blob: 6b98da97474f7466ba8ccc9644fe987991db107b [file] [log] [blame]
/*
* Copyright (C) 2011 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "class_linker.h"
#include <fcntl.h>
#include <sys/file.h>
#include <sys/stat.h>
#include <deque>
#include <string>
#include <utility>
#include <vector>
#include "base/casts.h"
#include "base/logging.h"
#include "base/stl_util.h"
#include "base/unix_file/fd_file.h"
#include "class_linker-inl.h"
#include "compiler_callbacks.h"
#include "debugger.h"
#include "dex_file-inl.h"
#include "gc/accounting/card_table-inl.h"
#include "gc/accounting/heap_bitmap.h"
#include "gc/heap.h"
#include "gc/space/image_space.h"
#include "handle_scope.h"
#include "intern_table.h"
#include "interpreter/interpreter.h"
#include "leb128.h"
#include "oat.h"
#include "oat_file.h"
#include "mirror/art_field-inl.h"
#include "mirror/art_method-inl.h"
#include "mirror/class.h"
#include "mirror/class-inl.h"
#include "mirror/class_loader.h"
#include "mirror/dex_cache-inl.h"
#include "mirror/iftable-inl.h"
#include "mirror/object-inl.h"
#include "mirror/object_array-inl.h"
#include "mirror/proxy.h"
#include "mirror/stack_trace_element.h"
#include "object_utils.h"
#include "os.h"
#include "runtime.h"
#include "entrypoints/entrypoint_utils.h"
#include "ScopedLocalRef.h"
#include "scoped_thread_state_change.h"
#include "handle_scope-inl.h"
#include "thread.h"
#include "UniquePtrCompat.h"
#include "utils.h"
#include "verifier/method_verifier.h"
#include "well_known_classes.h"
namespace art {
static void ThrowNoClassDefFoundError(const char* fmt, ...)
__attribute__((__format__(__printf__, 1, 2)))
SHARED_LOCKS_REQUIRED(Locks::mutator_lock_);
static void ThrowNoClassDefFoundError(const char* fmt, ...) {
va_list args;
va_start(args, fmt);
Thread* self = Thread::Current();
ThrowLocation throw_location = self->GetCurrentLocationForThrow();
self->ThrowNewExceptionV(throw_location, "Ljava/lang/NoClassDefFoundError;", fmt, args);
va_end(args);
}
static void ThrowEarlierClassFailure(mirror::Class* c)
SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
// The class failed to initialize on a previous attempt, so we want to throw
// a NoClassDefFoundError (v2 2.17.5). The exception to this rule is if we
// failed in verification, in which case v2 5.4.1 says we need to re-throw
// the previous error.
if (!Runtime::Current()->IsCompiler()) { // Give info if this occurs at runtime.
LOG(INFO) << "Rejecting re-init on previously-failed class " << PrettyClass(c);
}
CHECK(c->IsErroneous()) << PrettyClass(c) << " " << c->GetStatus();
Thread* self = Thread::Current();
ThrowLocation throw_location = self->GetCurrentLocationForThrow();
if (c->GetVerifyErrorClass() != NULL) {
// TODO: change the verifier to store an _instance_, with a useful detail message?
ClassHelper ve_ch(c->GetVerifyErrorClass());
self->ThrowNewException(throw_location, ve_ch.GetDescriptor(), PrettyDescriptor(c).c_str());
} else {
self->ThrowNewException(throw_location, "Ljava/lang/NoClassDefFoundError;",
PrettyDescriptor(c).c_str());
}
}
static void WrapExceptionInInitializer() SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
Thread* self = Thread::Current();
JNIEnv* env = self->GetJniEnv();
ScopedLocalRef<jthrowable> cause(env, env->ExceptionOccurred());
CHECK(cause.get() != NULL);
env->ExceptionClear();
bool is_error = env->IsInstanceOf(cause.get(), WellKnownClasses::java_lang_Error);
env->Throw(cause.get());
// We only wrap non-Error exceptions; an Error can just be used as-is.
if (!is_error) {
ThrowLocation throw_location = self->GetCurrentLocationForThrow();
self->ThrowNewWrappedException(throw_location, "Ljava/lang/ExceptionInInitializerError;", NULL);
}
}
static size_t Hash(const char* s) {
// This is the java.lang.String hashcode for convenience, not interoperability.
size_t hash = 0;
for (; *s != '\0'; ++s) {
hash = hash * 31 + *s;
}
return hash;
}
const char* ClassLinker::class_roots_descriptors_[] = {
"Ljava/lang/Class;",
"Ljava/lang/Object;",
"[Ljava/lang/Class;",
"[Ljava/lang/Object;",
"Ljava/lang/String;",
"Ljava/lang/DexCache;",
"Ljava/lang/ref/Reference;",
"Ljava/lang/reflect/ArtField;",
"Ljava/lang/reflect/ArtMethod;",
"Ljava/lang/reflect/Proxy;",
"[Ljava/lang/String;",
"[Ljava/lang/reflect/ArtField;",
"[Ljava/lang/reflect/ArtMethod;",
"Ljava/lang/ClassLoader;",
"Ljava/lang/Throwable;",
"Ljava/lang/ClassNotFoundException;",
"Ljava/lang/StackTraceElement;",
"Z",
"B",
"C",
"D",
"F",
"I",
"J",
"S",
"V",
"[Z",
"[B",
"[C",
"[D",
"[F",
"[I",
"[J",
"[S",
"[Ljava/lang/StackTraceElement;",
};
ClassLinker::ClassLinker(InternTable* intern_table)
// dex_lock_ is recursive as it may be used in stack dumping.
: dex_lock_("ClassLinker dex lock", kDefaultMutexLevel),
dex_cache_image_class_lookup_required_(false),
failed_dex_cache_class_lookups_(0),
class_roots_(nullptr),
array_iftable_(nullptr),
find_array_class_cache_next_victim_(0),
init_done_(false),
log_new_dex_caches_roots_(false),
log_new_class_table_roots_(false),
intern_table_(intern_table),
portable_resolution_trampoline_(nullptr),
quick_resolution_trampoline_(nullptr),
portable_imt_conflict_trampoline_(nullptr),
quick_imt_conflict_trampoline_(nullptr),
quick_generic_jni_trampoline_(nullptr),
quick_to_interpreter_bridge_trampoline_(nullptr) {
CHECK_EQ(arraysize(class_roots_descriptors_), size_t(kClassRootsMax));
memset(find_array_class_cache_, 0, kFindArrayCacheSize * sizeof(mirror::Class*));
}
void ClassLinker::InitFromCompiler(const std::vector<const DexFile*>& boot_class_path) {
VLOG(startup) << "ClassLinker::Init";
CHECK(Runtime::Current()->IsCompiler());
CHECK(!init_done_);
// java_lang_Class comes first, it's needed for AllocClass
Thread* self = Thread::Current();
gc::Heap* heap = Runtime::Current()->GetHeap();
// The GC can't handle an object with a null class since we can't get the size of this object.
heap->IncrementDisableMovingGC(self);
StackHandleScope<64> hs(self); // 64 is picked arbitrarily.
Handle<mirror::Class> java_lang_Class(hs.NewHandle(down_cast<mirror::Class*>(
heap->AllocNonMovableObject<true>(self, nullptr, sizeof(mirror::ClassClass), VoidFunctor()))));
CHECK(java_lang_Class.Get() != NULL);
mirror::Class::SetClassClass(java_lang_Class.Get());
java_lang_Class->SetClass(java_lang_Class.Get());
if (kUseBakerOrBrooksReadBarrier) {
java_lang_Class->AssertReadBarrierPointer();
}
java_lang_Class->SetClassSize(sizeof(mirror::ClassClass));
heap->DecrementDisableMovingGC(self);
// AllocClass(mirror::Class*) can now be used
// Class[] is used for reflection support.
Handle<mirror::Class> class_array_class(
hs.NewHandle(AllocClass(self, java_lang_Class.Get(), sizeof(mirror::Class))));
class_array_class->SetComponentType(java_lang_Class.Get());
// java_lang_Object comes next so that object_array_class can be created.
Handle<mirror::Class> java_lang_Object(
hs.NewHandle(AllocClass(self, java_lang_Class.Get(), sizeof(mirror::Class))));
CHECK(java_lang_Object.Get() != NULL);
// backfill Object as the super class of Class.
java_lang_Class->SetSuperClass(java_lang_Object.Get());
java_lang_Object->SetStatus(mirror::Class::kStatusLoaded, self);
// Object[] next to hold class roots.
Handle<mirror::Class> object_array_class(
hs.NewHandle(AllocClass(self, java_lang_Class.Get(), sizeof(mirror::Class))));
object_array_class->SetComponentType(java_lang_Object.Get());
// Setup the char class to be used for char[].
Handle<mirror::Class> char_class(hs.NewHandle(AllocClass(self, java_lang_Class.Get(), sizeof(mirror::Class))));
// Setup the char[] class to be used for String.
Handle<mirror::Class> char_array_class(hs.NewHandle(AllocClass(self, java_lang_Class.Get(), sizeof(mirror::Class))));
char_array_class->SetComponentType(char_class.Get());
mirror::CharArray::SetArrayClass(char_array_class.Get());
// Setup String.
Handle<mirror::Class> java_lang_String(hs.NewHandle(AllocClass(self, java_lang_Class.Get(), sizeof(mirror::StringClass))));
mirror::String::SetClass(java_lang_String.Get());
java_lang_String->SetObjectSize(sizeof(mirror::String));
java_lang_String->SetStatus(mirror::Class::kStatusResolved, self);
// Create storage for root classes, save away our work so far (requires descriptors).
class_roots_ = mirror::ObjectArray<mirror::Class>::Alloc(self, object_array_class.Get(),
kClassRootsMax);
CHECK(class_roots_ != NULL);
SetClassRoot(kJavaLangClass, java_lang_Class.Get());
SetClassRoot(kJavaLangObject, java_lang_Object.Get());
SetClassRoot(kClassArrayClass, class_array_class.Get());
SetClassRoot(kObjectArrayClass, object_array_class.Get());
SetClassRoot(kCharArrayClass, char_array_class.Get());
SetClassRoot(kJavaLangString, java_lang_String.Get());
// Setup the primitive type classes.
SetClassRoot(kPrimitiveBoolean, CreatePrimitiveClass(self, Primitive::kPrimBoolean));
SetClassRoot(kPrimitiveByte, CreatePrimitiveClass(self, Primitive::kPrimByte));
SetClassRoot(kPrimitiveShort, CreatePrimitiveClass(self, Primitive::kPrimShort));
SetClassRoot(kPrimitiveInt, CreatePrimitiveClass(self, Primitive::kPrimInt));
SetClassRoot(kPrimitiveLong, CreatePrimitiveClass(self, Primitive::kPrimLong));
SetClassRoot(kPrimitiveFloat, CreatePrimitiveClass(self, Primitive::kPrimFloat));
SetClassRoot(kPrimitiveDouble, CreatePrimitiveClass(self, Primitive::kPrimDouble));
SetClassRoot(kPrimitiveVoid, CreatePrimitiveClass(self, Primitive::kPrimVoid));
// Create array interface entries to populate once we can load system classes.
array_iftable_ = AllocIfTable(self, 2);
// Create int array type for AllocDexCache (done in AppendToBootClassPath).
Handle<mirror::Class> int_array_class(
hs.NewHandle(AllocClass(self, java_lang_Class.Get(), sizeof(mirror::Class))));
int_array_class->SetComponentType(GetClassRoot(kPrimitiveInt));
mirror::IntArray::SetArrayClass(int_array_class.Get());
SetClassRoot(kIntArrayClass, int_array_class.Get());
// now that these are registered, we can use AllocClass() and AllocObjectArray
// Set up DexCache. This cannot be done later since AppendToBootClassPath calls AllocDexCache.
Handle<mirror::Class> java_lang_DexCache(
hs.NewHandle(AllocClass(self, java_lang_Class.Get(), sizeof(mirror::DexCacheClass))));
SetClassRoot(kJavaLangDexCache, java_lang_DexCache.Get());
java_lang_DexCache->SetObjectSize(sizeof(mirror::DexCache));
java_lang_DexCache->SetStatus(mirror::Class::kStatusResolved, self);
// Constructor, Field, Method, and AbstractMethod are necessary so that FindClass can link members.
Handle<mirror::Class> java_lang_reflect_ArtField(
hs.NewHandle(AllocClass(self, java_lang_Class.Get(), sizeof(mirror::ArtFieldClass))));
CHECK(java_lang_reflect_ArtField.Get() != NULL);
java_lang_reflect_ArtField->SetObjectSize(sizeof(mirror::ArtField));
SetClassRoot(kJavaLangReflectArtField, java_lang_reflect_ArtField.Get());
java_lang_reflect_ArtField->SetStatus(mirror::Class::kStatusResolved, self);
mirror::ArtField::SetClass(java_lang_reflect_ArtField.Get());
Handle<mirror::Class> java_lang_reflect_ArtMethod(
hs.NewHandle(AllocClass(self, java_lang_Class.Get(), sizeof(mirror::ArtMethodClass))));
CHECK(java_lang_reflect_ArtMethod.Get() != NULL);
java_lang_reflect_ArtMethod->SetObjectSize(sizeof(mirror::ArtMethod));
SetClassRoot(kJavaLangReflectArtMethod, java_lang_reflect_ArtMethod.Get());
java_lang_reflect_ArtMethod->SetStatus(mirror::Class::kStatusResolved, self);
mirror::ArtMethod::SetClass(java_lang_reflect_ArtMethod.Get());
// Set up array classes for string, field, method
Handle<mirror::Class> object_array_string(
hs.NewHandle(AllocClass(self, java_lang_Class.Get(), sizeof(mirror::Class))));
object_array_string->SetComponentType(java_lang_String.Get());
SetClassRoot(kJavaLangStringArrayClass, object_array_string.Get());
Handle<mirror::Class> object_array_art_method(
hs.NewHandle(AllocClass(self, java_lang_Class.Get(), sizeof(mirror::Class))));
object_array_art_method->SetComponentType(java_lang_reflect_ArtMethod.Get());
SetClassRoot(kJavaLangReflectArtMethodArrayClass, object_array_art_method.Get());
Handle<mirror::Class> object_array_art_field(
hs.NewHandle(AllocClass(self, java_lang_Class.Get(), sizeof(mirror::Class))));
object_array_art_field->SetComponentType(java_lang_reflect_ArtField.Get());
SetClassRoot(kJavaLangReflectArtFieldArrayClass, object_array_art_field.Get());
// Setup boot_class_path_ and register class_path now that we can use AllocObjectArray to create
// DexCache instances. Needs to be after String, Field, Method arrays since AllocDexCache uses
// these roots.
CHECK_NE(0U, boot_class_path.size());
for (size_t i = 0; i != boot_class_path.size(); ++i) {
const DexFile* dex_file = boot_class_path[i];
CHECK(dex_file != NULL);
AppendToBootClassPath(*dex_file);
}
// now we can use FindSystemClass
// run char class through InitializePrimitiveClass to finish init
InitializePrimitiveClass(char_class.Get(), Primitive::kPrimChar);
SetClassRoot(kPrimitiveChar, char_class.Get()); // needs descriptor
// Create runtime resolution and imt conflict methods. Also setup the default imt.
Runtime* runtime = Runtime::Current();
runtime->SetResolutionMethod(runtime->CreateResolutionMethod());
runtime->SetImtConflictMethod(runtime->CreateImtConflictMethod());
runtime->SetDefaultImt(runtime->CreateDefaultImt(this));
// Object, String and DexCache need to be rerun through FindSystemClass to finish init
java_lang_Object->SetStatus(mirror::Class::kStatusNotReady, self);
mirror::Class* Object_class = FindSystemClass(self, "Ljava/lang/Object;");
CHECK_EQ(java_lang_Object.Get(), Object_class);
CHECK_EQ(java_lang_Object->GetObjectSize(), sizeof(mirror::Object));
java_lang_String->SetStatus(mirror::Class::kStatusNotReady, self);
mirror::Class* String_class = FindSystemClass(self, "Ljava/lang/String;");
CHECK_EQ(java_lang_String.Get(), String_class);
CHECK_EQ(java_lang_String->GetObjectSize(), sizeof(mirror::String));
java_lang_DexCache->SetStatus(mirror::Class::kStatusNotReady, self);
mirror::Class* DexCache_class = FindSystemClass(self, "Ljava/lang/DexCache;");
CHECK_EQ(java_lang_String.Get(), String_class);
CHECK_EQ(java_lang_DexCache.Get(), DexCache_class);
CHECK_EQ(java_lang_DexCache->GetObjectSize(), sizeof(mirror::DexCache));
// Setup the primitive array type classes - can't be done until Object has a vtable.
SetClassRoot(kBooleanArrayClass, FindSystemClass(self, "[Z"));
mirror::BooleanArray::SetArrayClass(GetClassRoot(kBooleanArrayClass));
SetClassRoot(kByteArrayClass, FindSystemClass(self, "[B"));
mirror::ByteArray::SetArrayClass(GetClassRoot(kByteArrayClass));
mirror::Class* found_char_array_class = FindSystemClass(self, "[C");
CHECK_EQ(char_array_class.Get(), found_char_array_class);
SetClassRoot(kShortArrayClass, FindSystemClass(self, "[S"));
mirror::ShortArray::SetArrayClass(GetClassRoot(kShortArrayClass));
mirror::Class* found_int_array_class = FindSystemClass(self, "[I");
CHECK_EQ(int_array_class.Get(), found_int_array_class);
SetClassRoot(kLongArrayClass, FindSystemClass(self, "[J"));
mirror::LongArray::SetArrayClass(GetClassRoot(kLongArrayClass));
SetClassRoot(kFloatArrayClass, FindSystemClass(self, "[F"));
mirror::FloatArray::SetArrayClass(GetClassRoot(kFloatArrayClass));
SetClassRoot(kDoubleArrayClass, FindSystemClass(self, "[D"));
mirror::DoubleArray::SetArrayClass(GetClassRoot(kDoubleArrayClass));
mirror::Class* found_class_array_class = FindSystemClass(self, "[Ljava/lang/Class;");
CHECK_EQ(class_array_class.Get(), found_class_array_class);
mirror::Class* found_object_array_class = FindSystemClass(self, "[Ljava/lang/Object;");
CHECK_EQ(object_array_class.Get(), found_object_array_class);
// Setup the single, global copy of "iftable".
mirror::Class* java_lang_Cloneable = FindSystemClass(self, "Ljava/lang/Cloneable;");
CHECK(java_lang_Cloneable != NULL);
mirror::Class* java_io_Serializable = FindSystemClass(self, "Ljava/io/Serializable;");
CHECK(java_io_Serializable != NULL);
// We assume that Cloneable/Serializable don't have superinterfaces -- normally we'd have to
// crawl up and explicitly list all of the supers as well.
array_iftable_->SetInterface(0, java_lang_Cloneable);
array_iftable_->SetInterface(1, java_io_Serializable);
// Sanity check Class[] and Object[]'s interfaces.
ClassHelper kh(class_array_class.Get());
CHECK_EQ(java_lang_Cloneable, kh.GetDirectInterface(0));
CHECK_EQ(java_io_Serializable, kh.GetDirectInterface(1));
kh.ChangeClass(object_array_class.Get());
CHECK_EQ(java_lang_Cloneable, kh.GetDirectInterface(0));
CHECK_EQ(java_io_Serializable, kh.GetDirectInterface(1));
// Run Class, ArtField, and ArtMethod through FindSystemClass. This initializes their
// dex_cache_ fields and register them in class_table_.
mirror::Class* Class_class = FindSystemClass(self, "Ljava/lang/Class;");
CHECK_EQ(java_lang_Class.Get(), Class_class);
java_lang_reflect_ArtMethod->SetStatus(mirror::Class::kStatusNotReady, self);
mirror::Class* Art_method_class = FindSystemClass(self, "Ljava/lang/reflect/ArtMethod;");
CHECK_EQ(java_lang_reflect_ArtMethod.Get(), Art_method_class);
java_lang_reflect_ArtField->SetStatus(mirror::Class::kStatusNotReady, self);
mirror::Class* Art_field_class = FindSystemClass(self, "Ljava/lang/reflect/ArtField;");
CHECK_EQ(java_lang_reflect_ArtField.Get(), Art_field_class);
mirror::Class* String_array_class = FindSystemClass(self, class_roots_descriptors_[kJavaLangStringArrayClass]);
CHECK_EQ(object_array_string.Get(), String_array_class);
mirror::Class* Art_method_array_class =
FindSystemClass(self, class_roots_descriptors_[kJavaLangReflectArtMethodArrayClass]);
CHECK_EQ(object_array_art_method.Get(), Art_method_array_class);
mirror::Class* Art_field_array_class =
FindSystemClass(self, class_roots_descriptors_[kJavaLangReflectArtFieldArrayClass]);
CHECK_EQ(object_array_art_field.Get(), Art_field_array_class);
// End of special init trickery, subsequent classes may be loaded via FindSystemClass.
// Create java.lang.reflect.Proxy root.
mirror::Class* java_lang_reflect_Proxy = FindSystemClass(self, "Ljava/lang/reflect/Proxy;");
SetClassRoot(kJavaLangReflectProxy, java_lang_reflect_Proxy);
// java.lang.ref classes need to be specially flagged, but otherwise are normal classes
mirror::Class* java_lang_ref_Reference = FindSystemClass(self, "Ljava/lang/ref/Reference;");
SetClassRoot(kJavaLangRefReference, java_lang_ref_Reference);
mirror::Class* java_lang_ref_FinalizerReference = FindSystemClass(self, "Ljava/lang/ref/FinalizerReference;");
java_lang_ref_FinalizerReference->SetAccessFlags(
java_lang_ref_FinalizerReference->GetAccessFlags() |
kAccClassIsReference | kAccClassIsFinalizerReference);
mirror::Class* java_lang_ref_PhantomReference = FindSystemClass(self, "Ljava/lang/ref/PhantomReference;");
java_lang_ref_PhantomReference->SetAccessFlags(
java_lang_ref_PhantomReference->GetAccessFlags() |
kAccClassIsReference | kAccClassIsPhantomReference);
mirror::Class* java_lang_ref_SoftReference = FindSystemClass(self, "Ljava/lang/ref/SoftReference;");
java_lang_ref_SoftReference->SetAccessFlags(
java_lang_ref_SoftReference->GetAccessFlags() | kAccClassIsReference);
mirror::Class* java_lang_ref_WeakReference = FindSystemClass(self, "Ljava/lang/ref/WeakReference;");
java_lang_ref_WeakReference->SetAccessFlags(
java_lang_ref_WeakReference->GetAccessFlags() |
kAccClassIsReference | kAccClassIsWeakReference);
// Setup the ClassLoader, verifying the object_size_.
mirror::Class* java_lang_ClassLoader = FindSystemClass(self, "Ljava/lang/ClassLoader;");
CHECK_EQ(java_lang_ClassLoader->GetObjectSize(), sizeof(mirror::ClassLoader));
SetClassRoot(kJavaLangClassLoader, java_lang_ClassLoader);
// Set up java.lang.Throwable, java.lang.ClassNotFoundException, and
// java.lang.StackTraceElement as a convenience.
SetClassRoot(kJavaLangThrowable, FindSystemClass(self, "Ljava/lang/Throwable;"));
mirror::Throwable::SetClass(GetClassRoot(kJavaLangThrowable));
SetClassRoot(kJavaLangClassNotFoundException, FindSystemClass(self, "Ljava/lang/ClassNotFoundException;"));
SetClassRoot(kJavaLangStackTraceElement, FindSystemClass(self, "Ljava/lang/StackTraceElement;"));
SetClassRoot(kJavaLangStackTraceElementArrayClass, FindSystemClass(self, "[Ljava/lang/StackTraceElement;"));
mirror::StackTraceElement::SetClass(GetClassRoot(kJavaLangStackTraceElement));
FinishInit(self);
VLOG(startup) << "ClassLinker::InitFromCompiler exiting";
}
void ClassLinker::FinishInit(Thread* self) {
VLOG(startup) << "ClassLinker::FinishInit entering";
// Let the heap know some key offsets into java.lang.ref instances
// Note: we hard code the field indexes here rather than using FindInstanceField
// as the types of the field can't be resolved prior to the runtime being
// fully initialized
mirror::Class* java_lang_ref_Reference = GetClassRoot(kJavaLangRefReference);
mirror::Class* java_lang_ref_FinalizerReference =
FindSystemClass(self, "Ljava/lang/ref/FinalizerReference;");
mirror::ArtField* pendingNext = java_lang_ref_Reference->GetInstanceField(0);
FieldHelper fh(pendingNext);
CHECK_STREQ(fh.GetName(), "pendingNext");
CHECK_STREQ(fh.GetTypeDescriptor(), "Ljava/lang/ref/Reference;");
mirror::ArtField* queue = java_lang_ref_Reference->GetInstanceField(1);
fh.ChangeField(queue);
CHECK_STREQ(fh.GetName(), "queue");
CHECK_STREQ(fh.GetTypeDescriptor(), "Ljava/lang/ref/ReferenceQueue;");
mirror::ArtField* queueNext = java_lang_ref_Reference->GetInstanceField(2);
fh.ChangeField(queueNext);
CHECK_STREQ(fh.GetName(), "queueNext");
CHECK_STREQ(fh.GetTypeDescriptor(), "Ljava/lang/ref/Reference;");
mirror::ArtField* referent = java_lang_ref_Reference->GetInstanceField(3);
fh.ChangeField(referent);
CHECK_STREQ(fh.GetName(), "referent");
CHECK_STREQ(fh.GetTypeDescriptor(), "Ljava/lang/Object;");
mirror::ArtField* zombie = java_lang_ref_FinalizerReference->GetInstanceField(2);
fh.ChangeField(zombie);
CHECK_STREQ(fh.GetName(), "zombie");
CHECK_STREQ(fh.GetTypeDescriptor(), "Ljava/lang/Object;");
// ensure all class_roots_ are initialized
for (size_t i = 0; i < kClassRootsMax; i++) {
ClassRoot class_root = static_cast<ClassRoot>(i);
mirror::Class* klass = GetClassRoot(class_root);
CHECK(klass != NULL);
DCHECK(klass->IsArrayClass() || klass->IsPrimitive() || klass->GetDexCache() != NULL);
// note SetClassRoot does additional validation.
// if possible add new checks there to catch errors early
}
CHECK(array_iftable_ != NULL);
// disable the slow paths in FindClass and CreatePrimitiveClass now
// that Object, Class, and Object[] are setup
init_done_ = true;
VLOG(startup) << "ClassLinker::FinishInit exiting";
}
void ClassLinker::RunRootClinits() {
Thread* self = Thread::Current();
for (size_t i = 0; i < ClassLinker::kClassRootsMax; ++i) {
mirror::Class* c = GetClassRoot(ClassRoot(i));
if (!c->IsArrayClass() && !c->IsPrimitive()) {
StackHandleScope<1> hs(self);
Handle<mirror::Class> h_class(hs.NewHandle(GetClassRoot(ClassRoot(i))));
EnsureInitialized(h_class, true, true);
self->AssertNoPendingException();
}
}
}
bool ClassLinker::GenerateOatFile(const char* dex_filename,
int oat_fd,
const char* oat_cache_filename,
std::string* error_msg) {
Locks::mutator_lock_->AssertNotHeld(Thread::Current()); // Avoid starving GC.
std::string dex2oat(GetAndroidRoot());
dex2oat += (kIsDebugBuild ? "/bin/dex2oatd" : "/bin/dex2oat");
gc::Heap* heap = Runtime::Current()->GetHeap();
std::string boot_image_option("--boot-image=");
boot_image_option += heap->GetImageSpace()->GetImageFilename();
std::string dex_file_option("--dex-file=");
dex_file_option += dex_filename;
std::string oat_fd_option("--oat-fd=");
StringAppendF(&oat_fd_option, "%d", oat_fd);
std::string oat_location_option("--oat-location=");
oat_location_option += oat_cache_filename;
std::vector<std::string> argv;
argv.push_back(dex2oat);
argv.push_back("--runtime-arg");
argv.push_back("-Xms64m");
argv.push_back("--runtime-arg");
argv.push_back("-Xmx64m");
argv.push_back("--runtime-arg");
argv.push_back("-classpath");
argv.push_back("--runtime-arg");
argv.push_back(Runtime::Current()->GetClassPathString());
Runtime::Current()->AddCurrentRuntimeFeaturesAsDex2OatArguments(&argv);
if (!Runtime::Current()->IsVerificationEnabled()) {
argv.push_back("--compiler-filter=verify-none");
}
if (!kIsTargetBuild) {
argv.push_back("--host");
}
argv.push_back(boot_image_option);
argv.push_back(dex_file_option);
argv.push_back(oat_fd_option);
argv.push_back(oat_location_option);
const std::vector<std::string>& compiler_options = Runtime::Current()->GetCompilerOptions();
for (size_t i = 0; i < compiler_options.size(); ++i) {
argv.push_back(compiler_options[i].c_str());
}
return Exec(argv, error_msg);
}
const OatFile* ClassLinker::RegisterOatFile(const OatFile* oat_file) {
WriterMutexLock mu(Thread::Current(), dex_lock_);
if (kIsDebugBuild) {
for (size_t i = 0; i < oat_files_.size(); ++i) {
CHECK_NE(oat_file, oat_files_[i]) << oat_file->GetLocation();
}
}
VLOG(class_linker) << "Registering " << oat_file->GetLocation();
oat_files_.push_back(oat_file);
return oat_file;
}
OatFile& ClassLinker::GetImageOatFile(gc::space::ImageSpace* space) {
VLOG(startup) << "ClassLinker::GetImageOatFile entering";
OatFile* oat_file = space->ReleaseOatFile();
CHECK_EQ(RegisterOatFile(oat_file), oat_file);
VLOG(startup) << "ClassLinker::GetImageOatFile exiting";
return *oat_file;
}
const OatFile* ClassLinker::FindOpenedOatFileForDexFile(const DexFile& dex_file) {
const char* dex_location = dex_file.GetLocation().c_str();
uint32_t dex_location_checksum = dex_file.GetLocationChecksum();
return FindOpenedOatFileFromDexLocation(dex_location, &dex_location_checksum);
}
const OatFile* ClassLinker::FindOpenedOatFileFromDexLocation(const char* dex_location,
const uint32_t* const dex_location_checksum) {
ReaderMutexLock mu(Thread::Current(), dex_lock_);
for (size_t i = 0; i < oat_files_.size(); i++) {
const OatFile* oat_file = oat_files_[i];
DCHECK(oat_file != NULL);
const OatFile::OatDexFile* oat_dex_file = oat_file->GetOatDexFile(dex_location,
dex_location_checksum,
false);
if (oat_dex_file != NULL) {
return oat_file;
}
}
return NULL;
}
const DexFile* ClassLinker::FindDexFileInOatLocation(const char* dex_location,
uint32_t dex_location_checksum,
const char* oat_location,
std::string* error_msg) {
UniquePtr<OatFile> oat_file(OatFile::Open(oat_location, oat_location, NULL,
!Runtime::Current()->IsCompiler(),
error_msg));
if (oat_file.get() == nullptr) {
*error_msg = StringPrintf("Failed to find existing oat file at %s: %s", oat_location,
error_msg->c_str());
return nullptr;
}
Runtime* runtime = Runtime::Current();
const ImageHeader& image_header = runtime->GetHeap()->GetImageSpace()->GetImageHeader();
uint32_t expected_image_oat_checksum = image_header.GetOatChecksum();
uint32_t actual_image_oat_checksum = oat_file->GetOatHeader().GetImageFileLocationOatChecksum();
if (expected_image_oat_checksum != actual_image_oat_checksum) {
*error_msg = StringPrintf("Failed to find oat file at '%s' with expected image oat checksum of "
"0x%x, found 0x%x", oat_location, expected_image_oat_checksum,
actual_image_oat_checksum);
return nullptr;
}
uintptr_t expected_image_oat_offset = reinterpret_cast<uintptr_t>(image_header.GetOatDataBegin());
uint32_t actual_image_oat_offset = oat_file->GetOatHeader().GetImageFileLocationOatDataBegin();
if (expected_image_oat_offset != actual_image_oat_offset) {
*error_msg = StringPrintf("Failed to find oat file at '%s' with expected image oat offset %"
PRIuPTR ", found %ud", oat_location, expected_image_oat_offset,
actual_image_oat_offset);
return nullptr;
}
const OatFile::OatDexFile* oat_dex_file = oat_file->GetOatDexFile(dex_location,
&dex_location_checksum);
if (oat_dex_file == nullptr) {
*error_msg = StringPrintf("Failed to find oat file at '%s' containing '%s'", oat_location,
dex_location);
return nullptr;
}
uint32_t expected_dex_checksum = dex_location_checksum;
uint32_t actual_dex_checksum = oat_dex_file->GetDexFileLocationChecksum();
if (expected_dex_checksum != actual_dex_checksum) {
*error_msg = StringPrintf("Failed to find oat file at '%s' with expected dex checksum of 0x%x, "
"found 0x%x", oat_location, expected_dex_checksum,
actual_dex_checksum);
return nullptr;
}
const DexFile* dex_file = oat_dex_file->OpenDexFile(error_msg);
if (dex_file != nullptr) {
RegisterOatFile(oat_file.release());
}
return dex_file;
}
class ScopedFlock {
public:
ScopedFlock() {}
bool Init(const char* filename, std::string* error_msg) {
while (true) {
file_.reset(OS::OpenFileWithFlags(filename, O_CREAT | O_RDWR));
if (file_.get() == NULL) {
*error_msg = StringPrintf("Failed to open file '%s': %s", filename, strerror(errno));
return false;
}
int flock_result = TEMP_FAILURE_RETRY(flock(file_->Fd(), LOCK_EX));
if (flock_result != 0) {
*error_msg = StringPrintf("Failed to lock file '%s': %s", filename, strerror(errno));
return false;
}
struct stat fstat_stat;
int fstat_result = TEMP_FAILURE_RETRY(fstat(file_->Fd(), &fstat_stat));
if (fstat_result != 0) {
*error_msg = StringPrintf("Failed to fstat file '%s': %s", filename, strerror(errno));
return false;
}
struct stat stat_stat;
int stat_result = TEMP_FAILURE_RETRY(stat(filename, &stat_stat));
if (stat_result != 0) {
PLOG(WARNING) << "Failed to stat, will retry: " << filename;
// ENOENT can happen if someone racing with us unlinks the file we created so just retry.
continue;
}
if (fstat_stat.st_dev != stat_stat.st_dev || fstat_stat.st_ino != stat_stat.st_ino) {
LOG(WARNING) << "File changed while locking, will retry: " << filename;
continue;
}
return true;
}
}
File& GetFile() {
return *file_;
}
~ScopedFlock() {
if (file_.get() != NULL) {
int flock_result = TEMP_FAILURE_RETRY(flock(file_->Fd(), LOCK_UN));
CHECK_EQ(0, flock_result);
}
}
private:
UniquePtr<File> file_;
DISALLOW_COPY_AND_ASSIGN(ScopedFlock);
};
const DexFile* ClassLinker::FindOrCreateOatFileForDexLocation(const char* dex_location,
uint32_t dex_location_checksum,
const char* oat_location,
std::vector<std::string>* error_msgs) {
// We play a locking game here so that if two different processes
// race to generate (or worse, one tries to open a partial generated
// file) we will be okay. This is actually common with apps that use
// DexClassLoader to work around the dex method reference limit and
// that have a background service running in a separate process.
ScopedFlock scoped_flock;
std::string error_msg;
if (!scoped_flock.Init(oat_location, &error_msg)) {
error_msgs->push_back(error_msg);
return nullptr;
}
// Check if we already have an up-to-date output file
const DexFile* dex_file = FindDexFileInOatLocation(dex_location, dex_location_checksum,
oat_location, &error_msg);
if (dex_file != nullptr) {
return dex_file;
}
std::string compound_msg = StringPrintf("Failed to find dex file '%s' in oat location '%s': %s",
dex_location, oat_location, error_msg.c_str());
VLOG(class_linker) << compound_msg;
error_msgs->push_back(compound_msg);
// Generate the output oat file for the dex file
VLOG(class_linker) << "Generating oat file " << oat_location << " for " << dex_location;
if (!GenerateOatFile(dex_location, scoped_flock.GetFile().Fd(), oat_location, &error_msg)) {
CHECK(!error_msg.empty());
error_msgs->push_back(error_msg);
return nullptr;
}
UniquePtr<OatFile> oat_file(OatFile::Open(oat_location, oat_location, NULL,
!Runtime::Current()->IsCompiler(),
&error_msg));
if (oat_file.get() == nullptr) {
compound_msg = StringPrintf("\nFailed to open generated oat file '%s': %s",
oat_location, error_msg.c_str());
error_msgs->push_back(compound_msg);
return nullptr;
}
const OatFile::OatDexFile* oat_dex_file = oat_file->GetOatDexFile(dex_location,
&dex_location_checksum);
if (oat_dex_file == nullptr) {
error_msg = StringPrintf("\nFailed to find dex file '%s' (checksum 0x%x) in generated out file "
"'%s'", dex_location, dex_location_checksum, oat_location);
error_msgs->push_back(error_msg);
return nullptr;
}
const DexFile* result = oat_dex_file->OpenDexFile(&error_msg);
CHECK(result != nullptr) << error_msgs << ", " << error_msg;
CHECK_EQ(dex_location_checksum, result->GetLocationChecksum())
<< "dex_location=" << dex_location << " oat_location=" << oat_location << std::hex
<< " dex_location_checksum=" << dex_location_checksum
<< " DexFile::GetLocationChecksum()=" << result->GetLocationChecksum();
RegisterOatFile(oat_file.release());
return result;
}
bool ClassLinker::VerifyOatFileChecksums(const OatFile* oat_file,
const char* dex_location,
uint32_t dex_location_checksum,
const InstructionSet instruction_set,
std::string* error_msg) {
Runtime* runtime = Runtime::Current();
const gc::space::ImageSpace* image_space = runtime->GetHeap()->GetImageSpace();
// If the requested instruction set is the same as the current runtime,
// we can use the checksums directly. If it isn't, we'll have to read the
// image header from the image for the right instruction set.
uint32_t image_oat_checksum = 0;
uintptr_t image_oat_data_begin = 0;
if (instruction_set == kRuntimeISA) {
const ImageHeader& image_header = image_space->GetImageHeader();
image_oat_checksum = image_header.GetOatChecksum();
image_oat_data_begin = reinterpret_cast<uintptr_t>(image_header.GetOatDataBegin());
} else {
UniquePtr<ImageHeader> image_header(gc::space::ImageSpace::ReadImageHeaderOrDie(
image_space->GetImageLocation().c_str(), instruction_set));
image_oat_checksum = image_header->GetOatChecksum();
image_oat_data_begin = reinterpret_cast<uintptr_t>(image_header->GetOatDataBegin());
}
const OatHeader& oat_header = oat_file->GetOatHeader();
bool image_check = ((oat_header.GetImageFileLocationOatChecksum() == image_oat_checksum)
&& (oat_header.GetImageFileLocationOatDataBegin() == image_oat_data_begin));
const OatFile::OatDexFile* oat_dex_file = oat_file->GetOatDexFile(dex_location, &dex_location_checksum);
if (oat_dex_file == NULL) {
*error_msg = StringPrintf("oat file '%s' does not contain contents for '%s' with checksum 0x%x",
oat_file->GetLocation().c_str(), dex_location, dex_location_checksum);
std::vector<const OatFile::OatDexFile*> oat_dex_files = oat_file->GetOatDexFiles();
for (size_t i = 0; i < oat_dex_files.size(); i++) {
const OatFile::OatDexFile* oat_dex_file = oat_dex_files[i];
*error_msg += StringPrintf("\noat file '%s' contains contents for '%s'",
oat_file->GetLocation().c_str(),
oat_dex_file->GetDexFileLocation().c_str());
}
return false;
}
bool dex_check = dex_location_checksum == oat_dex_file->GetDexFileLocationChecksum();
if (image_check && dex_check) {
return true;
}
if (!image_check) {
ScopedObjectAccess soa(Thread::Current());
*error_msg = StringPrintf("oat file '%s' mismatch (0x%x, %d) with (0x%x, %" PRIdPTR ")",
oat_file->GetLocation().c_str(),
oat_file->GetOatHeader().GetImageFileLocationOatChecksum(),
oat_file->GetOatHeader().GetImageFileLocationOatDataBegin(),
image_oat_checksum, image_oat_data_begin);
}
if (!dex_check) {
*error_msg = StringPrintf("oat file '%s' mismatch (0x%x) with '%s' (0x%x)",
oat_file->GetLocation().c_str(),
oat_dex_file->GetDexFileLocationChecksum(),
dex_location, dex_location_checksum);
}
return false;
}
const DexFile* ClassLinker::VerifyAndOpenDexFileFromOatFile(const std::string& oat_file_location,
const char* dex_location,
std::string* error_msg,
bool* open_failed) {
UniquePtr<const OatFile> oat_file(FindOatFileFromOatLocation(oat_file_location, error_msg));
if (oat_file.get() == nullptr) {
*open_failed = true;
return nullptr;
}
*open_failed = false;
const DexFile* dex_file = nullptr;
uint32_t dex_location_checksum;
if (!DexFile::GetChecksum(dex_location, &dex_location_checksum, error_msg)) {
// If no classes.dex found in dex_location, it has been stripped or is corrupt, assume oat is
// up-to-date. This is the common case in user builds for jar's and apk's in the /system
// directory.
const OatFile::OatDexFile* oat_dex_file = oat_file->GetOatDexFile(dex_location, NULL);
if (oat_dex_file == nullptr) {
*error_msg = StringPrintf("Dex checksum mismatch for location '%s' and failed to find oat "
"dex file '%s': %s", oat_file_location.c_str(), dex_location,
error_msg->c_str());
return nullptr;
}
dex_file = oat_dex_file->OpenDexFile(error_msg);
} else {
bool verified = VerifyOatFileChecksums(oat_file.get(), dex_location, dex_location_checksum,
kRuntimeISA, error_msg);
if (!verified) {
return nullptr;
}
dex_file = oat_file->GetOatDexFile(dex_location,
&dex_location_checksum)->OpenDexFile(error_msg);
}
if (dex_file != nullptr) {
RegisterOatFile(oat_file.release());
}
return dex_file;
}
const DexFile* ClassLinker::FindDexFileInOatFileFromDexLocation(const char* dex_location,
const uint32_t* const dex_location_checksum,
std::vector<std::string>* error_msgs) {
const OatFile* open_oat_file = FindOpenedOatFileFromDexLocation(dex_location,
dex_location_checksum);
if (open_oat_file != nullptr) {
const OatFile::OatDexFile* oat_dex_file = open_oat_file->GetOatDexFile(dex_location,
dex_location_checksum);
std::string error_msg;
const DexFile* ret = oat_dex_file->OpenDexFile(&error_msg);
if (ret == nullptr) {
error_msgs->push_back(error_msg);
}
return ret;
}
// Look for an existing file next to dex. for example, for
// /foo/bar/baz.jar, look for /foo/bar/baz.odex.
std::string odex_filename(OatFile::DexFilenameToOdexFilename(dex_location));
bool open_failed;
std::string error_msg;
const DexFile* dex_file = VerifyAndOpenDexFileFromOatFile(odex_filename, dex_location,
&error_msg, &open_failed);
if (dex_file != nullptr) {
return dex_file;
}
if (dex_location_checksum == nullptr) {
error_msgs->push_back(StringPrintf("Failed to open oat file from %s and no classes.dex found in"
"%s: %s", odex_filename.c_str(), dex_location,
error_msg.c_str()));
return nullptr;
}
std::string cache_error_msg;
const std::string dalvik_cache(GetDalvikCacheOrDie(GetInstructionSetString(kRuntimeISA)));
std::string cache_location(GetDalvikCacheFilenameOrDie(dex_location,
dalvik_cache.c_str()));
dex_file = VerifyAndOpenDexFileFromOatFile(cache_location, dex_location, &cache_error_msg,
&open_failed);
if (dex_file != nullptr) {
return dex_file;
}
if (!open_failed && TEMP_FAILURE_RETRY(unlink(cache_location.c_str())) != 0) {
PLOG(FATAL) << "Failed to remove obsolete oat file from " << cache_location;
}
std::string compound_msg = StringPrintf("Failed to open oat file from %s (error '%s') or %s "
"(error '%s').", odex_filename.c_str(), error_msg.c_str(),
cache_location.c_str(), cache_error_msg.c_str());
VLOG(class_linker) << compound_msg;
error_msgs->push_back(compound_msg);
// Try to generate oat file if it wasn't found or was obsolete.
return FindOrCreateOatFileForDexLocation(dex_location, *dex_location_checksum,
cache_location.c_str(), error_msgs);
}
const OatFile* ClassLinker::FindOpenedOatFileFromOatLocation(const std::string& oat_location) {
ReaderMutexLock mu(Thread::Current(), dex_lock_);
for (size_t i = 0; i < oat_files_.size(); i++) {
const OatFile* oat_file = oat_files_[i];
DCHECK(oat_file != nullptr);
if (oat_file->GetLocation() == oat_location) {
return oat_file;
}
}
return nullptr;
}
const OatFile* ClassLinker::FindOatFileFromOatLocation(const std::string& oat_location,
std::string* error_msg) {
const OatFile* oat_file = FindOpenedOatFileFromOatLocation(oat_location);
if (oat_file != nullptr) {
return oat_file;
}
oat_file = OatFile::Open(oat_location, oat_location, NULL, !Runtime::Current()->IsCompiler(),
error_msg);
if (oat_file == NULL) {
return NULL;
}
return oat_file;
}
static void InitFromImageInterpretOnlyCallback(mirror::Object* obj, void* arg)
SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
ClassLinker* class_linker = reinterpret_cast<ClassLinker*>(arg);
DCHECK(obj != NULL);
DCHECK(class_linker != NULL);
if (obj->IsArtMethod()) {
mirror::ArtMethod* method = obj->AsArtMethod();
if (!method->IsNative()) {
method->SetEntryPointFromInterpreter(interpreter::artInterpreterToInterpreterBridge);
if (method != Runtime::Current()->GetResolutionMethod()) {
method->SetEntryPointFromQuickCompiledCode(GetQuickToInterpreterBridge());
method->SetEntryPointFromPortableCompiledCode(GetPortableToInterpreterBridge());
}
}
}
}
void ClassLinker::InitFromImage() {
VLOG(startup) << "ClassLinker::InitFromImage entering";
CHECK(!init_done_);
Thread* self = Thread::Current();
gc::Heap* heap = Runtime::Current()->GetHeap();
gc::space::ImageSpace* space = heap->GetImageSpace();
dex_cache_image_class_lookup_required_ = true;
CHECK(space != NULL);
OatFile& oat_file = GetImageOatFile(space);
CHECK_EQ(oat_file.GetOatHeader().GetImageFileLocationOatChecksum(), 0U);
CHECK_EQ(oat_file.GetOatHeader().GetImageFileLocationOatDataBegin(), 0U);
CHECK(oat_file.GetOatHeader().GetImageFileLocation().empty());
portable_resolution_trampoline_ = oat_file.GetOatHeader().GetPortableResolutionTrampoline();
quick_resolution_trampoline_ = oat_file.GetOatHeader().GetQuickResolutionTrampoline();
portable_imt_conflict_trampoline_ = oat_file.GetOatHeader().GetPortableImtConflictTrampoline();
quick_imt_conflict_trampoline_ = oat_file.GetOatHeader().GetQuickImtConflictTrampoline();
quick_generic_jni_trampoline_ = oat_file.GetOatHeader().GetQuickGenericJniTrampoline();
quick_to_interpreter_bridge_trampoline_ = oat_file.GetOatHeader().GetQuickToInterpreterBridge();
mirror::Object* dex_caches_object = space->GetImageHeader().GetImageRoot(ImageHeader::kDexCaches);
mirror::ObjectArray<mirror::DexCache>* dex_caches =
dex_caches_object->AsObjectArray<mirror::DexCache>();
StackHandleScope<1> hs(self);
Handle<mirror::ObjectArray<mirror::Class>> class_roots(hs.NewHandle(
space->GetImageHeader().GetImageRoot(ImageHeader::kClassRoots)->
AsObjectArray<mirror::Class>()));
class_roots_ = class_roots.Get();
// Special case of setting up the String class early so that we can test arbitrary objects
// as being Strings or not
mirror::String::SetClass(GetClassRoot(kJavaLangString));
CHECK_EQ(oat_file.GetOatHeader().GetDexFileCount(),
static_cast<uint32_t>(dex_caches->GetLength()));
for (int32_t i = 0; i < dex_caches->GetLength(); i++) {
StackHandleScope<1> hs(self);
Handle<mirror::DexCache> dex_cache(hs.NewHandle(dex_caches->Get(i)));
const std::string& dex_file_location(dex_cache->GetLocation()->ToModifiedUtf8());
const OatFile::OatDexFile* oat_dex_file = oat_file.GetOatDexFile(dex_file_location.c_str(),
nullptr);
CHECK(oat_dex_file != NULL) << oat_file.GetLocation() << " " << dex_file_location;
std::string error_msg;
const DexFile* dex_file = oat_dex_file->OpenDexFile(&error_msg);
if (dex_file == NULL) {
LOG(FATAL) << "Failed to open dex file " << dex_file_location
<< " from within oat file " << oat_file.GetLocation()
<< " error '" << error_msg << "'";
}
CHECK_EQ(dex_file->GetLocationChecksum(), oat_dex_file->GetDexFileLocationChecksum());
AppendToBootClassPath(*dex_file, dex_cache);
}
// Set classes on AbstractMethod early so that IsMethod tests can be performed during the live
// bitmap walk.
mirror::ArtMethod::SetClass(GetClassRoot(kJavaLangReflectArtMethod));
// Set entry point to interpreter if in InterpretOnly mode.
if (Runtime::Current()->GetInstrumentation()->InterpretOnly()) {
ReaderMutexLock mu(self, *Locks::heap_bitmap_lock_);
heap->VisitObjects(InitFromImageInterpretOnlyCallback, this);
}
// reinit class_roots_
mirror::Class::SetClassClass(class_roots->Get(kJavaLangClass));
class_roots_ = class_roots.Get();
// reinit array_iftable_ from any array class instance, they should be ==
array_iftable_ = GetClassRoot(kObjectArrayClass)->GetIfTable();
DCHECK(array_iftable_ == GetClassRoot(kBooleanArrayClass)->GetIfTable());
// String class root was set above
mirror::ArtField::SetClass(GetClassRoot(kJavaLangReflectArtField));
mirror::BooleanArray::SetArrayClass(GetClassRoot(kBooleanArrayClass));
mirror::ByteArray::SetArrayClass(GetClassRoot(kByteArrayClass));
mirror::CharArray::SetArrayClass(GetClassRoot(kCharArrayClass));
mirror::DoubleArray::SetArrayClass(GetClassRoot(kDoubleArrayClass));
mirror::FloatArray::SetArrayClass(GetClassRoot(kFloatArrayClass));
mirror::IntArray::SetArrayClass(GetClassRoot(kIntArrayClass));
mirror::LongArray::SetArrayClass(GetClassRoot(kLongArrayClass));
mirror::ShortArray::SetArrayClass(GetClassRoot(kShortArrayClass));
mirror::Throwable::SetClass(GetClassRoot(kJavaLangThrowable));
mirror::StackTraceElement::SetClass(GetClassRoot(kJavaLangStackTraceElement));
FinishInit(self);
VLOG(startup) << "ClassLinker::InitFromImage exiting";
}
// Keep in sync with InitCallback. Anything we visit, we need to
// reinit references to when reinitializing a ClassLinker from a
// mapped image.
void ClassLinker::VisitRoots(RootCallback* callback, void* arg, VisitRootFlags flags) {
callback(reinterpret_cast<mirror::Object**>(&class_roots_), arg, 0, kRootVMInternal);
Thread* self = Thread::Current();
{
ReaderMutexLock mu(self, dex_lock_);
if ((flags & kVisitRootFlagAllRoots) != 0) {
for (mirror::DexCache*& dex_cache : dex_caches_) {
callback(reinterpret_cast<mirror::Object**>(&dex_cache), arg, 0, kRootVMInternal);
}
} else if ((flags & kVisitRootFlagNewRoots) != 0) {
for (size_t index : new_dex_cache_roots_) {
callback(reinterpret_cast<mirror::Object**>(&dex_caches_[index]), arg, 0, kRootVMInternal);
}
}
if ((flags & kVisitRootFlagClearRootLog) != 0) {
new_dex_cache_roots_.clear();
}
if ((flags & kVisitRootFlagStartLoggingNewRoots) != 0) {
log_new_dex_caches_roots_ = true;
} else if ((flags & kVisitRootFlagStopLoggingNewRoots) != 0) {
log_new_dex_caches_roots_ = false;
}
}
{
WriterMutexLock mu(self, *Locks::classlinker_classes_lock_);
if ((flags & kVisitRootFlagAllRoots) != 0) {
for (std::pair<const size_t, mirror::Class*>& it : class_table_) {
callback(reinterpret_cast<mirror::Object**>(&it.second), arg, 0, kRootStickyClass);
}
} else if ((flags & kVisitRootFlagNewRoots) != 0) {
for (auto& pair : new_class_roots_) {
mirror::Object* old_ref = pair.second;
callback(reinterpret_cast<mirror::Object**>(&pair.second), arg, 0, kRootStickyClass);
if (UNLIKELY(pair.second != old_ref)) {
// Uh ohes, GC moved a root in the log. Need to search the class_table and update the
// corresponding object. This is slow, but luckily for us, this may only happen with a
// concurrent moving GC.
for (auto it = class_table_.lower_bound(pair.first), end = class_table_.end();
it != end && it->first == pair.first; ++it) {
// If the class stored matches the old class, update it to the new value.
if (old_ref == it->second) {
it->second = pair.second;
}
}
}
}
}
if ((flags & kVisitRootFlagClearRootLog) != 0) {
new_class_roots_.clear();
}
if ((flags & kVisitRootFlagStartLoggingNewRoots) != 0) {
log_new_class_table_roots_ = true;
} else if ((flags & kVisitRootFlagStopLoggingNewRoots) != 0) {
log_new_class_table_roots_ = false;
}
// We deliberately ignore the class roots in the image since we
// handle image roots by using the MS/CMS rescanning of dirty cards.
}
callback(reinterpret_cast<mirror::Object**>(&array_iftable_), arg, 0, kRootVMInternal);
DCHECK(array_iftable_ != nullptr);
for (size_t i = 0; i < kFindArrayCacheSize; ++i) {
if (find_array_class_cache_[i] != nullptr) {
callback(reinterpret_cast<mirror::Object**>(&find_array_class_cache_[i]), arg, 0,
kRootVMInternal);
}
}
}
void ClassLinker::VisitClasses(ClassVisitor* visitor, void* arg) {
if (dex_cache_image_class_lookup_required_) {
MoveImageClassesToClassTable();
}
WriterMutexLock mu(Thread::Current(), *Locks::classlinker_classes_lock_);
for (const std::pair<size_t, mirror::Class*>& it : class_table_) {
if (!visitor(it.second, arg)) {
return;
}
}
}
static bool GetClassesVisitor(mirror::Class* c, void* arg) {
std::set<mirror::Class*>* classes = reinterpret_cast<std::set<mirror::Class*>*>(arg);
classes->insert(c);
return true;
}
void ClassLinker::VisitClassesWithoutClassesLock(ClassVisitor* visitor, void* arg) {
std::set<mirror::Class*> classes;
VisitClasses(GetClassesVisitor, &classes);
for (mirror::Class* klass : classes) {
if (!visitor(klass, arg)) {
return;
}
}
}
ClassLinker::~ClassLinker() {
mirror::Class::ResetClass();
mirror::String::ResetClass();
mirror::ArtField::ResetClass();
mirror::ArtMethod::ResetClass();
mirror::BooleanArray::ResetArrayClass();
mirror::ByteArray::ResetArrayClass();
mirror::CharArray::ResetArrayClass();
mirror::DoubleArray::ResetArrayClass();
mirror::FloatArray::ResetArrayClass();
mirror::IntArray::ResetArrayClass();
mirror::LongArray::ResetArrayClass();
mirror::ShortArray::ResetArrayClass();
mirror::Throwable::ResetClass();
mirror::StackTraceElement::ResetClass();
STLDeleteElements(&boot_class_path_);
STLDeleteElements(&oat_files_);
}
mirror::DexCache* ClassLinker::AllocDexCache(Thread* self, const DexFile& dex_file) {
gc::Heap* heap = Runtime::Current()->GetHeap();
StackHandleScope<16> hs(self);
Handle<mirror::Class> dex_cache_class(hs.NewHandle(GetClassRoot(kJavaLangDexCache)));
Handle<mirror::DexCache> dex_cache(
hs.NewHandle(down_cast<mirror::DexCache*>(
heap->AllocObject<true>(self, dex_cache_class.Get(), dex_cache_class->GetObjectSize(),
VoidFunctor()))));
if (dex_cache.Get() == NULL) {
return NULL;
}
Handle<mirror::String>
location(hs.NewHandle(intern_table_->InternStrong(dex_file.GetLocation().c_str())));
if (location.Get() == NULL) {
return NULL;
}
Handle<mirror::ObjectArray<mirror::String> >
strings(hs.NewHandle(AllocStringArray(self, dex_file.NumStringIds())));
if (strings.Get() == NULL) {
return NULL;
}
Handle<mirror::ObjectArray<mirror::Class> >
types(hs.NewHandle(AllocClassArray(self, dex_file.NumTypeIds())));
if (types.Get() == NULL) {
return NULL;
}
Handle<mirror::ObjectArray<mirror::ArtMethod> >
methods(hs.NewHandle(AllocArtMethodArray(self, dex_file.NumMethodIds())));
if (methods.Get() == NULL) {
return NULL;
}
Handle<mirror::ObjectArray<mirror::ArtField> >
fields(hs.NewHandle(AllocArtFieldArray(self, dex_file.NumFieldIds())));
if (fields.Get() == NULL) {
return NULL;
}
dex_cache->Init(&dex_file, location.Get(), strings.Get(), types.Get(), methods.Get(),
fields.Get());
return dex_cache.Get();
}
// Used to initialize a class in the allocation code path to ensure it is guarded by a StoreStore
// fence.
class InitializeClassVisitor {
public:
explicit InitializeClassVisitor(uint32_t class_size) : class_size_(class_size) {
}
void operator()(mirror::Object* obj, size_t usable_size) const
SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
DCHECK_LE(class_size_, usable_size);
// Avoid AsClass as object is not yet in live bitmap or allocation stack.
mirror::Class* klass = down_cast<mirror::Class*>(obj);
// DCHECK(klass->IsClass());
klass->SetClassSize(class_size_);
klass->SetPrimitiveType(Primitive::kPrimNot); // Default to not being primitive.
klass->SetDexClassDefIndex(DexFile::kDexNoIndex16); // Default to no valid class def index.
klass->SetDexTypeIndex(DexFile::kDexNoIndex16); // Default to no valid type index.
}
private:
const uint32_t class_size_;
DISALLOW_COPY_AND_ASSIGN(InitializeClassVisitor);
};
mirror::Class* ClassLinker::AllocClass(Thread* self, mirror::Class* java_lang_Class,
uint32_t class_size) {
DCHECK_GE(class_size, sizeof(mirror::Class));
gc::Heap* heap = Runtime::Current()->GetHeap();
InitializeClassVisitor visitor(class_size);
mirror::Object* k =
kMovingClasses ? heap->AllocObject<true>(self, java_lang_Class, class_size, visitor)
: heap->AllocNonMovableObject<true>(self, java_lang_Class, class_size, visitor);
if (UNLIKELY(k == nullptr)) {
CHECK(self->IsExceptionPending()); // OOME.
return nullptr;
}
return k->AsClass();
}
mirror::Class* ClassLinker::AllocClass(Thread* self, uint32_t class_size) {
return AllocClass(self, GetClassRoot(kJavaLangClass), class_size);
}
mirror::ArtField* ClassLinker::AllocArtField(Thread* self) {
return down_cast<mirror::ArtField*>(
GetClassRoot(kJavaLangReflectArtField)->AllocNonMovableObject(self));
}
mirror::ArtMethod* ClassLinker::AllocArtMethod(Thread* self) {
return down_cast<mirror::ArtMethod*>(
GetClassRoot(kJavaLangReflectArtMethod)->AllocNonMovableObject(self));
}
mirror::ObjectArray<mirror::StackTraceElement>* ClassLinker::AllocStackTraceElementArray(
Thread* self, size_t length) {
return mirror::ObjectArray<mirror::StackTraceElement>::Alloc(
self, GetClassRoot(kJavaLangStackTraceElementArrayClass), length);
}
static mirror::Class* EnsureResolved(Thread* self, mirror::Class* klass)
SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
DCHECK(klass != NULL);
// Wait for the class if it has not already been linked.
if (!klass->IsResolved() && !klass->IsErroneous()) {
StackHandleScope<1> hs(self);
HandleWrapper<mirror::Class> h_class(hs.NewHandleWrapper(&klass));
ObjectLock<mirror::Class> lock(self, h_class);
// Check for circular dependencies between classes.
if (!h_class->IsResolved() && h_class->GetClinitThreadId() == self->GetTid()) {
ThrowClassCircularityError(h_class.Get());
h_class->SetStatus(mirror::Class::kStatusError, self);
return nullptr;
}
// Wait for the pending initialization to complete.
while (!h_class->IsResolved() && !h_class->IsErroneous()) {
lock.WaitIgnoringInterrupts();
}
}
if (klass->IsErroneous()) {
ThrowEarlierClassFailure(klass);
return nullptr;
}
// Return the loaded class. No exceptions should be pending.
CHECK(klass->IsResolved()) << PrettyClass(klass);
self->AssertNoPendingException();
return klass;
}
mirror::Class* ClassLinker::FindClass(Thread* self, const char* descriptor,
const Handle<mirror::ClassLoader>& class_loader) {
DCHECK_NE(*descriptor, '\0') << "descriptor is empty string";
DCHECK(self != nullptr);
self->AssertNoPendingException();
if (descriptor[1] == '\0') {
// only the descriptors of primitive types should be 1 character long, also avoid class lookup
// for primitive classes that aren't backed by dex files.
return FindPrimitiveClass(descriptor[0]);
}
// Find the class in the loaded classes table.
mirror::Class* klass = LookupClass(descriptor, class_loader.Get());
if (klass != NULL) {
return EnsureResolved(self, klass);
}
// Class is not yet loaded.
if (descriptor[0] == '[') {
return CreateArrayClass(self, descriptor, class_loader);
} else if (class_loader.Get() == nullptr) {
DexFile::ClassPathEntry pair = DexFile::FindInClassPath(descriptor, boot_class_path_);
if (pair.second != NULL) {
StackHandleScope<1> hs(self);
auto class_loader = hs.NewHandle<mirror::ClassLoader>(nullptr);
return DefineClass(descriptor, class_loader, *pair.first, *pair.second);
}
} else if (Runtime::Current()->UseCompileTimeClassPath()) {
// First try the boot class path, we check the descriptor first to avoid an unnecessary
// throw of a NoClassDefFoundError.
if (IsInBootClassPath(descriptor)) {
mirror::Class* system_class = FindSystemClass(self, descriptor);
CHECK(system_class != NULL);
return system_class;
}
// Next try the compile time class path.
const std::vector<const DexFile*>* class_path;
{
ScopedObjectAccessUnchecked soa(self);
ScopedLocalRef<jobject> jclass_loader(soa.Env(),
soa.AddLocalReference<jobject>(class_loader.Get()));
class_path = &Runtime::Current()->GetCompileTimeClassPath(jclass_loader.get());
}
DexFile::ClassPathEntry pair = DexFile::FindInClassPath(descriptor, *class_path);
if (pair.second != NULL) {
return DefineClass(descriptor, class_loader, *pair.first, *pair.second);
}
} else {
ScopedObjectAccessUnchecked soa(self);
ScopedLocalRef<jobject> class_loader_object(soa.Env(),
soa.AddLocalReference<jobject>(class_loader.Get()));
std::string class_name_string(DescriptorToDot(descriptor));
ScopedLocalRef<jobject> result(soa.Env(), NULL);
{
ScopedThreadStateChange tsc(self, kNative);
ScopedLocalRef<jobject> class_name_object(soa.Env(),
soa.Env()->NewStringUTF(class_name_string.c_str()));
if (class_name_object.get() == NULL) {
return NULL;
}
CHECK(class_loader_object.get() != NULL);
result.reset(soa.Env()->CallObjectMethod(class_loader_object.get(),
WellKnownClasses::java_lang_ClassLoader_loadClass,
class_name_object.get()));
}
if (self->IsExceptionPending()) {
// If the ClassLoader threw, pass that exception up.
return NULL;
} else if (result.get() == NULL) {
// broken loader - throw NPE to be compatible with Dalvik
ThrowNullPointerException(NULL, StringPrintf("ClassLoader.loadClass returned null for %s",
class_name_string.c_str()).c_str());
return NULL;
} else {
// success, return mirror::Class*
return soa.Decode<mirror::Class*>(result.get());
}
}
ThrowNoClassDefFoundError("Class %s not found", PrintableString(descriptor).c_str());
return NULL;
}
mirror::Class* ClassLinker::DefineClass(const char* descriptor,
const Handle<mirror::ClassLoader>& class_loader,
const DexFile& dex_file,
const DexFile::ClassDef& dex_class_def) {
Thread* self = Thread::Current();
StackHandleScope<2> hs(self);
auto klass = hs.NewHandle<mirror::Class>(nullptr);
// Load the class from the dex file.
if (UNLIKELY(!init_done_)) {
// finish up init of hand crafted class_roots_
if (strcmp(descriptor, "Ljava/lang/Object;") == 0) {
klass.Assign(GetClassRoot(kJavaLangObject));
} else if (strcmp(descriptor, "Ljava/lang/Class;") == 0) {
klass.Assign(GetClassRoot(kJavaLangClass));
} else if (strcmp(descriptor, "Ljava/lang/String;") == 0) {
klass.Assign(GetClassRoot(kJavaLangString));
} else if (strcmp(descriptor, "Ljava/lang/DexCache;") == 0) {
klass.Assign(GetClassRoot(kJavaLangDexCache));
} else if (strcmp(descriptor, "Ljava/lang/reflect/ArtField;") == 0) {
klass.Assign(GetClassRoot(kJavaLangReflectArtField));
} else if (strcmp(descriptor, "Ljava/lang/reflect/ArtMethod;") == 0) {
klass.Assign(GetClassRoot(kJavaLangReflectArtMethod));
} else {
klass.Assign(AllocClass(self, SizeOfClass(dex_file, dex_class_def)));
}
} else {
klass.Assign(AllocClass(self, SizeOfClass(dex_file, dex_class_def)));
}
if (UNLIKELY(klass.Get() == NULL)) {
CHECK(self->IsExceptionPending()); // Expect an OOME.
return NULL;
}
klass->SetDexCache(FindDexCache(dex_file));
LoadClass(dex_file, dex_class_def, klass, class_loader.Get());
// Check for a pending exception during load
if (self->IsExceptionPending()) {
klass->SetStatus(mirror::Class::kStatusError, self);
return NULL;
}
ObjectLock<mirror::Class> lock(self, klass);
klass->SetClinitThreadId(self->GetTid());
// Add the newly loaded class to the loaded classes table.
mirror::Class* existing = InsertClass(descriptor, klass.Get(), Hash(descriptor));
if (existing != NULL) {
// We failed to insert because we raced with another thread. Calling EnsureResolved may cause
// this thread to block.
return EnsureResolved(self, existing);
}
// Finish loading (if necessary) by finding parents
CHECK(!klass->IsLoaded());
if (!LoadSuperAndInterfaces(klass, dex_file)) {
// Loading failed.
klass->SetStatus(mirror::Class::kStatusError, self);
return NULL;
}
CHECK(klass->IsLoaded());
// Link the class (if necessary)
CHECK(!klass->IsResolved());
// TODO: Use fast jobjects?
auto interfaces = hs.NewHandle<mirror::ObjectArray<mirror::Class>>(nullptr);
if (!LinkClass(self, klass, interfaces)) {
// Linking failed.
klass->SetStatus(mirror::Class::kStatusError, self);
return NULL;
}
CHECK(klass->IsResolved());
/*
* We send CLASS_PREPARE events to the debugger from here. The
* definition of "preparation" is creating the static fields for a
* class and initializing them to the standard default values, but not
* executing any code (that comes later, during "initialization").
*
* We did the static preparation in LinkClass.
*
* The class has been prepared and resolved but possibly not yet verified
* at this point.
*/
Dbg::PostClassPrepare(klass.Get());
return klass.Get();
}
// Precomputes size that will be needed for Class, matching LinkStaticFields
uint32_t ClassLinker::SizeOfClass(const DexFile& dex_file,
const DexFile::ClassDef& dex_class_def) {
const byte* class_data = dex_file.GetClassData(dex_class_def);
size_t num_ref = 0;
size_t num_32 = 0;
size_t num_64 = 0;
if (class_data != NULL) {
for (ClassDataItemIterator it(dex_file, class_data); it.HasNextStaticField(); it.Next()) {
const DexFile::FieldId& field_id = dex_file.GetFieldId(it.GetMemberIndex());
const char* descriptor = dex_file.GetFieldTypeDescriptor(field_id);
char c = descriptor[0];
if (c == 'L' || c == '[') {
num_ref++;
} else if (c == 'J' || c == 'D') {
num_64++;
} else {
num_32++;
}
}
}
// start with generic class data
uint32_t size = sizeof(mirror::Class);
// follow with reference fields which must be contiguous at start
size += (num_ref * sizeof(uint32_t));
// if there are 64-bit fields to add, make sure they are aligned
if (num_64 != 0 && size != RoundUp(size, 8)) { // for 64-bit alignment
if (num_32 != 0) {
// use an available 32-bit field for padding
num_32--;
}
size += sizeof(uint32_t); // either way, we are adding a word
DCHECK_EQ(size, RoundUp(size, 8));
}
// tack on any 64-bit fields now that alignment is assured
size += (num_64 * sizeof(uint64_t));
// tack on any remaining 32-bit fields
size += (num_32 * sizeof(uint32_t));
return size;
}
OatFile::OatClass ClassLinker::GetOatClass(const DexFile& dex_file, uint16_t class_def_idx) {
DCHECK_NE(class_def_idx, DexFile::kDexNoIndex16);
const OatFile* oat_file = FindOpenedOatFileForDexFile(dex_file);
CHECK(oat_file != NULL) << dex_file.GetLocation();
uint dex_location_checksum = dex_file.GetLocationChecksum();
const OatFile::OatDexFile* oat_dex_file = oat_file->GetOatDexFile(dex_file.GetLocation().c_str(),
&dex_location_checksum);
CHECK(oat_dex_file != NULL) << dex_file.GetLocation();
return oat_dex_file->GetOatClass(class_def_idx);
}
static uint32_t GetOatMethodIndexFromMethodIndex(const DexFile& dex_file, uint16_t class_def_idx,
uint32_t method_idx) {
const DexFile::ClassDef& class_def = dex_file.GetClassDef(class_def_idx);
const byte* class_data = dex_file.GetClassData(class_def);
CHECK(class_data != NULL);
ClassDataItemIterator it(dex_file, class_data);
// Skip fields
while (it.HasNextStaticField()) {
it.Next();
}
while (it.HasNextInstanceField()) {
it.Next();
}
// Process methods
size_t class_def_method_index = 0;
while (it.HasNextDirectMethod()) {
if (it.GetMemberIndex() == method_idx) {
return class_def_method_index;
}
class_def_method_index++;
it.Next();
}
while (it.HasNextVirtualMethod()) {
if (it.GetMemberIndex() == method_idx) {
return class_def_method_index;
}
class_def_method_index++;
it.Next();
}
DCHECK(!it.HasNext());
LOG(FATAL) << "Failed to find method index " << method_idx << " in " << dex_file.GetLocation();
return 0;
}
const OatFile::OatMethod ClassLinker::GetOatMethodFor(mirror::ArtMethod* method) {
// Although we overwrite the trampoline of non-static methods, we may get here via the resolution
// method for direct methods (or virtual methods made direct).
mirror::Class* declaring_class = method->GetDeclaringClass();
size_t oat_method_index;
if (method->IsStatic() || method->IsDirect()) {
// Simple case where the oat method index was stashed at load time.
oat_method_index = method->GetMethodIndex();
} else {
// We're invoking a virtual method directly (thanks to sharpening), compute the oat_method_index
// by search for its position in the declared virtual methods.
oat_method_index = declaring_class->NumDirectMethods();
size_t end = declaring_class->NumVirtualMethods();
bool found = false;
for (size_t i = 0; i < end; i++) {
if (declaring_class->GetVirtualMethod(i) == method) {
found = true;
break;
}
oat_method_index++;
}
CHECK(found) << "Didn't find oat method index for virtual method: " << PrettyMethod(method);
}
DCHECK_EQ(oat_method_index,
GetOatMethodIndexFromMethodIndex(*declaring_class->GetDexCache()->GetDexFile(),
method->GetDeclaringClass()->GetDexClassDefIndex(),
method->GetDexMethodIndex()));
const OatFile::OatClass oat_class = GetOatClass(*declaring_class->GetDexCache()->GetDexFile(),
declaring_class->GetDexClassDefIndex());
return oat_class.GetOatMethod(oat_method_index);
}
// Special case to get oat code without overwriting a trampoline.
const void* ClassLinker::GetQuickOatCodeFor(mirror::ArtMethod* method) {
CHECK(!method->IsAbstract()) << PrettyMethod(method);
if (method->IsProxyMethod()) {
return GetQuickProxyInvokeHandler();
}
const void* result = GetOatMethodFor(method).GetQuickCode();
if (result == nullptr) {
if (method->IsNative()) {
// No code and native? Use generic trampoline.
result = GetQuickGenericJniTrampoline();
} else if (method->IsPortableCompiled()) {
// No code? Do we expect portable code?
result = GetQuickToPortableBridge();
} else {
// No code? You must mean to go into the interpreter.
result = GetQuickToInterpreterBridge();
}
}
return result;
}
const void* ClassLinker::GetPortableOatCodeFor(mirror::ArtMethod* method,
bool* have_portable_code) {
CHECK(!method->IsAbstract()) << PrettyMethod(method);
*have_portable_code = false;
if (method->IsProxyMethod()) {
return GetPortableProxyInvokeHandler();
}
const OatFile::OatMethod oat_method = GetOatMethodFor(method);
const void* result = oat_method.GetPortableCode();
if (result == nullptr) {
if (oat_method.GetQuickCode() == nullptr) {
// No code? You must mean to go into the interpreter.
result = GetPortableToInterpreterBridge();
} else {
// No code? But there's quick code, so use a bridge.
result = GetPortableToQuickBridge();
}
} else {
*have_portable_code = true;
}
return result;
}
const void* ClassLinker::GetQuickOatCodeFor(const DexFile& dex_file, uint16_t class_def_idx,
uint32_t method_idx) {
const OatFile::OatClass oat_class = GetOatClass(dex_file, class_def_idx);
uint32_t oat_method_idx = GetOatMethodIndexFromMethodIndex(dex_file, class_def_idx, method_idx);
return oat_class.GetOatMethod(oat_method_idx).GetQuickCode();
}
const void* ClassLinker::GetPortableOatCodeFor(const DexFile& dex_file, uint16_t class_def_idx,
uint32_t method_idx) {
const OatFile::OatClass oat_class = GetOatClass(dex_file, class_def_idx);
uint32_t oat_method_idx = GetOatMethodIndexFromMethodIndex(dex_file, class_def_idx, method_idx);
return oat_class.GetOatMethod(oat_method_idx).GetPortableCode();
}
// Returns true if the method must run with interpreter, false otherwise.
static bool NeedsInterpreter(mirror::ArtMethod* method, const void* quick_code,
const void* portable_code) SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
if ((quick_code == nullptr) && (portable_code == nullptr)) {
// No code: need interpreter.
// May return true for native code, in the case of generic JNI
// DCHECK(!method->IsNative());
return true;
}
#ifdef ART_SEA_IR_MODE
ScopedObjectAccess soa(Thread::Current());
if (std::string::npos != PrettyMethod(method).find("fibonacci")) {
LOG(INFO) << "Found " << PrettyMethod(method);
return false;
}
#endif
// If interpreter mode is enabled, every method (except native and proxy) must
// be run with interpreter.
return Runtime::Current()->GetInstrumentation()->InterpretOnly() &&
!method->IsNative() && !method->IsProxyMethod();
}
void ClassLinker::FixupStaticTrampolines(mirror::Class* klass) {
DCHECK(klass->IsInitialized()) << PrettyDescriptor(klass);
if (klass->NumDirectMethods() == 0) {
return; // No direct methods => no static methods.
}
Runtime* runtime = Runtime::Current();
if (!runtime->IsStarted() || runtime->UseCompileTimeClassPath()) {
return; // OAT file unavailable.
}
ClassHelper kh(klass);
const DexFile& dex_file = kh.GetDexFile();
const DexFile::ClassDef* dex_class_def = kh.GetClassDef();
CHECK(dex_class_def != nullptr);
const byte* class_data = dex_file.GetClassData(*dex_class_def);
// There should always be class data if there were direct methods.
CHECK(class_data != nullptr) << PrettyDescriptor(klass);
const OatFile::OatClass oat_class = GetOatClass(dex_file, klass->GetDexClassDefIndex());
ClassDataItemIterator it(dex_file, class_data);
// Skip fields
while (it.HasNextStaticField()) {
it.Next();
}
while (it.HasNextInstanceField()) {
it.Next();
}
// Link the code of methods skipped by LinkCode.
for (size_t method_index = 0; it.HasNextDirectMethod(); ++method_index, it.Next()) {
mirror::ArtMethod* method = klass->GetDirectMethod(method_index);
if (!method->IsStatic()) {
// Only update static methods.
continue;
}
const void* portable_code = oat_class.GetOatMethod(method_index).GetPortableCode();
const void* quick_code = oat_class.GetOatMethod(method_index).GetQuickCode();
const bool enter_interpreter = NeedsInterpreter(method, quick_code, portable_code);
bool have_portable_code = false;
if (enter_interpreter) {
// Use interpreter entry point.
// Check whether the method is native, in which case it's generic JNI.
if (quick_code == nullptr && portable_code == nullptr && method->IsNative()) {
quick_code = GetQuickGenericJniTrampoline();
portable_code = GetPortableToQuickBridge();
} else {
portable_code = GetPortableToInterpreterBridge();
quick_code = GetQuickToInterpreterBridge();
}
} else {
if (portable_code == nullptr) {
portable_code = GetPortableToQuickBridge();
} else {
have_portable_code = true;
}
if (quick_code == nullptr) {
quick_code = GetQuickToPortableBridge();
}
}
runtime->GetInstrumentation()->UpdateMethodsCode(method, quick_code, portable_code,
have_portable_code);
}
// Ignore virtual methods on the iterator.
}
static void LinkCode(const Handle<mirror::ArtMethod>& method, const OatFile::OatClass* oat_class,
const DexFile& dex_file, uint32_t dex_method_index, uint32_t method_index)
SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
// Method shouldn't have already been linked.
DCHECK(method->GetEntryPointFromQuickCompiledCode() == nullptr);
DCHECK(method->GetEntryPointFromPortableCompiledCode() == nullptr);
// Every kind of method should at least get an invoke stub from the oat_method.
// non-abstract methods also get their code pointers.
const OatFile::OatMethod oat_method = oat_class->GetOatMethod(method_index);
oat_method.LinkMethod(method.Get());
// Install entry point from interpreter.
Runtime* runtime = Runtime::Current();
bool enter_interpreter = NeedsInterpreter(method.Get(),
method->GetEntryPointFromQuickCompiledCode(),
method->GetEntryPointFromPortableCompiledCode());
if (enter_interpreter && !method->IsNative()) {
method->SetEntryPointFromInterpreter(interpreter::artInterpreterToInterpreterBridge);
} else {
method->SetEntryPointFromInterpreter(artInterpreterToCompiledCodeBridge);
}
if (method->IsAbstract()) {
method->SetEntryPointFromQuickCompiledCode(GetQuickToInterpreterBridge());
method->SetEntryPointFromPortableCompiledCode(GetPortableToInterpreterBridge());
return;
}
bool have_portable_code = false;
if (method->IsStatic() && !method->IsConstructor()) {
// For static methods excluding the class initializer, install the trampoline.
// It will be replaced by the proper entry point by ClassLinker::FixupStaticTrampolines
// after initializing class (see ClassLinker::InitializeClass method).
method->SetEntryPointFromQuickCompiledCode(GetQuickResolutionTrampoline(runtime->GetClassLinker()));
method->SetEntryPointFromPortableCompiledCode(GetPortableResolutionTrampoline(runtime->GetClassLinker()));
} else if (enter_interpreter) {
if (!method->IsNative()) {
// Set entry point from compiled code if there's no code or in interpreter only mode.
method->SetEntryPointFromQuickCompiledCode(GetQuickToInterpreterBridge());
method->SetEntryPointFromPortableCompiledCode(GetPortableToInterpreterBridge());
} else {
method->SetEntryPointFromQuickCompiledCode(GetQuickGenericJniTrampoline());
method->SetEntryPointFromPortableCompiledCode(GetPortableToQuickBridge());
}
} else if (method->GetEntryPointFromPortableCompiledCode() != nullptr) {
DCHECK(method->GetEntryPointFromQuickCompiledCode() == nullptr);
have_portable_code = true;
method->SetEntryPointFromQuickCompiledCode(GetQuickToPortableBridge());
} else {
DCHECK(method->GetEntryPointFromQuickCompiledCode() != nullptr);
method->SetEntryPointFromPortableCompiledCode(GetPortableToQuickBridge());
}
if (method->IsNative()) {
// Unregistering restores the dlsym lookup stub.
method->UnregisterNative(Thread::Current());
if (enter_interpreter) {
// We have a native method here without code. Then it should have either the GenericJni
// trampoline as entrypoint (non-static), or the Resolution trampoline (static).
DCHECK(method->GetEntryPointFromQuickCompiledCode() ==
GetQuickResolutionTrampoline(runtime->GetClassLinker())
|| method->GetEntryPointFromQuickCompiledCode() == GetQuickGenericJniTrampoline());
}
}
// Allow instrumentation its chance to hijack code.
runtime->GetInstrumentation()->UpdateMethodsCode(method.Get(),
method->GetEntryPointFromQuickCompiledCode(),
method->GetEntryPointFromPortableCompiledCode(),
have_portable_code);
}
void ClassLinker::LoadClass(const DexFile& dex_file,
const DexFile::ClassDef& dex_class_def,
const Handle<mirror::Class>& klass,
mirror::ClassLoader* class_loader) {
CHECK(klass.Get() != NULL);
CHECK(klass->GetDexCache() != NULL);
CHECK_EQ(mirror::Class::kStatusNotReady, klass->GetStatus());
const char* descriptor = dex_file.GetClassDescriptor(dex_class_def);
CHECK(descriptor != NULL);
klass->SetClass(GetClassRoot(kJavaLangClass));
if (kUseBakerOrBrooksReadBarrier) {
klass->AssertReadBarrierPointer();
}
uint32_t access_flags = dex_class_def.access_flags_;
// Make sure that none of our runtime-only flags are set.
CHECK_EQ(access_flags & ~kAccJavaFlagsMask, 0U);
klass->SetAccessFlags(access_flags);
klass->SetClassLoader(class_loader);
DCHECK_EQ(klass->GetPrimitiveType(), Primitive::kPrimNot);
klass->SetStatus(mirror::Class::kStatusIdx, NULL);
klass->SetDexClassDefIndex(dex_file.GetIndexForClassDef(dex_class_def));
klass->SetDexTypeIndex(dex_class_def.class_idx_);
const byte* class_data = dex_file.GetClassData(dex_class_def);
if (class_data == NULL) {
return; // no fields or methods - for example a marker interface
}
if (Runtime::Current()->IsStarted() && !Runtime::Current()->UseCompileTimeClassPath()) {
const OatFile::OatClass oat_class = GetOatClass(dex_file, klass->GetDexClassDefIndex());
LoadClassMembers(dex_file, class_data, klass, class_loader, &oat_class);
} else {
LoadClassMembers(dex_file, class_data, klass, class_loader, nullptr);
}
}
void ClassLinker::LoadClassMembers(const DexFile& dex_file,
const byte* class_data,
const Handle<mirror::Class>& klass,
mirror::ClassLoader* class_loader,
const OatFile::OatClass* oat_class) {
// Load fields.
ClassDataItemIterator it(dex_file, class_data);
Thread* self = Thread::Current();
if (it.NumStaticFields() != 0) {
mirror::ObjectArray<mirror::ArtField>* statics = AllocArtFieldArray(self, it.NumStaticFields());
if (UNLIKELY(statics == NULL)) {
CHECK(self->IsExceptionPending()); // OOME.
return;
}
klass->SetSFields(statics);
}
if (it.NumInstanceFields() != 0) {
mirror::ObjectArray<mirror::ArtField>* fields =
AllocArtFieldArray(self, it.NumInstanceFields());
if (UNLIKELY(fields == NULL)) {
CHECK(self->IsExceptionPending()); // OOME.
return;
}
klass->SetIFields(fields);
}
for (size_t i = 0; it.HasNextStaticField(); i++, it.Next()) {
StackHandleScope<1> hs(self);
Handle<mirror::ArtField> sfield(hs.NewHandle(AllocArtField(self)));
if (UNLIKELY(sfield.Get() == NULL)) {
CHECK(self->IsExceptionPending()); // OOME.
return;
}
klass->SetStaticField(i, sfield.Get());
LoadField(dex_file, it, klass, sfield);
}
for (size_t i = 0; it.HasNextInstanceField(); i++, it.Next()) {
StackHandleScope<1> hs(self);
Handle<mirror::ArtField> ifield(hs.NewHandle(AllocArtField(self)));
if (UNLIKELY(ifield.Get() == NULL)) {
CHECK(self->IsExceptionPending()); // OOME.
return;
}
klass->SetInstanceField(i, ifield.Get());
LoadField(dex_file, it, klass, ifield);
}
// Load methods.
if (it.NumDirectMethods() != 0) {
// TODO: append direct methods to class object
mirror::ObjectArray<mirror::ArtMethod>* directs =
AllocArtMethodArray(self, it.NumDirectMethods());
if (UNLIKELY(directs == NULL)) {
CHECK(self->IsExceptionPending()); // OOME.
return;
}
klass->SetDirectMethods(directs);
}
if (it.NumVirtualMethods() != 0) {
// TODO: append direct methods to class object
mirror::ObjectArray<mirror::ArtMethod>* virtuals =
AllocArtMethodArray(self, it.NumVirtualMethods());
if (UNLIKELY(virtuals == NULL)) {
CHECK(self->IsExceptionPending()); // OOME.
return;
}
klass->SetVirtualMethods(virtuals);
}
size_t class_def_method_index = 0;
for (size_t i = 0; it.HasNextDirectMethod(); i++, it.Next()) {
StackHandleScope<1> hs(self);
Handle<mirror::ArtMethod> method(hs.NewHandle(LoadMethod(self, dex_file, it, klass)));
if (UNLIKELY(method.Get() == NULL)) {
CHECK(self->IsExceptionPending()); // OOME.
return;
}
klass->SetDirectMethod(i, method.Get());
if (oat_class != nullptr) {
LinkCode(method, oat_class, dex_file, it.GetMemberIndex(), class_def_method_index);
}
method->SetMethodIndex(class_def_method_index);
class_def_method_index++;
}
for (size_t i = 0; it.HasNextVirtualMethod(); i++, it.Next()) {
StackHandleScope<1> hs(self);
Handle<mirror::ArtMethod> method(hs.NewHandle(LoadMethod(self, dex_file, it, klass)));
if (UNLIKELY(method.Get() == NULL)) {
CHECK(self->IsExceptionPending()); // OOME.
return;
}
klass->SetVirtualMethod(i, method.Get());
DCHECK_EQ(class_def_method_index, it.NumDirectMethods() + i);
if (oat_class != nullptr) {
LinkCode(method, oat_class, dex_file, it.GetMemberIndex(), class_def_method_index);
}
class_def_method_index++;
}
DCHECK(!it.HasNext());
}
void ClassLinker::LoadField(const DexFile& /*dex_file*/, const ClassDataItemIterator& it,
const Handle<mirror::Class>& klass,
const Handle<mirror::ArtField>& dst) {
uint32_t field_idx = it.GetMemberIndex();
dst->SetDexFieldIndex(field_idx);
dst->SetDeclaringClass(klass.Get());
dst->SetAccessFlags(it.GetMemberAccessFlags());
}
mirror::ArtMethod* ClassLinker::LoadMethod(Thread* self, const DexFile& dex_file,
const ClassDataItemIterator& it,
const Handle<mirror::Class>& klass) {
uint32_t dex_method_idx = it.GetMemberIndex();
const DexFile::MethodId& method_id = dex_file.GetMethodId(dex_method_idx);
const char* method_name = dex_file.StringDataByIdx(method_id.name_idx_);
mirror::ArtMethod* dst = AllocArtMethod(self);
if (UNLIKELY(dst == NULL)) {
CHECK(self->IsExceptionPending()); // OOME.
return NULL;
}
DCHECK(dst->IsArtMethod()) << PrettyDescriptor(dst->GetClass());
const char* old_cause = self->StartAssertNoThreadSuspension("LoadMethod");
dst->SetDexMethodIndex(dex_method_idx);
dst->SetDeclaringClass(klass.Get());
dst->SetCodeItemOffset(it.GetMethodCodeItemOffset());
dst->SetDexCacheStrings(klass->GetDexCache()->GetStrings());
dst->SetDexCacheResolvedMethods(klass->GetDexCache()->GetResolvedMethods());
dst->SetDexCacheResolvedTypes(klass->GetDexCache()->GetResolvedTypes());
uint32_t access_flags = it.GetMemberAccessFlags();
if (UNLIKELY(strcmp("finalize", method_name) == 0)) {
// Set finalizable flag on declaring class.
if (strcmp("V", dex_file.GetShorty(method_id.proto_idx_)) == 0) {
// Void return type.
if (klass->GetClassLoader() != NULL) { // All non-boot finalizer methods are flagged
klass->SetFinalizable();
} else {
ClassHelper kh(klass.Get());
const char* klass_descriptor = kh.GetDescriptor();
// The Enum class declares a "final" finalize() method to prevent subclasses from
// introducing a finalizer. We don't want to set the finalizable flag for Enum or its
// subclasses, so we exclude it here.
// We also want to avoid setting the flag on Object, where we know that finalize() is
// empty.
if ((strcmp("Ljava/lang/Object;", klass_descriptor) != 0) &&
(strcmp("Ljava/lang/Enum;", klass_descriptor) != 0)) {
klass->SetFinalizable();
}
}
}
} else if (method_name[0] == '<') {
// Fix broken access flags for initializers. Bug 11157540.
bool is_init = (strcmp("<init>", method_name) == 0);
bool is_clinit = !is_init && (strcmp("<clinit>", method_name) == 0);
if (UNLIKELY(!is_init && !is_clinit)) {
LOG(WARNING) << "Unexpected '<' at start of method name " << method_name;
} else {
if (UNLIKELY((access_flags & kAccConstructor) == 0)) {
LOG(WARNING) << method_name << " didn't have expected constructor access flag in class "
<< PrettyDescriptor(klass.Get()) << " in dex file " << dex_file.GetLocation();
access_flags |= kAccConstructor;
}
}
}
dst->SetAccessFlags(access_flags);
self->EndAssertNoThreadSuspension(old_cause);
return dst;
}
void ClassLinker::AppendToBootClassPath(const DexFile& dex_file) {
Thread* self = Thread::Current();
StackHandleScope<1> hs(self);
Handle<mirror::DexCache> dex_cache(hs.NewHandle(AllocDexCache(self, dex_file)));
CHECK(dex_cache.Get() != NULL) << "Failed to allocate dex cache for " << dex_file.GetLocation();
AppendToBootClassPath(dex_file, dex_cache);
}
void ClassLinker::AppendToBootClassPath(const DexFile& dex_file,
const Handle<mirror::DexCache>& dex_cache) {
CHECK(dex_cache.Get() != NULL) << dex_file.GetLocation();
boot_class_path_.push_back(&dex_file);
RegisterDexFile(dex_file, dex_cache);
}
bool ClassLinker::IsDexFileRegisteredLocked(const DexFile& dex_file) const {
dex_lock_.AssertSharedHeld(Thread::Current());
for (size_t i = 0; i != dex_caches_.size(); ++i) {
if (dex_caches_[i]->GetDexFile() == &dex_file) {
return true;
}
}
return false;
}
bool ClassLinker::IsDexFileRegistered(const DexFile& dex_file) const {
ReaderMutexLock mu(Thread::Current(), dex_lock_);
return IsDexFileRegisteredLocked(dex_file);
}
void ClassLinker::RegisterDexFileLocked(const DexFile& dex_file,
const Handle<mirror::DexCache>& dex_cache) {
dex_lock_.AssertExclusiveHeld(Thread::Current());
CHECK(dex_cache.Get() != NULL) << dex_file.GetLocation();
CHECK(dex_cache->GetLocation()->Equals(dex_file.GetLocation()))
<< dex_cache->GetLocation()->ToModifiedUtf8() << " " << dex_file.GetLocation();
dex_caches_.push_back(dex_cache.Get());
dex_cache->SetDexFile(&dex_file);
if (log_new_dex_caches_roots_) {
// TODO: This is not safe if we can remove dex caches.
new_dex_cache_roots_.push_back(dex_caches_.size() - 1);
}
}
void ClassLinker::RegisterDexFile(const DexFile& dex_file) {
Thread* self = Thread::Current();
{
ReaderMutexLock mu(self, dex_lock_);
if (IsDexFileRegisteredLocked(dex_file)) {
return;
}
}
// Don't alloc while holding the lock, since allocation may need to
// suspend all threads and another thread may need the dex_lock_ to
// get to a suspend point.
StackHandleScope<1> hs(self);
Handle<mirror::DexCache> dex_cache(hs.NewHandle(AllocDexCache(self, dex_file)));
CHECK(dex_cache.Get() != NULL) << "Failed to allocate dex cache for " << dex_file.GetLocation();
{
WriterMutexLock mu(self, dex_lock_);
if (IsDexFileRegisteredLocked(dex_file)) {
return;
}
RegisterDexFileLocked(dex_file, dex_cache);
}
}
void ClassLinker::RegisterDexFile(const DexFile& dex_file,
const Handle<mirror::DexCache>& dex_cache) {
WriterMutexLock mu(Thread::Current(), dex_lock_);
RegisterDexFileLocked(dex_file, dex_cache);
}
mirror::DexCache* ClassLinker::FindDexCache(const DexFile& dex_file) const {
ReaderMutexLock mu(Thread::Current(), dex_lock_);
// Search assuming unique-ness of dex file.
for (size_t i = 0; i != dex_caches_.size(); ++i) {
mirror::DexCache* dex_cache = dex_caches_[i];
if (dex_cache->GetDexFile() == &dex_file) {
return dex_cache;
}
}
// Search matching by location name.
std::string location(dex_file.GetLocation());
for (size_t i = 0; i != dex_caches_.size(); ++i) {
mirror::DexCache* dex_cache = dex_caches_[i];
if (dex_cache->GetDexFile()->GetLocation() == location) {
return dex_cache;
}
}
// Failure, dump diagnostic and abort.
for (size_t i = 0; i != dex_caches_.size(); ++i) {
mirror::DexCache* dex_cache = dex_caches_[i];
LOG(ERROR) << "Registered dex file " << i << " = " << dex_cache->GetDexFile()->GetLocation();
}
LOG(FATAL) << "Failed to find DexCache for DexFile " << location;
return NULL;
}
void ClassLinker::FixupDexCaches(mirror::ArtMethod* resolution_method) const {
ReaderMutexLock mu(Thread::Current(), dex_lock_);
for (size_t i = 0; i != dex_caches_.size(); ++i) {
dex_caches_[i]->Fixup(resolution_method);
}
}
mirror::Class* ClassLinker::CreatePrimitiveClass(Thread* self, Primitive::Type type) {
mirror::Class* klass = AllocClass(self, sizeof(mirror::Class));
if (UNLIKELY(klass == NULL)) {
return NULL;
}
return InitializePrimitiveClass(klass, type);
}
mirror::Class* ClassLinker::InitializePrimitiveClass(mirror::Class* primitive_class,
Primitive::Type type) {
CHECK(primitive_class != NULL);
// Must hold lock on object when initializing.
Thread* self = Thread::Current();
StackHandleScope<1> hs(self);
Handle<mirror::Class> h_class(hs.NewHandle(primitive_class));
ObjectLock<mirror::Class> lock(self, h_class);
primitive_class->SetAccessFlags(kAccPublic | kAccFinal | kAccAbstract);
primitive_class->SetPrimitiveType(type);
primitive_class->SetStatus(mirror::Class::kStatusInitialized, self);
const char* descriptor = Primitive::Descriptor(type);
mirror::Class* existing = InsertClass(descriptor, primitive_class, Hash(descriptor));
CHECK(existing == NULL) << "InitPrimitiveClass(" << type << ") failed";
return primitive_class;
}
// Create an array class (i.e. the class object for the array, not the
// array itself). "descriptor" looks like "[C" or "[[[[B" or
// "[Ljava/lang/String;".
//
// If "descriptor" refers to an array of primitives, look up the
// primitive type's internally-generated class object.
//
// "class_loader" is the class loader of the class that's referring to
// us. It's used to ensure that we're looking for the element type in
// the right context. It does NOT become the class loader for the
// array class; that always comes from the base element class.
//
// Returns NULL with an exception raised on failure.
mirror::Class* ClassLinker::CreateArrayClass(Thread* self, const char* descriptor,
const Handle<mirror::ClassLoader>& class_loader) {
// Identify the underlying component type
CHECK_EQ('[', descriptor[0]);
StackHandleScope<2> hs(self);
Handle<mirror::Class> component_type(hs.NewHandle(FindClass(self, descriptor + 1, class_loader)));
if (component_type.Get() == nullptr) {
DCHECK(self->IsExceptionPending());
return nullptr;
}
if (UNLIKELY(component_type->IsPrimitiveVoid())) {
ThrowNoClassDefFoundError("Attempt to create array of void primitive type");
return nullptr;
}
// See if the component type is already loaded. Array classes are
// always associated with the class loader of their underlying
// element type -- an array of Strings goes with the loader for
// java/lang/String -- so we need to look for it there. (The
// caller should have checked for the existence of the class
// before calling here, but they did so with *their* class loader,
// not the component type's loader.)
//
// If we find it, the caller adds "loader" to the class' initiating
// loader list, which should prevent us from going through this again.
//
// This call is unnecessary if "loader" and "component_type->GetClassLoader()"
// are the same, because our caller (FindClass) just did the
// lookup. (Even if we get this wrong we still have correct behavior,
// because we effectively do this lookup again when we add the new
// class to the hash table --- necessary because of possible races with
// other threads.)
if (class_loader.Get() != component_type->GetClassLoader()) {
mirror::Class* new_class = LookupClass(descriptor, component_type->GetClassLoader());
if (new_class != NULL) {
return new_class;
}
}
// Fill out the fields in the Class.
//
// It is possible to execute some methods against arrays, because
// all arrays are subclasses of java_lang_Object_, so we need to set
// up a vtable. We can just point at the one in java_lang_Object_.
//
// Array classes are simple enough that we don't need to do a full
// link step.
auto new_class = hs.NewHandle<mirror::Class>(nullptr);
if (UNLIKELY(!init_done_)) {
// Classes that were hand created, ie not by FindSystemClass
if (strcmp(descriptor, "[Ljava/lang/Class;") == 0) {
new_class.Assign(GetClassRoot(kClassArrayClass));
} else if (strcmp(descriptor, "[Ljava/lang/Object;") == 0) {
new_class.Assign(GetClassRoot(kObjectArrayClass));
} else if (strcmp(descriptor, class_roots_descriptors_[kJavaLangStringArrayClass]) == 0) {
new_class.Assign(GetClassRoot(kJavaLangStringArrayClass));
} else if (strcmp(descriptor,
class_roots_descriptors_[kJavaLangReflectArtMethodArrayClass]) == 0) {
new_class.Assign(GetClassRoot(kJavaLangReflectArtMethodArrayClass));
} else if (strcmp(descriptor,
class_roots_descriptors_[kJavaLangReflectArtFieldArrayClass]) == 0) {
new_class.Assign(GetClassRoot(kJavaLangReflectArtFieldArrayClass));
} else if (strcmp(descriptor, "[C") == 0) {
new_class.Assign(GetClassRoot(kCharArrayClass));
} else if (strcmp(descriptor, "[I") == 0) {
new_class.Assign(GetClassRoot(kIntArrayClass));
}
}
if (new_class.Get() == nullptr) {
new_class.Assign(AllocClass(self, sizeof(mirror::Class)));
if (new_class.Get() == nullptr) {
return nullptr;
}
new_class->SetComponentType(component_type.Get());
}
ObjectLock<mirror::Class> lock(self, new_class); // Must hold lock on object when initializing.
DCHECK(new_class->GetComponentType() != NULL);
mirror::Class* java_lang_Object = GetClassRoot(kJavaLangObject);
new_class->SetSuperClass(java_lang_Object);
new_class->SetVTable(java_lang_Object->GetVTable());
new_class->SetPrimitiveType(Primitive::kPrimNot);
new_class->SetClassLoader(component_type->GetClassLoader());
new_class->SetStatus(mirror::Class::kStatusInitialized, self);
// don't need to set new_class->SetObjectSize(..)
// because Object::SizeOf delegates to Array::SizeOf
// All arrays have java/lang/Cloneable and java/io/Serializable as
// interfaces. We need to set that up here, so that stuff like
// "instanceof" works right.
//
// Note: The GC could run during the call to FindSystemClass,
// so we need to make sure the class object is GC-valid while we're in
// there. Do this by clearing the interface list so the GC will just
// think that the entries are null.
// Use the single, global copies of "interfaces" and "iftable"
// (remember not to free them for arrays).
CHECK(array_iftable_ != nullptr);
new_class->SetIfTable(array_iftable_);
// Inherit access flags from the component type.
int access_flags = new_class->GetComponentType()->GetAccessFlags();
// Lose any implementation detail flags; in particular, arrays aren't finalizable.
access_flags &= kAccJavaFlagsMask;
// Arrays can't be used as a superclass or interface, so we want to add "abstract final"
// and remove "interface".
access_flags |= kAccAbstract | kAccFinal;
access_flags &= ~kAccInterface;
new_class->SetAccessFlags(access_flags);
mirror::Class* existing = InsertClass(descriptor, new_class.Get(), Hash(descriptor));
if (existing == nullptr) {
return new_class.Get();
}
// Another thread must have loaded the class after we
// started but before we finished. Abandon what we've
// done.
//
// (Yes, this happens.)
return existing;
}
mirror::Class* ClassLinker::FindPrimitiveClass(char type) {
switch (type) {
case 'B':
return GetClassRoot(kPrimitiveByte);
case 'C':
return GetClassRoot(kPrimitiveChar);
case 'D':
return GetClassRoot(kPrimitiveDouble);
case 'F':
return GetClassRoot(kPrimitiveFloat);
case 'I':
return GetClassRoot(kPrimitiveInt);
case 'J':
return GetClassRoot(kPrimitiveLong);
case 'S':
return GetClassRoot(kPrimitiveShort);
case 'Z':
return GetClassRoot(kPrimitiveBoolean);
case 'V':
return GetClassRoot(kPrimitiveVoid);
default:
break;
}
std::string printable_type(PrintableChar(type));
ThrowNoClassDefFoundError("Not a primitive type: %s", printable_type.c_str());
return NULL;
}
mirror::Class* ClassLinker::InsertClass(const char* descriptor, mirror::Class* klass,
size_t hash) {
if (VLOG_IS_ON(class_linker)) {
mirror::DexCache* dex_cache = klass->GetDexCache();
std::string source;
if (dex_cache != NULL) {
source += " from ";
source += dex_cache->GetLocation()->ToModifiedUtf8();
}
LOG(INFO) << "Loaded class " << descriptor << source;
}
WriterMutexLock mu(Thread::Current(), *Locks::classlinker_classes_lock_);
mirror::Class* existing =
LookupClassFromTableLocked(descriptor, klass->GetClassLoader(), hash);
if (existing != NULL) {
return existing;
}
if (kIsDebugBuild && klass->GetClassLoader() == NULL && dex_cache_image_class_lookup_required_) {
// Check a class loaded with the system class loader matches one in the image if the class
// is in the image.
existing = LookupClassFromImage(descriptor);
if (existing != NULL) {
CHECK(klass == existing);
}
}
VerifyObject(klass);
class_table_.insert(std::make_pair(hash, klass));
if (log_new_class_table_roots_) {
new_class_roots_.push_back(std::make_pair(hash, klass));
}
return NULL;
}
bool ClassLinker::RemoveClass(const char* descriptor, const mirror::ClassLoader* class_loader) {
size_t hash = Hash(descriptor);
WriterMutexLock mu(Thread::Current(), *Locks::classlinker_classes_lock_);
for (auto it = class_table_.lower_bound(hash), end = class_table_.end(); it != end && it->first == hash;
++it) {
mirror::Class* klass = it->second;
ClassHelper kh(klass);
if ((klass->GetClassLoader() == class_loader) &&
(strcmp(descriptor, kh.GetDescriptor()) == 0)) {
class_table_.erase(it);
return true;
}
}
return false;
}
mirror::Class* ClassLinker::LookupClass(const char* descriptor,
const mirror::ClassLoader* class_loader) {
size_t hash = Hash(descriptor);
{
ReaderMutexLock mu(Thread::Current(), *Locks::classlinker_classes_lock_);
mirror::Class* result = LookupClassFromTableLocked(descriptor, class_loader, hash);
if (result != NULL) {
return result;
}
}
if (class_loader != NULL || !dex_cache_image_class_lookup_required_) {
return NULL;
} else {
// Lookup failed but need to search dex_caches_.
mirror::Class* result = LookupClassFromImage(descriptor);
if (result != NULL) {
InsertClass(descriptor, result, hash);
} else {
// Searching the image dex files/caches failed, we don't want to get into this situation
// often as map searches are faster, so after kMaxFailedDexCacheLookups move all image
// classes into the class table.
const int32_t kMaxFailedDexCacheLookups = 1000;
if (++failed_dex_cache_class_lookups_ > kMaxFailedDexCacheLookups) {
MoveImageClassesToClassTable();
}
}
return result;
}
}
mirror::Class* ClassLinker::LookupClassFromTableLocked(const char* descriptor,
const mirror::ClassLoader* class_loader,
size_t hash) {
auto end = class_table_.end();
for (auto it = class_table_.lower_bound(hash); it != end && it->first == hash; ++it) {
mirror::Class* klass = it->second;
ClassHelper kh(klass);
if ((klass->GetClassLoader() == class_loader) &&
(strcmp(descriptor, kh.GetDescriptor()) == 0)) {
if (kIsDebugBuild) {
// Check for duplicates in the table.
for (++it; it != end && it->first == hash; ++it) {
mirror::Class* klass2 = it->second;
ClassHelper kh(klass2);
CHECK(!((klass2->GetClassLoader() == class_loader) &&
(strcmp(descriptor, kh.GetDescriptor()) == 0)))
<< PrettyClass(klass) << " " << klass << " " << klass->GetClassLoader() << " "
<< PrettyClass(klass2) << " " << klass2 << " " << klass2->GetClassLoader();
}
}
return klass;
}
}
return NULL;
}
static mirror::ObjectArray<mirror::DexCache>* GetImageDexCaches()
SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
gc::space::ImageSpace* image = Runtime::Current()->GetHeap()->GetImageSpace();
CHECK(image != NULL);
mirror::Object* root = image->GetImageHeader().GetImageRoot(ImageHeader::kDexCaches);
return root->AsObjectArray<mirror::DexCache>();
}
void ClassLinker::MoveImageClassesToClassTable() {
Thread* self = Thread::Current();
WriterMutexLock mu(self, *Locks::classlinker_classes_lock_);
if (!dex_cache_image_class_lookup_required_) {
return; // All dex cache classes are already in the class table.
}
const char* old_no_suspend_cause =
self->StartAssertNoThreadSuspension("Moving image classes to class table");
mirror::ObjectArray<mirror::DexCache>* dex_caches = GetImageDexCaches();
for (int32_t i = 0; i < dex_caches->GetLength(); i++) {
mirror::DexCache* dex_cache = dex_caches->Get(i);
mirror::ObjectArray<mirror::Class>* types = dex_cache->GetResolvedTypes();
for (int32_t j = 0; j < types->GetLength(); j++) {
mirror::Class* klass = types->Get(j);
if (klass != NULL) {
ClassHelper kh(klass);
DCHECK(klass->GetClassLoader() == NULL);
const char* descriptor = kh.GetDescriptor();
size_t hash = Hash(descriptor);
mirror::Class* existing = LookupClassFromTableLocked(descriptor, NULL, hash);
if (existing != NULL) {
CHECK(existing == klass) << PrettyClassAndClassLoader(existing) << " != "
<< PrettyClassAndClassLoader(klass);
} else {
class_table_.insert(std::make_pair(hash, klass));
if (log_new_class_table_roots_) {
new_class_roots_.push_back(std::make_pair(hash, klass));
}
}
}
}
}
dex_cache_image_class_lookup_required_ = false;
self->EndAssertNoThreadSuspension(old_no_suspend_cause);
}
mirror::Class* ClassLinker::LookupClassFromImage(const char* descriptor) {
Thread* self = Thread::Current();
const char* old_no_suspend_cause =
self->StartAssertNoThreadSuspension("Image class lookup");
mirror::ObjectArray<mirror::DexCache>* dex_caches = GetImageDexCaches();
for (int32_t i = 0; i < dex_caches->GetLength(); ++i) {
mirror::DexCache* dex_cache = dex_caches->Get(i);
const DexFile* dex_file = dex_cache->GetDexFile();
// Try binary searching the string/type index.
const DexFile::StringId* string_id = dex_file->FindStringId(descriptor);
if (string_id != NULL) {
const DexFile::TypeId* type_id =
dex_file->FindTypeId(dex_file->GetIndexForStringId(*string_id));
if (type_id != NULL) {
uint16_t type_idx = dex_file->GetIndexForTypeId(*type_id);
mirror::Class* klass = dex_cache->GetResolvedType(type_idx);
if (klass != NULL) {
self->EndAssertNoThreadSuspension(old_no_suspend_cause);
return klass;
}
}
}
}
self->EndAssertNoThreadSuspension(old_no_suspend_cause);
return NULL;
}
void ClassLinker::LookupClasses(const char* descriptor, std::vector<mirror::Class*>& result) {
result.clear();
if (dex_cache_image_class_lookup_required_) {
MoveImageClassesToClassTable();
}
size_t hash = Hash(descriptor);
ReaderMutexLock mu(Thread::Current(), *Locks::classlinker_classes_lock_);
for (auto it = class_table_.lower_bound(hash), end = class_table_.end();
it != end && it->first == hash; ++it) {
mirror::Class* klass = it->second;
ClassHelper kh(klass);
if (strcmp(descriptor, kh.GetDescriptor()) == 0) {
result.push_back(klass);
}
}
}
void ClassLinker::VerifyClass(const Handle<mirror::Class>& klass) {
// TODO: assert that the monitor on the Class is held
Thread* self = Thread::Current();
ObjectLock<mirror::Class> lock(self, klass);
// Don't attempt to re-verify if already sufficiently verified.
if (klass->IsVerified() ||
(klass->IsCompileTimeVerified() && Runtime::Current()->IsCompiler())) {
return;
}
// The class might already be erroneous, for example at compile time if we attempted to verify
// this class as a parent to another.
if (klass->IsErroneous()) {
ThrowEarlierClassFailure(klass.Get());
return;
}
if (klass->GetStatus() == mirror::Class::kStatusResolved) {
klass->SetStatus(mirror::Class::kStatusVerifying, self);
} else {
CHECK_EQ(klass->GetStatus(), mirror::Class::kStatusRetryVerificationAtRuntime)
<< PrettyClass(klass.Get());
CHECK(!Runtime::Current()->IsCompiler());
klass->SetStatus(mirror::Class::kStatusVerifyingAtRuntime, self);
}
// Skip verification if disabled.
if (!Runtime::Current()->IsVerificationEnabled()) {
klass->SetStatus(mirror::Class::kStatusVerified, self);
return;
}
// Verify super class.
StackHandleScope<2> hs(self);
Handle<mirror::Class> super(hs.NewHandle(klass->GetSuperClass()));
if (super.Get() != NULL) {
// Acquire lock to prevent races on verifying the super class.
ObjectLock<mirror::Class> lock(self, super);
if (!super->IsVerified() && !super->IsErroneous()) {
VerifyClass(super);
}
if (!super->IsCompileTimeVerified()) {
std::string error_msg(StringPrintf("Rejecting class %s that attempts to sub-class erroneous class %s",
PrettyDescriptor(klass.Get()).c_str(),
PrettyDescriptor(super.Get()).c_str()));
LOG(ERROR) << error_msg << " in " << klass->GetDexCache()->GetLocation()->ToModifiedUtf8();
Handle<mirror::Throwable> cause(hs.NewHandle(self->GetException(nullptr)));
if (cause.Get() != nullptr) {
self->ClearException();
}
ThrowVerifyError(klass.Get(), "%s", error_msg.c_str());
if (cause.Get() != nullptr) {
self->GetException(nullptr)->SetCause(cause.Get());
}
ClassReference ref(klass->GetDexCache()->GetDexFile(), klass->GetDexClassDefIndex());
if (Runtime::Current()->IsCompiler()) {
Runtime::Current()->GetCompilerCallbacks()->ClassRejected(ref);
}
klass->SetStatus(mirror::Class::kStatusError, self);
return;
}
}
// Try to use verification information from the oat file, otherwise do runtime verification.
const DexFile& dex_file = *klass->GetDexCache()->GetDexFile();
mirror::Class::Status oat_file_class_status(mirror::Class::kStatusNotReady);
bool preverified = VerifyClassUsingOatFile(dex_file, klass.Get(), oat_file_class_status);
if (oat_file_class_status == mirror::Class::kStatusError) {
VLOG(class_linker) << "Skipping runtime verification of erroneous class "
<< PrettyDescriptor(klass.Get()) << " in "
<< klass->GetDexCache()->GetLocation()->ToModifiedUtf8();
ThrowVerifyError(klass.Get(), "Rejecting class %s because it failed compile-time verification",
PrettyDescriptor(klass.Get()).c_str());
klass->SetStatus(mirror::Class::kStatusError, self);
return;
}
verifier::MethodVerifier::FailureKind verifier_failure = verifier::MethodVerifier::kNoFailure;
std::string error_msg;
if (!preverified) {
verifier_failure = verifier::MethodVerifier::VerifyClass(klass.Get(),
Runtime::Current()->IsCompiler(),
&error_msg);
}
if (preverified || verifier_failure != verifier::MethodVerifier::kHardFailure) {
if (!preverified && verifier_failure != verifier::MethodVerifier::kNoFailure) {
VLOG(class_linker) << "Soft verification failure in class " << PrettyDescriptor(klass.Get())
<< " in " << klass->GetDexCache()->GetLocation()->ToModifiedUtf8()
<< " because: " << error_msg;
}
self->AssertNoPendingException();
// Make sure all classes referenced by catch blocks are resolved.
ResolveClassExceptionHandlerTypes(dex_file, klass);
if (verifier_failure == verifier::MethodVerifier::kNoFailure) {
// Even though there were no verifier failures we need to respect whether the super-class
// was verified or requiring runtime reverification.
if (super.Get() == NULL || super->IsVerified()) {
klass->SetStatus(mirror::Class::kStatusVerified, self);
} else {
CHECK_EQ(super->GetStatus(), mirror::Class::kStatusRetryVerificationAtRuntime);
klass->SetStatus(mirror::Class::kStatusRetryVerificationAtRuntime, self);
// Pretend a soft failure occured so that we don't consider the class verified below.
verifier_failure = verifier::MethodVerifier::kSoftFailure;
}
} else {
CHECK_EQ(verifier_failure, verifier::MethodVerifier::kSoftFailure);
// Soft failures at compile time should be retried at runtime. Soft
// failures at runtime will be handled by slow paths in the generated
// code. Set status accordingly.
if (Runtime::Current()->IsCompiler()) {
klass->SetStatus(mirror::Class::kStatusRetryVerificationAtRuntime, self);
} else {
klass->SetStatus(mirror::Class::kStatusVerified, self);
}
}
} else {
LOG(ERROR) << "Verification failed on class " << PrettyDescriptor(klass.Get())
<< " in " << klass->GetDexCache()->GetLocation()->ToModifiedUtf8()
<< " because: " << error_msg;
self->AssertNoPendingException();
ThrowVerifyError(klass.Get(), "%s", error_msg.c_str());
klass->SetStatus(mirror::Class::kStatusError, self);
}
if (preverified || verifier_failure == verifier::MethodVerifier::kNoFailure) {
// Class is verified so we don't need to do any access check on its methods.
// Let the interpreter know it by setting the kAccPreverified flag onto each
// method.
// Note: we're going here during compilation and at runtime. When we set the
// kAccPreverified flag when compiling image classes, the flag is recorded
// in the image and is set when loading the image.
klass->SetPreverifiedFlagOnAllMethods();
}
}
bool ClassLinker::VerifyClassUsingOatFile(const DexFile& dex_file, mirror::Class* klass,
mirror::Class::Status& oat_file_class_status) {
// If we're compiling, we can only verify the class using the oat file if
// we are not compiling the image or if the class we're verifying is not part of
// the app. In other words, we will only check for preverification of bootclasspath
// classes.
if (Runtime::Current()->IsCompiler()) {
// Are we compiling the bootclasspath?
if (!Runtime::Current()->UseCompileTimeClassPath()) {
return false;
}
// We are compiling an app (not the image).
// Is this an app class? (I.e. not a bootclasspath class)
if (klass->GetClassLoader() != NULL) {
return false;
}
}
const OatFile* oat_file = FindOpenedOatFileForDexFile(dex_file);
// Make this work with gtests, which do not set up the image properly.
// TODO: we should clean up gtests to set up the image path properly.
if (Runtime::Current()->IsCompiler() && (oat_file == NULL)) {
return false;
}
CHECK(oat_file != NULL) << dex_file.GetLocation() << " " << PrettyClass(klass);
uint dex_location_checksum = dex_file.GetLocationChecksum();
const OatFile::OatDexFile* oat_dex_file = oat_file->GetOatDexFile(dex_file.GetLocation().c_str(),
&dex_location_checksum);
CHECK(oat_dex_file != NULL) << dex_file.GetLocation() << " " << PrettyClass(klass);
uint16_t class_def_index = klass->GetDexClassDefIndex();
oat_file_class_status = oat_dex_file->GetOatClass(class_def_index).GetStatus();
if (oat_file_class_status == mirror::Class::kStatusVerified ||
oat_file_class_status == mirror::Class::kStatusInitialized) {
return true;
}
if (oat_file_class_status == mirror::Class::kStatusRetryVerificationAtRuntime) {
// Compile time verification failed with a soft error. Compile time verification can fail
// because we have incomplete type information. Consider the following:
// class ... {
// Foo x;
// .... () {
// if (...) {
// v1 gets assigned a type of resolved class Foo
// } else {
// v1 gets assigned a type of unresolved class Bar
// }
// iput x = v1
// } }
// when we merge v1 following the if-the-else it results in Conflict
// (see verifier::RegType::Merge) as we can't know the type of Bar and we could possibly be
// allowing an unsafe assignment to the field x in the iput (javac may have compiled this as
// it knew Bar was a sub-class of Foo, but for us this may have been moved into a separate apk
// at compile time).
return false;
}
if (oat_file_class_status == mirror::Class::kStatusError) {
// Compile time verification failed with a hard error. This is caused by invalid instructions
// in the class. These errors are unrecoverable.
return false;
}
if (oat_file_class_status == mirror::Class::kStatusNotReady) {
// Status is uninitialized if we couldn't determine the status at compile time, for example,
// not loading the class.
// TODO: when the verifier doesn't rely on Class-es failing to resolve/load the type hierarchy
// isn't a problem and this case shouldn't occur
return false;
}
LOG(FATAL) << "Unexpected class status: " << oat_file_class_status
<< " " << dex_file.GetLocation() << " " << PrettyClass(klass) << " "
<< ClassHelper(klass).GetDescriptor();
return false;
}
void ClassLinker::ResolveClassExceptionHandlerTypes(const DexFile& dex_file,
const Handle<mirror::Class>& klass) {
for (size_t i = 0; i < klass->NumDirectMethods(); i++) {
ResolveMethodExceptionHandlerTypes(dex_file, klass->GetDirectMethod(i));
}
for (size_t i = 0; i < klass->NumVirtualMethods(); i++) {
ResolveMethodExceptionHandlerTypes(dex_file, klass->GetVirtualMethod(i));
}
}
void ClassLinker::ResolveMethodExceptionHandlerTypes(const DexFile& dex_file,
mirror::ArtMethod* method) {
// similar to DexVerifier::ScanTryCatchBlocks and dex2oat's ResolveExceptionsForMethod.
const DexFile::CodeItem* code_item = dex_file.GetCodeItem(method->GetCodeItemOffset());
if (code_item == NULL) {
return; // native or abstract method
}
if (code_item->tries_size_ == 0) {
return; // nothing to process
}
const byte* handlers_ptr = DexFile::GetCatchHandlerData(*code_item, 0);
uint32_t handlers_size = DecodeUnsignedLeb128(&handlers_ptr);
ClassLinker* linker = Runtime::Current()->GetClassLinker();
for (uint32_t idx = 0; idx < handlers_size; idx++) {
CatchHandlerIterator iterator(handlers_ptr);
for (; iterator.HasNext(); iterator.Next()) {
// Ensure exception types are resolved so that they don't need resolution to be delivered,
// unresolved exception types will be ignored by exception delivery
if (iterator.GetHandlerTypeIndex() != DexFile::kDexNoIndex16) {
mirror::Class* exception_type = linker->ResolveType(iterator.GetHandlerTypeIndex(), method);
if (exception_type == NULL) {
DCHECK(Thread::Current()->IsExceptionPending());
Thread::Current()->ClearException();
}
}
}
handlers_ptr = iterator.EndDataPointer();
}
}
static void CheckProxyConstructor(mirror::ArtMethod* constructor);
static void CheckProxyMethod(mirror::ArtMethod* method,
Handle<mirror::ArtMethod>& prototype);
mirror::Class* ClassLinker::CreateProxyClass(ScopedObjectAccess& soa, jstring name,
jobjectArray interfaces, jobject loader,
jobjectArray methods, jobjectArray throws) {
Thread* self = soa.Self();
StackHandleScope<8> hs(self);
Handle<mirror::Class> klass(hs.NewHandle(AllocClass(self, GetClassRoot(kJavaLangClass),
sizeof(mirror::SynthesizedProxyClass))));
if (klass.Get() == NULL) {
CHECK(self->IsExceptionPending()); // OOME.
return NULL;
}
DCHECK(klass->GetClass() != NULL);
klass->SetObjectSize(sizeof(mirror::Proxy));
klass->SetAccessFlags(kAccClassIsProxy | kAccPublic | kAccFinal);
klass->SetClassLoader(soa.Decode<mirror::ClassLoader*>(loader));
DCHECK_EQ(klass->GetPrimitiveType(), Primitive::kPrimNot);
klass->SetName(soa.Decode<mirror::String*>(name));
mirror::Class* proxy_class = GetClassRoot(kJavaLangReflectProxy);
klass->SetDexCache(proxy_class->GetDexCache());
klass->SetStatus(mirror::Class::kStatusIdx, self);
// Instance fields are inherited, but we add a couple of static fields...
{
mirror::ObjectArray<mirror::ArtField>* sfields = AllocArtFieldArray(self, 2);
if (UNLIKELY(sfields == NULL)) {
CHECK(self->IsExceptionPending()); // OOME.
return NULL;
}
klass->SetSFields(sfields);
}
// 1. Create a static field 'interfaces' that holds the _declared_ interfaces implemented by
// our proxy, so Class.getInterfaces doesn't return the flattened set.
Handle<mirror::ArtField> interfaces_sfield(hs.NewHandle(AllocArtField(self)));
if (UNLIKELY(interfaces_sfield.Get() == nullptr)) {
CHECK(self->IsExceptionPending()); // OOME.
return nullptr;
}
klass->SetStaticField(0, interfaces_sfield.Get());
interfaces_sfield->SetDexFieldIndex(0);
interfaces_sfield->SetDeclaringClass(klass.Get());
interfaces_sfield->SetAccessFlags(kAccStatic | kAccPublic | kAccFinal);
// 2. Create a static field 'throws' that holds exceptions thrown by our methods.
Handle<mirror::ArtField> throws_sfield(hs.NewHandle(AllocArtField(self)));
if (UNLIKELY(throws_sfield.Get() == nullptr)) {
CHECK(self->IsExceptionPending()); // OOME.
return nullptr;
}
klass->SetStaticField(1, throws_sfield.Get());
throws_sfield->SetDexFieldIndex(1);
throws_sfield->SetDeclaringClass(klass.Get());
throws_sfield->SetAccessFlags(kAccStatic | kAccPublic | kAccFinal);
// Proxies have 1 direct method, the constructor
{
mirror::ObjectArray<mirror::ArtMethod>* directs = AllocArtMethodArray(self, 1);
if (UNLIKELY(directs == nullptr)) {
CHECK(self->IsExceptionPending()); // OOME.
return nullptr;
}
klass->SetDirectMethods(directs);
mirror::ArtMethod* constructor = CreateProxyConstructor(self, klass, proxy_class);
if (UNLIKELY(constructor == nullptr)) {
CHECK(self->IsExceptionPending()); // OOME.
return nullptr;
}
klass->SetDirectMethod(0, constructor);
}
// Create virtual method using specified prototypes.
size_t num_virtual_methods =
soa.Decode<mirror::ObjectArray<mirror::ArtMethod>*>(methods)->GetLength();
{
mirror::ObjectArray<mirror::ArtMethod>* virtuals = AllocArtMethodArray(self, num_virtual_methods);
if (UNLIKELY(virtuals == NULL)) {
CHECK(self->IsExceptionPending()); // OOME.
return NULL;
}
klass->SetVirtualMethods(virtuals);
}
for (size_t i = 0; i < num_virtual_methods; ++i) {
StackHandleScope<1> hs(self);
mirror::ObjectArray<mirror::ArtMethod>* decoded_methods =
soa.Decode<mirror::ObjectArray<mirror::ArtMethod>*>(methods);
Handle<mirror::ArtMethod> prototype(hs.NewHandle(decoded_methods->Get(i)));
mirror::ArtMethod* clone = CreateProxyMethod(self, klass, prototype);
if (UNLIKELY(clone == nullptr)) {
CHECK(self->IsExceptionPending()); // OOME.
return nullptr;
}
klass->SetVirtualMethod(i, clone);
}
klass->SetSuperClass(proxy_class); // The super class is java.lang.reflect.Proxy
klass->SetStatus(mirror::Class::kStatusLoaded, self); // Class is now effectively in the loaded state
self->AssertNoPendingException();
{
ObjectLock<mirror::Class> lock(self, klass); // Must hold lock on object when resolved.
// Link the fields and virtual methods, creating vtable and iftables
Handle<mirror::ObjectArray<mirror::Class> > h_interfaces(
hs.NewHandle(soa.Decode<mirror::ObjectArray<mirror::Class>*>(interfaces)));
if (!LinkClass(self, klass, h_interfaces)) {
klass->SetStatus(mirror::Class::kStatusError, self);
return nullptr;
}
interfaces_sfield->SetObject<false>(klass.Get(), soa.Decode<mirror::ObjectArray<mirror::Class>*>(interfaces));
throws_sfield->SetObject<false>(klass.Get(), soa.Decode<mirror::ObjectArray<mirror::ObjectArray<mirror::Class> >*>(throws));
klass->SetStatus(mirror::Class::kStatusInitialized, self);
}
// sanity checks
if (kIsDebugBuild) {
CHECK(klass->GetIFields() == nullptr);
CheckProxyConstructor(klass->GetDirectMethod(0));
for (size_t i = 0; i < num_virtual_methods; ++i) {
StackHandleScope<1> hs(self);
mirror::ObjectArray<mirror::ArtMethod>* decoded_methods =
soa.Decode<mirror::ObjectArray<mirror::ArtMethod>*>(methods);
Handle<mirror::ArtMethod> prototype(hs.NewHandle(decoded_methods->Get(i)));
CheckProxyMethod(klass->GetVirtualMethod(i), prototype);
}
mirror::String* decoded_name = soa.Decode<mirror::String*>(name);
std::string interfaces_field_name(StringPrintf("java.lang.Class[] %s.interfaces",
decoded_name->ToModifiedUtf8().c_str()));
CHECK_EQ(PrettyField(klass->GetStaticField(0)), interfaces_field_name);
std::string throws_field_name(StringPrintf("java.lang.Class[][] %s.throws",
decoded_name->ToModifiedUtf8().c_str()));
CHECK_EQ(PrettyField(klass->GetStaticField(1)), throws_field_name);
mirror::SynthesizedProxyClass* synth_proxy_class =
down_cast<mirror::SynthesizedProxyClass*>(klass.Get());
CHECK_EQ(synth_proxy_class->GetInterfaces(), soa.Decode<mirror::ObjectArray<mirror::Class>*>(interfaces));
CHECK_EQ(synth_proxy_class->GetThrows(), soa.Decode<mirror::ObjectArray<mirror::ObjectArray<mirror::Class> >*>(throws));
}
std::string descriptor(GetDescriptorForProxy(klass.Get()));
mirror::Class* existing = InsertClass(descriptor.c_str(), klass.Get(), Hash(descriptor.c_str()));
CHECK(existing == nullptr);
return klass.Get();
}
std::string ClassLinker::GetDescriptorForProxy(mirror::Class* proxy_class) {
DCHECK(proxy_class->IsProxyClass());
mirror::String* name = proxy_class->GetName();
DCHECK(name != NULL);
return DotToDescriptor(name->ToModifiedUtf8().c_str());
}
mirror::ArtMethod* ClassLinker::FindMethodForProxy(mirror::Class* proxy_class,
mirror::ArtMethod* proxy_method) {
DCHECK(proxy_class->IsProxyClass());
DCHECK(proxy_method->IsProxyMethod());
// Locate the dex cache of the original interface/Object
mirror::DexCache* dex_cache = NULL;
{
mirror::ObjectArray<mirror::Class>* resolved_types = proxy_method->GetDexCacheResolvedTypes();
ReaderMutexLock mu(Thread::Current(), dex_lock_);
for (size_t i = 0; i != dex_caches_.size(); ++i) {
if (dex_caches_[i]->GetResolvedTypes() == resolved_types) {
dex_cache = dex_caches_[i];
break;
}
}
}
CHECK(dex_cache != NULL);
uint32_t method_idx = proxy_method->GetDexMethodIndex();
mirror::ArtMethod* resolved_method = dex_cache->GetResolvedMethod(method_idx);
CHECK(resolved_method != NULL);
return resolved_method;
}
mirror::ArtMethod* ClassLinker::CreateProxyConstructor(Thread* self,
const Handle<mirror::Class>& klass,
mirror::Class* proxy_class) {
// Create constructor for Proxy that must initialize h
mirror::ObjectArray<mirror::ArtMethod>* proxy_direct_methods =
proxy_class->GetDirectMethods();
CHECK_EQ(proxy_direct_methods->GetLength(), 16);
mirror::ArtMethod* proxy_constructor = proxy_direct_methods->Get(2);
// Clone the existing constructor of Proxy (our constructor would just invoke it so steal its
// code_ too)
mirror::ArtMethod* constructor =
down_cast<mirror::ArtMethod*>(proxy_constructor->Clone(self));
if (constructor == NULL) {
CHECK(self->IsExceptionPending()); // OOME.
return NULL;
}
// Make this constructor public and fix the class to be our Proxy version
constructor->SetAccessFlags((constructor->GetAccessFlags() & ~kAccProtected) | kAccPublic);
constructor->SetDeclaringClass(klass.Get());
return constructor;
}
static void CheckProxyConstructor(mirror::ArtMethod* constructor)
SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
CHECK(constructor->IsConstructor());
MethodHelper mh(constructor);
CHECK_STREQ(mh.GetName(), "<init>");
CHECK_STREQ(mh.GetSignature().ToString().c_str(), "(Ljava/lang/reflect/InvocationHandler;)V");
DCHECK(constructor->IsPublic());
}
mirror::ArtMethod* ClassLinker::CreateProxyMethod(Thread* self,
const Handle<mirror::Class>& klass,
const Handle<mirror::ArtMethod>& prototype) {
// Ensure prototype is in dex cache so that we can use the dex cache to look up the overridden
// prototype method
prototype->GetDeclaringClass()->GetDexCache()->SetResolvedMethod(prototype->GetDexMethodIndex(),
prototype.Get());
// We steal everything from the prototype (such as DexCache, invoke stub, etc.) then specialize
// as necessary
mirror::ArtMethod* method = down_cast<mirror::ArtMethod*>(prototype->Clone(self));
if (UNLIKELY(method == NULL)) {
CHECK(self->IsExceptionPending()); // OOME.
return NULL;
}
// Set class to be the concrete proxy class and clear the abstract flag, modify exceptions to
// the intersection of throw exceptions as defined in Proxy
method->SetDeclaringClass(klass.Get());
method->SetAccessFlags((method->GetAccessFlags() & ~kAccAbstract) | kAccFinal);
// At runtime the method looks like a reference and argument saving method, clone the code
// related parameters from this method.
method->SetEntryPointFromQuickCompiledCode(GetQuickProxyInvokeHandler());
method->SetEntryPointFromPortableCompiledCode(GetPortableProxyInvokeHandler());
method->SetEntryPointFromInterpreter(artInterpreterToCompiledCodeBridge);
return method;
}
static void CheckProxyMethod(mirror::ArtMethod* method,
Handle<mirror::ArtMethod>& prototype)
SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
// Basic sanity
CHECK(!prototype->IsFinal());
CHECK(method->IsFinal());
CHECK(!method->IsAbstract());
// The proxy method doesn't have its own dex cache or dex file and so it steals those of its
// interface prototype. The exception to this are Constructors and the Class of the Proxy itself.
CHECK_EQ(prototype->GetDexCacheStrings(), method->GetDexCacheStrings());
CHECK_EQ(prototype->GetDexCacheResolvedMethods(), method->GetDexCacheResolvedMethods());
CHECK_EQ(prototype->GetDexCacheResolvedTypes(), method->GetDexCacheResolvedTypes());
CHECK_EQ(prototype->GetDexMethodIndex(), method->GetDexMethodIndex());
MethodHelper mh(method);
MethodHelper mh2(prototype.Get());
CHECK_STREQ(mh.GetName(), mh2.GetName());
CHECK_STREQ(mh.GetShorty(), mh2.GetShorty());
// More complex sanity - via dex cache
CHECK_EQ(mh.GetReturnType(), mh2.GetReturnType());
}
static bool CanWeInitializeClass(mirror::Class* klass, bool can_init_statics,
bool can_init_parents)
SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
if (can_init_statics && can_init_parents) {
return true;
}
if (!can_init_statics) {
// Check if there's a class initializer.
mirror::ArtMethod* clinit = klass->FindClassInitializer();
if (clinit != NULL) {
return false;
}
// Check if there are encoded static values needing initialization.
if (klass->NumStaticFields() != 0) {
ClassHelper kh(klass);
const DexFile::ClassDef* dex_class_def = kh.GetClassDef();
DCHECK(dex_class_def != NULL);
if (dex_class_def->static_values_off_ != 0) {
return false;
}
}
}
if (!klass->IsInterface() && klass->HasSuperClass()) {
mirror::Class* super_class = klass->GetSuperClass();
if (!can_init_parents && !super_class->IsInitialized()) {
return false;
} else {
if (!CanWeInitializeClass(super_class, can_init_statics, can_init_parents)) {
return false;
}
}
}
return true;
}
bool ClassLinker::IsInitialized() const {
return init_done_;
}
bool ClassLinker::InitializeClass(const Handle<mirror::Class>& klass, bool can_init_statics,
bool can_init_parents) {
// see JLS 3rd edition, 12.4.2 "Detailed Initialization Procedure" for the locking protocol
// Are we already initialized and therefore done?
// Note: we differ from the JLS here as we don't do this under the lock, this is benign as
// an initialized class will never change its state.
if (klass->IsInitialized()) {
return true;
}
// Fast fail if initialization requires a full runtime. Not part of the JLS.
if (!CanWeInitializeClass(klass.Get(), can_init_statics, can_init_parents)) {
return false;
}
Thread* self = Thread::Current();
uint64_t t0;
{
ObjectLock<mirror::Class> lock(self, klass);
// Re-check under the lock in case another thread initialized ahead of us.
if (klass->IsInitialized()) {
return true;
}
// Was the class already found to be erroneous? Done under the lock to match the JLS.
if (klass->IsErroneous()) {
ThrowEarlierClassFailure(klass.Get());
return false;
}
CHECK(klass->IsResolved()) << PrettyClass(klass.Get()) << ": state=" << klass->GetStatus();
if (!klass->IsVerified()) {
VerifyClass(klass);
if (!klass->IsVerified()) {
// We failed to verify, expect either the klass to be erroneous or verification failed at
// compile time.
if (klass->IsErroneous()) {
CHECK(self->IsExceptionPending());
} else {
CHECK(Runtime::Current()->IsCompiler());
CHECK_EQ(klass->GetStatus(), mirror::Class::kStatusRetryVerificationAtRuntime);
}
return false;
}
}
// If the class is kStatusInitializing, either this thread is
// initializing higher up the stack or another thread has beat us
// to initializing and we need to wait. Either way, this
// invocation of InitializeClass will not be responsible for
// running <clinit> and will return.
if (klass->GetStatus() == mirror::Class::kStatusInitializing) {
// We caught somebody else in the act; was it us?
if (klass->GetClinitThreadId() == self->GetTid()) {
// Yes. That's fine. Return so we can continue initializing.
return true;
}
// No. That's fine. Wait for another thread to finish initializing.
return WaitForInitializeClass(klass, self, lock);
}
if (!ValidateSuperClassDescriptors(klass)) {
klass->SetStatus(mirror::Class::kStatusError, self);
return false;
}
CHECK_EQ(klass->GetStatus(), mirror::Class::kStatusVerified) << PrettyClass(klass.Get());
// From here out other threads may observe that we're initializing and so changes of state
// require the a notification.
klass->SetClinitThreadId(self->GetTid());
klass->SetStatus(mirror::Class::kStatusInitializing, self);
t0 = NanoTime();
}
// Initialize super classes, must be done while initializing for the JLS.
if (!klass->IsInterface() && klass->HasSuperClass()) {
mirror::Class* super_class = klass->GetSuperClass();
if (!super_class->IsInitialized()) {
CHECK(!super_class->IsInterface());
CHECK(can_init_parents);
StackHandleScope<1> hs(self);
Handle<mirror::Class> handle_scope_super(hs.NewHandle(super_class));
bool super_initialized = InitializeClass(handle_scope_super, can_init_statics, true);
if (!super_initialized) {
// The super class was verified ahead of entering initializing, we should only be here if
// the super class became erroneous due to initialization.
CHECK(handle_scope_super->IsErroneous() && self->IsExceptionPending())
<< "Super class initialization failed for " << PrettyDescriptor(handle_scope_super.Get())
<< " that has unexpected status " << handle_scope_super->GetStatus()
<< "\nPending exception:\n"
<< (self->GetException(NULL) != NULL ? self->GetException(NULL)->Dump() : "");
ObjectLock<mirror::Class> lock(self, klass);
// Initialization failed because the super-class is erroneous.
klass->SetStatus(mirror::Class::kStatusError, self);
return false;
}
}
}
if (klass->NumStaticFields() > 0) {
ClassHelper kh(klass.Get());
const DexFile::ClassDef* dex_class_def = kh.GetClassDef();
CHECK(dex_class_def != NULL);
const DexFile& dex_file = kh.GetDexFile();
StackHandleScope<2> hs(self);
Handle<mirror::ClassLoader> class_loader(hs.NewHandle(klass->GetClassLoader()));
Handle<mirror::DexCache> dex_cache(hs.NewHandle(kh.GetDexCache()));
EncodedStaticFieldValueIterator it(dex_file, &dex_cache, &class_loader,
this, *dex_class_def);
if (it.HasNext()) {
CHECK(can_init_statics);
// We reordered the fields, so we need to be able to map the field indexes to the right fields.
SafeMap<uint32_t, mirror::ArtField*> field_map;
ConstructFieldMap(dex_file, *dex_class_def, klass.Get(), field_map);
for (size_t i = 0; it.HasNext(); i++, it.Next()) {
if (Runtime::Current()->IsActiveTransaction()) {
it.ReadValueToField<true>(field_map.Get(i));
} else {
it.ReadValueToField<false>(field_map.Get(i));
}
}
}
}
mirror::ArtMethod* clinit = klass->FindClassInitializer();
if (clinit != NULL) {
CHECK(can_init_statics);
JValue result;
clinit->Invoke(self, NULL, 0, &result, "V");
}
uint64_t t1 = NanoTime();
bool success = true;
{
ObjectLock<mirror::Class> lock(self, klass);
if (self->IsExceptionPending()) {
WrapExceptionInInitializer();
klass->SetStatus(mirror::Class::kStatusError, self);
success = false;
} else {
RuntimeStats* global_stats = Runtime::Current()->GetStats();
RuntimeStats* thread_stats = self->GetStats();
++global_stats->class_init_count;
++thread_stats->class_init_count;
global_stats->class_init_time_ns += (t1 - t0);
thread_stats->class_init_time_ns += (t1 - t0);
// Set the class as initialized except if failed to initialize static fields.
klass->SetStatus(mirror::Class::kStatusInitialized, self);
if (VLOG_IS_ON(class_linker)) {
ClassHelper kh(klass.Get());
LOG(INFO) << "Initialized class " << kh.GetDescriptor() << " from " << kh.GetLocation();
}
// Opportunistically set static method trampolines to their destination.
FixupStaticTrampolines(klass.Get());
}
}
return success;
}
bool ClassLinker::WaitForInitializeClass(const Handle<mirror::Class>& klass, Thread* self,
ObjectLock<mirror::Class>& lock)
SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
while (true) {
self->AssertNoPendingException();
CHECK(!klass->IsInitialized());
lock.WaitIgnoringInterrupts();
// When we wake up, repeat the test for init-in-progress. If
// there's an exception pending (only possible if
// "interruptShouldThrow" was set), bail out.
if (self->IsExceptionPending()) {
WrapExceptionInInitializer();
klass->SetStatus(mirror::Class::kStatusError, self);
return false;
}
// Spurious wakeup? Go back to waiting.
if (klass->GetStatus() == mirror::Class::kStatusInitializing) {
continue;
}
if (klass->GetStatus() == mirror::Class::kStatusVerified && Runtime::Current()->IsCompiler()) {
// Compile time initialization failed.
return false;
}
if (klass->IsErroneous()) {
// The caller wants an exception, but it was thrown in a
// different thread. Synthesize one here.
ThrowNoClassDefFoundError("<clinit> failed for class %s; see exception in other thread",
PrettyDescriptor(klass.Get()).c_str());
return false;
}
if (klass->IsInitialized()) {
return true;
}
LOG(FATAL) << "Unexpected class status. " << PrettyClass(klass.Get()) << " is "
<< klass->GetStatus();
}
LOG(FATAL) << "Not Reached" << PrettyClass(klass.Get());
}
bool ClassLinker::ValidateSuperClassDescriptors(const Handle<mirror::Class>& klass) {
if (klass->IsInterface()) {
return true;
}
// Begin with the methods local to the superclass.
MethodHelper mh;
MethodHelper super_mh;
if (klass->HasSuperClass() &&
klass->GetClassLoader() != klass->GetSuperClass()->GetClassLoader()) {
for (int i = klass->GetSuperClass()->GetVTable()->GetLength() - 1; i >= 0; --i) {
mh.ChangeMethod(klass->GetVTable()->GetWithoutChecks(i));
super_mh.ChangeMethod(klass->GetSuperClass()->GetVTable()->GetWithoutChecks(i));
bool is_override = mh.GetMethod() != super_mh.GetMethod();
if (is_override && !mh.HasSameSignatureWithDifferentClassLoaders(&super_mh)) {
ThrowLinkageError(klass.Get(), "Class %s method %s resolves differently in superclass %s",
PrettyDescriptor(klass.Get()).c_str(),
PrettyMethod(mh.GetMethod()).c_str(),
PrettyDescriptor(klass->GetSuperClass()).c_str());
return false;
}
}
}
for (int32_t i = 0; i < klass->GetIfTableCount(); ++i) {
if (klass->GetClassLoader() != klass->GetIfTable()->GetInterface(i)->GetClassLoader()) {
uint32_t num_methods = klass->GetIfTable()->GetInterface(i)->NumVirtualMethods();
for (uint32_t j = 0; j < num_methods; ++j) {
mh.ChangeMethod(klass->GetIfTable()->GetMethodArray(i)->GetWithoutChecks(j));
super_mh.ChangeMethod(klass->GetIfTable()->GetInterface(i)->GetVirtualMethod(j));
bool is_override = mh.GetMethod() != super_mh.GetMethod();
if (is_override && !mh.HasSameSignatureWithDifferentClassLoaders(&super_mh)) {
ThrowLinkageError(klass.Get(), "Class %s method %s resolves differently in interface %s",
PrettyDescriptor(klass.Get()).c_str(),
PrettyMethod(mh.GetMethod()).c_str(),
PrettyDescriptor(klass->GetIfTable()->GetInterface(i)).c_str());
return false;
}
}
}
}
return true;
}
bool ClassLinker::EnsureInitialized(const Handle<mirror::Class>& c, bool can_init_fields,
bool can_init_parents) {
DCHECK(c.Get() != NULL);
if (c->IsInitialized()) {
return true;
}
bool success = InitializeClass(c, can_init_fields, can_init_parents);
if (!success) {
if (can_init_fields && can_init_parents) {
CHECK(Thread::Current()->IsExceptionPending()) << PrettyClass(c.Get());
}
}
return success;
}
void ClassLinker::ConstructFieldMap(const DexFile& dex_file, const DexFile::ClassDef& dex_class_def,
mirror::Class* c,
SafeMap<uint32_t, mirror::ArtField*>& field_map) {
const byte* class_data = dex_file.GetClassData(dex_class_def);
ClassDataItemIterator it(dex_file, class_data);
StackHandleScope<2> hs(Thread::Current());
Handle<mirror::DexCache> dex_cache(hs.NewHandle(c->GetDexCache()));
Handle<mirror::ClassLoader> class_loader(hs.NewHandle(c->GetClassLoader()));
CHECK(!kMovingFields);
for (size_t i = 0; it.HasNextStaticField(); i++, it.Next()) {
field_map.Put(i, ResolveField(dex_file, it.GetMemberIndex(), dex_cache, class_loader, true));
}
}
bool ClassLinker::LinkClass(Thread* self, const Handle<mirror::Class>& klass,
const Handle<mirror::ObjectArray<mirror::Class> >& interfaces) {
CHECK_EQ(mirror::Class::kStatusLoaded, klass->GetStatus());
if (!LinkSuperClass(klass)) {
return false;
}
if (!LinkMethods(klass, interfaces)) {
return false;
}
if (!LinkInstanceFields(klass)) {
return false;
}
if (!LinkStaticFields(klass)) {
return false;
}
CreateReferenceInstanceOffsets(klass);
CreateReferenceStaticOffsets(klass);
CHECK_EQ(mirror::Class::kStatusLoaded, klass->GetStatus());
klass->SetStatus(mirror::Class::kStatusResolved, self);
return true;
}
bool ClassLinker::LoadSuperAndInterfaces(const Handle<mirror::Class>& klass,
const DexFile& dex_file) {
CHECK_EQ(mirror::Class::kStatusIdx, klass->GetStatus());
const DexFile::ClassDef& class_def = dex_file.GetClassDef(klass->GetDexClassDefIndex());
uint16_t super_class_idx = class_def.superclass_idx_;
if (super_class_idx != DexFile::kDexNoIndex16) {
mirror::Class* super_class = ResolveType(dex_file, super_class_idx, klass.Get());
if (super_class == NULL) {
DCHECK(Thread::Current()->IsExceptionPending());
return false;
}
// Verify
if (!klass->CanAccess(super_class)) {
ThrowIllegalAccessError(klass.Get(), "Class %s extended by class %s is inaccessible",
PrettyDescriptor(super_class).c_str(),
PrettyDescriptor(klass.Get()).c_str());
return false;
}
klass->SetSuperClass(super_class);
}
const DexFile::TypeList* interfaces = dex_file.GetInterfacesList(class_def);
if (interfaces != NULL) {
for (size_t i = 0; i < interfaces->Size(); i++) {
uint16_t idx = interfaces->GetTypeItem(i).type_idx_;
mirror::Class* interface = ResolveType(dex_file, idx, klass.Get());
if (interface == NULL) {
DCHECK(Thread::Current()->IsExceptionPending());
return false;
}
// Verify
if (!klass->CanAccess(interface)) {
// TODO: the RI seemed to ignore this in my testing.
ThrowIllegalAccessError(klass.Get(), "Interface %s implemented by class %s is inaccessible",
PrettyDescriptor(interface).c_str(),
PrettyDescriptor(klass.Get()).c_str());
return false;
}
}
}
// Mark the class as loaded.
klass->SetStatus(mirror::Class::kStatusLoaded, NULL);
return true;
}
bool ClassLinker::LinkSuperClass(const Handle<mirror::Class>& klass) {
CHECK(!klass->IsPrimitive());
mirror::Class* super = klass->GetSuperClass();
if (klass.Get() == GetClassRoot(kJavaLangObject)) {
if (super != NULL) {
ThrowClassFormatError(klass.Get(), "java.lang.Object must not have a superclass");
return false;
}
return true;
}
if (super == NULL) {
ThrowLinkageError(klass.Get(), "No superclass defined for class %s",
PrettyDescriptor(klass.Get()).c_str());
return false;
}
// Verify
if (super->IsFinal() || super->IsInterface()) {
ThrowIncompatibleClassChangeError(klass.Get(), "Superclass %s of %s is %s",
PrettyDescriptor(super).c_str(),
PrettyDescriptor(klass.Get()).c_str(),
super->IsFinal() ? "declared final" : "an interface");
return false;
}
if (!klass->CanAccess(super)) {
ThrowIllegalAccessError(klass.Get(), "Superclass %s is inaccessible to class %s",
PrettyDescriptor(super).c_str(),
PrettyDescriptor(klass.Get()).c_str());
return false;
}
// Inherit kAccClassIsFinalizable from the superclass in case this class doesn't override finalize.
if (super->IsFinalizable()) {
klass->SetFinalizable();
}
// Inherit reference flags (if any) from the superclass.
int reference_flags = (super->GetAccessFlags() & kAccReferenceFlagsMask);
if (reference_flags != 0) {
klass->SetAccessFlags(klass->GetAccessFlags() | reference_flags);
}
// Disallow custom direct subclasses of java.lang.ref.Reference.
if (init_done_ && super == GetClassRoot(kJavaLangRefReference)) {
ThrowLinkageError(klass.Get(),
"Class %s attempts to subclass java.lang.ref.Reference, which is not allowed",
PrettyDescriptor(klass.Get()).c_str());
return false;
}
if (kIsDebugBuild) {
// Ensure super classes are fully resolved prior to resolving fields..
while (super != NULL) {
CHECK(super->IsResolved());
super = super->GetSuperClass();
}
}
return true;
}
// Populate the class vtable and itable. Compute return type indices.
bool ClassLinker::LinkMethods(const Handle<mirror::Class>& klass,
const Handle<mirror::ObjectArray<mirror::Class> >& interfaces) {
if (klass->IsInterface()) {
// No vtable.
size_t count = klass->NumVirtualMethods();
if (!IsUint(16, count)) {
ThrowClassFormatError(klass.Get(), "Too many methods on interface: %zd", count);
return false;
}
for (size_t i = 0; i < count; ++i) {
klass->GetVirtualMethodDuringLinking(i)->SetMethodIndex(i);
}
// Link interface method tables
return LinkInterfaceMethods(klass, interfaces);
} else {
// Link virtual and interface method tables
return LinkVirtualMethods(klass) && LinkInterfaceMethods(klass, interfaces);
}
return true;
}
bool ClassLinker::LinkVirtualMethods(const Handle<mirror::Class>& klass) {
Thread* self = Thread::Current();
if (klass->HasSuperClass()) {
uint32_t max_count = klass->NumVirtualMethods() + klass->GetSuperClass()->GetVTable()->GetLength();
size_t actual_count = klass->GetSuperClass()->GetVTable()->GetLength();
CHECK_LE(actual_count, max_count);
// TODO: do not assign to the vtable field until it is fully constructed.
StackHandleScope<1> hs(self);
Handle<mirror::ObjectArray<mirror::ArtMethod>> vtable(
hs.NewHandle(klass->GetSuperClass()->GetVTable()->CopyOf(self, max_count)));
if (UNLIKELY(vtable.Get() == NULL)) {
CHECK(self->IsExceptionPending()); // OOME.
return false;
}
// See if any of our virtual methods override the superclass.
for (size_t i = 0; i < klass->NumVirtualMethods(); ++i) {
mirror::ArtMethod* local_method = klass->GetVirtualMethodDuringLinking(i);
MethodHelper local_mh(local_method);
size_t j = 0;
for (; j < actual_count; ++j) {
mirror::ArtMethod* super_method = vtable->Get(j);
MethodHelper super_mh(super_method);
if (local_mh.HasSameNameAndSignature(&super_mh)) {
if (klass->CanAccessMember(super_method->GetDeclaringClass(), super_method->GetAccessFlags())) {
if (super_method->IsFinal()) {
ThrowLinkageError(klass.Get(), "Method %s overrides final method in class %s",
PrettyMethod(local_method).c_str(),
super_mh.GetDeclaringClassDescriptor());
return false;
}
vtable->Set<false>(j, local_method);
local_method->SetMethodIndex(j);
break;
} else {
LOG(WARNING) << "Before Android 4.1, method " << PrettyMethod(local_method)
<< " would have incorrectly overridden the package-private method in "
<< PrettyDescriptor(super_mh.GetDeclaringClassDescriptor());
}
}
}
if (j == actual_count) {
// Not overriding, append.
vtable->Set<false>(actual_count, local_method);
local_method->SetMethodIndex(actual_count);
actual_count += 1;
}
}
if (!IsUint(16, actual_count)) {
ThrowClassFormatError(klass.Get(), "Too many methods defined on class: %zd", actual_count);
return false;
}
// Shrink vtable if possible
CHECK_LE(actual_count, max_count);
if (actual_count < max_count) {
vtable.Assign(vtable->CopyOf(self, actual_count));
if (UNLIKELY(vtable.Get() == NULL)) {
CHECK(self->IsExceptionPending()); // OOME.
return false;
}
}
klass->SetVTable(vtable.Get());
} else {
CHECK(klass.Get() == GetClassRoot(kJavaLangObject));
uint32_t num_virtual_methods = klass->NumVirtualMethods();
if (!IsUint(16, num_virtual_methods)) {
ThrowClassFormatError(klass.Get(), "Too many methods: %d", num_virtual_methods);
return false;
}
StackHandleScope<1> hs(self);
Handle<mirror::ObjectArray<mirror::ArtMethod> >
vtable(hs.NewHandle(AllocArtMethodArray(self, num_virtual_methods)));
if (UNLIKELY(vtable.Get() == NULL)) {
CHECK(self->IsExceptionPending()); // OOME.
return false;
}
for (size_t i = 0; i < num_virtual_methods; ++i) {
mirror::ArtMethod* virtual_method = klass->GetVirtualMethodDuringLinking(i);
vtable->Set<false>(i, virtual_method);
virtual_method->SetMethodIndex(i & 0xFFFF);
}
klass->SetVTable(vtable.Get());
}
return true;
}
bool ClassLinker::LinkInterfaceMethods(const Handle<mirror::Class>& klass,
const Handle<mirror::ObjectArray<mirror::Class> >& interfaces) {
// Set the imt table to be all conflicts by default.
klass->SetImTable(Runtime::Current()->GetDefaultImt());
size_t super_ifcount;
if (klass->HasSuperClass()) {
super_ifcount = klass->GetSuperClass()->GetIfTableCount();
} else {
super_ifcount = 0;
}
size_t ifcount = super_ifcount;
uint32_t num_interfaces;
{
ClassHelper kh(klass.Get());
num_interfaces =
interfaces.Get() == nullptr ? kh.NumDirectInterfaces() : interfaces->GetLength();
ifcount += num_interfaces;
for (size_t i = 0; i < num_interfaces; i++) {
mirror::Class* interface =
interfaces.Get() == nullptr ? kh.GetDirectInterface(i) : interfaces->Get(i);
ifcount += interface->GetIfTableCount();
}
}
if (ifcount == 0) {
// Class implements no interfaces.
DCHECK_EQ(klass->GetIfTableCount(), 0);
DCHECK(klass->GetIfTable() == NULL);
return true;
}
if (ifcount == super_ifcount) {
// Class implements same interfaces as parent, are any of these not marker interfaces?
bool has_non_marker_interface = false;
mirror::IfTable* super_iftable = klass->GetSuperClass()->GetIfTable();
for (size_t i = 0; i < ifcount; ++i) {
if (super_iftable->GetMethodArrayCount(i) > 0) {
has_non_marker_interface = true;
break;
}
}
if (!has_non_marker_interface) {
// Class just inherits marker interfaces from parent so recycle parent's iftable.
klass->SetIfTable(super_iftable);
return true;
}
}
Thread* self = Thread::Current();
StackHandleScope<2> hs(self);
Handle<mirror::IfTable> iftable(hs.NewHandle(AllocIfTable(self, ifcount)));
if (UNLIKELY(iftable.Get() == NULL)) {
CHECK(self->IsExceptionPending()); // OOME.
return false;
}
if (super_ifcount != 0) {
mirror::IfTable* super_iftable = klass->GetSuperClass()->GetIfTable();
for (size_t i = 0; i < super_ifcount; i++) {
mirror::Class* super_interface = super_iftable->GetInterface(i);
iftable->SetInterface(i, super_interface);
}
}
// Flatten the interface inheritance hierarchy.
size_t idx = super_ifcount;
for (size_t i = 0; i < num_interfaces; i++) {
ClassHelper kh(klass.Get());
mirror::Class* interface =
interfaces.Get() == nullptr ? kh.GetDirectInterface(i) : interfaces->Get(i);
DCHECK(interface != NULL);
if (!interface->IsInterface()) {
ClassHelper ih(interface);
ThrowIncompatibleClassChangeError(klass.Get(), "Class %s implements non-interface class %s",
PrettyDescriptor(klass.Get()).c_str(),
PrettyDescriptor(ih.GetDescriptor()).c_str());
return false;
}
// Check if interface is already in iftable
bool duplicate = false;
for (size_t j = 0; j < idx; j++) {
mirror::Class* existing_interface = iftable->GetInterface(j);
if (existing_interface == interface) {
duplicate = true;
break;
}
}
if (!duplicate) {
// Add this non-duplicate interface.
iftable->SetInterface(idx++, interface);
// Add this interface's non-duplicate super-interfaces.
for (int32_t j = 0; j < interface->GetIfTableCount(); j++) {
mirror::Class* super_interface = interface->GetIfTable()->GetInterface(j);
bool super_duplicate = false;
for (size_t k = 0; k < idx; k++) {
mirror::Class* existing_interface = iftable->GetInterface(k);
if (existing_interface == super_interface) {
super_duplicate = true;
break;
}
}
if (!super_duplicate) {
iftable->SetInterface(idx++, super_interface);
}
}
}
}
// Shrink iftable in case duplicates were found
if (idx < ifcount) {
iftable.Assign(down_cast<mirror::IfTable*>(iftable->CopyOf(self, idx * mirror::IfTable::kMax)));
if (UNLIKELY(iftable.Get() == NULL)) {
CHECK(self->IsExceptionPending()); // OOME.
return false;
}
ifcount = idx;
} else {
CHECK_EQ(idx, ifcount);
}
klass->SetIfTable(iftable.Get());
// If we're an interface, we don't need the vtable pointers, so we're done.
if (klass->IsInterface()) {
return true;
}
// Allocate imtable
bool imtable_changed = false;
Handle<mirror::ObjectArray<mirror::ArtMethod> > imtable(
hs.NewHandle(AllocArtMethodArray(self, kImtSize)));
if (UNLIKELY(imtable.Get() == NULL)) {
CHECK(self->IsExceptionPending()); // OOME.
return false;
}
std::vector<mirror::ArtMethod*> miranda_list;
for (size_t i = 0; i < ifcount; ++i) {
size_t num_methods = iftable->GetInterface(i)->NumVirtualMethods();
if (num_methods > 0) {
StackHandleScope<2> hs(self);
Handle<mirror::ObjectArray<mirror::ArtMethod> >
method_array(hs.NewHandle(AllocArtMethodArray(self, num_methods)));
if (UNLIKELY(method_array.Get() == nullptr)) {
CHECK(self->IsExceptionPending()); // OOME.
return false;
}
iftable->SetMethodArray(i, method_array.Get());
Handle<mirror::ObjectArray<mirror::ArtMethod> > vtable(
hs.NewHandle(klass->GetVTableDuringLinking()));
for (size_t j = 0; j < num_methods; ++j) {
mirror::ArtMethod* interface_method = iftable->GetInterface(i)->GetVirtualMethod(j);
MethodHelper interface_mh(interface_method);
int32_t k;
// For each method listed in the interface's method list, find the
// matching method in our class's method list. We want to favor the
// subclass over the superclass, which just requires walking
// back from the end of the vtable. (This only matters if the
// superclass defines a private method and this class redefines
// it -- otherwise it would use the same vtable slot. In .dex files
// those don't end up in the virtual method table, so it shouldn't
// matter which direction we go. We walk it backward anyway.)
for (k = vtable->GetLength() - 1; k >= 0; --k) {
mirror::ArtMethod* vtable_method = vtable->Get(k);
MethodHelper vtable_mh(vtable_method);
if (interface_mh.HasSameNameAndSignature(&vtable_mh)) {
if (!vtable_method->IsAbstract() && !vtable_method->IsPublic()) {
ThrowIllegalAccessError(klass.Get(),
"Method '%s' implementing interface method '%s' is not public",
PrettyMethod(vtable_method).c_str(),
PrettyMethod(interface_method).c_str());
return false;
}
method_array->Set<false>(j, vtable_method);
// Place method in imt if entry is empty, place conflict otherwise.
uint32_t imt_index = interface_method->GetDexMethodIndex() % kImtSize;
if (imtable->Get(imt_index) == NULL) {
imtable->Set<false>(imt_index, vtable_method);
imtable_changed = true;
} else {
imtable->Set<false>(imt_index, Runtime::Current()->GetImtConflictMethod());
}
break;
}
}
if (k < 0) {
StackHandleScope<1> hs(self);
auto miranda_method = hs.NewHandle<mirror::ArtMethod>(nullptr);
for (size_t mir = 0; mir < miranda_list.size(); mir++) {
mirror::ArtMethod* mir_method = miranda_list[mir];
MethodHelper vtable_mh(mir_method);
if (interface_mh.HasSameNameAndSignature(&vtable_mh)) {
miranda_method.Assign(miranda_list[mir]);
break;
}
}
if (miranda_method.Get() == NULL) {
// Point the interface table at a phantom slot.
miranda_method.Assign(down_cast<mirror::ArtMethod*>(interface_method->Clone(self)));
if (UNLIKELY(miranda_method.Get() == NULL)) {
CHECK(self->IsExceptionPending()); // OOME.
return false;
}
// TODO: If a methods move then the miranda_list may hold stale references.
miranda_list.push_back(miranda_method.Get());
}
method_array->Set<false>(j, miranda_method.Get());
}
}
}
}
if (imtable_changed) {
// Fill in empty entries in interface method table with conflict.
mirror::ArtMethod* imt_conflict_method = Runtime::Current()->GetImtConflictMethod();
for (size_t i = 0; i < kImtSize; i++) {
if (imtable->Get(i) == NULL) {
imtable->Set<false>(i, imt_conflict_method);
}
}
klass->SetImTable(imtable.Get());
}
if (!miranda_list.empty()) {
int old_method_count = klass->NumVirtualMethods();
int new_method_count = old_method_count + miranda_list.size();
mirror::ObjectArray<mirror::ArtMethod>* virtuals;
if (old_method_count == 0) {
virtuals = AllocArtMethodArray(self, new_method_count);
} else {
virtuals = klass->GetVirtualMethods()->CopyOf(self, new_method_count);
}
if (UNLIKELY(virtuals == NULL)) {
CHECK(self->IsExceptionPending()); // OOME.
return false;
}
klass->SetVirtualMethods(virtuals);
StackHandleScope<1> hs(self);
Handle<mirror::ObjectArray<mirror::ArtMethod> > vtable(
hs.NewHandle(klass->GetVTableDuringLinking()));
CHECK(vtable.Get() != NULL);
int old_vtable_count = vtable->GetLength();
int new_vtable_count = old_vtable_count + miranda_list.size();
vtable.Assign(vtable->CopyOf(self, new_vtable_count));
if (UNLIKELY(vtable.Get() == NULL)) {
CHECK(self->IsExceptionPending()); // OOME.
return false;
}
for (size_t i = 0; i < miranda_list.size(); ++i) {
mirror::ArtMethod* method = miranda_list[i];
// Leave the declaring class alone as type indices are relative to it
method->SetAccessFlags(method->GetAccessFlags() | kAccMiranda);
method->SetMethodIndex(0xFFFF & (old_vtable_count + i));
klass->SetVirtualMethod(old_method_count + i, method);
vtable->Set<false>(old_vtable_count + i, method);
}
// TODO: do not assign to the vtable field until it is fully constructed.
klass->SetVTable(vtable.Get());
}
mirror::ObjectArray<mirror::ArtMethod>* vtable = klass->GetVTableDuringLinking();
for (int i = 0; i < vtable->GetLength(); ++i) {
CHECK(vtable->Get(i) != NULL);
}
// klass->DumpClass(std::cerr, Class::kDumpClassFullDetail);
return true;
}
bool ClassLinker::LinkInstanceFields(const Handle<mirror::Class>& klass) {
CHECK(klass.Get() != NULL);
return LinkFields(klass, false);
}
bool ClassLinker::LinkStaticFields(const Handle<mirror::Class>& klass) {
CHECK(klass.Get() != NULL);
size_t allocated_class_size = klass->GetClassSize();
bool success = LinkFields(klass, true);
CHECK_EQ(allocated_class_size, klass->GetClassSize());
return success;
}
struct LinkFieldsComparator {
explicit LinkFieldsComparator() SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
}
// No thread safety analysis as will be called from STL. Checked lock held in constructor.
bool operator()(mirror::ArtField* field1, mirror::ArtField* field2)
NO_THREAD_SAFETY_ANALYSIS {
// First come reference fields, then 64-bit, and finally 32-bit
FieldHelper fh1(field1);
Primitive::Type type1 = fh1.GetTypeAsPrimitiveType();
FieldHelper fh2(field2);
Primitive::Type type2 = fh2.GetTypeAsPrimitiveType();
if (type1 != type2) {
bool is_primitive1 = type1 != Primitive::kPrimNot;
bool is_primitive2 = type2 != Primitive::kPrimNot;
bool is64bit1 = is_primitive1 && (type1 == Primitive::kPrimLong || type1 == Primitive::kPrimDouble);
bool is64bit2 = is_primitive2 && (type2 == Primitive::kPrimLong || type2 == Primitive::kPrimDouble);
int order1 = !is_primitive1 ? 0 : (is64bit1 ? 1 : 2);
int order2 = !is_primitive2 ? 0 : (is64bit2 ? 1 : 2);
if (order1 != order2) {
return order1 < order2;
}
}
// same basic group? then sort by string.
const char* name1 = fh1.GetName();
const char* name2 = fh2.GetName();
return strcmp(name1, name2) < 0;
}
};
bool ClassLinker::LinkFields(const Handle<mirror::Class>& klass, bool is_static) {
size_t num_fields =
is_static ? klass->NumStaticFields() : klass->NumInstanceFields();
mirror::ObjectArray<mirror::ArtField>* fields =
is_static ? klass->GetSFields() : klass->GetIFields();
// Initialize size and field_offset
size_t size;
MemberOffset field_offset(0);
if (is_static) {
size = klass->GetClassSize();
field_offset = mirror::Class::FieldsOffset();
} else {
mirror::Class* super_class = klass->GetSuperClass();
if (super_class != NULL) {
CHECK(super_class->IsResolved());
field_offset = MemberOffset(super_class->GetObjectSize());
}
size = field_offset.Uint32Value();
}
CHECK_EQ(num_fields == 0, fields == NULL);
// we want a relatively stable order so that adding new fields
// minimizes disruption of C++ version such as Class and Method.
std::deque<mirror::ArtField*> grouped_and_sorted_fields;
for (size_t i = 0; i < num_fields; i++) {
mirror::ArtField* f = fields->Get(i);
CHECK(f != NULL);
grouped_and_sorted_fields.push_back(f);
}
std::sort(grouped_and_sorted_fields.begin(), grouped_and_sorted_fields.end(),
LinkFieldsComparator());
// References should be at the front.
size_t current_field = 0;
size_t num_reference_fields = 0;
for (; current_field < num_fields; current_field++) {
mirror::ArtField* field = grouped_and_sorted_fields.front();
FieldHelper fh(field);
Primitive::Type type = fh.GetTypeAsPrimitiveType();
bool isPrimitive = type != Primitive::kPrimNot;
if (isPrimitive) {
break; // past last reference, move on to the next phase
}
grouped_and_sorted_fields.pop_front();
num_reference_fields++;
fields->Set<false>(current_field, field);
field->SetOffset(field_offset);
field_offset = MemberOffset(field_offset.Uint32Value() + sizeof(uint32_t));
}
// Now we want to pack all of the double-wide fields together. If
// we're not aligned, though, we want to shuffle one 32-bit field
// into place. If we can't find one, we'll have to pad it.
if (current_field != num_fields && !IsAligned<8>(field_offset.Uint32Value())) {
for (size_t i = 0; i < grouped_and_sorted_fields.size(); i++) {
mirror::ArtField* field = grouped_and_sorted_fields[i];
FieldHelper fh(field);
Primitive::Type type = fh.GetTypeAsPrimitiveType();
CHECK(type != Primitive::kPrimNot); // should only be working on primitive types
if (type == Primitive::kPrimLong || type == Primitive::kPrimDouble) {
continue;
}
fields->Set<false>(current_field++, field);
field->SetOffset(field_offset);
// drop the consumed field
grouped_and_sorted_fields.erase(grouped_and_sorted_fields.begin() + i);
break;
}
// whether we found a 32-bit field for padding or not, we advance
field_offset = MemberOffset(field_offset.Uint32Value() + sizeof(uint32_t));
}
// Alignment is good, shuffle any double-wide fields forward, and
// finish assigning field offsets to all fields.
DCHECK(current_field == num_fields || IsAligned<8>(field_offset.Uint32Value()));
while (!grouped_and_sorted_fields.empty()) {
mirror::ArtField* field = grouped_and_sorted_fields.front();
grouped_and_sorted_fields.pop_front();
FieldHelper fh(field);
Primitive::Type type = fh.GetTypeAsPrimitiveType();
CHECK(type != Primitive::kPrimNot); // should only be working on primitive types
fields->Set<false>(current_field, field);
field->SetOffset(field_offset);
field_offset = MemberOffset(field_offset.Uint32Value() +
((type == Primitive::kPrimLong || type == Primitive::kPrimDouble)
? sizeof(uint64_t)
: sizeof(uint32_t)));
current_field++;
}
// We lie to the GC about the java.lang.ref.Reference.referent field, so it doesn't scan it.
if (!is_static &&
(strcmp("Ljava/lang/ref/Reference;", ClassHelper(klass.Get()).GetDescriptor()) == 0)) {
// We know there are no non-reference fields in the Reference classes, and we know
// that 'referent' is alphabetically last, so this is easy...
CHECK_EQ(num_reference_fields, num_fields);
FieldHelper fh(fields->Get(num_fields - 1));
CHECK_STREQ(fh.GetName(), "referent");
--num_reference_fields;
}
if (kIsDebugBuild) {
// Make sure that all reference fields appear before
// non-reference fields, and all double-wide fields are aligned.
bool seen_non_ref = false;
for (size_t i = 0; i < num_fields; i++) {
mirror::ArtField* field = fields->Get(i);
if (false) { // enable to debug field layout
LOG(INFO) << "LinkFields: " << (is_static ? "static" : "instance")
<< " class=" << PrettyClass(klass.Get())
<< " field=" << PrettyField(field)
<< " offset="
<< field->GetField32(MemberOffset(mirror::ArtField::OffsetOffset()));
}
FieldHelper fh(field);
Primitive::Type type = fh.GetTypeAsPrimitiveType();
bool is_primitive = type != Primitive::kPrimNot;
if ((strcmp("Ljava/lang/ref/Reference;", ClassHelper(klass.Get()).GetDescriptor()) == 0)
&& (strcmp("referent", fh.GetName()) == 0)) {
is_primitive = true; // We lied above, so we have to expect a lie here.
}
if (is_primitive) {
if (!seen_non_ref) {
seen_non_ref = true;
DCHECK_EQ(num_reference_fields, i);
}
} else {
DCHECK(!seen_non_ref);
}
}
if (!seen_non_ref) {
DCHECK_EQ(num_fields, num_reference_fields);
}
}
size = field_offset.Uint32Value();
// Update klass
if (is_static) {
klass->SetNumReferenceStaticFields(num_reference_fields);
klass->SetClassSize(size);
} else {
klass->SetNumReferenceInstanceFields(num_reference_fields);
if (!klass->IsVariableSize()) {
DCHECK_GE(size, sizeof(mirror::Object)) << ClassHelper(klass.Get()).GetDescriptor();
size_t previous_size = klass->GetObjectSize();
if (previous_size != 0) {
// Make sure that we didn't originally have an incorrect size.
CHECK_EQ(previous_size, size);
}
klass->SetObjectSize(size);
}
}
return true;
}
// Set the bitmap of reference offsets, refOffsets, from the ifields
// list.
void ClassLinker::CreateReferenceInstanceOffsets(const Handle<mirror::Class>& klass) {
uint32_t reference_offsets = 0;
mirror::Class* super_class = klass->GetSuperClass();
if (super_class != NULL) {
reference_offsets = super_class->GetReferenceInstanceOffsets();
// If our superclass overflowed, we don't stand a chance.
if (reference_offsets == CLASS_WALK_SUPER) {
klass->SetReferenceInstanceOffsets(reference_offsets);
return;
}
}
CreateReferenceOffsets(klass, false, reference_offsets);
}
void ClassLinker::CreateReferenceStaticOffsets(const Handle<mirror::Class>& klass) {
CreateReferenceOffsets(klass, true, 0);
}
void ClassLinker::CreateReferenceOffsets(const Handle<mirror::Class>& klass, bool is_static,
uint32_t reference_offsets) {
size_t num_reference_fields =
is_static ? klass->NumReferenceStaticFieldsDuringLinking()
: klass->NumReferenceInstanceFieldsDuringLinking();
mirror::ObjectArray<mirror::ArtField>* fields =
is_static ? klass->GetSFields() : klass->GetIFields();
// All of the fields that contain object references are guaranteed
// to be at the beginning of the fields list.
for (size_t i = 0; i < num_reference_fields; ++i) {
// Note that byte_offset is the offset from the beginning of
// object, not the offset into instance data
mirror::ArtField* field = fields->Get(i);
MemberOffset byte_offset = field->GetOffsetDuringLinking();
CHECK_EQ(byte_offset.Uint32Value() & (CLASS_OFFSET_ALIGNMENT - 1), 0U);
if (CLASS_CAN_ENCODE_OFFSET(byte_offset.Uint32Value())) {
uint32_t new_bit = CLASS_BIT_FROM_OFFSET(byte_offset.Uint32Value());
CHECK_NE(new_bit, 0U);
reference_offsets |= new_bit;
} else {
reference_offsets = CLASS_WALK_SUPER;
break;
}
}
// Update fields in klass
if (is_static) {
klass->SetReferenceStaticOffsets(reference_offsets);
} else {
klass->SetReferenceInstanceOffsets(reference_offsets);
}
}
mirror::String* ClassLinker::ResolveString(const DexFile& dex_file, uint32_t string_idx,
const Handle<mirror::DexCache>& dex_cache) {
DCHECK(dex_cache.Get() != nullptr);
mirror::String* resolved = dex_cache->GetResolvedString(string_idx);
if (resolved != NULL) {
return resolved;
}
uint32_t utf16_length;
const char* utf8_data = dex_file.StringDataAndUtf16LengthByIdx(string_idx, &utf16_length);
mirror::String* string = intern_table_->InternStrong(utf16_length, utf8_data);
dex_cache->SetResolvedString(string_idx, string);
return string;
}
mirror::Class* ClassLinker::ResolveType(const DexFile& dex_file, uint16_t type_idx,
mirror::Class* referrer) {
StackHandleScope<2> hs(Thread::Current());
Handle<mirror::DexCache> dex_cache(hs.NewHandle(referrer->GetDexCache()));
Handle<mirror::ClassLoader> class_loader(hs.NewHandle(referrer->GetClassLoader()));
return ResolveType(dex_file, type_idx, dex_cache, class_loader);
}
mirror::Class* ClassLinker::ResolveType(const DexFile& dex_file, uint16_t type_idx,
const Handle<mirror::DexCache>& dex_cache,
const Handle<mirror::ClassLoader>& class_loader) {
DCHECK(dex_cache.Get() != NULL);
mirror::Class* resolved = dex_cache->GetResolvedType(type_idx);
if (resolved == NULL) {
Thread* self = Thread::Current();
const char* descriptor = dex_file.StringByTypeIdx(type_idx);
resolved = FindClass(self, descriptor, class_loader);
if (resolved != NULL) {
// TODO: we used to throw here if resolved's class loader was not the
// boot class loader. This was to permit different classes with the
// same name to be loaded simultaneously by different loaders
dex_cache->SetResolvedType(type_idx, resolved);
} else {
CHECK(self->IsExceptionPending())
<< "Expected pending exception for failed resolution of: " << descriptor;
// Convert a ClassNotFoundException to a NoClassDefFoundError.
StackHandleScope<1> hs(self);
Handle<mirror::Throwable> cause(hs.NewHandle(self->GetException(nullptr)));
if (cause->InstanceOf(GetClassRoot(kJavaLangClassNotFoundException))) {
DCHECK(resolved == NULL); // No Handle needed to preserve resolved.
self->ClearException();
ThrowNoClassDefFoundError("Failed resolution of: %s", descriptor);
self->GetException(NULL)->SetCause(cause.Get());
}
}
}
DCHECK((resolved == NULL) || resolved->IsResolved() || resolved->IsErroneous())
<< PrettyDescriptor(resolved) << " " << resolved->GetStatus();
return resolved;
}
mirror::ArtMethod* ClassLinker::ResolveMethod(const DexFile& dex_file,
uint32_t method_idx,
const Handle<mirror::DexCache>& dex_cache,
const Handle<mirror::ClassLoader>& class_loader,
mirror::ArtMethod* referrer,
InvokeType type) {
DCHECK(dex_cache.Get() != NULL);
// Check for hit in the dex cache.
mirror::ArtMethod* resolved = dex_cache->GetResolvedMethod(method_idx);
if (resolved != NULL && !resolved->IsRuntimeMethod()) {
return resolved;
}
// Fail, get the declaring class.
const DexFile::MethodId& method_id = dex_file.GetMethodId(method_idx);
mirror::Class* klass = ResolveType(dex_file, method_id.class_idx_, dex_cache, class_loader);
if (klass == NULL) {
DCHECK(Thread::Current()->IsExceptionPending());
return NULL;
}
// Scan using method_idx, this saves string compares but will only hit for matching dex
// caches/files.
switch (type) {
case kDirect: // Fall-through.
case kStatic:
resolved = klass->FindDirectMethod(dex_cache.Get(), method_idx);
break;
case kInterface:
resolved = klass->FindInterfaceMethod(dex_cache.Get(), method_idx);
DCHECK(resolved == NULL || resolved->GetDeclaringClass()->IsInterface());
break;
case kSuper: // Fall-through.
case kVirtual:
resolved = klass->FindVirtualMethod(dex_cache.Get(), method_idx);
break;
default:
LOG(FATAL) << "Unreachable - invocation type: " << type;
}
if (resolved == NULL) {
// Search by name, which works across dex files.
const char* name = dex_file.StringDataByIdx(method_id.name_idx_);
const Signature signature = dex_file.GetMethodSignature(method_id);
switch (type) {
case kDirect: // Fall-through.
case kStatic:
resolved = klass->FindDirectMethod(name, signature);
break;
case kInterface:
resolved = klass->FindInterfaceMethod(name, signature);
DCHECK(resolved == NULL || resolved->GetDeclaringClass()->IsInterface());
break;
case kSuper: // Fall-through.
case kVirtual:
resolved = klass->FindVirtualMethod(name, signature);
break;
}
}
if (resolved != NULL) {
// We found a method, check for incompatible class changes.
if (resolved->CheckIncompatibleClassChange(type)) {
resolved = NULL;
}
}
if (resolved != NULL) {
// Be a good citizen and update the dex cache to speed subsequent calls.
dex_cache->SetResolvedMethod(method_idx, resolved);
return resolved;
} else {
// We failed to find the method which means either an access error, an incompatible class
// change, or no such method. First try to find the method among direct and virtual methods.
const char* name = dex_file.StringDataByIdx(method_id.name_idx_);
const Signature signature = dex_file.GetMethodSignature(method_id);
switch (type) {
case kDirect:
case kStatic:
resolved = klass->FindVirtualMethod(name, signature);
break;
case kInterface:
case kVirtual:
case kSuper:
resolved = klass->FindDirectMethod(name, signature);
break;
}
// If we found something, check that it can be accessed by the referrer.
if (resolved != NULL && referrer != NULL) {
mirror::Class* methods_class = resolved->GetDeclaringClass();
mirror::Class* referring_class = referrer->GetDeclaringClass();
if (!referring_class->CanAccess(methods_class)) {
ThrowIllegalAccessErrorClassForMethodDispatch(referring_class, methods_class,
resolved, type);
return NULL;
} else if (!referring_class->CanAccessMember(methods_class,
resolved->GetAccessFlags())) {
ThrowIllegalAccessErrorMethod(referring_class, resolved);
return NULL;
}
}
// Otherwise, throw an IncompatibleClassChangeError if we found something, and check interface
// methods and throw if we find the method there. If we find nothing, throw a NoSuchMethodError.
switch (type) {
case kDirect:
case kStatic:
if (resolved != NULL) {
ThrowIncompatibleClassChangeError(type, kVirtual, resolved, referrer);
} else {
resolved = klass->FindInterfaceMethod(name, signature);
if (resolved != NULL) {
ThrowIncompatibleClassChangeError(type, kInterface, resolved, referrer);
} else {
ThrowNoSuchMethodError(type, klass, name, signature);
}
}
break;
case kInterface:
if (resolved != NULL) {
ThrowIncompatibleClassChangeError(type, kDirect, resolved, referrer);
} else {
resolved = klass->FindVirtualMethod(name, signature);
if (resolved != NULL) {
ThrowIncompatibleClassChangeError(type, kVirtual, resolved, referrer);
} else {
ThrowNoSuchMethodError(type, klass, name, signature);
}
}
break;
case kSuper:
ThrowNoSuchMethodError(type, klass, name, signature);
break;
case kVirtual:
if (resolved != NULL) {
ThrowIncompatibleClassChangeError(type, kDirect, resolved, referrer);
} else {
resolved = klass->FindInterfaceMethod(name, signature);
if (resolved != NULL) {
ThrowIncompatibleClassChangeError(type, kInterface, resolved, referrer);
} else {
ThrowNoSuchMethodError(type, klass, name, signature);
}
}
break;
}
DCHECK(Thread::Current()->IsExceptionPending());
return NULL;
}
}
mirror::ArtField* ClassLinker::ResolveField(const DexFile& dex_file, uint32_t field_idx,
const Handle<mirror::DexCache>& dex_cache,
const Handle<mirror::ClassLoader>& class_loader,
bool is_static) {
DCHECK(dex_cache.Get() != nullptr);
mirror::ArtField* resolved = dex_cache->GetResolvedField(field_idx);
if (resolved != NULL) {
return resolved;
}
const DexFile::FieldId& field_id = dex_file.GetFieldId(field_idx);
mirror::Class* klass = ResolveType(dex_file, field_id.class_idx_, dex_cache, class_loader);
if (klass == NULL) {
DCHECK(Thread::Current()->IsExceptionPending());
return NULL;
}
if (is_static) {
resolved = klass->FindStaticField(dex_cache.Get(), field_idx);
} else {
resolved = klass->FindInstanceField(dex_cache.Get(), field_idx);
}
if (resolved == NULL) {
const char* name = dex_file.GetFieldName(field_id);
const char* type = dex_file.GetFieldTypeDescriptor(field_id);
if (is_static) {
resolved = klass->FindStaticField(name, type);
} else {
resolved = klass->FindInstanceField(name, type);
}
if (resolved == NULL) {
ThrowNoSuchFieldError(is_static ? "static " : "instance ", klass, type, name);
return NULL;
}
}
dex_cache->SetResolvedField(field_idx, resolved);
return resolved;
}
mirror::ArtField* ClassLinker::ResolveFieldJLS(const DexFile& dex_file,
uint32_t field_idx,
const Handle<mirror::DexCache>& dex_cache,
const Handle<mirror::ClassLoader>& class_loader) {
DCHECK(dex_cache.Get() != nullptr);
mirror::ArtField* resolved = dex_cache->GetResolvedField(field_idx);
if (resolved != NULL) {
return resolved;
}
const DexFile::FieldId& field_id = dex_file.GetFieldId(field_idx);
mirror::Class* klass = ResolveType(dex_file, field_id.class_idx_, dex_cache, class_loader);
if (klass == NULL) {
DCHECK(Thread::Current()->IsExceptionPending());
return NULL;
}
StringPiece name(dex_file.StringDataByIdx(field_id.name_idx_));
StringPiece type(dex_file.StringDataByIdx(
dex_file.GetTypeId(field_id.type_idx_).descriptor_idx_));
resolved = klass->FindField(name, type);
if (resolved != NULL) {
dex_cache->SetResolvedField(field_idx, resolved);
} else {
ThrowNoSuchFieldError("", klass, type, name);
}
return resolved;
}
const char* ClassLinker::MethodShorty(uint32_t method_idx, mirror::ArtMethod* referrer,
uint32_t* length) {
mirror::Class* declaring_class = referrer->GetDeclaringClass();
mirror::DexCache* dex_cache = declaring_class->GetDexCache();
const DexFile& dex_file = *dex_cache->GetDexFile();
const DexFile::MethodId& method_id = dex_file.GetMethodId(method_idx);
return dex_file.GetMethodShorty(method_id, length);
}
void ClassLinker::DumpAllClasses(int flags) {
if (dex_cache_image_class_lookup_required_) {
MoveImageClassesToClassTable();
}
// TODO: at the time this was written, it wasn't safe to call PrettyField with the ClassLinker
// lock held, because it might need to resolve a field's type, which would try to take the lock.
std::vector<mirror::Class*> all_classes;
{
ReaderMutexLock mu(Thread::Current(), *Locks::classlinker_classes_lock_);
for (const std::pair<size_t, mirror::Class*>& it : class_table_) {
all_classes.push_back(it.second);
}
}
for (size_t i = 0; i < all_classes.size(); ++i) {
all_classes[i]->DumpClass(std::cerr, flags);
}
}
void ClassLinker::DumpForSigQuit(std::ostream& os) {
if (dex_cache_image_class_lookup_required_) {
MoveImageClassesToClassTable();
}
ReaderMutexLock mu(Thread::Current(), *Locks::classlinker_classes_lock_);
os << "Loaded classes: " << class_table_.size() << " allocated classes\n";
}
size_t ClassLinker::NumLoadedClasses() {
if (dex_cache_image_class_lookup_required_) {
MoveImageClassesToClassTable();
}
ReaderMutexLock mu(Thread::Current(), *Locks::classlinker_classes_lock_);
return class_table_.size();
}
pid_t ClassLinker::GetClassesLockOwner() {
return Locks::classlinker_classes_lock_->GetExclusiveOwnerTid();
}
pid_t ClassLinker::GetDexLockOwner() {
return dex_lock_.GetExclusiveOwnerTid();
}
void ClassLinker::SetClassRoot(ClassRoot class_root, mirror::Class* klass) {
DCHECK(!init_done_);
DCHECK(klass != NULL);
DCHECK(klass->GetClassLoader() == NULL);
DCHECK(class_roots_ != NULL);
DCHECK(class_roots_->Get(class_root) == NULL);
class_roots_->Set<false>(class_root, klass);
}
} // namespace art