i] = (native_offset >> (i * 8)) & 0xFF; |
| } |
| } |
| |
| void SetReferences(size_t table_index, const uint8_t* references) { |
| size_t table_offset = (table_index * EntryWidth()) + sizeof(uint32_t); |
| memcpy(&(*table_)[table_offset + native_offset_width_], references, references_width_); |
| } |
| |
| size_t EntryWidth() const { |
| return native_offset_width_ + references_width_; |
| } |
| |
| // Number of entries in the table. |
| const size_t entries_; |
| // Number of bytes used to encode the reference bitmap. |
| const size_t references_width_; |
| // Number of bytes used to encode a native offset. |
| size_t native_offset_width_; |
| // Entries that are in use. |
| std::vector<bool> in_use_; |
| // The table we're building. |
| std::vector<uint8_t>* const table_; |
| }; |
| |
| static void CreateNativeGcMap(CompilationUnit* cu) { |
| const std::vector<uint32_t>& mapping_table = cu->pc2dexMappingTable; |
| uint32_t max_native_offset = 0; |
| for (size_t i = 0; i < mapping_table.size(); i += 2) { |
| uint32_t native_offset = mapping_table[i + 0]; |
| if (native_offset > max_native_offset) { |
| max_native_offset = native_offset; |
| } |
| } |
| Compiler::MethodReference method_ref(cu->dex_file, cu->method_idx); |
| const std::vector<uint8_t>* gc_map_raw = verifier::MethodVerifier::GetDexGcMap(method_ref); |
| verifier::DexPcToReferenceMap dex_gc_map(&(*gc_map_raw)[4], gc_map_raw->size() - 4); |
| // Compute native offset to references size. |
| NativePcToReferenceMapBuilder native_gc_map_builder(&cu->native_gc_map, |
| mapping_table.size() / 2, max_native_offset, |
| dex_gc_map.RegWidth()); |
| |
| for (size_t i = 0; i < mapping_table.size(); i += 2) { |
| uint32_t native_offset = mapping_table[i + 0]; |
| uint32_t dex_pc = mapping_table[i + 1]; |
| const uint8_t* references = dex_gc_map.FindBitMap(dex_pc, false); |
| CHECK(references != NULL) << "Missing ref for dex pc 0x" << std::hex << dex_pc; |
| native_gc_map_builder.AddEntry(native_offset, references); |
| } |
| } |
| |
| /* Determine the offset of each literal field */ |
| static int AssignLiteralOffset(CompilationUnit* cu, int offset) |
| { |
| offset = AssignLiteralOffsetCommon(cu->literal_list, offset); |
| offset = AssignLiteralOffsetCommon(cu->code_literal_list, offset); |
| offset = AssignLiteralOffsetCommon(cu->method_literal_list, offset); |
| return offset; |
| } |
| |
| static int AssignSwitchTablesOffset(CompilationUnit* cu, int offset) |
| { |
| GrowableListIterator iterator; |
| GrowableListIteratorInit(&cu->switch_tables, &iterator); |
| while (true) { |
| SwitchTable *tab_rec = reinterpret_cast<SwitchTable*>(GrowableListIteratorNext(&iterator)); |
| if (tab_rec == NULL) break; |
| tab_rec->offset = offset; |
| if (tab_rec->table[0] == Instruction::kSparseSwitchSignature) { |
| offset += tab_rec->table[1] * (sizeof(int) * 2); |
| } else { |
| DCHECK_EQ(static_cast<int>(tab_rec->table[0]), |
| static_cast<int>(Instruction::kPackedSwitchSignature)); |
| offset += tab_rec->table[1] * sizeof(int); |
| } |
| } |
| return offset; |
| } |
| |
| static int AssignFillArrayDataOffset(CompilationUnit* cu, int offset) |
| { |
| GrowableListIterator iterator; |
| GrowableListIteratorInit(&cu->fill_array_data, &iterator); |
| while (true) { |
| FillArrayData *tab_rec = |
| reinterpret_cast<FillArrayData*>(GrowableListIteratorNext(&iterator)); |
| if (tab_rec == NULL) break; |
| tab_rec->offset = offset; |
| offset += tab_rec->size; |
| // word align |
| offset = (offset + 3) & ~3; |
| } |
| return offset; |
| } |
| |
| // LIR offset assignment. |
| static int AssignInsnOffsets(CompilationUnit* cu) |
| { |
| LIR* lir; |
| int offset = 0; |
| |
| for (lir = cu->first_lir_insn; lir != NULL; lir = NEXT_LIR(lir)) { |
| lir->offset = offset; |
| if (lir->opcode >= 0) { |
| if (!lir->flags.is_nop) { |
| offset += lir->flags.size; |
| } |
| } else if (lir->opcode == kPseudoPseudoAlign4) { |
| if (offset & 0x2) { |
| offset += 2; |
| lir->operands[0] = 1; |
| } else { |
| lir->operands[0] = 0; |
| } |
| } |
| /* Pseudo opcodes don't consume space */ |
| } |
| |
| return offset; |
| } |
| |
| /* |
| * Walk the compilation unit and assign offsets to instructions |
| * and literals and compute the total size of the compiled unit. |
| */ |
| static void AssignOffsets(CompilationUnit* cu) |
| { |
| int offset = AssignInsnOffsets(cu); |
| |
| /* Const values have to be word aligned */ |
| offset = (offset + 3) & ~3; |
| |
| /* Set up offsets for literals */ |
| cu->data_offset = offset; |
| |
| offset = AssignLiteralOffset(cu, offset); |
| |
| offset = AssignSwitchTablesOffset(cu, offset); |
| |
| offset = AssignFillArrayDataOffset(cu, offset); |
| |
| cu->total_size = offset; |
| } |
| |
| /* |
| * Go over each instruction in the list and calculate the offset from the top |
| * before sending them off to the assembler. If out-of-range branch distance is |
| * seen rearrange the instructions a bit to correct it. |
| */ |
| void AssembleLIR(CompilationUnit* cu) |
| { |
| Codegen* cg = cu->cg.get(); |
| AssignOffsets(cu); |
| /* |
| * Assemble here. Note that we generate code with optimistic assumptions |
| * and if found now to work, we'll have to redo the sequence and retry. |
| */ |
| |
| while (true) { |
| AssemblerStatus res = cg->AssembleInstructions(cu, 0); |
| if (res == kSuccess) { |
| break; |
| } else { |
| cu->assembler_retries++; |
| if (cu->assembler_retries > MAX_ASSEMBLER_RETRIES) { |
| CodegenDump(cu); |
| LOG(FATAL) << "Assembler error - too many retries"; |
| } |
| // Redo offsets and try again |
| AssignOffsets(cu); |
| cu->code_buffer.clear(); |
| } |
| } |
| |
| // Install literals |
| InstallLiteralPools(cu); |
| |
| // Install switch tables |
| InstallSwitchTables(cu); |
| |
| // Install fill array data |
| InstallFillArrayData(cu); |
| |
| // Create the mapping table and native offset to reference map. |
| CreateMappingTables(cu); |
| |
| CreateNativeGcMap(cu); |
| } |
| |
| /* |
| * Insert a kPseudoCaseLabel at the beginning of the Dalvik |
| * offset vaddr. This label will be used to fix up the case |
| * branch table during the assembly phase. Be sure to set |
| * all resource flags on this to prevent code motion across |
| * target boundaries. KeyVal is just there for debugging. |
| */ |
| static LIR* InsertCaseLabel(CompilationUnit* cu, int vaddr, int keyVal) |
| { |
| SafeMap<unsigned int, LIR*>::iterator it; |
| it = cu->boundary_map.find(vaddr); |
| if (it == cu->boundary_map.end()) { |
| LOG(FATAL) << "Error: didn't find vaddr 0x" << std::hex << vaddr; |
| } |
| LIR* new_label = static_cast<LIR*>(NewMem(cu, sizeof(LIR), true, kAllocLIR)); |
| new_label->dalvik_offset = vaddr; |
| new_label->opcode = kPseudoCaseLabel; |
| new_label->operands[0] = keyVal; |
| InsertLIRAfter(it->second, new_label); |
| return new_label; |
| } |
| |
| static void MarkPackedCaseLabels(CompilationUnit* cu, SwitchTable *tab_rec) |
| { |
| const uint16_t* table = tab_rec->table; |
| int base_vaddr = tab_rec->vaddr; |
| const int *targets = reinterpret_cast<const int*>(&table[4]); |
| int entries = table[1]; |
| int low_key = s4FromSwitchData(&table[2]); |
| for (int i = 0; i < entries; i++) { |
| tab_rec->targets[i] = InsertCaseLabel(cu, base_vaddr + targets[i], i + low_key); |
| } |
| } |
| |
| static void MarkSparseCaseLabels(CompilationUnit* cu, SwitchTable *tab_rec) |
| { |
| const uint16_t* table = tab_rec->table; |
| int base_vaddr = tab_rec->vaddr; |
| int entries = table[1]; |
| const int* keys = reinterpret_cast<const int*>(&table[2]); |
| const int* targets = &keys[entries]; |
| for (int i = 0; i < entries; i++) { |
| tab_rec->targets[i] = InsertCaseLabel(cu, base_vaddr + targets[i], keys[i]); |
| } |
| } |
| |
| void ProcessSwitchTables(CompilationUnit* cu) |
| { |
| GrowableListIterator iterator; |
| GrowableListIteratorInit(&cu->switch_tables, &iterator); |
| while (true) { |
| SwitchTable *tab_rec = |
| reinterpret_cast<SwitchTable*>(GrowableListIteratorNext(&iterator)); |
| if (tab_rec == NULL) break; |
| if (tab_rec->table[0] == Instruction::kPackedSwitchSignature) { |
| MarkPackedCaseLabels(cu, tab_rec); |
| } else if (tab_rec->table[0] == Instruction::kSparseSwitchSignature) { |
| MarkSparseCaseLabels(cu, tab_rec); |
| } else { |
| LOG(FATAL) << "Invalid switch table"; |
| } |
| } |
| } |
| |
| void DumpSparseSwitchTable(const uint16_t* table) |
| /* |
| * Sparse switch data format: |
| * ushort ident = 0x0200 magic value |
| * ushort size number of entries in the table; > 0 |
| * int keys[size] keys, sorted low-to-high; 32-bit aligned |
| * int targets[size] branch targets, relative to switch opcode |
| * |
| * Total size is (2+size*4) 16-bit code units. |
| */ |
| { |
| uint16_t ident = table[0]; |
| int entries = table[1]; |
| const int* keys = reinterpret_cast<const int*>(&table[2]); |
| const int* targets = &keys[entries]; |
| LOG(INFO) << "Sparse switch table - ident:0x" << std::hex << ident |
| << ", entries: " << std::dec << entries; |
| for (int i = 0; i < entries; i++) { |
| LOG(INFO) << " Key[" << keys[i] << "] -> 0x" << std::hex << targets[i]; |
| } |
| } |
| |
| void DumpPackedSwitchTable(const uint16_t* table) |
| /* |
| * Packed switch data format: |
| * ushort ident = 0x0100 magic value |
| * ushort size number of entries in the table |
| * int first_key first (and lowest) switch case value |
| * int targets[size] branch targets, relative to switch opcode |
| * |
| * Total size is (4+size*2) 16-bit code units. |
| */ |
| { |
| uint16_t ident = table[0]; |
| const int* targets = reinterpret_cast<const int*>(&table[4]); |
| int entries = table[1]; |
| int low_key = s4FromSwitchData(&table[2]); |
| LOG(INFO) << "Packed switch table - ident:0x" << std::hex << ident |
| << ", entries: " << std::dec << entries << ", low_key: " << low_key; |
| for (int i = 0; i < entries; i++) { |
| LOG(INFO) << " Key[" << (i + low_key) << "] -> 0x" << std::hex |
| << targets[i]; |
| } |
| } |
| |
| /* |
| * Set up special LIR to mark a Dalvik byte-code instruction start and |
| * record it in the boundary_map. NOTE: in cases such as kMirOpCheck in |
| * which we split a single Dalvik instruction, only the first MIR op |
| * associated with a Dalvik PC should be entered into the map. |
| */ |
| LIR* MarkBoundary(CompilationUnit* cu, int offset, const char* inst_str) |
| { |
| LIR* res = NewLIR1(cu, kPseudoDalvikByteCodeBoundary, reinterpret_cast<uintptr_t>(inst_str)); |
| if (cu->boundary_map.find(offset) == cu->boundary_map.end()) { |
| cu->boundary_map.Put(offset, res); |
| } |
| return res; |
| } |
| |
| bool EvaluateBranch(Instruction::Code opcode, int32_t src1, int32_t src2) |
| { |
| bool is_taken; |
| switch (opcode) { |
| case Instruction::IF_EQ: is_taken = (src1 == src2); break; |
| case Instruction::IF_NE: is_taken = (src1 != src2); break; |
| case Instruction::IF_LT: is_taken = (src1 < src2); break; |
| case Instruction::IF_GE: is_taken = (src1 >= src2); break; |
| case Instruction::IF_GT: is_taken = (src1 > src2); break; |
| case Instruction::IF_LE: is_taken = (src1 <= src2); break; |
| case Instruction::IF_EQZ: is_taken = (src1 == 0); break; |
| case Instruction::IF_NEZ: is_taken = (src1 != 0); break; |
| case Instruction::IF_LTZ: is_taken = (src1 < 0); break; |
| case Instruction::IF_GEZ: is_taken = (src1 >= 0); break; |
| case Instruction::IF_GTZ: is_taken = (src1 > 0); break; |
| case Instruction::IF_LEZ: is_taken = (src1 <= 0); break; |
| default: |
| LOG(FATAL) << "Unexpected opcode " << opcode; |
| is_taken = false; |
| } |
| return is_taken; |
| } |
| |
| // Convert relation of src1/src2 to src2/src1 |
| ConditionCode FlipComparisonOrder(ConditionCode before) { |
| ConditionCode res; |
| switch (before) { |
| case kCondEq: res = kCondEq; break; |
| case kCondNe: res = kCondNe; break; |
| case kCondLt: res = kCondGt; break; |
| case kCondGt: res = kCondLt; break; |
| case kCondLe: res = kCondGe; break; |
| case kCondGe: res = kCondLe; break; |
| default: |
| res = static_cast<ConditionCode>(0); |
| LOG(FATAL) << "Unexpected ccode " << before; |
| } |
| return res; |
| } |
| |
| } // namespace art |