| /* |
| * Copyright (C) 2013 The Android Open Source Project |
| * |
| * Licensed under the Apache License, Version 2.0 (the "License"); |
| * you may not use this file except in compliance with the License. |
| * You may obtain a copy of the License at |
| * |
| * http://www.apache.org/licenses/LICENSE-2.0 |
| * |
| * Unless required by applicable law or agreed to in writing, software |
| * distributed under the License is distributed on an "AS IS" BASIS, |
| * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| * See the License for the specific language governing permissions and |
| * limitations under the License. |
| */ |
| #include "base/stringprintf.h" |
| #include "sea_ir/ir/instruction_tools.h" |
| #include "sea_ir/ir/sea.h" |
| #include "sea_ir/code_gen/code_gen.h" |
| #include "sea_ir/types/type_inference.h" |
| |
| #define MAX_REACHING_DEF_ITERERATIONS (10) |
| // TODO: When development is done, this define should not |
| // be needed, it is currently used as a cutoff |
| // for cases where the iterative fixed point algorithm |
| // does not reach a fixed point because of a bug. |
| |
| namespace sea_ir { |
| |
| int SeaNode::current_max_node_id_ = 0; |
| |
| void IRVisitor::Traverse(Region* region) { |
| std::vector<PhiInstructionNode*>* phis = region->GetPhiNodes(); |
| for (std::vector<PhiInstructionNode*>::const_iterator cit = phis->begin(); |
| cit != phis->end(); cit++) { |
| (*cit)->Accept(this); |
| } |
| std::vector<InstructionNode*>* instructions = region->GetInstructions(); |
| for (std::vector<InstructionNode*>::const_iterator cit = instructions->begin(); |
| cit != instructions->end(); cit++) { |
| (*cit)->Accept(this); |
| } |
| } |
| |
| void IRVisitor::Traverse(SeaGraph* graph) { |
| for (std::vector<Region*>::const_iterator cit = ordered_regions_.begin(); |
| cit != ordered_regions_.end(); cit++ ) { |
| (*cit)->Accept(this); |
| } |
| } |
| |
| SeaGraph* SeaGraph::GetGraph(const art::DexFile& dex_file) { |
| return new SeaGraph(dex_file); |
| } |
| |
| void SeaGraph::AddEdge(Region* src, Region* dst) const { |
| src->AddSuccessor(dst); |
| dst->AddPredecessor(src); |
| } |
| |
| void SeaGraph::ComputeRPO(Region* current_region, int& current_rpo) { |
| current_region->SetRPO(VISITING); |
| std::vector<sea_ir::Region*>* succs = current_region->GetSuccessors(); |
| for (std::vector<sea_ir::Region*>::iterator succ_it = succs->begin(); |
| succ_it != succs->end(); ++succ_it) { |
| if (NOT_VISITED == (*succ_it)->GetRPO()) { |
| SeaGraph::ComputeRPO(*succ_it, current_rpo); |
| } |
| } |
| current_region->SetRPO(current_rpo--); |
| } |
| |
| void SeaGraph::ComputeIDominators() { |
| bool changed = true; |
| while (changed) { |
| changed = false; |
| // Entry node has itself as IDOM. |
| std::vector<Region*>::iterator crt_it; |
| std::set<Region*> processedNodes; |
| // Find and mark the entry node(s). |
| for (crt_it = regions_.begin(); crt_it != regions_.end(); ++crt_it) { |
| if ((*crt_it)->GetPredecessors()->size() == 0) { |
| processedNodes.insert(*crt_it); |
| (*crt_it)->SetIDominator(*crt_it); |
| } |
| } |
| for (crt_it = regions_.begin(); crt_it != regions_.end(); ++crt_it) { |
| if ((*crt_it)->GetPredecessors()->size() == 0) { |
| continue; |
| } |
| // NewIDom = first (processed) predecessor of b. |
| Region* new_dom = NULL; |
| std::vector<Region*>* preds = (*crt_it)->GetPredecessors(); |
| DCHECK(NULL != preds); |
| Region* root_pred = NULL; |
| for (std::vector<Region*>::iterator pred_it = preds->begin(); |
| pred_it != preds->end(); ++pred_it) { |
| if (processedNodes.end() != processedNodes.find((*pred_it))) { |
| root_pred = *pred_it; |
| new_dom = root_pred; |
| break; |
| } |
| } |
| // For all other predecessors p of b, if idom is not set, |
| // then NewIdom = Intersect(p, NewIdom) |
| for (std::vector<Region*>::const_iterator pred_it = preds->begin(); |
| pred_it != preds->end(); ++pred_it) { |
| DCHECK(NULL != *pred_it); |
| // if IDOMS[p] != UNDEFINED |
| if ((*pred_it != root_pred) && (*pred_it)->GetIDominator() != NULL) { |
| DCHECK(NULL != new_dom); |
| new_dom = SeaGraph::Intersect(*pred_it, new_dom); |
| } |
| } |
| DCHECK(NULL != *crt_it); |
| if ((*crt_it)->GetIDominator() != new_dom) { |
| (*crt_it)->SetIDominator(new_dom); |
| changed = true; |
| } |
| processedNodes.insert(*crt_it); |
| } |
| } |
| |
| // For easily ordering of regions we need edges dominator->dominated. |
| for (std::vector<Region*>::iterator region_it = regions_.begin(); |
| region_it != regions_.end(); region_it++) { |
| Region* idom = (*region_it)->GetIDominator(); |
| if (idom != *region_it) { |
| idom->AddToIDominatedSet(*region_it); |
| } |
| } |
| } |
| |
| Region* SeaGraph::Intersect(Region* i, Region* j) { |
| Region* finger1 = i; |
| Region* finger2 = j; |
| while (finger1 != finger2) { |
| while (finger1->GetRPO() > finger2->GetRPO()) { |
| DCHECK(NULL != finger1); |
| finger1 = finger1->GetIDominator(); // should have: finger1 != NULL |
| DCHECK(NULL != finger1); |
| } |
| while (finger1->GetRPO() < finger2->GetRPO()) { |
| DCHECK(NULL != finger2); |
| finger2 = finger2->GetIDominator(); // should have: finger1 != NULL |
| DCHECK(NULL != finger2); |
| } |
| } |
| return finger1; // finger1 should be equal to finger2 at this point. |
| } |
| |
| void SeaGraph::ComputeDownExposedDefs() { |
| for (std::vector<Region*>::iterator region_it = regions_.begin(); |
| region_it != regions_.end(); region_it++) { |
| (*region_it)->ComputeDownExposedDefs(); |
| } |
| } |
| |
| void SeaGraph::ComputeReachingDefs() { |
| // Iterate until the reaching definitions set doesn't change anymore. |
| // (See Cooper & Torczon, "Engineering a Compiler", second edition, page 487) |
| bool changed = true; |
| int iteration = 0; |
| while (changed && (iteration < MAX_REACHING_DEF_ITERERATIONS)) { |
| iteration++; |
| changed = false; |
| // TODO: optimize the ordering if this becomes performance bottleneck. |
| for (std::vector<Region*>::iterator regions_it = regions_.begin(); |
| regions_it != regions_.end(); |
| regions_it++) { |
| changed |= (*regions_it)->UpdateReachingDefs(); |
| } |
| } |
| DCHECK(!changed) << "Reaching definitions computation did not reach a fixed point."; |
| } |
| |
| void SeaGraph::InsertSignatureNodes(const art::DexFile::CodeItem* code_item, Region* r) { |
| // Insert a fake SignatureNode for the first parameter. |
| // TODO: Provide a register enum value for the fake parameter. |
| SignatureNode* parameter_def_node = new sea_ir::SignatureNode(0, 0); |
| AddParameterNode(parameter_def_node); |
| r->AddChild(parameter_def_node); |
| // Insert SignatureNodes for each Dalvik register parameter. |
| for (unsigned int crt_offset = 0; crt_offset < code_item->ins_size_; crt_offset++) { |
| int register_no = code_item->registers_size_ - crt_offset - 1; |
| int position = crt_offset + 1; |
| SignatureNode* parameter_def_node = new sea_ir::SignatureNode(register_no, position); |
| AddParameterNode(parameter_def_node); |
| r->AddChild(parameter_def_node); |
| } |
| } |
| |
| void SeaGraph::BuildMethodSeaGraph(const art::DexFile::CodeItem* code_item, |
| const art::DexFile& dex_file, uint16_t class_def_idx, |
| uint32_t method_idx, uint32_t method_access_flags) { |
| code_item_ = code_item; |
| class_def_idx_ = class_def_idx; |
| method_idx_ = method_idx; |
| method_access_flags_ = method_access_flags; |
| const uint16_t* code = code_item->insns_; |
| const size_t size_in_code_units = code_item->insns_size_in_code_units_; |
| // This maps target instruction pointers to their corresponding region objects. |
| std::map<const uint16_t*, Region*> target_regions; |
| size_t i = 0; |
| // Pass: Find the start instruction of basic blocks |
| // by locating targets and flow-though instructions of branches. |
| while (i < size_in_code_units) { |
| const art::Instruction* inst = art::Instruction::At(&code[i]); |
| if (inst->IsBranch() || inst->IsUnconditional()) { |
| int32_t offset = inst->GetTargetOffset(); |
| if (target_regions.end() == target_regions.find(&code[i + offset])) { |
| Region* region = GetNewRegion(); |
| target_regions.insert(std::pair<const uint16_t*, Region*>(&code[i + offset], region)); |
| } |
| if (inst->CanFlowThrough() |
| && (target_regions.end() == target_regions.find(&code[i + inst->SizeInCodeUnits()]))) { |
| Region* region = GetNewRegion(); |
| target_regions.insert( |
| std::pair<const uint16_t*, Region*>(&code[i + inst->SizeInCodeUnits()], region)); |
| } |
| } |
| i += inst->SizeInCodeUnits(); |
| } |
| |
| |
| Region* r = GetNewRegion(); |
| |
| InsertSignatureNodes(code_item, r); |
| // Pass: Assign instructions to region nodes and |
| // assign branches their control flow successors. |
| i = 0; |
| sea_ir::InstructionNode* last_node = NULL; |
| sea_ir::InstructionNode* node = NULL; |
| while (i < size_in_code_units) { |
| const art::Instruction* inst = art::Instruction::At(&code[i]); |
| std::vector<InstructionNode*> sea_instructions_for_dalvik = |
| sea_ir::InstructionNode::Create(inst); |
| for (std::vector<InstructionNode*>::const_iterator cit = sea_instructions_for_dalvik.begin(); |
| sea_instructions_for_dalvik.end() != cit; ++cit) { |
| last_node = node; |
| node = *cit; |
| |
| if (inst->IsBranch() || inst->IsUnconditional()) { |
| int32_t offset = inst->GetTargetOffset(); |
| std::map<const uint16_t*, Region*>::iterator it = target_regions.find(&code[i + offset]); |
| DCHECK(it != target_regions.end()); |
| AddEdge(r, it->second); // Add edge to branch target. |
| } |
| std::map<const uint16_t*, Region*>::iterator it = target_regions.find(&code[i]); |
| if (target_regions.end() != it) { |
| // Get the already created region because this is a branch target. |
| Region* nextRegion = it->second; |
| if (last_node->GetInstruction()->IsBranch() |
| && last_node->GetInstruction()->CanFlowThrough()) { |
| AddEdge(r, it->second); // Add flow-through edge. |
| } |
| r = nextRegion; |
| } |
| r->AddChild(node); |
| } |
| i += inst->SizeInCodeUnits(); |
| } |
| } |
| |
| void SeaGraph::ComputeRPO() { |
| int rpo_id = regions_.size() - 1; |
| for (std::vector<Region*>::const_iterator crt_it = regions_.begin(); crt_it != regions_.end(); |
| ++crt_it) { |
| if ((*crt_it)->GetPredecessors()->size() == 0) { |
| ComputeRPO(*crt_it, rpo_id); |
| } |
| } |
| } |
| |
| // Performs the renaming phase in traditional SSA transformations. |
| // See: Cooper & Torczon, "Engineering a Compiler", second edition, page 505.) |
| void SeaGraph::RenameAsSSA() { |
| utils::ScopedHashtable<int, InstructionNode*> scoped_table; |
| scoped_table.OpenScope(); |
| for (std::vector<Region*>::iterator region_it = regions_.begin(); region_it != regions_.end(); |
| region_it++) { |
| if ((*region_it)->GetIDominator() == *region_it) { |
| RenameAsSSA(*region_it, &scoped_table); |
| } |
| } |
| scoped_table.CloseScope(); |
| } |
| |
| void SeaGraph::ConvertToSSA() { |
| // Pass: find global names. |
| // The map @block maps registers to the blocks in which they are defined. |
| std::map<int, std::set<Region*> > blocks; |
| // The set @globals records registers whose use |
| // is in a different block than the corresponding definition. |
| std::set<int> globals; |
| for (std::vector<Region*>::iterator region_it = regions_.begin(); region_it != regions_.end(); |
| region_it++) { |
| std::set<int> var_kill; |
| std::vector<InstructionNode*>* instructions = (*region_it)->GetInstructions(); |
| for (std::vector<InstructionNode*>::iterator inst_it = instructions->begin(); |
| inst_it != instructions->end(); inst_it++) { |
| std::vector<int> used_regs = (*inst_it)->GetUses(); |
| for (std::size_t i = 0; i < used_regs.size(); i++) { |
| int used_reg = used_regs[i]; |
| if (var_kill.find(used_reg) == var_kill.end()) { |
| globals.insert(used_reg); |
| } |
| } |
| const int reg_def = (*inst_it)->GetResultRegister(); |
| if (reg_def != NO_REGISTER) { |
| var_kill.insert(reg_def); |
| } |
| |
| blocks.insert(std::pair<int, std::set<Region*> >(reg_def, std::set<Region*>())); |
| std::set<Region*>* reg_def_blocks = &(blocks.find(reg_def)->second); |
| reg_def_blocks->insert(*region_it); |
| } |
| } |
| |
| // Pass: Actually add phi-nodes to regions. |
| for (std::set<int>::const_iterator globals_it = globals.begin(); |
| globals_it != globals.end(); globals_it++) { |
| int global = *globals_it; |
| // Copy the set, because we will modify the worklist as we go. |
| std::set<Region*> worklist((*(blocks.find(global))).second); |
| for (std::set<Region*>::const_iterator b_it = worklist.begin(); |
| b_it != worklist.end(); b_it++) { |
| std::set<Region*>* df = (*b_it)->GetDominanceFrontier(); |
| for (std::set<Region*>::const_iterator df_it = df->begin(); df_it != df->end(); df_it++) { |
| if ((*df_it)->InsertPhiFor(global)) { |
| // Check that the dominance frontier element is in the worklist already |
| // because we only want to break if the element is actually not there yet. |
| if (worklist.find(*df_it) == worklist.end()) { |
| worklist.insert(*df_it); |
| b_it = worklist.begin(); |
| break; |
| } |
| } |
| } |
| } |
| } |
| // Pass: Build edges to the definition corresponding to each use. |
| // (This corresponds to the renaming phase in traditional SSA transformations. |
| // See: Cooper & Torczon, "Engineering a Compiler", second edition, page 505.) |
| RenameAsSSA(); |
| } |
| |
| void SeaGraph::RenameAsSSA(Region* crt_region, |
| utils::ScopedHashtable<int, InstructionNode*>* scoped_table) { |
| scoped_table->OpenScope(); |
| // Rename phi nodes defined in the current region. |
| std::vector<PhiInstructionNode*>* phis = crt_region->GetPhiNodes(); |
| for (std::vector<PhiInstructionNode*>::iterator phi_it = phis->begin(); |
| phi_it != phis->end(); phi_it++) { |
| int reg_no = (*phi_it)->GetRegisterNumber(); |
| scoped_table->Add(reg_no, (*phi_it)); |
| } |
| // Rename operands of instructions from the current region. |
| std::vector<InstructionNode*>* instructions = crt_region->GetInstructions(); |
| for (std::vector<InstructionNode*>::const_iterator instructions_it = instructions->begin(); |
| instructions_it != instructions->end(); instructions_it++) { |
| InstructionNode* current_instruction = (*instructions_it); |
| // Rename uses. |
| std::vector<int> used_regs = current_instruction->GetUses(); |
| for (std::vector<int>::const_iterator reg_it = used_regs.begin(); |
| reg_it != used_regs.end(); reg_it++) { |
| int current_used_reg = (*reg_it); |
| InstructionNode* definition = scoped_table->Lookup(current_used_reg); |
| current_instruction->RenameToSSA(current_used_reg, definition); |
| } |
| // Update scope table with latest definitions. |
| std::vector<int> def_regs = current_instruction->GetDefinitions(); |
| for (std::vector<int>::const_iterator reg_it = def_regs.begin(); |
| reg_it != def_regs.end(); reg_it++) { |
| int current_defined_reg = (*reg_it); |
| scoped_table->Add(current_defined_reg, current_instruction); |
| } |
| } |
| // Fill in uses of phi functions in CFG successor regions. |
| const std::vector<Region*>* successors = crt_region->GetSuccessors(); |
| for (std::vector<Region*>::const_iterator successors_it = successors->begin(); |
| successors_it != successors->end(); successors_it++) { |
| Region* successor = (*successors_it); |
| successor->SetPhiDefinitionsForUses(scoped_table, crt_region); |
| } |
| |
| // Rename all successors in the dominators tree. |
| const std::set<Region*>* dominated_nodes = crt_region->GetIDominatedSet(); |
| for (std::set<Region*>::const_iterator dominated_nodes_it = dominated_nodes->begin(); |
| dominated_nodes_it != dominated_nodes->end(); dominated_nodes_it++) { |
| Region* dominated_node = (*dominated_nodes_it); |
| RenameAsSSA(dominated_node, scoped_table); |
| } |
| scoped_table->CloseScope(); |
| } |
| |
| CodeGenData* SeaGraph::GenerateLLVM(const std::string& function_name, |
| const art::DexFile& dex_file) { |
| // Pass: Generate LLVM IR. |
| CodeGenPrepassVisitor code_gen_prepass_visitor(function_name); |
| std::cout << "Generating code..." << std::endl; |
| Accept(&code_gen_prepass_visitor); |
| CodeGenVisitor code_gen_visitor(code_gen_prepass_visitor.GetData(), dex_file); |
| Accept(&code_gen_visitor); |
| CodeGenPostpassVisitor code_gen_postpass_visitor(code_gen_visitor.GetData()); |
| Accept(&code_gen_postpass_visitor); |
| return code_gen_postpass_visitor.GetData(); |
| } |
| |
| CodeGenData* SeaGraph::CompileMethod( |
| const std::string& function_name, |
| const art::DexFile::CodeItem* code_item, uint16_t class_def_idx, |
| uint32_t method_idx, uint32_t method_access_flags, const art::DexFile& dex_file) { |
| // Two passes: Builds the intermediate structure (non-SSA) of the sea-ir for the function. |
| BuildMethodSeaGraph(code_item, dex_file, class_def_idx, method_idx, method_access_flags); |
| // Pass: Compute reverse post-order of regions. |
| ComputeRPO(); |
| // Multiple passes: compute immediate dominators. |
| ComputeIDominators(); |
| // Pass: compute downward-exposed definitions. |
| ComputeDownExposedDefs(); |
| // Multiple Passes (iterative fixed-point algorithm): Compute reaching definitions |
| ComputeReachingDefs(); |
| // Pass (O(nlogN)): Compute the dominance frontier for region nodes. |
| ComputeDominanceFrontier(); |
| // Two Passes: Phi node insertion. |
| ConvertToSSA(); |
| // Pass: type inference |
| ti_->ComputeTypes(this); |
| // Pass: Generate LLVM IR. |
| CodeGenData* cgd = GenerateLLVM(function_name, dex_file); |
| return cgd; |
| } |
| |
| void SeaGraph::ComputeDominanceFrontier() { |
| for (std::vector<Region*>::iterator region_it = regions_.begin(); |
| region_it != regions_.end(); region_it++) { |
| std::vector<Region*>* preds = (*region_it)->GetPredecessors(); |
| if (preds->size() > 1) { |
| for (std::vector<Region*>::iterator pred_it = preds->begin(); |
| pred_it != preds->end(); pred_it++) { |
| Region* runner = *pred_it; |
| while (runner != (*region_it)->GetIDominator()) { |
| runner->AddToDominanceFrontier(*region_it); |
| runner = runner->GetIDominator(); |
| } |
| } |
| } |
| } |
| } |
| |
| Region* SeaGraph::GetNewRegion() { |
| Region* new_region = new Region(); |
| AddRegion(new_region); |
| return new_region; |
| } |
| |
| void SeaGraph::AddRegion(Region* r) { |
| DCHECK(r) << "Tried to add NULL region to SEA graph."; |
| regions_.push_back(r); |
| } |
| |
| SeaGraph::SeaGraph(const art::DexFile& df) |
| :ti_(new TypeInference()), class_def_idx_(0), method_idx_(0), method_access_flags_(), |
| regions_(), parameters_(), dex_file_(df), code_item_(NULL) { } |
| |
| void Region::AddChild(sea_ir::InstructionNode* instruction) { |
| DCHECK(instruction) << "Tried to add NULL instruction to region node."; |
| instructions_.push_back(instruction); |
| instruction->SetRegion(this); |
| } |
| |
| SeaNode* Region::GetLastChild() const { |
| if (instructions_.size() > 0) { |
| return instructions_.back(); |
| } |
| return NULL; |
| } |
| |
| void Region::ComputeDownExposedDefs() { |
| for (std::vector<InstructionNode*>::const_iterator inst_it = instructions_.begin(); |
| inst_it != instructions_.end(); inst_it++) { |
| int reg_no = (*inst_it)->GetResultRegister(); |
| std::map<int, InstructionNode*>::iterator res = de_defs_.find(reg_no); |
| if ((reg_no != NO_REGISTER) && (res == de_defs_.end())) { |
| de_defs_.insert(std::pair<int, InstructionNode*>(reg_no, *inst_it)); |
| } else { |
| res->second = *inst_it; |
| } |
| } |
| for (std::map<int, sea_ir::InstructionNode*>::const_iterator cit = de_defs_.begin(); |
| cit != de_defs_.end(); cit++) { |
| (*cit).second->MarkAsDEDef(); |
| } |
| } |
| |
| const std::map<int, sea_ir::InstructionNode*>* Region::GetDownExposedDefs() const { |
| return &de_defs_; |
| } |
| |
| std::map<int, std::set<sea_ir::InstructionNode*>* >* Region::GetReachingDefs() { |
| return &reaching_defs_; |
| } |
| |
| bool Region::UpdateReachingDefs() { |
| std::map<int, std::set<sea_ir::InstructionNode*>* > new_reaching; |
| for (std::vector<Region*>::const_iterator pred_it = predecessors_.begin(); |
| pred_it != predecessors_.end(); pred_it++) { |
| // The reaching_defs variable will contain reaching defs __for current predecessor only__ |
| std::map<int, std::set<sea_ir::InstructionNode*>* > reaching_defs; |
| std::map<int, std::set<sea_ir::InstructionNode*>* >* pred_reaching = |
| (*pred_it)->GetReachingDefs(); |
| const std::map<int, InstructionNode*>* de_defs = (*pred_it)->GetDownExposedDefs(); |
| |
| // The definitions from the reaching set of the predecessor |
| // may be shadowed by downward exposed definitions from the predecessor, |
| // otherwise the defs from the reaching set are still good. |
| for (std::map<int, InstructionNode*>::const_iterator de_def = de_defs->begin(); |
| de_def != de_defs->end(); de_def++) { |
| std::set<InstructionNode*>* solo_def; |
| solo_def = new std::set<InstructionNode*>(); |
| solo_def->insert(de_def->second); |
| reaching_defs.insert( |
| std::pair<int const, std::set<InstructionNode*>*>(de_def->first, solo_def)); |
| } |
| reaching_defs.insert(pred_reaching->begin(), pred_reaching->end()); |
| |
| // Now we combine the reaching map coming from the current predecessor (reaching_defs) |
| // with the accumulated set from all predecessors so far (from new_reaching). |
| std::map<int, std::set<sea_ir::InstructionNode*>*>::iterator reaching_it = |
| reaching_defs.begin(); |
| for (; reaching_it != reaching_defs.end(); reaching_it++) { |
| std::map<int, std::set<sea_ir::InstructionNode*>*>::iterator crt_entry = |
| new_reaching.find(reaching_it->first); |
| if (new_reaching.end() != crt_entry) { |
| crt_entry->second->insert(reaching_it->second->begin(), reaching_it->second->end()); |
| } else { |
| new_reaching.insert( |
| std::pair<int, std::set<sea_ir::InstructionNode*>*>( |
| reaching_it->first, |
| reaching_it->second) ); |
| } |
| } |
| } |
| bool changed = false; |
| // Because the sets are monotonically increasing, |
| // we can compare sizes instead of using set comparison. |
| // TODO: Find formal proof. |
| int old_size = 0; |
| if (-1 == reaching_defs_size_) { |
| std::map<int, std::set<sea_ir::InstructionNode*>*>::iterator reaching_it = |
| reaching_defs_.begin(); |
| for (; reaching_it != reaching_defs_.end(); reaching_it++) { |
| old_size += (*reaching_it).second->size(); |
| } |
| } else { |
| old_size = reaching_defs_size_; |
| } |
| int new_size = 0; |
| std::map<int, std::set<sea_ir::InstructionNode*>*>::iterator reaching_it = new_reaching.begin(); |
| for (; reaching_it != new_reaching.end(); reaching_it++) { |
| new_size += (*reaching_it).second->size(); |
| } |
| if (old_size != new_size) { |
| changed = true; |
| } |
| if (changed) { |
| reaching_defs_ = new_reaching; |
| reaching_defs_size_ = new_size; |
| } |
| return changed; |
| } |
| |
| bool Region::InsertPhiFor(int reg_no) { |
| if (!ContainsPhiFor(reg_no)) { |
| phi_set_.insert(reg_no); |
| PhiInstructionNode* new_phi = new PhiInstructionNode(reg_no); |
| new_phi->SetRegion(this); |
| phi_instructions_.push_back(new_phi); |
| return true; |
| } |
| return false; |
| } |
| |
| void Region::SetPhiDefinitionsForUses( |
| const utils::ScopedHashtable<int, InstructionNode*>* scoped_table, Region* predecessor) { |
| int predecessor_id = -1; |
| for (unsigned int crt_pred_id = 0; crt_pred_id < predecessors_.size(); crt_pred_id++) { |
| if (predecessors_.at(crt_pred_id) == predecessor) { |
| predecessor_id = crt_pred_id; |
| } |
| } |
| DCHECK_NE(-1, predecessor_id); |
| for (std::vector<PhiInstructionNode*>::iterator phi_it = phi_instructions_.begin(); |
| phi_it != phi_instructions_.end(); phi_it++) { |
| PhiInstructionNode* phi = (*phi_it); |
| int reg_no = phi->GetRegisterNumber(); |
| InstructionNode* definition = scoped_table->Lookup(reg_no); |
| phi->RenameToSSA(reg_no, definition, predecessor_id); |
| } |
| } |
| |
| std::vector<InstructionNode*> InstructionNode::Create(const art::Instruction* in) { |
| std::vector<InstructionNode*> sea_instructions; |
| switch (in->Opcode()) { |
| case art::Instruction::CONST_4: |
| sea_instructions.push_back(new ConstInstructionNode(in)); |
| break; |
| case art::Instruction::RETURN: |
| sea_instructions.push_back(new ReturnInstructionNode(in)); |
| break; |
| case art::Instruction::IF_NE: |
| sea_instructions.push_back(new IfNeInstructionNode(in)); |
| break; |
| case art::Instruction::ADD_INT_LIT8: |
| sea_instructions.push_back(new UnnamedConstInstructionNode(in, in->VRegC_22b())); |
| sea_instructions.push_back(new AddIntLitInstructionNode(in)); |
| break; |
| case art::Instruction::MOVE_RESULT: |
| sea_instructions.push_back(new MoveResultInstructionNode(in)); |
| break; |
| case art::Instruction::INVOKE_STATIC: |
| sea_instructions.push_back(new InvokeStaticInstructionNode(in)); |
| break; |
| case art::Instruction::ADD_INT: |
| sea_instructions.push_back(new AddIntInstructionNode(in)); |
| break; |
| case art::Instruction::GOTO: |
| sea_instructions.push_back(new GotoInstructionNode(in)); |
| break; |
| case art::Instruction::IF_EQZ: |
| sea_instructions.push_back(new IfEqzInstructionNode(in)); |
| break; |
| default: |
| // Default, generic IR instruction node; default case should never be reached |
| // when support for all instructions ahs been added. |
| sea_instructions.push_back(new InstructionNode(in)); |
| } |
| return sea_instructions; |
| } |
| |
| void InstructionNode::MarkAsDEDef() { |
| de_def_ = true; |
| } |
| |
| int InstructionNode::GetResultRegister() const { |
| if (instruction_->HasVRegA() && InstructionTools::IsDefinition(instruction_)) { |
| return instruction_->VRegA(); |
| } |
| return NO_REGISTER; |
| } |
| |
| std::vector<int> InstructionNode::GetDefinitions() const { |
| // TODO: Extend this to handle instructions defining more than one register (if any) |
| // The return value should be changed to pointer to field then; for now it is an object |
| // so that we avoid possible memory leaks from allocating objects dynamically. |
| std::vector<int> definitions; |
| int result = GetResultRegister(); |
| if (NO_REGISTER != result) { |
| definitions.push_back(result); |
| } |
| return definitions; |
| } |
| |
| std::vector<int> InstructionNode::GetUses() const { |
| std::vector<int> uses; // Using vector<> instead of set<> because order matters. |
| if (!InstructionTools::IsDefinition(instruction_) && (instruction_->HasVRegA())) { |
| int vA = instruction_->VRegA(); |
| uses.push_back(vA); |
| } |
| if (instruction_->HasVRegB()) { |
| int vB = instruction_->VRegB(); |
| uses.push_back(vB); |
| } |
| if (instruction_->HasVRegC()) { |
| int vC = instruction_->VRegC(); |
| uses.push_back(vC); |
| } |
| return uses; |
| } |
| } // namespace sea_ir |