blob: 57d932f6e3c870d3a2c40ea2d3b5628f0845d036 [file] [log] [blame]
/*
* Copyright (C) 2011 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "compiler/compiler_internals.h"
#include "gc_map.h"
#include "verifier/dex_gc_map.h"
#include "verifier/method_verifier.h"
#include "ralloc_util.h"
#include "codegen_util.h"
namespace art {
bool IsInexpensiveConstant(CompilationUnit* cu, RegLocation rl_src)
{
bool res = false;
if (rl_src.is_const) {
if (rl_src.wide) {
if (rl_src.fp) {
res = cu->cg->InexpensiveConstantDouble(ConstantValueWide(cu, rl_src));
} else {
res = cu->cg->InexpensiveConstantLong(ConstantValueWide(cu, rl_src));
}
} else {
if (rl_src.fp) {
res = cu->cg->InexpensiveConstantFloat(ConstantValue(cu, rl_src));
} else {
res = cu->cg->InexpensiveConstantInt(ConstantValue(cu, rl_src));
}
}
}
return res;
}
void MarkSafepointPC(CompilationUnit* cu, LIR* inst)
{
inst->def_mask = ENCODE_ALL;
LIR* safepoint_pc = NewLIR0(cu, kPseudoSafepointPC);
DCHECK_EQ(safepoint_pc->def_mask, ENCODE_ALL);
}
bool FastInstance(CompilationUnit* cu, uint32_t field_idx,
int& field_offset, bool& is_volatile, bool is_put)
{
OatCompilationUnit m_unit(cu->class_loader, cu->class_linker,
*cu->dex_file, cu->code_item,
cu->class_def_idx, cu->method_idx,
cu->access_flags);
return cu->compiler->ComputeInstanceFieldInfo(field_idx, &m_unit,
field_offset, is_volatile, is_put);
}
/* Convert an instruction to a NOP */
void NopLIR( LIR* lir)
{
lir->flags.is_nop = true;
}
void SetMemRefType(CompilationUnit* cu, LIR* lir, bool is_load, int mem_type)
{
uint64_t *mask_ptr;
uint64_t mask = ENCODE_MEM;;
Codegen* cg = cu->cg.get();
DCHECK(cg->GetTargetInstFlags(lir->opcode) & (IS_LOAD | IS_STORE));
if (is_load) {
mask_ptr = &lir->use_mask;
} else {
mask_ptr = &lir->def_mask;
}
/* Clear out the memref flags */
*mask_ptr &= ~mask;
/* ..and then add back the one we need */
switch (mem_type) {
case kLiteral:
DCHECK(is_load);
*mask_ptr |= ENCODE_LITERAL;
break;
case kDalvikReg:
*mask_ptr |= ENCODE_DALVIK_REG;
break;
case kHeapRef:
*mask_ptr |= ENCODE_HEAP_REF;
break;
case kMustNotAlias:
/* Currently only loads can be marked as kMustNotAlias */
DCHECK(!(cg->GetTargetInstFlags(lir->opcode) & IS_STORE));
*mask_ptr |= ENCODE_MUST_NOT_ALIAS;
break;
default:
LOG(FATAL) << "Oat: invalid memref kind - " << mem_type;
}
}
/*
* Mark load/store instructions that access Dalvik registers through the stack.
*/
void AnnotateDalvikRegAccess(CompilationUnit* cu, LIR* lir, int reg_id, bool is_load, bool is64bit)
{
SetMemRefType(cu, lir, is_load, kDalvikReg);
/*
* Store the Dalvik register id in alias_info. Mark the MSB if it is a 64-bit
* access.
*/
lir->alias_info = ENCODE_ALIAS_INFO(reg_id, is64bit);
}
/*
* Mark the corresponding bit(s).
*/
void SetupRegMask(CompilationUnit* cu, uint64_t* mask, int reg)
{
Codegen* cg = cu->cg.get();
*mask |= cg->GetRegMaskCommon(cu, reg);
}
/*
* Set up the proper fields in the resource mask
*/
void SetupResourceMasks(CompilationUnit* cu, LIR* lir)
{
int opcode = lir->opcode;
Codegen* cg = cu->cg.get();
if (opcode <= 0) {
lir->use_mask = lir->def_mask = 0;
return;
}
uint64_t flags = cg->GetTargetInstFlags(opcode);
if (flags & NEEDS_FIXUP) {
lir->flags.pcRelFixup = true;
}
/* Get the starting size of the instruction's template */
lir->flags.size = cg->GetInsnSize(lir);
/* Set up the mask for resources that are updated */
if (flags & (IS_LOAD | IS_STORE)) {
/* Default to heap - will catch specialized classes later */
SetMemRefType(cu, lir, flags & IS_LOAD, kHeapRef);
}
/*
* Conservatively assume the branch here will call out a function that in
* turn will trash everything.
*/
if (flags & IS_BRANCH) {
lir->def_mask = lir->use_mask = ENCODE_ALL;
return;
}
if (flags & REG_DEF0) {
SetupRegMask(cu, &lir->def_mask, lir->operands[0]);
}
if (flags & REG_DEF1) {
SetupRegMask(cu, &lir->def_mask, lir->operands[1]);
}
if (flags & SETS_CCODES) {
lir->def_mask |= ENCODE_CCODE;
}
if (flags & (REG_USE0 | REG_USE1 | REG_USE2 | REG_USE3)) {
int i;
for (i = 0; i < 4; i++) {
if (flags & (1 << (kRegUse0 + i))) {
SetupRegMask(cu, &lir->use_mask, lir->operands[i]);
}
}
}
if (flags & USES_CCODES) {
lir->use_mask |= ENCODE_CCODE;
}
// Handle target-specific actions
cg->SetupTargetResourceMasks(cu, lir);
}
/*
* Debugging macros
*/
#define DUMP_RESOURCE_MASK(X)
/* Pretty-print a LIR instruction */
void DumpLIRInsn(CompilationUnit* cu, LIR* lir, unsigned char* base_addr)
{
int offset = lir->offset;
int dest = lir->operands[0];
const bool dump_nop = (cu->enable_debug & (1 << kDebugShowNops));
Codegen* cg = cu->cg.get();
/* Handle pseudo-ops individually, and all regular insns as a group */
switch (lir->opcode) {
case kPseudoMethodEntry:
LOG(INFO) << "-------- method entry "
<< PrettyMethod(cu->method_idx, *cu->dex_file);
break;
case kPseudoMethodExit:
LOG(INFO) << "-------- Method_Exit";
break;
case kPseudoBarrier:
LOG(INFO) << "-------- BARRIER";
break;
case kPseudoEntryBlock:
LOG(INFO) << "-------- entry offset: 0x" << std::hex << dest;
break;
case kPseudoDalvikByteCodeBoundary:
if (lir->operands[0] == 0) {
lir->operands[0] = reinterpret_cast<uintptr_t>("No instruction string");
}
LOG(INFO) << "-------- dalvik offset: 0x" << std::hex
<< lir->dalvik_offset << " @ " << reinterpret_cast<char*>(lir->operands[0]);
break;
case kPseudoExitBlock:
LOG(INFO) << "-------- exit offset: 0x" << std::hex << dest;
break;
case kPseudoPseudoAlign4:
LOG(INFO) << reinterpret_cast<uintptr_t>(base_addr) + offset << " (0x" << std::hex
<< offset << "): .align4";
break;
case kPseudoEHBlockLabel:
LOG(INFO) << "Exception_Handling:";
break;
case kPseudoTargetLabel:
case kPseudoNormalBlockLabel:
LOG(INFO) << "L" << reinterpret_cast<void*>(lir) << ":";
break;
case kPseudoThrowTarget:
LOG(INFO) << "LT" << reinterpret_cast<void*>(lir) << ":";
break;
case kPseudoIntrinsicRetry:
LOG(INFO) << "IR" << reinterpret_cast<void*>(lir) << ":";
break;
case kPseudoSuspendTarget:
LOG(INFO) << "LS" << reinterpret_cast<void*>(lir) << ":";
break;
case kPseudoSafepointPC:
LOG(INFO) << "LsafepointPC_0x" << std::hex << lir->offset << "_" << lir->dalvik_offset << ":";
break;
case kPseudoExportedPC:
LOG(INFO) << "LexportedPC_0x" << std::hex << lir->offset << "_" << lir->dalvik_offset << ":";
break;
case kPseudoCaseLabel:
LOG(INFO) << "LC" << reinterpret_cast<void*>(lir) << ": Case target 0x"
<< std::hex << lir->operands[0] << "|" << std::dec <<
lir->operands[0];
break;
default:
if (lir->flags.is_nop && !dump_nop) {
break;
} else {
std::string op_name(cg->BuildInsnString(cg->GetTargetInstName(lir->opcode),
lir, base_addr));
std::string op_operands(cg->BuildInsnString(cg->GetTargetInstFmt(lir->opcode),
lir, base_addr));
LOG(INFO) << StringPrintf("%05x: %-9s%s%s",
reinterpret_cast<unsigned int>(base_addr + offset),
op_name.c_str(), op_operands.c_str(),
lir->flags.is_nop ? "(nop)" : "");
}
break;
}
if (lir->use_mask && (!lir->flags.is_nop || dump_nop)) {
DUMP_RESOURCE_MASK(DumpResourceMask((LIR* ) lir, lir->use_mask, "use"));
}
if (lir->def_mask && (!lir->flags.is_nop || dump_nop)) {
DUMP_RESOURCE_MASK(DumpResourceMask((LIR* ) lir, lir->def_mask, "def"));
}
}
void DumpPromotionMap(CompilationUnit *cu)
{
Codegen* cg = cu->cg.get();
int num_regs = cu->num_dalvik_registers + cu->num_compiler_temps + 1;
for (int i = 0; i < num_regs; i++) {
PromotionMap v_reg_map = cu->promotion_map[i];
std::string buf;
if (v_reg_map.fp_location == kLocPhysReg) {
StringAppendF(&buf, " : s%d", v_reg_map.FpReg & cg->FpRegMask());
}
std::string buf3;
if (i < cu->num_dalvik_registers) {
StringAppendF(&buf3, "%02d", i);
} else if (i == cu->method_sreg) {
buf3 = "Method*";
} else {
StringAppendF(&buf3, "ct%d", i - cu->num_dalvik_registers);
}
LOG(INFO) << StringPrintf("V[%s] -> %s%d%s", buf3.c_str(),
v_reg_map.core_location == kLocPhysReg ?
"r" : "SP+", v_reg_map.core_location == kLocPhysReg ?
v_reg_map.core_reg : SRegOffset(cu, i),
buf.c_str());
}
}
/* Dump a mapping table */
static void DumpMappingTable(const char* table_name, const std::string& descriptor,
const std::string& name, const std::string& signature,
const std::vector<uint32_t>& v) {
if (v.size() > 0) {
std::string line(StringPrintf("\n %s %s%s_%s_table[%zu] = {", table_name,
descriptor.c_str(), name.c_str(), signature.c_str(), v.size()));
std::replace(line.begin(), line.end(), ';', '_');
LOG(INFO) << line;
for (uint32_t i = 0; i < v.size(); i+=2) {
line = StringPrintf(" {0x%05x, 0x%04x},", v[i], v[i+1]);
LOG(INFO) << line;
}
LOG(INFO) <<" };\n\n";
}
}
/* Dump instructions and constant pool contents */
void CodegenDump(CompilationUnit* cu)
{
LOG(INFO) << "Dumping LIR insns for "
<< PrettyMethod(cu->method_idx, *cu->dex_file);
LIR* lir_insn;
int insns_size = cu->insns_size;
LOG(INFO) << "Regs (excluding ins) : " << cu->num_regs;
LOG(INFO) << "Ins : " << cu->num_ins;
LOG(INFO) << "Outs : " << cu->num_outs;
LOG(INFO) << "CoreSpills : " << cu->num_core_spills;
LOG(INFO) << "FPSpills : " << cu->num_fp_spills;
LOG(INFO) << "CompilerTemps : " << cu->num_compiler_temps;
LOG(INFO) << "Frame size : " << cu->frame_size;
LOG(INFO) << "code size is " << cu->total_size <<
" bytes, Dalvik size is " << insns_size * 2;
LOG(INFO) << "expansion factor: "
<< static_cast<float>(cu->total_size) / static_cast<float>(insns_size * 2);
DumpPromotionMap(cu);
for (lir_insn = cu->first_lir_insn; lir_insn != NULL; lir_insn = lir_insn->next) {
DumpLIRInsn(cu, lir_insn, 0);
}
for (lir_insn = cu->literal_list; lir_insn != NULL; lir_insn = lir_insn->next) {
LOG(INFO) << StringPrintf("%x (%04x): .word (%#x)", lir_insn->offset, lir_insn->offset,
lir_insn->operands[0]);
}
const DexFile::MethodId& method_id =
cu->dex_file->GetMethodId(cu->method_idx);
std::string signature(cu->dex_file->GetMethodSignature(method_id));
std::string name(cu->dex_file->GetMethodName(method_id));
std::string descriptor(cu->dex_file->GetMethodDeclaringClassDescriptor(method_id));
// Dump mapping tables
DumpMappingTable("PC2Dex_MappingTable", descriptor, name, signature, cu->pc2dexMappingTable);
DumpMappingTable("Dex2PC_MappingTable", descriptor, name, signature, cu->dex2pcMappingTable);
}
LIR* RawLIR(CompilationUnit* cu, int dalvik_offset, int opcode, int op0,
int op1, int op2, int op3, int op4, LIR* target)
{
LIR* insn = static_cast<LIR*>(NewMem(cu, sizeof(LIR), true, kAllocLIR));
insn->dalvik_offset = dalvik_offset;
insn->opcode = opcode;
insn->operands[0] = op0;
insn->operands[1] = op1;
insn->operands[2] = op2;
insn->operands[3] = op3;
insn->operands[4] = op4;
insn->target = target;
SetupResourceMasks(cu, insn);
if ((opcode == kPseudoTargetLabel) || (opcode == kPseudoSafepointPC) ||
(opcode == kPseudoExportedPC)) {
// Always make labels scheduling barriers
insn->use_mask = insn->def_mask = ENCODE_ALL;
}
return insn;
}
/*
* The following are building blocks to construct low-level IRs with 0 - 4
* operands.
*/
LIR* NewLIR0(CompilationUnit* cu, int opcode)
{
Codegen* cg = cu->cg.get();
DCHECK(is_pseudo_opcode(opcode) || (cg->GetTargetInstFlags(opcode) & NO_OPERAND))
<< cg->GetTargetInstName(opcode) << " " << opcode << " "
<< PrettyMethod(cu->method_idx, *cu->dex_file) << " "
<< cu->current_dalvik_offset;
LIR* insn = RawLIR(cu, cu->current_dalvik_offset, opcode);
AppendLIR(cu, insn);
return insn;
}
LIR* NewLIR1(CompilationUnit* cu, int opcode,
int dest)
{
Codegen* cg = cu->cg.get();
DCHECK(is_pseudo_opcode(opcode) || (cg->GetTargetInstFlags(opcode) & IS_UNARY_OP))
<< cg->GetTargetInstName(opcode) << " " << opcode << " "
<< PrettyMethod(cu->method_idx, *cu->dex_file) << " "
<< cu->current_dalvik_offset;
LIR* insn = RawLIR(cu, cu->current_dalvik_offset, opcode, dest);
AppendLIR(cu, insn);
return insn;
}
LIR* NewLIR2(CompilationUnit* cu, int opcode,
int dest, int src1)
{
Codegen* cg = cu->cg.get();
DCHECK(is_pseudo_opcode(opcode) || (cg->GetTargetInstFlags(opcode) & IS_BINARY_OP))
<< cg->GetTargetInstName(opcode) << " " << opcode << " "
<< PrettyMethod(cu->method_idx, *cu->dex_file) << " "
<< cu->current_dalvik_offset;
LIR* insn = RawLIR(cu, cu->current_dalvik_offset, opcode, dest, src1);
AppendLIR(cu, insn);
return insn;
}
LIR* NewLIR3(CompilationUnit* cu, int opcode,
int dest, int src1, int src2)
{
Codegen* cg = cu->cg.get();
DCHECK(is_pseudo_opcode(opcode) || (cg->GetTargetInstFlags(opcode) & IS_TERTIARY_OP))
<< cg->GetTargetInstName(opcode) << " " << opcode << " "
<< PrettyMethod(cu->method_idx, *cu->dex_file) << " "
<< cu->current_dalvik_offset;
LIR* insn = RawLIR(cu, cu->current_dalvik_offset, opcode, dest, src1, src2);
AppendLIR(cu, insn);
return insn;
}
LIR* NewLIR4(CompilationUnit* cu, int opcode,
int dest, int src1, int src2, int info)
{
Codegen* cg = cu->cg.get();
DCHECK(is_pseudo_opcode(opcode) || (cg->GetTargetInstFlags(opcode) & IS_QUAD_OP))
<< cg->GetTargetInstName(opcode) << " " << opcode << " "
<< PrettyMethod(cu->method_idx, *cu->dex_file) << " "
<< cu->current_dalvik_offset;
LIR* insn = RawLIR(cu, cu->current_dalvik_offset, opcode, dest, src1, src2, info);
AppendLIR(cu, insn);
return insn;
}
LIR* NewLIR5(CompilationUnit* cu, int opcode,
int dest, int src1, int src2, int info1, int info2)
{
Codegen* cg = cu->cg.get();
DCHECK(is_pseudo_opcode(opcode) || (cg->GetTargetInstFlags(opcode) & IS_QUIN_OP))
<< cg->GetTargetInstName(opcode) << " " << opcode << " "
<< PrettyMethod(cu->method_idx, *cu->dex_file) << " "
<< cu->current_dalvik_offset;
LIR* insn = RawLIR(cu, cu->current_dalvik_offset, opcode, dest, src1, src2, info1, info2);
AppendLIR(cu, insn);
return insn;
}
/*
* Search the existing constants in the literal pool for an exact or close match
* within specified delta (greater or equal to 0).
*/
LIR* ScanLiteralPool(LIR* data_target, int value, unsigned int delta)
{
while (data_target) {
if ((static_cast<unsigned>(value - data_target->operands[0])) <= delta)
return data_target;
data_target = data_target->next;
}
return NULL;
}
/* Search the existing constants in the literal pool for an exact wide match */
LIR* ScanLiteralPoolWide(LIR* data_target, int val_lo, int val_hi)
{
bool lo_match = false;
LIR* lo_target = NULL;
while (data_target) {
if (lo_match && (data_target->operands[0] == val_hi)) {
// Record high word in case we need to expand this later.
lo_target->operands[1] = val_hi;
return lo_target;
}
lo_match = false;
if (data_target->operands[0] == val_lo) {
lo_match = true;
lo_target = data_target;
}
data_target = data_target->next;
}
return NULL;
}
/*
* The following are building blocks to insert constants into the pool or
* instruction streams.
*/
/* Add a 32-bit constant to the constant pool */
LIR* AddWordData(CompilationUnit* cu, LIR* *constant_list_p, int value)
{
/* Add the constant to the literal pool */
if (constant_list_p) {
LIR* new_value = static_cast<LIR*>(NewMem(cu, sizeof(LIR), true, kAllocData));
new_value->operands[0] = value;
new_value->next = *constant_list_p;
*constant_list_p = new_value;
return new_value;
}
return NULL;
}
/* Add a 64-bit constant to the constant pool or mixed with code */
LIR* AddWideData(CompilationUnit* cu, LIR* *constant_list_p,
int val_lo, int val_hi)
{
AddWordData(cu, constant_list_p, val_hi);
return AddWordData(cu, constant_list_p, val_lo);
}
static void PushWord(std::vector<uint8_t>&buf, int data) {
buf.push_back( data & 0xff);
buf.push_back( (data >> 8) & 0xff);
buf.push_back( (data >> 16) & 0xff);
buf.push_back( (data >> 24) & 0xff);
}
static void AlignBuffer(std::vector<uint8_t>&buf, size_t offset) {
while (buf.size() < offset) {
buf.push_back(0);
}
}
/* Write the literal pool to the output stream */
static void InstallLiteralPools(CompilationUnit* cu)
{
AlignBuffer(cu->code_buffer, cu->data_offset);
LIR* data_lir = cu->literal_list;
while (data_lir != NULL) {
PushWord(cu->code_buffer, data_lir->operands[0]);
data_lir = NEXT_LIR(data_lir);
}
// Push code and method literals, record offsets for the compiler to patch.
data_lir = cu->code_literal_list;
while (data_lir != NULL) {
uint32_t target = data_lir->operands[0];
cu->compiler->AddCodePatch(cu->dex_file,
cu->method_idx,
cu->invoke_type,
target,
static_cast<InvokeType>(data_lir->operands[1]),
cu->code_buffer.size());
const DexFile::MethodId& id = cu->dex_file->GetMethodId(target);
// unique based on target to ensure code deduplication works
uint32_t unique_patch_value = reinterpret_cast<uint32_t>(&id);
PushWord(cu->code_buffer, unique_patch_value);
data_lir = NEXT_LIR(data_lir);
}
data_lir = cu->method_literal_list;
while (data_lir != NULL) {
uint32_t target = data_lir->operands[0];
cu->compiler->AddMethodPatch(cu->dex_file,
cu->method_idx,
cu->invoke_type,
target,
static_cast<InvokeType>(data_lir->operands[1]),
cu->code_buffer.size());
const DexFile::MethodId& id = cu->dex_file->GetMethodId(target);
// unique based on target to ensure code deduplication works
uint32_t unique_patch_value = reinterpret_cast<uint32_t>(&id);
PushWord(cu->code_buffer, unique_patch_value);
data_lir = NEXT_LIR(data_lir);
}
}
/* Write the switch tables to the output stream */
static void InstallSwitchTables(CompilationUnit* cu)
{
GrowableListIterator iterator;
GrowableListIteratorInit(&cu->switch_tables, &iterator);
while (true) {
SwitchTable* tab_rec = reinterpret_cast<SwitchTable*>(GrowableListIteratorNext( &iterator));
if (tab_rec == NULL) break;
AlignBuffer(cu->code_buffer, tab_rec->offset);
/*
* For Arm, our reference point is the address of the bx
* instruction that does the launch, so we have to subtract
* the auto pc-advance. For other targets the reference point
* is a label, so we can use the offset as-is.
*/
int bx_offset = INVALID_OFFSET;
switch (cu->instruction_set) {
case kThumb2:
bx_offset = tab_rec->anchor->offset + 4;
break;
case kX86:
bx_offset = 0;
break;
case kMips:
bx_offset = tab_rec->anchor->offset;
break;
default: LOG(FATAL) << "Unexpected instruction set: " << cu->instruction_set;
}
if (cu->verbose) {
LOG(INFO) << "Switch table for offset 0x" << std::hex << bx_offset;
}
if (tab_rec->table[0] == Instruction::kSparseSwitchSignature) {
const int* keys = reinterpret_cast<const int*>(&(tab_rec->table[2]));
for (int elems = 0; elems < tab_rec->table[1]; elems++) {
int disp = tab_rec->targets[elems]->offset - bx_offset;
if (cu->verbose) {
LOG(INFO) << " Case[" << elems << "] key: 0x"
<< std::hex << keys[elems] << ", disp: 0x"
<< std::hex << disp;
}
PushWord(cu->code_buffer, keys[elems]);
PushWord(cu->code_buffer,
tab_rec->targets[elems]->offset - bx_offset);
}
} else {
DCHECK_EQ(static_cast<int>(tab_rec->table[0]),
static_cast<int>(Instruction::kPackedSwitchSignature));
for (int elems = 0; elems < tab_rec->table[1]; elems++) {
int disp = tab_rec->targets[elems]->offset - bx_offset;
if (cu->verbose) {
LOG(INFO) << " Case[" << elems << "] disp: 0x"
<< std::hex << disp;
}
PushWord(cu->code_buffer, tab_rec->targets[elems]->offset - bx_offset);
}
}
}
}
/* Write the fill array dta to the output stream */
static void InstallFillArrayData(CompilationUnit* cu)
{
GrowableListIterator iterator;
GrowableListIteratorInit(&cu->fill_array_data, &iterator);
while (true) {
FillArrayData *tab_rec =
reinterpret_cast<FillArrayData*>(GrowableListIteratorNext( &iterator));
if (tab_rec == NULL) break;
AlignBuffer(cu->code_buffer, tab_rec->offset);
for (int i = 0; i < (tab_rec->size + 1) / 2; i++) {
cu->code_buffer.push_back( tab_rec->table[i] & 0xFF);
cu->code_buffer.push_back( (tab_rec->table[i] >> 8) & 0xFF);
}
}
}
static int AssignLiteralOffsetCommon(LIR* lir, int offset)
{
for (;lir != NULL; lir = lir->next) {
lir->offset = offset;
offset += 4;
}
return offset;
}
// Make sure we have a code address for every declared catch entry
static bool VerifyCatchEntries(CompilationUnit* cu)
{
bool success = true;
for (std::set<uint32_t>::const_iterator it = cu->catches.begin(); it != cu->catches.end(); ++it) {
uint32_t dex_pc = *it;
bool found = false;
for (size_t i = 0; i < cu->dex2pcMappingTable.size(); i += 2) {
if (dex_pc == cu->dex2pcMappingTable[i+1]) {
found = true;
break;
}
}
if (!found) {
LOG(INFO) << "Missing native PC for catch entry @ 0x" << std::hex << dex_pc;
success = false;
}
}
// Now, try in the other direction
for (size_t i = 0; i < cu->dex2pcMappingTable.size(); i += 2) {
uint32_t dex_pc = cu->dex2pcMappingTable[i+1];
if (cu->catches.find(dex_pc) == cu->catches.end()) {
LOG(INFO) << "Unexpected catch entry @ dex pc 0x" << std::hex << dex_pc;
success = false;
}
}
if (!success) {
LOG(INFO) << "Bad dex2pcMapping table in " << PrettyMethod(cu->method_idx, *cu->dex_file);
LOG(INFO) << "Entries @ decode: " << cu->catches.size() << ", Entries in table: "
<< cu->dex2pcMappingTable.size()/2;
}
return success;
}
static void CreateMappingTables(CompilationUnit* cu)
{
for (LIR* tgt_lir = cu->first_lir_insn; tgt_lir != NULL; tgt_lir = NEXT_LIR(tgt_lir)) {
if (!tgt_lir->flags.is_nop && (tgt_lir->opcode == kPseudoSafepointPC)) {
cu->pc2dexMappingTable.push_back(tgt_lir->offset);
cu->pc2dexMappingTable.push_back(tgt_lir->dalvik_offset);
}
if (!tgt_lir->flags.is_nop && (tgt_lir->opcode == kPseudoExportedPC)) {
cu->dex2pcMappingTable.push_back(tgt_lir->offset);
cu->dex2pcMappingTable.push_back(tgt_lir->dalvik_offset);
}
}
DCHECK(VerifyCatchEntries(cu));
cu->combined_mapping_table.push_back(cu->pc2dexMappingTable.size() +
cu->dex2pcMappingTable.size());
cu->combined_mapping_table.push_back(cu->pc2dexMappingTable.size());
cu->combined_mapping_table.insert(cu->combined_mapping_table.end(),
cu->pc2dexMappingTable.begin(),
cu->pc2dexMappingTable.end());
cu->combined_mapping_table.insert(cu->combined_mapping_table.end(),
cu->dex2pcMappingTable.begin(),
cu->dex2pcMappingTable.end());
}
class NativePcToReferenceMapBuilder {
public:
NativePcToReferenceMapBuilder(std::vector<uint8_t>* table,
size_t entries, uint32_t max_native_offset,
size_t references_width) : entries_(entries),
references_width_(references_width), in_use_(entries),
table_(table) {
// Compute width in bytes needed to hold max_native_offset.
native_offset_width_ = 0;
while (max_native_offset != 0) {
native_offset_width_++;
max_native_offset >>= 8;
}
// Resize table and set up header.
table->resize((EntryWidth() * entries) + sizeof(uint32_t));
CHECK_LT(native_offset_width_, 1U << 3);
(*table)[0] = native_offset_width_ & 7;
CHECK_LT(references_width_, 1U << 13);
(*table)[0] |= (references_width_ << 3) & 0xFF;
(*table)[1] = (references_width_ >> 5) & 0xFF;
CHECK_LT(entries, 1U << 16);
(*table)[2] = entries & 0xFF;
(*table)[3] = (entries >> 8) & 0xFF;
}
void AddEntry(uint32_t native_offset, const uint8_t* references) {
size_t table_index = TableIndex(native_offset);
while (in_use_[table_index]) {
table_index = (table_index + 1) % entries_;
}
in_use_[table_index] = true;
SetNativeOffset(table_index, native_offset);
DCHECK_EQ(native_offset, GetNativeOffset(table_index));
SetReferences(table_index, references);
}
private:
size_t TableIndex(uint32_t native_offset) {
return NativePcOffsetToReferenceMap::Hash(native_offset) % entries_;
}
uint32_t GetNativeOffset(size_t table_index) {
uint32_t native_offset = 0;
size_t table_offset = (table_index * EntryWidth()) + sizeof(uint32_t);
for (size_t i = 0; i < native_offset_width_; i++) {
native_offset |= (*table_)[table_offset + i] << (i * 8);
}
return native_offset;
}
void SetNativeOffset(size_t table_index, uint32_t native_offset) {
size_t table_offset = (table_index * EntryWidth()) + sizeof(uint32_t);
for (size_t i = 0; i < native_offset_width_; i++) {
(*table_)[table_offset + i] = (native_offset >> (i * 8)) & 0xFF;
}
}
void SetReferences(size_t table_index, const uint8_t* references) {
size_t table_offset = (table_index * EntryWidth()) + sizeof(uint32_t);
memcpy(&(*table_)[table_offset + native_offset_width_], references, references_width_);
}
size_t EntryWidth() const {
return native_offset_width_ + references_width_;
}
// Number of entries in the table.
const size_t entries_;
// Number of bytes used to encode the reference bitmap.
const size_t references_width_;
// Number of bytes used to encode a native offset.
size_t native_offset_width_;
// Entries that are in use.
std::vector<bool> in_use_;
// The table we're building.
std::vector<uint8_t>* const table_;
};
static void CreateNativeGcMap(CompilationUnit* cu) {
const std::vector<uint32_t>& mapping_table = cu->pc2dexMappingTable;
uint32_t max_native_offset = 0;
for (size_t i = 0; i < mapping_table.size(); i += 2) {
uint32_t native_offset = mapping_table[i + 0];
if (native_offset > max_native_offset) {
max_native_offset = native_offset;
}
}
Compiler::MethodReference method_ref(cu->dex_file, cu->method_idx);
const std::vector<uint8_t>* gc_map_raw = verifier::MethodVerifier::GetDexGcMap(method_ref);
verifier::DexPcToReferenceMap dex_gc_map(&(*gc_map_raw)[4], gc_map_raw->size() - 4);
// Compute native offset to references size.
NativePcToReferenceMapBuilder native_gc_map_builder(&cu->native_gc_map,
mapping_table.size() / 2, max_native_offset,
dex_gc_map.RegWidth());
for (size_t i = 0; i < mapping_table.size(); i += 2) {
uint32_t native_offset = mapping_table[i + 0];
uint32_t dex_pc = mapping_table[i + 1];
const uint8_t* references = dex_gc_map.FindBitMap(dex_pc, false);
CHECK(references != NULL) << "Missing ref for dex pc 0x" << std::hex << dex_pc;
native_gc_map_builder.AddEntry(native_offset, references);
}
}
/* Determine the offset of each literal field */
static int AssignLiteralOffset(CompilationUnit* cu, int offset)
{
offset = AssignLiteralOffsetCommon(cu->literal_list, offset);
offset = AssignLiteralOffsetCommon(cu->code_literal_list, offset);
offset = AssignLiteralOffsetCommon(cu->method_literal_list, offset);
return offset;
}
static int AssignSwitchTablesOffset(CompilationUnit* cu, int offset)
{
GrowableListIterator iterator;
GrowableListIteratorInit(&cu->switch_tables, &iterator);
while (true) {
SwitchTable *tab_rec = reinterpret_cast<SwitchTable*>(GrowableListIteratorNext(&iterator));
if (tab_rec == NULL) break;
tab_rec->offset = offset;
if (tab_rec->table[0] == Instruction::kSparseSwitchSignature) {
offset += tab_rec->table[1] * (sizeof(int) * 2);
} else {
DCHECK_EQ(static_cast<int>(tab_rec->table[0]),
static_cast<int>(Instruction::kPackedSwitchSignature));
offset += tab_rec->table[1] * sizeof(int);
}
}
return offset;
}
static int AssignFillArrayDataOffset(CompilationUnit* cu, int offset)
{
GrowableListIterator iterator;
GrowableListIteratorInit(&cu->fill_array_data, &iterator);
while (true) {
FillArrayData *tab_rec =
reinterpret_cast<FillArrayData*>(GrowableListIteratorNext(&iterator));
if (tab_rec == NULL) break;
tab_rec->offset = offset;
offset += tab_rec->size;
// word align
offset = (offset + 3) & ~3;
}
return offset;
}
// LIR offset assignment.
static int AssignInsnOffsets(CompilationUnit* cu)
{
LIR* lir;
int offset = 0;
for (lir = cu->first_lir_insn; lir != NULL; lir = NEXT_LIR(lir)) {
lir->offset = offset;
if (lir->opcode >= 0) {
if (!lir->flags.is_nop) {
offset += lir->flags.size;
}
} else if (lir->opcode == kPseudoPseudoAlign4) {
if (offset & 0x2) {
offset += 2;
lir->operands[0] = 1;
} else {
lir->operands[0] = 0;
}
}
/* Pseudo opcodes don't consume space */
}
return offset;
}
/*
* Walk the compilation unit and assign offsets to instructions
* and literals and compute the total size of the compiled unit.
*/
static void AssignOffsets(CompilationUnit* cu)
{
int offset = AssignInsnOffsets(cu);
/* Const values have to be word aligned */
offset = (offset + 3) & ~3;
/* Set up offsets for literals */
cu->data_offset = offset;
offset = AssignLiteralOffset(cu, offset);
offset = AssignSwitchTablesOffset(cu, offset);
offset = AssignFillArrayDataOffset(cu, offset);
cu->total_size = offset;
}
/*
* Go over each instruction in the list and calculate the offset from the top
* before sending them off to the assembler. If out-of-range branch distance is
* seen rearrange the instructions a bit to correct it.
*/
void AssembleLIR(CompilationUnit* cu)
{
Codegen* cg = cu->cg.get();
AssignOffsets(cu);
/*
* Assemble here. Note that we generate code with optimistic assumptions
* and if found now to work, we'll have to redo the sequence and retry.
*/
while (true) {
AssemblerStatus res = cg->AssembleInstructions(cu, 0);
if (res == kSuccess) {
break;
} else {
cu->assembler_retries++;
if (cu->assembler_retries > MAX_ASSEMBLER_RETRIES) {
CodegenDump(cu);
LOG(FATAL) << "Assembler error - too many retries";
}
// Redo offsets and try again
AssignOffsets(cu);
cu->code_buffer.clear();
}
}
// Install literals
InstallLiteralPools(cu);
// Install switch tables
InstallSwitchTables(cu);
// Install fill array data
InstallFillArrayData(cu);
// Create the mapping table and native offset to reference map.
CreateMappingTables(cu);
CreateNativeGcMap(cu);
}
/*
* Insert a kPseudoCaseLabel at the beginning of the Dalvik
* offset vaddr. This label will be used to fix up the case
* branch table during the assembly phase. Be sure to set
* all resource flags on this to prevent code motion across
* target boundaries. KeyVal is just there for debugging.
*/
static LIR* InsertCaseLabel(CompilationUnit* cu, int vaddr, int keyVal)
{
SafeMap<unsigned int, LIR*>::iterator it;
it = cu->boundary_map.find(vaddr);
if (it == cu->boundary_map.end()) {
LOG(FATAL) << "Error: didn't find vaddr 0x" << std::hex << vaddr;
}
LIR* new_label = static_cast<LIR*>(NewMem(cu, sizeof(LIR), true, kAllocLIR));
new_label->dalvik_offset = vaddr;
new_label->opcode = kPseudoCaseLabel;
new_label->operands[0] = keyVal;
InsertLIRAfter(it->second, new_label);
return new_label;
}
static void MarkPackedCaseLabels(CompilationUnit* cu, SwitchTable *tab_rec)
{
const uint16_t* table = tab_rec->table;
int base_vaddr = tab_rec->vaddr;
const int *targets = reinterpret_cast<const int*>(&table[4]);
int entries = table[1];
int low_key = s4FromSwitchData(&table[2]);
for (int i = 0; i < entries; i++) {
tab_rec->targets[i] = InsertCaseLabel(cu, base_vaddr + targets[i], i + low_key);
}
}
static void MarkSparseCaseLabels(CompilationUnit* cu, SwitchTable *tab_rec)
{
const uint16_t* table = tab_rec->table;
int base_vaddr = tab_rec->vaddr;
int entries = table[1];
const int* keys = reinterpret_cast<const int*>(&table[2]);
const int* targets = &keys[entries];
for (int i = 0; i < entries; i++) {
tab_rec->targets[i] = InsertCaseLabel(cu, base_vaddr + targets[i], keys[i]);
}
}
void ProcessSwitchTables(CompilationUnit* cu)
{
GrowableListIterator iterator;
GrowableListIteratorInit(&cu->switch_tables, &iterator);
while (true) {
SwitchTable *tab_rec =
reinterpret_cast<SwitchTable*>(GrowableListIteratorNext(&iterator));
if (tab_rec == NULL) break;
if (tab_rec->table[0] == Instruction::kPackedSwitchSignature) {
MarkPackedCaseLabels(cu, tab_rec);
} else if (tab_rec->table[0] == Instruction::kSparseSwitchSignature) {
MarkSparseCaseLabels(cu, tab_rec);
} else {
LOG(FATAL) << "Invalid switch table";
}
}
}
void DumpSparseSwitchTable(const uint16_t* table)
/*
* Sparse switch data format:
* ushort ident = 0x0200 magic value
* ushort size number of entries in the table; > 0
* int keys[size] keys, sorted low-to-high; 32-bit aligned
* int targets[size] branch targets, relative to switch opcode
*
* Total size is (2+size*4) 16-bit code units.
*/
{
uint16_t ident = table[0];
int entries = table[1];
const int* keys = reinterpret_cast<const int*>(&table[2]);
const int* targets = &keys[entries];
LOG(INFO) << "Sparse switch table - ident:0x" << std::hex << ident
<< ", entries: " << std::dec << entries;
for (int i = 0; i < entries; i++) {
LOG(INFO) << " Key[" << keys[i] << "] -> 0x" << std::hex << targets[i];
}
}
void DumpPackedSwitchTable(const uint16_t* table)
/*
* Packed switch data format:
* ushort ident = 0x0100 magic value
* ushort size number of entries in the table
* int first_key first (and lowest) switch case value
* int targets[size] branch targets, relative to switch opcode
*
* Total size is (4+size*2) 16-bit code units.
*/
{
uint16_t ident = table[0];
const int* targets = reinterpret_cast<const int*>(&table[4]);
int entries = table[1];
int low_key = s4FromSwitchData(&table[2]);
LOG(INFO) << "Packed switch table - ident:0x" << std::hex << ident
<< ", entries: " << std::dec << entries << ", low_key: " << low_key;
for (int i = 0; i < entries; i++) {
LOG(INFO) << " Key[" << (i + low_key) << "] -> 0x" << std::hex
<< targets[i];
}
}
/*
* Set up special LIR to mark a Dalvik byte-code instruction start and
* record it in the boundary_map. NOTE: in cases such as kMirOpCheck in
* which we split a single Dalvik instruction, only the first MIR op
* associated with a Dalvik PC should be entered into the map.
*/
LIR* MarkBoundary(CompilationUnit* cu, int offset, const char* inst_str)
{
LIR* res = NewLIR1(cu, kPseudoDalvikByteCodeBoundary, reinterpret_cast<uintptr_t>(inst_str));
if (cu->boundary_map.find(offset) == cu->boundary_map.end()) {
cu->boundary_map.Put(offset, res);
}
return res;
}
bool EvaluateBranch(Instruction::Code opcode, int32_t src1, int32_t src2)
{
bool is_taken;
switch (opcode) {
case Instruction::IF_EQ: is_taken = (src1 == src2); break;
case Instruction::IF_NE: is_taken = (src1 != src2); break;
case Instruction::IF_LT: is_taken = (src1 < src2); break;
case Instruction::IF_GE: is_taken = (src1 >= src2); break;
case Instruction::IF_GT: is_taken = (src1 > src2); break;
case Instruction::IF_LE: is_taken = (src1 <= src2); break;
case Instruction::IF_EQZ: is_taken = (src1 == 0); break;
case Instruction::IF_NEZ: is_taken = (src1 != 0); break;
case Instruction::IF_LTZ: is_taken = (src1 < 0); break;
case Instruction::IF_GEZ: is_taken = (src1 >= 0); break;
case Instruction::IF_GTZ: is_taken = (src1 > 0); break;
case Instruction::IF_LEZ: is_taken = (src1 <= 0); break;
default:
LOG(FATAL) << "Unexpected opcode " << opcode;
is_taken = false;
}
return is_taken;
}
// Convert relation of src1/src2 to src2/src1
ConditionCode FlipComparisonOrder(ConditionCode before) {
ConditionCode res;
switch (before) {
case kCondEq: res = kCondEq; break;
case kCondNe: res = kCondNe; break;
case kCondLt: res = kCondGt; break;
case kCondGt: res = kCondLt; break;
case kCondLe: res = kCondGe; break;
case kCondGe: res = kCondLe; break;
default:
res = static_cast<ConditionCode>(0);
LOG(FATAL) << "Unexpected ccode " << before;
}
return res;
}
} // namespace art