blob: c4a695f36201cbd4a4c9841d059d2d37f491356c [file] [log] [blame]
/*
* Copyright (C) 2017 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "runtime_common.h"
#include <signal.h>
#include <cinttypes>
#include <iostream>
#include <sstream>
#include <string>
#include <android-base/logging.h>
#include <android-base/stringprintf.h>
#include "base/aborting.h"
#include "base/file_utils.h"
#include "base/logging.h" // For LogHelper, GetCmdLine.
#include "base/macros.h"
#include "base/mutex.h"
#include "native_stack_dump.h"
#include "runtime.h"
#include "thread-current-inl.h"
#include "thread_list.h"
namespace art {
using android::base::StringPrintf;
static constexpr bool kUseSigRTTimeout = true;
static constexpr bool kDumpNativeStackOnTimeout = true;
const char* GetSignalName(int signal_number) {
switch (signal_number) {
case SIGABRT: return "SIGABRT";
case SIGBUS: return "SIGBUS";
case SIGFPE: return "SIGFPE";
case SIGILL: return "SIGILL";
case SIGPIPE: return "SIGPIPE";
case SIGSEGV: return "SIGSEGV";
#if defined(SIGSTKFLT)
case SIGSTKFLT: return "SIGSTKFLT";
#endif
case SIGTRAP: return "SIGTRAP";
}
return "??";
}
const char* GetSignalCodeName(int signal_number, int signal_code) {
// Try the signal-specific codes...
switch (signal_number) {
case SIGILL:
switch (signal_code) {
case ILL_ILLOPC: return "ILL_ILLOPC";
case ILL_ILLOPN: return "ILL_ILLOPN";
case ILL_ILLADR: return "ILL_ILLADR";
case ILL_ILLTRP: return "ILL_ILLTRP";
case ILL_PRVOPC: return "ILL_PRVOPC";
case ILL_PRVREG: return "ILL_PRVREG";
case ILL_COPROC: return "ILL_COPROC";
case ILL_BADSTK: return "ILL_BADSTK";
}
break;
case SIGBUS:
switch (signal_code) {
case BUS_ADRALN: return "BUS_ADRALN";
case BUS_ADRERR: return "BUS_ADRERR";
case BUS_OBJERR: return "BUS_OBJERR";
}
break;
case SIGFPE:
switch (signal_code) {
case FPE_INTDIV: return "FPE_INTDIV";
case FPE_INTOVF: return "FPE_INTOVF";
case FPE_FLTDIV: return "FPE_FLTDIV";
case FPE_FLTOVF: return "FPE_FLTOVF";
case FPE_FLTUND: return "FPE_FLTUND";
case FPE_FLTRES: return "FPE_FLTRES";
case FPE_FLTINV: return "FPE_FLTINV";
case FPE_FLTSUB: return "FPE_FLTSUB";
}
break;
case SIGSEGV:
switch (signal_code) {
case SEGV_MAPERR: return "SEGV_MAPERR";
case SEGV_ACCERR: return "SEGV_ACCERR";
#if defined(SEGV_BNDERR)
case SEGV_BNDERR: return "SEGV_BNDERR";
#endif
}
break;
case SIGTRAP:
switch (signal_code) {
case TRAP_BRKPT: return "TRAP_BRKPT";
case TRAP_TRACE: return "TRAP_TRACE";
}
break;
}
// Then the other codes...
switch (signal_code) {
case SI_USER: return "SI_USER";
#if defined(SI_KERNEL)
case SI_KERNEL: return "SI_KERNEL";
#endif
case SI_QUEUE: return "SI_QUEUE";
case SI_TIMER: return "SI_TIMER";
case SI_MESGQ: return "SI_MESGQ";
case SI_ASYNCIO: return "SI_ASYNCIO";
#if defined(SI_SIGIO)
case SI_SIGIO: return "SI_SIGIO";
#endif
#if defined(SI_TKILL)
case SI_TKILL: return "SI_TKILL";
#endif
}
// Then give up...
return "?";
}
struct UContext {
explicit UContext(void* raw_context)
: context(reinterpret_cast<ucontext_t*>(raw_context)->uc_mcontext) {}
void Dump(std::ostream& os) const;
void DumpRegister32(std::ostream& os, const char* name, uint32_t value) const;
void DumpRegister64(std::ostream& os, const char* name, uint64_t value) const;
void DumpX86Flags(std::ostream& os, uint32_t flags) const;
// Print some of the information from the status register (CPSR on ARMv7, PSTATE on ARMv8).
template <typename RegisterType>
void DumpArmStatusRegister(std::ostream& os, RegisterType status_register) const;
mcontext_t& context;
};
void UContext::Dump(std::ostream& os) const {
#if defined(__APPLE__) && defined(__i386__)
DumpRegister32(os, "eax", context->__ss.__eax);
DumpRegister32(os, "ebx", context->__ss.__ebx);
DumpRegister32(os, "ecx", context->__ss.__ecx);
DumpRegister32(os, "edx", context->__ss.__edx);
os << '\n';
DumpRegister32(os, "edi", context->__ss.__edi);
DumpRegister32(os, "esi", context->__ss.__esi);
DumpRegister32(os, "ebp", context->__ss.__ebp);
DumpRegister32(os, "esp", context->__ss.__esp);
os << '\n';
DumpRegister32(os, "eip", context->__ss.__eip);
os << " ";
DumpRegister32(os, "eflags", context->__ss.__eflags);
DumpX86Flags(os, context->__ss.__eflags);
os << '\n';
DumpRegister32(os, "cs", context->__ss.__cs);
DumpRegister32(os, "ds", context->__ss.__ds);
DumpRegister32(os, "es", context->__ss.__es);
DumpRegister32(os, "fs", context->__ss.__fs);
os << '\n';
DumpRegister32(os, "gs", context->__ss.__gs);
DumpRegister32(os, "ss", context->__ss.__ss);
#elif defined(__linux__) && defined(__i386__)
DumpRegister32(os, "eax", context.gregs[REG_EAX]);
DumpRegister32(os, "ebx", context.gregs[REG_EBX]);
DumpRegister32(os, "ecx", context.gregs[REG_ECX]);
DumpRegister32(os, "edx", context.gregs[REG_EDX]);
os << '\n';
DumpRegister32(os, "edi", context.gregs[REG_EDI]);
DumpRegister32(os, "esi", context.gregs[REG_ESI]);
DumpRegister32(os, "ebp", context.gregs[REG_EBP]);
DumpRegister32(os, "esp", context.gregs[REG_ESP]);
os << '\n';
DumpRegister32(os, "eip", context.gregs[REG_EIP]);
os << " ";
DumpRegister32(os, "eflags", context.gregs[REG_EFL]);
DumpX86Flags(os, context.gregs[REG_EFL]);
os << '\n';
DumpRegister32(os, "cs", context.gregs[REG_CS]);
DumpRegister32(os, "ds", context.gregs[REG_DS]);
DumpRegister32(os, "es", context.gregs[REG_ES]);
DumpRegister32(os, "fs", context.gregs[REG_FS]);
os << '\n';
DumpRegister32(os, "gs", context.gregs[REG_GS]);
DumpRegister32(os, "ss", context.gregs[REG_SS]);
#elif defined(__linux__) && defined(__x86_64__)
DumpRegister64(os, "rax", context.gregs[REG_RAX]);
DumpRegister64(os, "rbx", context.gregs[REG_RBX]);
DumpRegister64(os, "rcx", context.gregs[REG_RCX]);
DumpRegister64(os, "rdx", context.gregs[REG_RDX]);
os << '\n';
DumpRegister64(os, "rdi", context.gregs[REG_RDI]);
DumpRegister64(os, "rsi", context.gregs[REG_RSI]);
DumpRegister64(os, "rbp", context.gregs[REG_RBP]);
DumpRegister64(os, "rsp", context.gregs[REG_RSP]);
os << '\n';
DumpRegister64(os, "r8 ", context.gregs[REG_R8]);
DumpRegister64(os, "r9 ", context.gregs[REG_R9]);
DumpRegister64(os, "r10", context.gregs[REG_R10]);
DumpRegister64(os, "r11", context.gregs[REG_R11]);
os << '\n';
DumpRegister64(os, "r12", context.gregs[REG_R12]);
DumpRegister64(os, "r13", context.gregs[REG_R13]);
DumpRegister64(os, "r14", context.gregs[REG_R14]);
DumpRegister64(os, "r15", context.gregs[REG_R15]);
os << '\n';
DumpRegister64(os, "rip", context.gregs[REG_RIP]);
os << " ";
DumpRegister32(os, "eflags", context.gregs[REG_EFL]);
DumpX86Flags(os, context.gregs[REG_EFL]);
os << '\n';
DumpRegister32(os, "cs", (context.gregs[REG_CSGSFS]) & 0x0FFFF);
DumpRegister32(os, "gs", (context.gregs[REG_CSGSFS] >> 16) & 0x0FFFF);
DumpRegister32(os, "fs", (context.gregs[REG_CSGSFS] >> 32) & 0x0FFFF);
os << '\n';
#elif defined(__linux__) && defined(__arm__)
DumpRegister32(os, "r0", context.arm_r0);
DumpRegister32(os, "r1", context.arm_r1);
DumpRegister32(os, "r2", context.arm_r2);
DumpRegister32(os, "r3", context.arm_r3);
os << '\n';
DumpRegister32(os, "r4", context.arm_r4);
DumpRegister32(os, "r5", context.arm_r5);
DumpRegister32(os, "r6", context.arm_r6);
DumpRegister32(os, "r7", context.arm_r7);
os << '\n';
DumpRegister32(os, "r8", context.arm_r8);
DumpRegister32(os, "r9", context.arm_r9);
DumpRegister32(os, "r10", context.arm_r10);
DumpRegister32(os, "fp", context.arm_fp);
os << '\n';
DumpRegister32(os, "ip", context.arm_ip);
DumpRegister32(os, "sp", context.arm_sp);
DumpRegister32(os, "lr", context.arm_lr);
DumpRegister32(os, "pc", context.arm_pc);
os << '\n';
DumpRegister32(os, "cpsr", context.arm_cpsr);
DumpArmStatusRegister(os, context.arm_cpsr);
os << '\n';
#elif defined(__linux__) && defined(__aarch64__)
for (size_t i = 0; i <= 30; ++i) {
std::string reg_name = "x" + std::to_string(i);
DumpRegister64(os, reg_name.c_str(), context.regs[i]);
if (i % 4 == 3) {
os << '\n';
}
}
os << '\n';
DumpRegister64(os, "sp", context.sp);
DumpRegister64(os, "pc", context.pc);
os << '\n';
DumpRegister64(os, "pstate", context.pstate);
DumpArmStatusRegister(os, context.pstate);
os << '\n';
#else
os << "Unknown architecture/word size/OS in ucontext dump";
#endif
}
void UContext::DumpRegister32(std::ostream& os, const char* name, uint32_t value) const {
os << StringPrintf(" %6s: 0x%08x", name, value);
}
void UContext::DumpRegister64(std::ostream& os, const char* name, uint64_t value) const {
os << StringPrintf(" %6s: 0x%016" PRIx64, name, value);
}
void UContext::DumpX86Flags(std::ostream& os, uint32_t flags) const {
os << " [";
if ((flags & (1 << 0)) != 0) {
os << " CF";
}
if ((flags & (1 << 2)) != 0) {
os << " PF";
}
if ((flags & (1 << 4)) != 0) {
os << " AF";
}
if ((flags & (1 << 6)) != 0) {
os << " ZF";
}
if ((flags & (1 << 7)) != 0) {
os << " SF";
}
if ((flags & (1 << 8)) != 0) {
os << " TF";
}
if ((flags & (1 << 9)) != 0) {
os << " IF";
}
if ((flags & (1 << 10)) != 0) {
os << " DF";
}
if ((flags & (1 << 11)) != 0) {
os << " OF";
}
os << " ]";
}
template <typename RegisterType>
void UContext::DumpArmStatusRegister(std::ostream& os, RegisterType status_register) const {
// Condition flags.
constexpr RegisterType kFlagV = 1U << 28;
constexpr RegisterType kFlagC = 1U << 29;
constexpr RegisterType kFlagZ = 1U << 30;
constexpr RegisterType kFlagN = 1U << 31;
os << " [";
if ((status_register & kFlagN) != 0) {
os << " N";
}
if ((status_register & kFlagZ) != 0) {
os << " Z";
}
if ((status_register & kFlagC) != 0) {
os << " C";
}
if ((status_register & kFlagV) != 0) {
os << " V";
}
os << " ]";
}
int GetTimeoutSignal() {
#if defined(__APPLE__)
// Mac does not support realtime signals.
UNUSED(kUseSigRTTimeout);
return -1;
#else
return kUseSigRTTimeout ? (SIGRTMIN + 2) : -1;
#endif
}
static bool IsTimeoutSignal(int signal_number) {
return signal_number == GetTimeoutSignal();
}
#if defined(__APPLE__)
// On macOS, clang complains about art::HandleUnexpectedSignalCommon's
// stack frame size being too large; disable that warning locally.
#pragma GCC diagnostic push
#pragma GCC diagnostic ignored "-Wframe-larger-than="
#endif
std::string GetFaultMessageForAbortLogging() {
Runtime* runtime = Runtime::Current();
return (runtime != nullptr) ? runtime->GetFaultMessage() : "";
}
static std::atomic<bool> gIsRuntimeAbort = false;
void FlagRuntimeAbort() {
gIsRuntimeAbort = true;
}
static void HandleUnexpectedSignalCommonDump(int signal_number,
siginfo_t* info,
void* raw_context,
bool handle_timeout_signal,
bool dump_on_stderr) {
auto logger = [&](auto& stream) {
bool has_address = (signal_number == SIGILL || signal_number == SIGBUS ||
signal_number == SIGFPE || signal_number == SIGSEGV);
OsInfo os_info;
const char* cmd_line = GetCmdLine();
if (cmd_line == nullptr) {
cmd_line = "<unset>"; // Because no-one called InitLogging.
}
pid_t tid = GetTid();
std::string thread_name(GetThreadName(tid));
UContext thread_context(raw_context);
Backtrace thread_backtrace(raw_context);
stream << "*** *** *** *** *** *** *** *** *** *** *** *** *** *** *** ***" << std::endl
<< StringPrintf("Fatal signal %d (%s), code %d (%s)",
signal_number,
GetSignalName(signal_number),
info->si_code,
GetSignalCodeName(signal_number, info->si_code))
<< (has_address ? StringPrintf(" fault addr %p", info->si_addr) : "") << std::endl
<< "OS: " << Dumpable<OsInfo>(os_info) << std::endl
<< "Cmdline: " << cmd_line << std::endl
<< "Thread: " << tid << " \"" << thread_name << "\"" << std::endl
<< "Registers:\n" << Dumpable<UContext>(thread_context) << std::endl
<< "Backtrace:\n" << Dumpable<Backtrace>(thread_backtrace) << std::endl;
stream << std::flush;
};
if (dump_on_stderr) {
// Note: We are using cerr directly instead of LOG macros to ensure even just partial output
// makes it out. That means we lose the "dalvikvm..." prefix, but that is acceptable
// considering this is an abort situation.
logger(std::cerr);
} else {
logger(LOG_STREAM(FATAL_WITHOUT_ABORT));
}
if (kIsDebugBuild && signal_number == SIGSEGV) {
PrintFileToLog("/proc/self/maps", android::base::LogSeverity::FATAL_WITHOUT_ABORT);
}
Runtime* runtime = Runtime::Current();
if (runtime != nullptr) {
if (handle_timeout_signal && IsTimeoutSignal(signal_number)) {
// Special timeout signal. Try to dump all threads.
// Note: Do not use DumpForSigQuit, as that might disable native unwind, but the native parts
// are of value here.
runtime->GetThreadList()->Dump(std::cerr, kDumpNativeStackOnTimeout);
std::cerr << std::endl;
}
if (dump_on_stderr) {
std::cerr << "Fault message: " << GetFaultMessageForAbortLogging() << std::endl;
} else {
LOG(FATAL_WITHOUT_ABORT) << "Fault message: " << GetFaultMessageForAbortLogging();
}
}
}
void HandleUnexpectedSignalCommon(int signal_number,
siginfo_t* info,
void* raw_context,
bool handle_timeout_signal,
bool dump_on_stderr) {
bool runtime_abort = gIsRuntimeAbort.exchange(false);
if (runtime_abort) {
return;
}
// Local _static_ storing the currently handled signal (or -1).
static int handling_unexpected_signal = -1;
// Whether the dump code should be run under the unexpected-signal lock. For diagnostics we
// allow recursive unexpected-signals in certain cases - avoid a deadlock.
bool grab_lock = true;
if (handling_unexpected_signal != -1) {
LogHelper::LogLineLowStack(__FILE__,
__LINE__,
::android::base::FATAL_WITHOUT_ABORT,
"HandleUnexpectedSignal reentered\n");
// Print the signal number. Don't use any standard functions, just some arithmetic. Just best
// effort, with a minimal buffer.
if (0 < signal_number && signal_number < 100) {
char buf[] = { ' ',
'S',
static_cast<char>('0' + (signal_number / 10)),
static_cast<char>('0' + (signal_number % 10)),
'\n',
0 };
LogHelper::LogLineLowStack(__FILE__,
__LINE__,
::android::base::FATAL_WITHOUT_ABORT,
buf);
}
if (handle_timeout_signal) {
if (IsTimeoutSignal(signal_number)) {
// Ignore a recursive timeout.
return;
}
}
// If we were handling a timeout signal, try to go on. Otherwise hard-exit.
// This relies on the expectation that we'll only ever get one timeout signal.
if (!handle_timeout_signal || handling_unexpected_signal != GetTimeoutSignal()) {
_exit(1);
}
grab_lock = false; // The "outer" handling instance already holds the lock.
}
handling_unexpected_signal = signal_number;
gAborting++; // set before taking any locks
if (grab_lock) {
MutexLock mu(Thread::Current(), *Locks::unexpected_signal_lock_);
HandleUnexpectedSignalCommonDump(signal_number,
info,
raw_context,
handle_timeout_signal,
dump_on_stderr);
} else {
HandleUnexpectedSignalCommonDump(signal_number,
info,
raw_context,
handle_timeout_signal,
dump_on_stderr);
}
}
#if defined(__APPLE__)
#pragma GCC diagnostic pop
#endif
void InitPlatformSignalHandlersCommon(void (*newact)(int, siginfo_t*, void*),
struct sigaction* oldact,
bool handle_timeout_signal) {
struct sigaction action;
memset(&action, 0, sizeof(action));
sigemptyset(&action.sa_mask);
action.sa_sigaction = newact;
// Use the three-argument sa_sigaction handler.
action.sa_flags |= SA_SIGINFO;
// Use the alternate signal stack so we can catch stack overflows.
action.sa_flags |= SA_ONSTACK;
int rc = 0;
rc += sigaction(SIGABRT, &action, oldact);
rc += sigaction(SIGBUS, &action, oldact);
rc += sigaction(SIGFPE, &action, oldact);
rc += sigaction(SIGILL, &action, oldact);
rc += sigaction(SIGPIPE, &action, oldact);
rc += sigaction(SIGSEGV, &action, oldact);
#if defined(SIGSTKFLT)
rc += sigaction(SIGSTKFLT, &action, oldact);
#endif
rc += sigaction(SIGTRAP, &action, oldact);
// Special dump-all timeout.
if (handle_timeout_signal && GetTimeoutSignal() != -1) {
rc += sigaction(GetTimeoutSignal(), &action, oldact);
}
CHECK_EQ(rc, 0);
}
} // namespace art