blob: 1b4e910062789139417427326645aa9325c3928a [file] [log] [blame]
/* Copyright (C) 2016 The Android Open Source Project
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This file implements interfaces from the file jvmti.h. This implementation
* is licensed under the same terms as the file jvmti.h. The
* copyright and license information for the file jvmti.h follows.
*
* Copyright (c) 2003, 2011, Oracle and/or its affiliates. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 only, as
* published by the Free Software Foundation. Oracle designates this
* particular file as subject to the "Classpath" exception as provided
* by Oracle in the LICENSE file that accompanied this code.
*
* This code is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* version 2 for more details (a copy is included in the LICENSE file that
* accompanied this code).
*
* You should have received a copy of the GNU General Public License version
* 2 along with this work; if not, write to the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
* or visit www.oracle.com if you need additional information or have any
* questions.
*/
#include "ti_redefine.h"
#include <limits>
#include "android-base/stringprintf.h"
#include "art_field-inl.h"
#include "art_jvmti.h"
#include "art_method-inl.h"
#include "base/array_ref.h"
#include "base/logging.h"
#include "base/stringpiece.h"
#include "class_linker-inl.h"
#include "debugger.h"
#include "dex_file.h"
#include "dex_file_types.h"
#include "events-inl.h"
#include "gc/allocation_listener.h"
#include "gc/heap.h"
#include "instrumentation.h"
#include "intern_table.h"
#include "jdwp/jdwp.h"
#include "jdwp/jdwp_constants.h"
#include "jdwp/jdwp_event.h"
#include "jdwp/object_registry.h"
#include "jit/jit.h"
#include "jit/jit_code_cache.h"
#include "jni_env_ext-inl.h"
#include "jvmti_allocator.h"
#include "mirror/class-inl.h"
#include "mirror/class_ext.h"
#include "mirror/object.h"
#include "nativehelper/ScopedLocalRef.h"
#include "non_debuggable_classes.h"
#include "object_lock.h"
#include "runtime.h"
#include "ti_breakpoint.h"
#include "ti_class_loader.h"
#include "transform.h"
#include "verifier/method_verifier.h"
#include "verifier/verifier_enums.h"
namespace openjdkjvmti {
using android::base::StringPrintf;
// A helper that fills in a classes obsolete_methods_ and obsolete_dex_caches_ classExt fields as
// they are created. This ensures that we can always call any method of an obsolete ArtMethod object
// almost as soon as they are created since the GetObsoleteDexCache method will succeed.
class ObsoleteMap {
public:
art::ArtMethod* FindObsoleteVersion(art::ArtMethod* original)
REQUIRES(art::Locks::mutator_lock_, art::Roles::uninterruptible_) {
auto method_pair = id_map_.find(original);
if (method_pair != id_map_.end()) {
art::ArtMethod* res = obsolete_methods_->GetElementPtrSize<art::ArtMethod*>(
method_pair->second, art::kRuntimePointerSize);
DCHECK(res != nullptr);
DCHECK_EQ(original, res->GetNonObsoleteMethod());
return res;
} else {
return nullptr;
}
}
void RecordObsolete(art::ArtMethod* original, art::ArtMethod* obsolete)
REQUIRES(art::Locks::mutator_lock_, art::Roles::uninterruptible_) {
DCHECK(original != nullptr);
DCHECK(obsolete != nullptr);
int32_t slot = next_free_slot_++;
DCHECK_LT(slot, obsolete_methods_->GetLength());
DCHECK(nullptr ==
obsolete_methods_->GetElementPtrSize<art::ArtMethod*>(slot, art::kRuntimePointerSize));
DCHECK(nullptr == obsolete_dex_caches_->Get(slot));
obsolete_methods_->SetElementPtrSize(slot, obsolete, art::kRuntimePointerSize);
obsolete_dex_caches_->Set(slot, original_dex_cache_);
id_map_.insert({original, slot});
}
ObsoleteMap(art::ObjPtr<art::mirror::PointerArray> obsolete_methods,
art::ObjPtr<art::mirror::ObjectArray<art::mirror::DexCache>> obsolete_dex_caches,
art::ObjPtr<art::mirror::DexCache> original_dex_cache)
: next_free_slot_(0),
obsolete_methods_(obsolete_methods),
obsolete_dex_caches_(obsolete_dex_caches),
original_dex_cache_(original_dex_cache) {
// Figure out where the first unused slot in the obsolete_methods_ array is.
while (obsolete_methods_->GetElementPtrSize<art::ArtMethod*>(
next_free_slot_, art::kRuntimePointerSize) != nullptr) {
DCHECK(obsolete_dex_caches_->Get(next_free_slot_) != nullptr);
next_free_slot_++;
}
// Sanity check that the same slot in obsolete_dex_caches_ is free.
DCHECK(obsolete_dex_caches_->Get(next_free_slot_) == nullptr);
}
private:
int32_t next_free_slot_;
std::unordered_map<art::ArtMethod*, int32_t> id_map_;
// Pointers to the fields in mirror::ClassExt. These can be held as ObjPtr since this is only used
// when we have an exclusive mutator_lock_ (i.e. all threads are suspended).
art::ObjPtr<art::mirror::PointerArray> obsolete_methods_;
art::ObjPtr<art::mirror::ObjectArray<art::mirror::DexCache>> obsolete_dex_caches_;
art::ObjPtr<art::mirror::DexCache> original_dex_cache_;
};
// This visitor walks thread stacks and allocates and sets up the obsolete methods. It also does
// some basic sanity checks that the obsolete method is sane.
class ObsoleteMethodStackVisitor : public art::StackVisitor {
protected:
ObsoleteMethodStackVisitor(
art::Thread* thread,
art::LinearAlloc* allocator,
const std::unordered_set<art::ArtMethod*>& obsoleted_methods,
ObsoleteMap* obsolete_maps)
: StackVisitor(thread,
/*context*/nullptr,
StackVisitor::StackWalkKind::kIncludeInlinedFrames),
allocator_(allocator),
obsoleted_methods_(obsoleted_methods),
obsolete_maps_(obsolete_maps) { }
~ObsoleteMethodStackVisitor() OVERRIDE {}
public:
// Returns true if we successfully installed obsolete methods on this thread, filling
// obsolete_maps_ with the translations if needed. Returns false and fills error_msg if we fail.
// The stack is cleaned up when we fail.
static void UpdateObsoleteFrames(
art::Thread* thread,
art::LinearAlloc* allocator,
const std::unordered_set<art::ArtMethod*>& obsoleted_methods,
ObsoleteMap* obsolete_maps)
REQUIRES(art::Locks::mutator_lock_) {
ObsoleteMethodStackVisitor visitor(thread,
allocator,
obsoleted_methods,
obsolete_maps);
visitor.WalkStack();
}
bool VisitFrame() OVERRIDE REQUIRES(art::Locks::mutator_lock_) {
art::ScopedAssertNoThreadSuspension snts("Fixing up the stack for obsolete methods.");
art::ArtMethod* old_method = GetMethod();
if (obsoleted_methods_.find(old_method) != obsoleted_methods_.end()) {
// We cannot ensure that the right dex file is used in inlined frames so we don't support
// redefining them.
DCHECK(!IsInInlinedFrame()) << "Inlined frames are not supported when using redefinition";
art::ArtMethod* new_obsolete_method = obsolete_maps_->FindObsoleteVersion(old_method);
if (new_obsolete_method == nullptr) {
// Create a new Obsolete Method and put it in the list.
art::Runtime* runtime = art::Runtime::Current();
art::ClassLinker* cl = runtime->GetClassLinker();
auto ptr_size = cl->GetImagePointerSize();
const size_t method_size = art::ArtMethod::Size(ptr_size);
auto* method_storage = allocator_->Alloc(art::Thread::Current(), method_size);
CHECK(method_storage != nullptr) << "Unable to allocate storage for obsolete version of '"
<< old_method->PrettyMethod() << "'";
new_obsolete_method = new (method_storage) art::ArtMethod();
new_obsolete_method->CopyFrom(old_method, ptr_size);
DCHECK_EQ(new_obsolete_method->GetDeclaringClass(), old_method->GetDeclaringClass());
new_obsolete_method->SetIsObsolete();
new_obsolete_method->SetDontCompile();
cl->SetEntryPointsForObsoleteMethod(new_obsolete_method);
obsolete_maps_->RecordObsolete(old_method, new_obsolete_method);
// Update JIT Data structures to point to the new method.
art::jit::Jit* jit = art::Runtime::Current()->GetJit();
if (jit != nullptr) {
// Notify the JIT we are making this obsolete method. It will update the jit's internal
// structures to keep track of the new obsolete method.
jit->GetCodeCache()->MoveObsoleteMethod(old_method, new_obsolete_method);
}
}
DCHECK(new_obsolete_method != nullptr);
SetMethod(new_obsolete_method);
}
return true;
}
private:
// The linear allocator we should use to make new methods.
art::LinearAlloc* allocator_;
// The set of all methods which could be obsoleted.
const std::unordered_set<art::ArtMethod*>& obsoleted_methods_;
// A map from the original to the newly allocated obsolete method for frames on this thread. The
// values in this map are added to the obsolete_methods_ (and obsolete_dex_caches_) fields of
// the redefined classes ClassExt as it is filled.
ObsoleteMap* obsolete_maps_;
};
jvmtiError Redefiner::IsModifiableClass(jvmtiEnv* env ATTRIBUTE_UNUSED,
jclass klass,
jboolean* is_redefinable) {
art::Thread* self = art::Thread::Current();
art::ScopedObjectAccess soa(self);
art::StackHandleScope<1> hs(self);
art::ObjPtr<art::mirror::Object> obj(self->DecodeJObject(klass));
if (obj.IsNull()) {
return ERR(INVALID_CLASS);
}
art::Handle<art::mirror::Class> h_klass(hs.NewHandle(obj->AsClass()));
std::string err_unused;
*is_redefinable =
Redefiner::GetClassRedefinitionError(h_klass, &err_unused) == OK ? JNI_TRUE : JNI_FALSE;
return OK;
}
jvmtiError Redefiner::GetClassRedefinitionError(art::Handle<art::mirror::Class> klass,
/*out*/std::string* error_msg) {
if (klass->IsPrimitive()) {
*error_msg = "Modification of primitive classes is not supported";
return ERR(UNMODIFIABLE_CLASS);
} else if (klass->IsInterface()) {
*error_msg = "Modification of Interface classes is currently not supported";
return ERR(UNMODIFIABLE_CLASS);
} else if (klass->IsStringClass()) {
*error_msg = "Modification of String class is not supported";
return ERR(UNMODIFIABLE_CLASS);
} else if (klass->IsArrayClass()) {
*error_msg = "Modification of Array classes is not supported";
return ERR(UNMODIFIABLE_CLASS);
} else if (klass->IsProxyClass()) {
*error_msg = "Modification of proxy classes is not supported";
return ERR(UNMODIFIABLE_CLASS);
}
for (jclass c : art::NonDebuggableClasses::GetNonDebuggableClasses()) {
if (klass.Get() == art::Thread::Current()->DecodeJObject(c)->AsClass()) {
*error_msg = "Class might have stack frames that cannot be made obsolete";
return ERR(UNMODIFIABLE_CLASS);
}
}
return OK;
}
// Moves dex data to an anonymous, read-only mmap'd region.
std::unique_ptr<art::MemMap> Redefiner::MoveDataToMemMap(const std::string& original_location,
art::ArrayRef<const unsigned char> data,
std::string* error_msg) {
std::unique_ptr<art::MemMap> map(art::MemMap::MapAnonymous(
StringPrintf("%s-transformed", original_location.c_str()).c_str(),
nullptr,
data.size(),
PROT_READ|PROT_WRITE,
/*low_4gb*/false,
/*reuse*/false,
error_msg));
if (map == nullptr) {
return map;
}
memcpy(map->Begin(), data.data(), data.size());
// Make the dex files mmap read only. This matches how other DexFiles are mmaped and prevents
// programs from corrupting it.
map->Protect(PROT_READ);
return map;
}
Redefiner::ClassRedefinition::ClassRedefinition(
Redefiner* driver,
jclass klass,
const art::DexFile* redefined_dex_file,
const char* class_sig,
art::ArrayRef<const unsigned char> orig_dex_file) :
driver_(driver),
klass_(klass),
dex_file_(redefined_dex_file),
class_sig_(class_sig),
original_dex_file_(orig_dex_file) {
GetMirrorClass()->MonitorEnter(driver_->self_);
}
Redefiner::ClassRedefinition::~ClassRedefinition() {
if (driver_ != nullptr) {
GetMirrorClass()->MonitorExit(driver_->self_);
}
}
jvmtiError Redefiner::RedefineClasses(ArtJvmTiEnv* env,
EventHandler* event_handler,
art::Runtime* runtime,
art::Thread* self,
jint class_count,
const jvmtiClassDefinition* definitions,
/*out*/std::string* error_msg) {
if (env == nullptr) {
*error_msg = "env was null!";
return ERR(INVALID_ENVIRONMENT);
} else if (class_count < 0) {
*error_msg = "class_count was less then 0";
return ERR(ILLEGAL_ARGUMENT);
} else if (class_count == 0) {
// We don't actually need to do anything. Just return OK.
return OK;
} else if (definitions == nullptr) {
*error_msg = "null definitions!";
return ERR(NULL_POINTER);
}
std::vector<ArtClassDefinition> def_vector;
def_vector.reserve(class_count);
for (jint i = 0; i < class_count; i++) {
jboolean is_modifiable = JNI_FALSE;
jvmtiError res = env->IsModifiableClass(definitions[i].klass, &is_modifiable);
if (res != OK) {
return res;
} else if (!is_modifiable) {
return ERR(UNMODIFIABLE_CLASS);
}
// We make a copy of the class_bytes to pass into the retransformation.
// This makes cleanup easier (since we unambiguously own the bytes) and also is useful since we
// will need to keep the original bytes around unaltered for subsequent RetransformClasses calls
// to get the passed in bytes.
unsigned char* class_bytes_copy = nullptr;
res = env->Allocate(definitions[i].class_byte_count, &class_bytes_copy);
if (res != OK) {
return res;
}
memcpy(class_bytes_copy, definitions[i].class_bytes, definitions[i].class_byte_count);
ArtClassDefinition def;
res = def.Init(env, definitions[i]);
if (res != OK) {
return res;
}
def_vector.push_back(std::move(def));
}
// Call all the transformation events.
jvmtiError res = Transformer::RetransformClassesDirect(env,
event_handler,
self,
&def_vector);
if (res != OK) {
// Something went wrong with transformation!
return res;
}
return RedefineClassesDirect(env, runtime, self, def_vector, error_msg);
}
jvmtiError Redefiner::RedefineClassesDirect(ArtJvmTiEnv* env,
art::Runtime* runtime,
art::Thread* self,
const std::vector<ArtClassDefinition>& definitions,
std::string* error_msg) {
DCHECK(env != nullptr);
if (definitions.size() == 0) {
// We don't actually need to do anything. Just return OK.
return OK;
}
// Stop JIT for the duration of this redefine since the JIT might concurrently compile a method we
// are going to redefine.
art::jit::ScopedJitSuspend suspend_jit;
// Get shared mutator lock so we can lock all the classes.
art::ScopedObjectAccess soa(self);
Redefiner r(env, runtime, self, error_msg);
for (const ArtClassDefinition& def : definitions) {
// Only try to transform classes that have been modified.
if (def.IsModified()) {
jvmtiError res = r.AddRedefinition(env, def);
if (res != OK) {
return res;
}
}
}
return r.Run();
}
jvmtiError Redefiner::AddRedefinition(ArtJvmTiEnv* env, const ArtClassDefinition& def) {
std::string original_dex_location;
jvmtiError ret = OK;
if ((ret = GetClassLocation(env, def.GetClass(), &original_dex_location))) {
*error_msg_ = "Unable to get original dex file location!";
return ret;
}
char* generic_ptr_unused = nullptr;
char* signature_ptr = nullptr;
if ((ret = env->GetClassSignature(def.GetClass(), &signature_ptr, &generic_ptr_unused)) != OK) {
*error_msg_ = "Unable to get class signature!";
return ret;
}
JvmtiUniquePtr<char> generic_unique_ptr(MakeJvmtiUniquePtr(env, generic_ptr_unused));
JvmtiUniquePtr<char> signature_unique_ptr(MakeJvmtiUniquePtr(env, signature_ptr));
std::unique_ptr<art::MemMap> map(MoveDataToMemMap(original_dex_location,
def.GetDexData(),
error_msg_));
std::ostringstream os;
if (map.get() == nullptr) {
os << "Failed to create anonymous mmap for modified dex file of class " << def.GetName()
<< "in dex file " << original_dex_location << " because: " << *error_msg_;
*error_msg_ = os.str();
return ERR(OUT_OF_MEMORY);
}
if (map->Size() < sizeof(art::DexFile::Header)) {
*error_msg_ = "Could not read dex file header because dex_data was too short";
return ERR(INVALID_CLASS_FORMAT);
}
uint32_t checksum = reinterpret_cast<const art::DexFile::Header*>(map->Begin())->checksum_;
std::unique_ptr<const art::DexFile> dex_file(art::DexFile::Open(map->GetName(),
checksum,
std::move(map),
/*verify*/true,
/*verify_checksum*/true,
error_msg_));
if (dex_file.get() == nullptr) {
os << "Unable to load modified dex file for " << def.GetName() << ": " << *error_msg_;
*error_msg_ = os.str();
return ERR(INVALID_CLASS_FORMAT);
}
redefinitions_.push_back(
Redefiner::ClassRedefinition(this,
def.GetClass(),
dex_file.release(),
signature_ptr,
def.GetNewOriginalDexFile()));
return OK;
}
art::mirror::Class* Redefiner::ClassRedefinition::GetMirrorClass() {
return driver_->self_->DecodeJObject(klass_)->AsClass();
}
art::mirror::ClassLoader* Redefiner::ClassRedefinition::GetClassLoader() {
return GetMirrorClass()->GetClassLoader();
}
art::mirror::DexCache* Redefiner::ClassRedefinition::CreateNewDexCache(
art::Handle<art::mirror::ClassLoader> loader) {
art::StackHandleScope<2> hs(driver_->self_);
art::ClassLinker* cl = driver_->runtime_->GetClassLinker();
art::Handle<art::mirror::DexCache> cache(hs.NewHandle(
art::ObjPtr<art::mirror::DexCache>::DownCast(
cl->GetClassRoot(art::ClassLinker::kJavaLangDexCache)->AllocObject(driver_->self_))));
if (cache.IsNull()) {
driver_->self_->AssertPendingOOMException();
return nullptr;
}
art::Handle<art::mirror::String> location(hs.NewHandle(
cl->GetInternTable()->InternStrong(dex_file_->GetLocation().c_str())));
if (location.IsNull()) {
driver_->self_->AssertPendingOOMException();
return nullptr;
}
art::WriterMutexLock mu(driver_->self_, *art::Locks::dex_lock_);
art::mirror::DexCache::InitializeDexCache(driver_->self_,
cache.Get(),
location.Get(),
dex_file_.get(),
loader.IsNull() ? driver_->runtime_->GetLinearAlloc()
: loader->GetAllocator(),
art::kRuntimePointerSize);
return cache.Get();
}
void Redefiner::RecordFailure(jvmtiError result,
const std::string& class_sig,
const std::string& error_msg) {
*error_msg_ = StringPrintf("Unable to perform redefinition of '%s': %s",
class_sig.c_str(),
error_msg.c_str());
result_ = result;
}
art::mirror::Object* Redefiner::ClassRedefinition::AllocateOrGetOriginalDexFile() {
// If we have been specifically given a new set of bytes use that
if (original_dex_file_.size() != 0) {
return art::mirror::ByteArray::AllocateAndFill(
driver_->self_,
reinterpret_cast<const signed char*>(original_dex_file_.data()),
original_dex_file_.size());
}
// See if we already have one set.
art::ObjPtr<art::mirror::ClassExt> ext(GetMirrorClass()->GetExtData());
if (!ext.IsNull()) {
art::ObjPtr<art::mirror::Object> old_original_dex_file(ext->GetOriginalDexFile());
if (!old_original_dex_file.IsNull()) {
// We do. Use it.
return old_original_dex_file.Ptr();
}
}
// return the current dex_cache which has the dex file in it.
art::ObjPtr<art::mirror::DexCache> current_dex_cache(GetMirrorClass()->GetDexCache());
// TODO Handle this or make it so it cannot happen.
if (current_dex_cache->GetDexFile()->NumClassDefs() != 1) {
LOG(WARNING) << "Current dex file has more than one class in it. Calling RetransformClasses "
<< "on this class might fail if no transformations are applied to it!";
}
return current_dex_cache.Ptr();
}
struct CallbackCtx {
ObsoleteMap* obsolete_map;
art::LinearAlloc* allocator;
std::unordered_set<art::ArtMethod*> obsolete_methods;
explicit CallbackCtx(ObsoleteMap* map, art::LinearAlloc* alloc)
: obsolete_map(map), allocator(alloc) {}
};
void DoAllocateObsoleteMethodsCallback(art::Thread* t, void* vdata) NO_THREAD_SAFETY_ANALYSIS {
CallbackCtx* data = reinterpret_cast<CallbackCtx*>(vdata);
ObsoleteMethodStackVisitor::UpdateObsoleteFrames(t,
data->allocator,
data->obsolete_methods,
data->obsolete_map);
}
// This creates any ArtMethod* structures needed for obsolete methods and ensures that the stack is
// updated so they will be run.
// TODO Rewrite so we can do this only once regardless of how many redefinitions there are.
void Redefiner::ClassRedefinition::FindAndAllocateObsoleteMethods(art::mirror::Class* art_klass) {
art::ScopedAssertNoThreadSuspension ns("No thread suspension during thread stack walking");
art::mirror::ClassExt* ext = art_klass->GetExtData();
CHECK(ext->GetObsoleteMethods() != nullptr);
art::ClassLinker* linker = driver_->runtime_->GetClassLinker();
// This holds pointers to the obsolete methods map fields which are updated as needed.
ObsoleteMap map(ext->GetObsoleteMethods(), ext->GetObsoleteDexCaches(), art_klass->GetDexCache());
CallbackCtx ctx(&map, linker->GetAllocatorForClassLoader(art_klass->GetClassLoader()));
// Add all the declared methods to the map
for (auto& m : art_klass->GetDeclaredMethods(art::kRuntimePointerSize)) {
if (m.IsIntrinsic()) {
LOG(WARNING) << "Redefining intrinsic method " << m.PrettyMethod() << ". This may cause the "
<< "unexpected use of the original definition of " << m.PrettyMethod() << "in "
<< "methods that have already been compiled.";
}
// It is possible to simply filter out some methods where they cannot really become obsolete,
// such as native methods and keep their original (possibly optimized) implementations. We don't
// do this, however, since we would need to mark these functions (still in the classes
// declared_methods array) as obsolete so we will find the correct dex file to get meta-data
// from (for example about stack-frame size). Furthermore we would be unable to get some useful
// error checking from the interpreter which ensure we don't try to start executing obsolete
// methods.
ctx.obsolete_methods.insert(&m);
}
{
art::MutexLock mu(driver_->self_, *art::Locks::thread_list_lock_);
art::ThreadList* list = art::Runtime::Current()->GetThreadList();
list->ForEach(DoAllocateObsoleteMethodsCallback, static_cast<void*>(&ctx));
}
}
// Try and get the declared method. First try to get a virtual method then a direct method if that's
// not found.
static art::ArtMethod* FindMethod(art::Handle<art::mirror::Class> klass,
art::StringPiece name,
art::Signature sig) REQUIRES_SHARED(art::Locks::mutator_lock_) {
DCHECK(!klass->IsProxyClass());
for (art::ArtMethod& m : klass->GetDeclaredMethodsSlice(art::kRuntimePointerSize)) {
if (m.GetName() == name && m.GetSignature() == sig) {
return &m;
}
}
return nullptr;
}
bool Redefiner::ClassRedefinition::CheckSameMethods() {
art::StackHandleScope<1> hs(driver_->self_);
art::Handle<art::mirror::Class> h_klass(hs.NewHandle(GetMirrorClass()));
DCHECK_EQ(dex_file_->NumClassDefs(), 1u);
art::ClassDataItemIterator new_iter(*dex_file_,
dex_file_->GetClassData(dex_file_->GetClassDef(0)));
// Make sure we have the same number of methods.
uint32_t num_new_method = new_iter.NumVirtualMethods() + new_iter.NumDirectMethods();
uint32_t num_old_method = h_klass->GetDeclaredMethodsSlice(art::kRuntimePointerSize).size();
if (num_new_method != num_old_method) {
bool bigger = num_new_method > num_old_method;
RecordFailure(bigger ? ERR(UNSUPPORTED_REDEFINITION_METHOD_ADDED)
: ERR(UNSUPPORTED_REDEFINITION_METHOD_DELETED),
StringPrintf("Total number of declared methods changed from %d to %d",
num_old_method, num_new_method));
return false;
}
// Skip all of the fields. We should have already checked this.
new_iter.SkipAllFields();
// Check each of the methods. NB we don't need to specifically check for removals since the 2 dex
// files have the same number of methods, which means there must be an equal amount of additions
// and removals.
for (; new_iter.HasNextVirtualMethod() || new_iter.HasNextDirectMethod(); new_iter.Next()) {
// Get the data on the method we are searching for
const art::DexFile::MethodId& new_method_id = dex_file_->GetMethodId(new_iter.GetMemberIndex());
const char* new_method_name = dex_file_->GetMethodName(new_method_id);
art::Signature new_method_signature = dex_file_->GetMethodSignature(new_method_id);
art::ArtMethod* old_method = FindMethod(h_klass, new_method_name, new_method_signature);
// If we got past the check for the same number of methods above that means there must be at
// least one added and one removed method. We will return the ADDED failure message since it is
// easier to get a useful error report for it.
if (old_method == nullptr) {
RecordFailure(ERR(UNSUPPORTED_REDEFINITION_METHOD_ADDED),
StringPrintf("Unknown method '%s' (sig: %s) was added!",
new_method_name,
new_method_signature.ToString().c_str()));
return false;
}
// Since direct methods have different flags than virtual ones (specifically direct methods must
// have kAccPrivate or kAccStatic or kAccConstructor flags) we can tell if a method changes from
// virtual to direct.
uint32_t new_flags = new_iter.GetMethodAccessFlags() & ~art::kAccPreviouslyWarm;
if (new_flags != (old_method->GetAccessFlags() & (art::kAccValidMethodFlags ^ art::kAccPreviouslyWarm))) {
RecordFailure(ERR(UNSUPPORTED_REDEFINITION_METHOD_MODIFIERS_CHANGED),
StringPrintf("method '%s' (sig: %s) had different access flags",
new_method_name,
new_method_signature.ToString().c_str()));
return false;
}
}
return true;
}
bool Redefiner::ClassRedefinition::CheckSameFields() {
art::StackHandleScope<1> hs(driver_->self_);
art::Handle<art::mirror::Class> h_klass(hs.NewHandle(GetMirrorClass()));
DCHECK_EQ(dex_file_->NumClassDefs(), 1u);
art::ClassDataItemIterator new_iter(*dex_file_,
dex_file_->GetClassData(dex_file_->GetClassDef(0)));
const art::DexFile& old_dex_file = h_klass->GetDexFile();
art::ClassDataItemIterator old_iter(old_dex_file,
old_dex_file.GetClassData(*h_klass->GetClassDef()));
// Instance and static fields can be differentiated by their flags so no need to check them
// separately.
while (new_iter.HasNextInstanceField() || new_iter.HasNextStaticField()) {
// Get the data on the method we are searching for
const art::DexFile::FieldId& new_field_id = dex_file_->GetFieldId(new_iter.GetMemberIndex());
const char* new_field_name = dex_file_->GetFieldName(new_field_id);
const char* new_field_type = dex_file_->GetFieldTypeDescriptor(new_field_id);
if (!(old_iter.HasNextInstanceField() || old_iter.HasNextStaticField())) {
// We are missing the old version of this method!
RecordFailure(ERR(UNSUPPORTED_REDEFINITION_SCHEMA_CHANGED),
StringPrintf("Unknown field '%s' (type: %s) added!",
new_field_name,
new_field_type));
return false;
}
const art::DexFile::FieldId& old_field_id = old_dex_file.GetFieldId(old_iter.GetMemberIndex());
const char* old_field_name = old_dex_file.GetFieldName(old_field_id);
const char* old_field_type = old_dex_file.GetFieldTypeDescriptor(old_field_id);
// Check name and type.
if (strcmp(old_field_name, new_field_name) != 0 ||
strcmp(old_field_type, new_field_type) != 0) {
RecordFailure(ERR(UNSUPPORTED_REDEFINITION_SCHEMA_CHANGED),
StringPrintf("Field changed from '%s' (sig: %s) to '%s' (sig: %s)!",
old_field_name,
old_field_type,
new_field_name,
new_field_type));
return false;
}
// Since static fields have different flags than instance ones (specifically static fields must
// have the kAccStatic flag) we can tell if a field changes from static to instance.
if (new_iter.GetFieldAccessFlags() != old_iter.GetFieldAccessFlags()) {
RecordFailure(ERR(UNSUPPORTED_REDEFINITION_SCHEMA_CHANGED),
StringPrintf("Field '%s' (sig: %s) had different access flags",
new_field_name,
new_field_type));
return false;
}
new_iter.Next();
old_iter.Next();
}
if (old_iter.HasNextInstanceField() || old_iter.HasNextStaticField()) {
RecordFailure(ERR(UNSUPPORTED_REDEFINITION_SCHEMA_CHANGED),
StringPrintf("field '%s' (sig: %s) is missing!",
old_dex_file.GetFieldName(old_dex_file.GetFieldId(
old_iter.GetMemberIndex())),
old_dex_file.GetFieldTypeDescriptor(old_dex_file.GetFieldId(
old_iter.GetMemberIndex()))));
return false;
}
return true;
}
bool Redefiner::ClassRedefinition::CheckClass() {
art::StackHandleScope<1> hs(driver_->self_);
// Easy check that only 1 class def is present.
if (dex_file_->NumClassDefs() != 1) {
RecordFailure(ERR(ILLEGAL_ARGUMENT),
StringPrintf("Expected 1 class def in dex file but found %d",
dex_file_->NumClassDefs()));
return false;
}
// Get the ClassDef from the new DexFile.
// Since the dex file has only a single class def the index is always 0.
const art::DexFile::ClassDef& def = dex_file_->GetClassDef(0);
// Get the class as it is now.
art::Handle<art::mirror::Class> current_class(hs.NewHandle(GetMirrorClass()));
// Check the access flags didn't change.
if (def.GetJavaAccessFlags() != (current_class->GetAccessFlags() & art::kAccValidClassFlags)) {
RecordFailure(ERR(UNSUPPORTED_REDEFINITION_CLASS_MODIFIERS_CHANGED),
"Cannot change modifiers of class by redefinition");
return false;
}
// Check class name.
// These should have been checked by the dexfile verifier on load.
DCHECK_NE(def.class_idx_, art::dex::TypeIndex::Invalid()) << "Invalid type index";
const char* descriptor = dex_file_->StringByTypeIdx(def.class_idx_);
DCHECK(descriptor != nullptr) << "Invalid dex file structure!";
if (!current_class->DescriptorEquals(descriptor)) {
std::string storage;
RecordFailure(ERR(NAMES_DONT_MATCH),
StringPrintf("expected file to contain class called '%s' but found '%s'!",
current_class->GetDescriptor(&storage),
descriptor));
return false;
}
if (current_class->IsObjectClass()) {
if (def.superclass_idx_ != art::dex::TypeIndex::Invalid()) {
RecordFailure(ERR(UNSUPPORTED_REDEFINITION_HIERARCHY_CHANGED), "Superclass added!");
return false;
}
} else {
const char* super_descriptor = dex_file_->StringByTypeIdx(def.superclass_idx_);
DCHECK(descriptor != nullptr) << "Invalid dex file structure!";
if (!current_class->GetSuperClass()->DescriptorEquals(super_descriptor)) {
RecordFailure(ERR(UNSUPPORTED_REDEFINITION_HIERARCHY_CHANGED), "Superclass changed");
return false;
}
}
const art::DexFile::TypeList* interfaces = dex_file_->GetInterfacesList(def);
if (interfaces == nullptr) {
if (current_class->NumDirectInterfaces() != 0) {
RecordFailure(ERR(UNSUPPORTED_REDEFINITION_HIERARCHY_CHANGED), "Interfaces added");
return false;
}
} else {
DCHECK(!current_class->IsProxyClass());
const art::DexFile::TypeList* current_interfaces = current_class->GetInterfaceTypeList();
if (current_interfaces == nullptr || current_interfaces->Size() != interfaces->Size()) {
RecordFailure(ERR(UNSUPPORTED_REDEFINITION_HIERARCHY_CHANGED), "Interfaces added or removed");
return false;
}
// The order of interfaces is (barely) meaningful so we error if it changes.
const art::DexFile& orig_dex_file = current_class->GetDexFile();
for (uint32_t i = 0; i < interfaces->Size(); i++) {
if (strcmp(
dex_file_->StringByTypeIdx(interfaces->GetTypeItem(i).type_idx_),
orig_dex_file.StringByTypeIdx(current_interfaces->GetTypeItem(i).type_idx_)) != 0) {
RecordFailure(ERR(UNSUPPORTED_REDEFINITION_HIERARCHY_CHANGED),
"Interfaces changed or re-ordered");
return false;
}
}
}
return true;
}
bool Redefiner::ClassRedefinition::CheckRedefinable() {
std::string err;
art::StackHandleScope<1> hs(driver_->self_);
art::Handle<art::mirror::Class> h_klass(hs.NewHandle(GetMirrorClass()));
jvmtiError res = Redefiner::GetClassRedefinitionError(h_klass, &err);
if (res != OK) {
RecordFailure(res, err);
return false;
} else {
return true;
}
}
bool Redefiner::ClassRedefinition::CheckRedefinitionIsValid() {
return CheckRedefinable() &&
CheckClass() &&
CheckSameFields() &&
CheckSameMethods();
}
class RedefinitionDataIter;
// A wrapper that lets us hold onto the arbitrary sized data needed for redefinitions in a
// reasonably sane way. This adds no fields to the normal ObjectArray. By doing this we can avoid
// having to deal with the fact that we need to hold an arbitrary number of references live.
class RedefinitionDataHolder {
public:
enum DataSlot : int32_t {
kSlotSourceClassLoader = 0,
kSlotJavaDexFile = 1,
kSlotNewDexFileCookie = 2,
kSlotNewDexCache = 3,
kSlotMirrorClass = 4,
kSlotOrigDexFile = 5,
kSlotOldObsoleteMethods = 6,
kSlotOldDexCaches = 7,
// Must be last one.
kNumSlots = 8,
};
// This needs to have a HandleScope passed in that is capable of creating a new Handle without
// overflowing. Only one handle will be created. This object has a lifetime identical to that of
// the passed in handle-scope.
RedefinitionDataHolder(art::StackHandleScope<1>* hs,
art::Runtime* runtime,
art::Thread* self,
std::vector<Redefiner::ClassRedefinition>* redefinitions)
REQUIRES_SHARED(art::Locks::mutator_lock_) :
arr_(
hs->NewHandle(
art::mirror::ObjectArray<art::mirror::Object>::Alloc(
self,
runtime->GetClassLinker()->GetClassRoot(art::ClassLinker::kObjectArrayClass),
redefinitions->size() * kNumSlots))),
redefinitions_(redefinitions) {}
bool IsNull() const REQUIRES_SHARED(art::Locks::mutator_lock_) {
return arr_.IsNull();
}
art::mirror::ClassLoader* GetSourceClassLoader(jint klass_index) const
REQUIRES_SHARED(art::Locks::mutator_lock_) {
return art::down_cast<art::mirror::ClassLoader*>(GetSlot(klass_index, kSlotSourceClassLoader));
}
art::mirror::Object* GetJavaDexFile(jint klass_index) const
REQUIRES_SHARED(art::Locks::mutator_lock_) {
return GetSlot(klass_index, kSlotJavaDexFile);
}
art::mirror::LongArray* GetNewDexFileCookie(jint klass_index) const
REQUIRES_SHARED(art::Locks::mutator_lock_) {
return art::down_cast<art::mirror::LongArray*>(GetSlot(klass_index, kSlotNewDexFileCookie));
}
art::mirror::DexCache* GetNewDexCache(jint klass_index) const
REQUIRES_SHARED(art::Locks::mutator_lock_) {
return art::down_cast<art::mirror::DexCache*>(GetSlot(klass_index, kSlotNewDexCache));
}
art::mirror::Class* GetMirrorClass(jint klass_index) const
REQUIRES_SHARED(art::Locks::mutator_lock_) {
return art::down_cast<art::mirror::Class*>(GetSlot(klass_index, kSlotMirrorClass));
}
art::mirror::Object* GetOriginalDexFile(jint klass_index) const
REQUIRES_SHARED(art::Locks::mutator_lock_) {
return art::down_cast<art::mirror::Object*>(GetSlot(klass_index, kSlotOrigDexFile));
}
art::mirror::PointerArray* GetOldObsoleteMethods(jint klass_index) const
REQUIRES_SHARED(art::Locks::mutator_lock_) {
return art::down_cast<art::mirror::PointerArray*>(
GetSlot(klass_index, kSlotOldObsoleteMethods));
}
art::mirror::ObjectArray<art::mirror::DexCache>* GetOldDexCaches(jint klass_index) const
REQUIRES_SHARED(art::Locks::mutator_lock_) {
return art::down_cast<art::mirror::ObjectArray<art::mirror::DexCache>*>(
GetSlot(klass_index, kSlotOldDexCaches));
}
void SetSourceClassLoader(jint klass_index, art::mirror::ClassLoader* loader)
REQUIRES_SHARED(art::Locks::mutator_lock_) {
SetSlot(klass_index, kSlotSourceClassLoader, loader);
}
void SetJavaDexFile(jint klass_index, art::mirror::Object* dexfile)
REQUIRES_SHARED(art::Locks::mutator_lock_) {
SetSlot(klass_index, kSlotJavaDexFile, dexfile);
}
void SetNewDexFileCookie(jint klass_index, art::mirror::LongArray* cookie)
REQUIRES_SHARED(art::Locks::mutator_lock_) {
SetSlot(klass_index, kSlotNewDexFileCookie, cookie);
}
void SetNewDexCache(jint klass_index, art::mirror::DexCache* cache)
REQUIRES_SHARED(art::Locks::mutator_lock_) {
SetSlot(klass_index, kSlotNewDexCache, cache);
}
void SetMirrorClass(jint klass_index, art::mirror::Class* klass)
REQUIRES_SHARED(art::Locks::mutator_lock_) {
SetSlot(klass_index, kSlotMirrorClass, klass);
}
void SetOriginalDexFile(jint klass_index, art::mirror::Object* bytes)
REQUIRES_SHARED(art::Locks::mutator_lock_) {
SetSlot(klass_index, kSlotOrigDexFile, bytes);
}
void SetOldObsoleteMethods(jint klass_index, art::mirror::PointerArray* methods)
REQUIRES_SHARED(art::Locks::mutator_lock_) {
SetSlot(klass_index, kSlotOldObsoleteMethods, methods);
}
void SetOldDexCaches(jint klass_index, art::mirror::ObjectArray<art::mirror::DexCache>* caches)
REQUIRES_SHARED(art::Locks::mutator_lock_) {
SetSlot(klass_index, kSlotOldDexCaches, caches);
}
int32_t Length() const REQUIRES_SHARED(art::Locks::mutator_lock_) {
return arr_->GetLength() / kNumSlots;
}
std::vector<Redefiner::ClassRedefinition>* GetRedefinitions()
REQUIRES_SHARED(art::Locks::mutator_lock_) {
return redefinitions_;
}
bool operator==(const RedefinitionDataHolder& other) const
REQUIRES_SHARED(art::Locks::mutator_lock_) {
return arr_.Get() == other.arr_.Get();
}
bool operator!=(const RedefinitionDataHolder& other) const
REQUIRES_SHARED(art::Locks::mutator_lock_) {
return !(*this == other);
}
RedefinitionDataIter begin() REQUIRES_SHARED(art::Locks::mutator_lock_);
RedefinitionDataIter end() REQUIRES_SHARED(art::Locks::mutator_lock_);
private:
mutable art::Handle<art::mirror::ObjectArray<art::mirror::Object>> arr_;
std::vector<Redefiner::ClassRedefinition>* redefinitions_;
art::mirror::Object* GetSlot(jint klass_index,
DataSlot slot) const REQUIRES_SHARED(art::Locks::mutator_lock_) {
DCHECK_LT(klass_index, Length());
return arr_->Get((kNumSlots * klass_index) + slot);
}
void SetSlot(jint klass_index,
DataSlot slot,
art::ObjPtr<art::mirror::Object> obj) REQUIRES_SHARED(art::Locks::mutator_lock_) {
DCHECK(!art::Runtime::Current()->IsActiveTransaction());
DCHECK_LT(klass_index, Length());
arr_->Set<false>((kNumSlots * klass_index) + slot, obj);
}
DISALLOW_COPY_AND_ASSIGN(RedefinitionDataHolder);
};
class RedefinitionDataIter {
public:
RedefinitionDataIter(int32_t idx, RedefinitionDataHolder& holder) : idx_(idx), holder_(holder) {}
RedefinitionDataIter(const RedefinitionDataIter&) = default;
RedefinitionDataIter(RedefinitionDataIter&&) = default;
RedefinitionDataIter& operator=(const RedefinitionDataIter&) = default;
RedefinitionDataIter& operator=(RedefinitionDataIter&&) = default;
bool operator==(const RedefinitionDataIter& other) const
REQUIRES_SHARED(art::Locks::mutator_lock_) {
return idx_ == other.idx_ && holder_ == other.holder_;
}
bool operator!=(const RedefinitionDataIter& other) const
REQUIRES_SHARED(art::Locks::mutator_lock_) {
return !(*this == other);
}
RedefinitionDataIter operator++() { // Value after modification.
idx_++;
return *this;
}
RedefinitionDataIter operator++(int) {
RedefinitionDataIter temp = *this;
idx_++;
return temp;
}
RedefinitionDataIter operator+(ssize_t delta) const {
RedefinitionDataIter temp = *this;
temp += delta;
return temp;
}
RedefinitionDataIter& operator+=(ssize_t delta) {
idx_ += delta;
return *this;
}
Redefiner::ClassRedefinition& GetRedefinition() REQUIRES_SHARED(art::Locks::mutator_lock_) {
return (*holder_.GetRedefinitions())[idx_];
}
RedefinitionDataHolder& GetHolder() {
return holder_;
}
art::mirror::ClassLoader* GetSourceClassLoader() const
REQUIRES_SHARED(art::Locks::mutator_lock_) {
return holder_.GetSourceClassLoader(idx_);
}
art::mirror::Object* GetJavaDexFile() const REQUIRES_SHARED(art::Locks::mutator_lock_) {
return holder_.GetJavaDexFile(idx_);
}
art::mirror::LongArray* GetNewDexFileCookie() const REQUIRES_SHARED(art::Locks::mutator_lock_) {
return holder_.GetNewDexFileCookie(idx_);
}
art::mirror::DexCache* GetNewDexCache() const REQUIRES_SHARED(art::Locks::mutator_lock_) {
return holder_.GetNewDexCache(idx_);
}
art::mirror::Class* GetMirrorClass() const REQUIRES_SHARED(art::Locks::mutator_lock_) {
return holder_.GetMirrorClass(idx_);
}
art::mirror::Object* GetOriginalDexFile() const
REQUIRES_SHARED(art::Locks::mutator_lock_) {
return holder_.GetOriginalDexFile(idx_);
}
art::mirror::PointerArray* GetOldObsoleteMethods() const
REQUIRES_SHARED(art::Locks::mutator_lock_) {
return holder_.GetOldObsoleteMethods(idx_);
}
art::mirror::ObjectArray<art::mirror::DexCache>* GetOldDexCaches() const
REQUIRES_SHARED(art::Locks::mutator_lock_) {
return holder_.GetOldDexCaches(idx_);
}
int32_t GetIndex() const {
return idx_;
}
void SetSourceClassLoader(art::mirror::ClassLoader* loader)
REQUIRES_SHARED(art::Locks::mutator_lock_) {
holder_.SetSourceClassLoader(idx_, loader);
}
void SetJavaDexFile(art::mirror::Object* dexfile) REQUIRES_SHARED(art::Locks::mutator_lock_) {
holder_.SetJavaDexFile(idx_, dexfile);
}
void SetNewDexFileCookie(art::mirror::LongArray* cookie)
REQUIRES_SHARED(art::Locks::mutator_lock_) {
holder_.SetNewDexFileCookie(idx_, cookie);
}
void SetNewDexCache(art::mirror::DexCache* cache) REQUIRES_SHARED(art::Locks::mutator_lock_) {
holder_.SetNewDexCache(idx_, cache);
}
void SetMirrorClass(art::mirror::Class* klass) REQUIRES_SHARED(art::Locks::mutator_lock_) {
holder_.SetMirrorClass(idx_, klass);
}
void SetOriginalDexFile(art::mirror::Object* bytes)
REQUIRES_SHARED(art::Locks::mutator_lock_) {
holder_.SetOriginalDexFile(idx_, bytes);
}
void SetOldObsoleteMethods(art::mirror::PointerArray* methods)
REQUIRES_SHARED(art::Locks::mutator_lock_) {
holder_.SetOldObsoleteMethods(idx_, methods);
}
void SetOldDexCaches(art::mirror::ObjectArray<art::mirror::DexCache>* caches)
REQUIRES_SHARED(art::Locks::mutator_lock_) {
holder_.SetOldDexCaches(idx_, caches);
}
private:
int32_t idx_;
RedefinitionDataHolder& holder_;
};
RedefinitionDataIter RedefinitionDataHolder::begin() {
return RedefinitionDataIter(0, *this);
}
RedefinitionDataIter RedefinitionDataHolder::end() {
return RedefinitionDataIter(Length(), *this);
}
bool Redefiner::ClassRedefinition::CheckVerification(const RedefinitionDataIter& iter) {
DCHECK_EQ(dex_file_->NumClassDefs(), 1u);
art::StackHandleScope<2> hs(driver_->self_);
std::string error;
// TODO Make verification log level lower
art::verifier::FailureKind failure =
art::verifier::MethodVerifier::VerifyClass(driver_->self_,
dex_file_.get(),
hs.NewHandle(iter.GetNewDexCache()),
hs.NewHandle(GetClassLoader()),
dex_file_->GetClassDef(0), /*class_def*/
nullptr, /*compiler_callbacks*/
false, /*allow_soft_failures*/
/*log_level*/
art::verifier::HardFailLogMode::kLogWarning,
&error);
bool passes = failure == art::verifier::FailureKind::kNoFailure;
if (!passes) {
RecordFailure(ERR(FAILS_VERIFICATION), "Failed to verify class. Error was: " + error);
}
return passes;
}
// Looks through the previously allocated cookies to see if we need to update them with another new
// dexfile. This is so that even if multiple classes with the same classloader are redefined at
// once they are all added to the classloader.
bool Redefiner::ClassRedefinition::AllocateAndRememberNewDexFileCookie(
art::Handle<art::mirror::ClassLoader> source_class_loader,
art::Handle<art::mirror::Object> dex_file_obj,
/*out*/RedefinitionDataIter* cur_data) {
art::StackHandleScope<2> hs(driver_->self_);
art::MutableHandle<art::mirror::LongArray> old_cookie(
hs.NewHandle<art::mirror::LongArray>(nullptr));
bool has_older_cookie = false;
// See if we already have a cookie that a previous redefinition got from the same classloader.
for (auto old_data = cur_data->GetHolder().begin(); old_data != *cur_data; ++old_data) {
if (old_data.GetSourceClassLoader() == source_class_loader.Get()) {
// Since every instance of this classloader should have the same cookie associated with it we
// can stop looking here.
has_older_cookie = true;
old_cookie.Assign(old_data.GetNewDexFileCookie());
break;
}
}
if (old_cookie.IsNull()) {
// No older cookie. Get it directly from the dex_file_obj
// We should not have seen this classloader elsewhere.
CHECK(!has_older_cookie);
old_cookie.Assign(ClassLoaderHelper::GetDexFileCookie(dex_file_obj));
}
// Use the old cookie to generate the new one with the new DexFile* added in.
art::Handle<art::mirror::LongArray>
new_cookie(hs.NewHandle(ClassLoaderHelper::AllocateNewDexFileCookie(driver_->self_,
old_cookie,
dex_file_.get())));
// Make sure the allocation worked.
if (new_cookie.IsNull()) {
return false;
}
// Save the cookie.
cur_data->SetNewDexFileCookie(new_cookie.Get());
// If there are other copies of this same classloader we need to make sure that we all have the
// same cookie.
if (has_older_cookie) {
for (auto old_data = cur_data->GetHolder().begin(); old_data != *cur_data; ++old_data) {
// We will let the GC take care of the cookie we allocated for this one.
if (old_data.GetSourceClassLoader() == source_class_loader.Get()) {
old_data.SetNewDexFileCookie(new_cookie.Get());
}
}
}
return true;
}
bool Redefiner::ClassRedefinition::FinishRemainingAllocations(
/*out*/RedefinitionDataIter* cur_data) {
art::ScopedObjectAccessUnchecked soa(driver_->self_);
art::StackHandleScope<2> hs(driver_->self_);
cur_data->SetMirrorClass(GetMirrorClass());
// This shouldn't allocate
art::Handle<art::mirror::ClassLoader> loader(hs.NewHandle(GetClassLoader()));
// The bootclasspath is handled specially so it doesn't have a j.l.DexFile.
if (!art::ClassLinker::IsBootClassLoader(soa, loader.Get())) {
cur_data->SetSourceClassLoader(loader.Get());
art::Handle<art::mirror::Object> dex_file_obj(hs.NewHandle(
ClassLoaderHelper::FindSourceDexFileObject(driver_->self_, loader)));
cur_data->SetJavaDexFile(dex_file_obj.Get());
if (dex_file_obj == nullptr) {
RecordFailure(ERR(INTERNAL), "Unable to find dex file!");
return false;
}
// Allocate the new dex file cookie.
if (!AllocateAndRememberNewDexFileCookie(loader, dex_file_obj, cur_data)) {
driver_->self_->AssertPendingOOMException();
driver_->self_->ClearException();
RecordFailure(ERR(OUT_OF_MEMORY), "Unable to allocate dex file array for class loader");
return false;
}
}
cur_data->SetNewDexCache(CreateNewDexCache(loader));
if (cur_data->GetNewDexCache() == nullptr) {
driver_->self_->AssertPendingException();
driver_->self_->ClearException();
RecordFailure(ERR(OUT_OF_MEMORY), "Unable to allocate DexCache");
return false;
}
// We won't always need to set this field.
cur_data->SetOriginalDexFile(AllocateOrGetOriginalDexFile());
if (cur_data->GetOriginalDexFile() == nullptr) {
driver_->self_->AssertPendingOOMException();
driver_->self_->ClearException();
RecordFailure(ERR(OUT_OF_MEMORY), "Unable to allocate array for original dex file");
return false;
}
return true;
}
void Redefiner::ClassRedefinition::UnregisterJvmtiBreakpoints() {
BreakpointUtil::RemoveBreakpointsInClass(driver_->env_, GetMirrorClass());
}
void Redefiner::ClassRedefinition::UnregisterBreakpoints() {
DCHECK(art::Dbg::IsDebuggerActive());
art::JDWP::JdwpState* state = art::Dbg::GetJdwpState();
if (state != nullptr) {
state->UnregisterLocationEventsOnClass(GetMirrorClass());
}
}
void Redefiner::UnregisterAllBreakpoints() {
if (LIKELY(!art::Dbg::IsDebuggerActive())) {
return;
}
for (Redefiner::ClassRedefinition& redef : redefinitions_) {
redef.UnregisterBreakpoints();
}
}
bool Redefiner::CheckAllRedefinitionAreValid() {
for (Redefiner::ClassRedefinition& redef : redefinitions_) {
if (!redef.CheckRedefinitionIsValid()) {
return false;
}
}
return true;
}
void Redefiner::RestoreObsoleteMethodMapsIfUnneeded(RedefinitionDataHolder& holder) {
for (RedefinitionDataIter data = holder.begin(); data != holder.end(); ++data) {
data.GetRedefinition().RestoreObsoleteMethodMapsIfUnneeded(&data);
}
}
bool Redefiner::EnsureAllClassAllocationsFinished(RedefinitionDataHolder& holder) {
for (RedefinitionDataIter data = holder.begin(); data != holder.end(); ++data) {
if (!data.GetRedefinition().EnsureClassAllocationsFinished(&data)) {
return false;
}
}
return true;
}
bool Redefiner::FinishAllRemainingAllocations(RedefinitionDataHolder& holder) {
for (RedefinitionDataIter data = holder.begin(); data != holder.end(); ++data) {
// Allocate the data this redefinition requires.
if (!data.GetRedefinition().FinishRemainingAllocations(&data)) {
return false;
}
}
return true;
}
void Redefiner::ClassRedefinition::ReleaseDexFile() {
dex_file_.release();
}
void Redefiner::ReleaseAllDexFiles() {
for (Redefiner::ClassRedefinition& redef : redefinitions_) {
redef.ReleaseDexFile();
}
}
bool Redefiner::CheckAllClassesAreVerified(RedefinitionDataHolder& holder) {
for (RedefinitionDataIter data = holder.begin(); data != holder.end(); ++data) {
if (!data.GetRedefinition().CheckVerification(data)) {
return false;
}
}
return true;
}
class ScopedDisableConcurrentAndMovingGc {
public:
ScopedDisableConcurrentAndMovingGc(art::gc::Heap* heap, art::Thread* self)
: heap_(heap), self_(self) {
if (heap_->IsGcConcurrentAndMoving()) {
heap_->IncrementDisableMovingGC(self_);
}
}
~ScopedDisableConcurrentAndMovingGc() {
if (heap_->IsGcConcurrentAndMoving()) {
heap_->DecrementDisableMovingGC(self_);
}
}
private:
art::gc::Heap* heap_;
art::Thread* self_;
};
jvmtiError Redefiner::Run() {
art::StackHandleScope<1> hs(self_);
// Allocate an array to hold onto all java temporary objects associated with this redefinition.
// We will let this be collected after the end of this function.
RedefinitionDataHolder holder(&hs, runtime_, self_, &redefinitions_);
if (holder.IsNull()) {
self_->AssertPendingOOMException();
self_->ClearException();
RecordFailure(ERR(OUT_OF_MEMORY), "Could not allocate storage for temporaries");
return result_;
}
// First we just allocate the ClassExt and its fields that we need. These can be updated
// atomically without any issues (since we allocate the map arrays as empty) so we don't bother
// doing a try loop. The other allocations we need to ensure that nothing has changed in the time
// between allocating them and pausing all threads before we can update them so we need to do a
// try loop.
if (!CheckAllRedefinitionAreValid() ||
!EnsureAllClassAllocationsFinished(holder) ||
!FinishAllRemainingAllocations(holder) ||
!CheckAllClassesAreVerified(holder)) {
return result_;
}
// At this point we can no longer fail without corrupting the runtime state.
for (RedefinitionDataIter data = holder.begin(); data != holder.end(); ++data) {
art::ClassLinker* cl = runtime_->GetClassLinker();
cl->RegisterExistingDexCache(data.GetNewDexCache(), data.GetSourceClassLoader());
if (data.GetSourceClassLoader() == nullptr) {
cl->AppendToBootClassPath(self_, data.GetRedefinition().GetDexFile());
}
}
UnregisterAllBreakpoints();
// Disable GC and wait for it to be done if we are a moving GC. This is fine since we are done
// allocating so no deadlocks.
ScopedDisableConcurrentAndMovingGc sdcamgc(runtime_->GetHeap(), self_);
// Do transition to final suspension
// TODO We might want to give this its own suspended state!
// TODO This isn't right. We need to change state without any chance of suspend ideally!
art::ScopedThreadSuspension sts(self_, art::ThreadState::kNative);
art::ScopedSuspendAll ssa("Final installation of redefined Classes!", /*long_suspend*/true);
for (RedefinitionDataIter data = holder.begin(); data != holder.end(); ++data) {
art::ScopedAssertNoThreadSuspension nts("Updating runtime objects for redefinition");
ClassRedefinition& redef = data.GetRedefinition();
if (data.GetSourceClassLoader() != nullptr) {
ClassLoaderHelper::UpdateJavaDexFile(data.GetJavaDexFile(), data.GetNewDexFileCookie());
}
art::mirror::Class* klass = data.GetMirrorClass();
// TODO Rewrite so we don't do a stack walk for each and every class.
redef.FindAndAllocateObsoleteMethods(klass);
redef.UpdateClass(klass, data.GetNewDexCache(), data.GetOriginalDexFile());
redef.UnregisterJvmtiBreakpoints();
}
RestoreObsoleteMethodMapsIfUnneeded(holder);
// TODO We should check for if any of the redefined methods are intrinsic methods here and, if any
// are, force a full-world deoptimization before finishing redefinition. If we don't do this then
// methods that have been jitted prior to the current redefinition being applied might continue
// to use the old versions of the intrinsics!
// TODO Do the dex_file release at a more reasonable place. This works but it muddles who really
// owns the DexFile and when ownership is transferred.
ReleaseAllDexFiles();
return OK;
}
void Redefiner::ClassRedefinition::UpdateMethods(art::ObjPtr<art::mirror::Class> mclass,
const art::DexFile::ClassDef& class_def) {
art::ClassLinker* linker = driver_->runtime_->GetClassLinker();
art::PointerSize image_pointer_size = linker->GetImagePointerSize();
const art::DexFile::TypeId& declaring_class_id = dex_file_->GetTypeId(class_def.class_idx_);
const art::DexFile& old_dex_file = mclass->GetDexFile();
// Update methods.
for (art::ArtMethod& method : mclass->GetDeclaredMethods(image_pointer_size)) {
const art::DexFile::StringId* new_name_id = dex_file_->FindStringId(method.GetName());
art::dex::TypeIndex method_return_idx =
dex_file_->GetIndexForTypeId(*dex_file_->FindTypeId(method.GetReturnTypeDescriptor()));
const auto* old_type_list = method.GetParameterTypeList();
std::vector<art::dex::TypeIndex> new_type_list;
for (uint32_t i = 0; old_type_list != nullptr && i < old_type_list->Size(); i++) {
new_type_list.push_back(
dex_file_->GetIndexForTypeId(
*dex_file_->FindTypeId(
old_dex_file.GetTypeDescriptor(
old_dex_file.GetTypeId(
old_type_list->GetTypeItem(i).type_idx_)))));
}
const art::DexFile::ProtoId* proto_id = dex_file_->FindProtoId(method_return_idx,
new_type_list);
CHECK(proto_id != nullptr || old_type_list == nullptr);
const art::DexFile::MethodId* method_id = dex_file_->FindMethodId(declaring_class_id,
*new_name_id,
*proto_id);
CHECK(method_id != nullptr);
uint32_t dex_method_idx = dex_file_->GetIndexForMethodId(*method_id);
method.SetDexMethodIndex(dex_method_idx);
linker->SetEntryPointsToInterpreter(&method);
method.SetCodeItemOffset(dex_file_->FindCodeItemOffset(class_def, dex_method_idx));
// Clear all the intrinsics related flags.
method.ClearAccessFlags(art::kAccIntrinsic | (~art::kAccFlagsNotUsedByIntrinsic));
// Notify the jit that this method is redefined.
art::jit::Jit* jit = driver_->runtime_->GetJit();
if (jit != nullptr) {
jit->GetCodeCache()->NotifyMethodRedefined(&method);
}
}
}
void Redefiner::ClassRedefinition::UpdateFields(art::ObjPtr<art::mirror::Class> mclass) {
// TODO The IFields & SFields pointers should be combined like the methods_ arrays were.
for (auto fields_iter : {mclass->GetIFields(), mclass->GetSFields()}) {
for (art::ArtField& field : fields_iter) {
std::string declaring_class_name;
const art::DexFile::TypeId* new_declaring_id =
dex_file_->FindTypeId(field.GetDeclaringClass()->GetDescriptor(&declaring_class_name));
const art::DexFile::StringId* new_name_id = dex_file_->FindStringId(field.GetName());
const art::DexFile::TypeId* new_type_id = dex_file_->FindTypeId(field.GetTypeDescriptor());
CHECK(new_name_id != nullptr && new_type_id != nullptr && new_declaring_id != nullptr);
const art::DexFile::FieldId* new_field_id =
dex_file_->FindFieldId(*new_declaring_id, *new_name_id, *new_type_id);
CHECK(new_field_id != nullptr);
// We only need to update the index since the other data in the ArtField cannot be updated.
field.SetDexFieldIndex(dex_file_->GetIndexForFieldId(*new_field_id));
}
}
}
// Performs updates to class that will allow us to verify it.
void Redefiner::ClassRedefinition::UpdateClass(
art::ObjPtr<art::mirror::Class> mclass,
art::ObjPtr<art::mirror::DexCache> new_dex_cache,
art::ObjPtr<art::mirror::Object> original_dex_file) {
DCHECK_EQ(dex_file_->NumClassDefs(), 1u);
const art::DexFile::ClassDef& class_def = dex_file_->GetClassDef(0);
UpdateMethods(mclass, class_def);
UpdateFields(mclass);
// Update the class fields.
// Need to update class last since the ArtMethod gets its DexFile from the class (which is needed
// to call GetReturnTypeDescriptor and GetParameterTypeList above).
mclass->SetDexCache(new_dex_cache.Ptr());
mclass->SetDexClassDefIndex(dex_file_->GetIndexForClassDef(class_def));
mclass->SetDexTypeIndex(dex_file_->GetIndexForTypeId(*dex_file_->FindTypeId(class_sig_.c_str())));
art::ObjPtr<art::mirror::ClassExt> ext(mclass->GetExtData());
CHECK(!ext.IsNull());
ext->SetOriginalDexFile(original_dex_file);
}
// Restores the old obsolete methods maps if it turns out they weren't needed (ie there were no new
// obsolete methods).
void Redefiner::ClassRedefinition::RestoreObsoleteMethodMapsIfUnneeded(
const RedefinitionDataIter* cur_data) {
art::mirror::Class* klass = GetMirrorClass();
art::mirror::ClassExt* ext = klass->GetExtData();
art::mirror::PointerArray* methods = ext->GetObsoleteMethods();
art::mirror::PointerArray* old_methods = cur_data->GetOldObsoleteMethods();
int32_t old_length = old_methods == nullptr ? 0 : old_methods->GetLength();
int32_t expected_length =
old_length + klass->NumDirectMethods() + klass->NumDeclaredVirtualMethods();
// Check to make sure we are only undoing this one.
if (expected_length == methods->GetLength()) {
for (int32_t i = 0; i < expected_length; i++) {
art::ArtMethod* expected = nullptr;
if (i < old_length) {
expected = old_methods->GetElementPtrSize<art::ArtMethod*>(i, art::kRuntimePointerSize);
}
if (methods->GetElementPtrSize<art::ArtMethod*>(i, art::kRuntimePointerSize) != expected) {
// We actually have some new obsolete methods. Just abort since we cannot safely shrink the
// obsolete methods array.
return;
}
}
// No new obsolete methods! We can get rid of the maps.
ext->SetObsoleteArrays(cur_data->GetOldObsoleteMethods(), cur_data->GetOldDexCaches());
}
}
// This function does all (java) allocations we need to do for the Class being redefined.
// TODO Change this name maybe?
bool Redefiner::ClassRedefinition::EnsureClassAllocationsFinished(
/*out*/RedefinitionDataIter* cur_data) {
art::StackHandleScope<2> hs(driver_->self_);
art::Handle<art::mirror::Class> klass(hs.NewHandle(
driver_->self_->DecodeJObject(klass_)->AsClass()));
if (klass == nullptr) {
RecordFailure(ERR(INVALID_CLASS), "Unable to decode class argument!");
return false;
}
// Allocate the classExt
art::Handle<art::mirror::ClassExt> ext(hs.NewHandle(klass->EnsureExtDataPresent(driver_->self_)));
if (ext == nullptr) {
// No memory. Clear exception (it's not useful) and return error.
driver_->self_->AssertPendingOOMException();
driver_->self_->ClearException();
RecordFailure(ERR(OUT_OF_MEMORY), "Could not allocate ClassExt");
return false;
}
// First save the old values of the 2 arrays that make up the obsolete methods maps. Then
// allocate the 2 arrays that make up the obsolete methods map. Since the contents of the arrays
// are only modified when all threads (other than the modifying one) are suspended we don't need
// to worry about missing the unsyncronized writes to the array. We do synchronize when setting it
// however, since that can happen at any time.
cur_data->SetOldObsoleteMethods(ext->GetObsoleteMethods());
cur_data->SetOldDexCaches(ext->GetObsoleteDexCaches());
if (!ext->ExtendObsoleteArrays(
driver_->self_, klass->GetDeclaredMethodsSlice(art::kRuntimePointerSize).size())) {
// OOM. Clear exception and return error.
driver_->self_->AssertPendingOOMException();
driver_->self_->ClearException();
RecordFailure(ERR(OUT_OF_MEMORY), "Unable to allocate/extend obsolete methods map");
return false;
}
return true;
}
} // namespace openjdkjvmti