blob: 1bbf5a693a35374523fe9c32a771a934faa86078 [file] [log] [blame]
/*
* Copyright (C) 2012 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "register_line.h"
#include "android-base/stringprintf.h"
#include "dex/dex_instruction-inl.h"
#include "method_verifier-inl.h"
#include "reg_type-inl.h"
#include "register_line-inl.h"
namespace art {
namespace verifier {
using android::base::StringPrintf;
bool RegisterLine::CheckConstructorReturn(MethodVerifier* verifier) const {
if (kIsDebugBuild && this_initialized_) {
// Ensure that there is no UninitializedThisReference type anymore if this_initialized_ is true.
for (size_t i = 0; i < num_regs_; i++) {
const RegType& type = GetRegisterType(verifier, i);
CHECK(!type.IsUninitializedThisReference() &&
!type.IsUnresolvedAndUninitializedThisReference())
<< i << ": " << type.IsUninitializedThisReference() << " in "
<< verifier->GetMethodReference().PrettyMethod();
}
}
if (!this_initialized_) {
verifier->Fail(VERIFY_ERROR_BAD_CLASS_HARD)
<< "Constructor returning without calling superclass constructor";
}
return this_initialized_;
}
const RegType& RegisterLine::GetInvocationThis(MethodVerifier* verifier, const Instruction* inst,
bool allow_failure) {
DCHECK(inst->IsInvoke());
const size_t args_count = inst->VRegA();
if (args_count < 1) {
if (!allow_failure) {
verifier->Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "invoke lacks 'this'";
}
return verifier->GetRegTypeCache()->Conflict();
}
/* Get the element type of the array held in vsrc */
const uint32_t this_reg = inst->VRegC();
const RegType& this_type = GetRegisterType(verifier, this_reg);
if (!this_type.IsReferenceTypes()) {
if (!allow_failure) {
verifier->Fail(VERIFY_ERROR_BAD_CLASS_HARD)
<< "tried to get class from non-reference register v" << this_reg
<< " (type=" << this_type << ")";
}
return verifier->GetRegTypeCache()->Conflict();
}
return this_type;
}
bool RegisterLine::VerifyRegisterTypeWide(MethodVerifier* verifier, uint32_t vsrc,
const RegType& check_type1,
const RegType& check_type2) {
DCHECK(check_type1.CheckWidePair(check_type2));
// Verify the src register type against the check type refining the type of the register
const RegType& src_type = GetRegisterType(verifier, vsrc);
if (!check_type1.IsAssignableFrom(src_type, verifier)) {
verifier->Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "register v" << vsrc << " has type " << src_type
<< " but expected " << check_type1;
return false;
}
const RegType& src_type_h = GetRegisterType(verifier, vsrc + 1);
if (!src_type.CheckWidePair(src_type_h)) {
verifier->Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "wide register v" << vsrc << " has type "
<< src_type << "/" << src_type_h;
return false;
}
// The register at vsrc has a defined type, we know the lower-upper-bound, but this is less
// precise than the subtype in vsrc so leave it for reference types. For primitive types
// if they are a defined type then they are as precise as we can get, however, for constant
// types we may wish to refine them. Unfortunately constant propagation has rendered this useless.
return true;
}
void RegisterLine::MarkRefsAsInitialized(MethodVerifier* verifier, const RegType& uninit_type) {
DCHECK(uninit_type.IsUninitializedTypes());
const RegType& init_type = verifier->GetRegTypeCache()->FromUninitialized(uninit_type);
size_t changed = 0;
for (uint32_t i = 0; i < num_regs_; i++) {
if (GetRegisterType(verifier, i).Equals(uninit_type)) {
line_[i] = init_type.GetId();
changed++;
}
}
// Is this initializing "this"?
if (uninit_type.IsUninitializedThisReference() ||
uninit_type.IsUnresolvedAndUninitializedThisReference()) {
this_initialized_ = true;
}
DCHECK_GT(changed, 0u);
}
void RegisterLine::MarkAllRegistersAsConflicts(MethodVerifier* verifier) {
uint16_t conflict_type_id = verifier->GetRegTypeCache()->Conflict().GetId();
for (uint32_t i = 0; i < num_regs_; i++) {
line_[i] = conflict_type_id;
}
}
void RegisterLine::MarkAllRegistersAsConflictsExcept(MethodVerifier* verifier, uint32_t vsrc) {
uint16_t conflict_type_id = verifier->GetRegTypeCache()->Conflict().GetId();
for (uint32_t i = 0; i < num_regs_; i++) {
if (i != vsrc) {
line_[i] = conflict_type_id;
}
}
}
void RegisterLine::MarkAllRegistersAsConflictsExceptWide(MethodVerifier* verifier, uint32_t vsrc) {
uint16_t conflict_type_id = verifier->GetRegTypeCache()->Conflict().GetId();
for (uint32_t i = 0; i < num_regs_; i++) {
if ((i != vsrc) && (i != (vsrc + 1))) {
line_[i] = conflict_type_id;
}
}
}
std::string RegisterLine::Dump(MethodVerifier* verifier) const {
std::string result;
for (size_t i = 0; i < num_regs_; i++) {
result += StringPrintf("%zd:[", i);
result += GetRegisterType(verifier, i).Dump();
result += "],";
}
for (const auto& monitor : monitors_) {
result += StringPrintf("{%d},", monitor);
}
for (auto& pairs : reg_to_lock_depths_) {
result += StringPrintf("<%d -> %" PRIx64 ">",
pairs.first,
static_cast<uint64_t>(pairs.second));
}
return result;
}
void RegisterLine::MarkUninitRefsAsInvalid(MethodVerifier* verifier, const RegType& uninit_type) {
for (size_t i = 0; i < num_regs_; i++) {
if (GetRegisterType(verifier, i).Equals(uninit_type)) {
line_[i] = verifier->GetRegTypeCache()->Conflict().GetId();
ClearAllRegToLockDepths(i);
}
}
}
void RegisterLine::CopyResultRegister1(MethodVerifier* verifier, uint32_t vdst, bool is_reference) {
const RegType& type = verifier->GetRegTypeCache()->GetFromId(result_[0]);
if ((!is_reference && !type.IsCategory1Types()) ||
(is_reference && !type.IsReferenceTypes())) {
verifier->Fail(VERIFY_ERROR_BAD_CLASS_HARD)
<< "copyRes1 v" << vdst << "<- result0" << " type=" << type;
} else {
DCHECK(verifier->GetRegTypeCache()->GetFromId(result_[1]).IsUndefined());
SetRegisterType<LockOp::kClear>(verifier, vdst, type);
result_[0] = verifier->GetRegTypeCache()->Undefined().GetId();
}
}
/*
* Implement "move-result-wide". Copy the category-2 value from the result
* register to another register, and reset the result register.
*/
void RegisterLine::CopyResultRegister2(MethodVerifier* verifier, uint32_t vdst) {
const RegType& type_l = verifier->GetRegTypeCache()->GetFromId(result_[0]);
const RegType& type_h = verifier->GetRegTypeCache()->GetFromId(result_[1]);
if (!type_l.IsCategory2Types()) {
verifier->Fail(VERIFY_ERROR_BAD_CLASS_HARD)
<< "copyRes2 v" << vdst << "<- result0" << " type=" << type_l;
} else {
DCHECK(type_l.CheckWidePair(type_h)); // Set should never allow this case
SetRegisterTypeWide(verifier, vdst, type_l, type_h); // also sets the high
result_[0] = verifier->GetRegTypeCache()->Undefined().GetId();
result_[1] = verifier->GetRegTypeCache()->Undefined().GetId();
}
}
void RegisterLine::CheckUnaryOp(MethodVerifier* verifier, const Instruction* inst,
const RegType& dst_type, const RegType& src_type) {
if (VerifyRegisterType(verifier, inst->VRegB_12x(), src_type)) {
SetRegisterType<LockOp::kClear>(verifier, inst->VRegA_12x(), dst_type);
}
}
void RegisterLine::CheckUnaryOpWide(MethodVerifier* verifier, const Instruction* inst,
const RegType& dst_type1, const RegType& dst_type2,
const RegType& src_type1, const RegType& src_type2) {
if (VerifyRegisterTypeWide(verifier, inst->VRegB_12x(), src_type1, src_type2)) {
SetRegisterTypeWide(verifier, inst->VRegA_12x(), dst_type1, dst_type2);
}
}
void RegisterLine::CheckUnaryOpToWide(MethodVerifier* verifier, const Instruction* inst,
const RegType& dst_type1, const RegType& dst_type2,
const RegType& src_type) {
if (VerifyRegisterType(verifier, inst->VRegB_12x(), src_type)) {
SetRegisterTypeWide(verifier, inst->VRegA_12x(), dst_type1, dst_type2);
}
}
void RegisterLine::CheckUnaryOpFromWide(MethodVerifier* verifier, const Instruction* inst,
const RegType& dst_type,
const RegType& src_type1, const RegType& src_type2) {
if (VerifyRegisterTypeWide(verifier, inst->VRegB_12x(), src_type1, src_type2)) {
SetRegisterType<LockOp::kClear>(verifier, inst->VRegA_12x(), dst_type);
}
}
void RegisterLine::CheckBinaryOp(MethodVerifier* verifier, const Instruction* inst,
const RegType& dst_type,
const RegType& src_type1, const RegType& src_type2,
bool check_boolean_op) {
const uint32_t vregB = inst->VRegB_23x();
const uint32_t vregC = inst->VRegC_23x();
if (VerifyRegisterType(verifier, vregB, src_type1) &&
VerifyRegisterType(verifier, vregC, src_type2)) {
if (check_boolean_op) {
DCHECK(dst_type.IsInteger());
if (GetRegisterType(verifier, vregB).IsBooleanTypes() &&
GetRegisterType(verifier, vregC).IsBooleanTypes()) {
SetRegisterType<LockOp::kClear>(verifier,
inst->VRegA_23x(),
verifier->GetRegTypeCache()->Boolean());
return;
}
}
SetRegisterType<LockOp::kClear>(verifier, inst->VRegA_23x(), dst_type);
}
}
void RegisterLine::CheckBinaryOpWide(MethodVerifier* verifier, const Instruction* inst,
const RegType& dst_type1, const RegType& dst_type2,
const RegType& src_type1_1, const RegType& src_type1_2,
const RegType& src_type2_1, const RegType& src_type2_2) {
if (VerifyRegisterTypeWide(verifier, inst->VRegB_23x(), src_type1_1, src_type1_2) &&
VerifyRegisterTypeWide(verifier, inst->VRegC_23x(), src_type2_1, src_type2_2)) {
SetRegisterTypeWide(verifier, inst->VRegA_23x(), dst_type1, dst_type2);
}
}
void RegisterLine::CheckBinaryOpWideShift(MethodVerifier* verifier, const Instruction* inst,
const RegType& long_lo_type, const RegType& long_hi_type,
const RegType& int_type) {
if (VerifyRegisterTypeWide(verifier, inst->VRegB_23x(), long_lo_type, long_hi_type) &&
VerifyRegisterType(verifier, inst->VRegC_23x(), int_type)) {
SetRegisterTypeWide(verifier, inst->VRegA_23x(), long_lo_type, long_hi_type);
}
}
void RegisterLine::CheckBinaryOp2addr(MethodVerifier* verifier, const Instruction* inst,
const RegType& dst_type, const RegType& src_type1,
const RegType& src_type2, bool check_boolean_op) {
const uint32_t vregA = inst->VRegA_12x();
const uint32_t vregB = inst->VRegB_12x();
if (VerifyRegisterType(verifier, vregA, src_type1) &&
VerifyRegisterType(verifier, vregB, src_type2)) {
if (check_boolean_op) {
DCHECK(dst_type.IsInteger());
if (GetRegisterType(verifier, vregA).IsBooleanTypes() &&
GetRegisterType(verifier, vregB).IsBooleanTypes()) {
SetRegisterType<LockOp::kClear>(verifier,
vregA,
verifier->GetRegTypeCache()->Boolean());
return;
}
}
SetRegisterType<LockOp::kClear>(verifier, vregA, dst_type);
}
}
void RegisterLine::CheckBinaryOp2addrWide(MethodVerifier* verifier, const Instruction* inst,
const RegType& dst_type1, const RegType& dst_type2,
const RegType& src_type1_1, const RegType& src_type1_2,
const RegType& src_type2_1, const RegType& src_type2_2) {
const uint32_t vregA = inst->VRegA_12x();
const uint32_t vregB = inst->VRegB_12x();
if (VerifyRegisterTypeWide(verifier, vregA, src_type1_1, src_type1_2) &&
VerifyRegisterTypeWide(verifier, vregB, src_type2_1, src_type2_2)) {
SetRegisterTypeWide(verifier, vregA, dst_type1, dst_type2);
}
}
void RegisterLine::CheckBinaryOp2addrWideShift(MethodVerifier* verifier, const Instruction* inst,
const RegType& long_lo_type, const RegType& long_hi_type,
const RegType& int_type) {
const uint32_t vregA = inst->VRegA_12x();
const uint32_t vregB = inst->VRegB_12x();
if (VerifyRegisterTypeWide(verifier, vregA, long_lo_type, long_hi_type) &&
VerifyRegisterType(verifier, vregB, int_type)) {
SetRegisterTypeWide(verifier, vregA, long_lo_type, long_hi_type);
}
}
void RegisterLine::CheckLiteralOp(MethodVerifier* verifier, const Instruction* inst,
const RegType& dst_type, const RegType& src_type,
bool check_boolean_op, bool is_lit16) {
const uint32_t vregA = is_lit16 ? inst->VRegA_22s() : inst->VRegA_22b();
const uint32_t vregB = is_lit16 ? inst->VRegB_22s() : inst->VRegB_22b();
if (VerifyRegisterType(verifier, vregB, src_type)) {
if (check_boolean_op) {
DCHECK(dst_type.IsInteger());
/* check vB with the call, then check the constant manually */
const uint32_t val = is_lit16 ? inst->VRegC_22s() : inst->VRegC_22b();
if (GetRegisterType(verifier, vregB).IsBooleanTypes() && (val == 0 || val == 1)) {
SetRegisterType<LockOp::kClear>(verifier,
vregA,
verifier->GetRegTypeCache()->Boolean());
return;
}
}
SetRegisterType<LockOp::kClear>(verifier, vregA, dst_type);
}
}
static constexpr uint32_t kVirtualNullRegister = std::numeric_limits<uint32_t>::max();
void RegisterLine::PushMonitor(MethodVerifier* verifier, uint32_t reg_idx, int32_t insn_idx) {
const RegType& reg_type = GetRegisterType(verifier, reg_idx);
if (!reg_type.IsReferenceTypes()) {
verifier->Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "monitor-enter on non-object ("
<< reg_type << ")";
} else if (monitors_.size() >= kMaxMonitorStackDepth) {
verifier->Fail(VERIFY_ERROR_LOCKING);
if (kDumpLockFailures) {
VLOG(verifier) << "monitor-enter stack overflow while verifying "
<< verifier->GetMethodReference().PrettyMethod();
}
} else {
if (SetRegToLockDepth(reg_idx, monitors_.size())) {
// Null literals can establish aliases that we can't easily track. As such, handle the zero
// case as the 2^32-1 register (which isn't available in dex bytecode).
if (reg_type.IsZero()) {
SetRegToLockDepth(kVirtualNullRegister, monitors_.size());
}
monitors_.push_back(insn_idx);
} else {
verifier->Fail(VERIFY_ERROR_LOCKING);
if (kDumpLockFailures) {
VLOG(verifier) << "unexpected monitor-enter on register v" << reg_idx << " in "
<< verifier->GetMethodReference().PrettyMethod();
}
}
}
}
void RegisterLine::PopMonitor(MethodVerifier* verifier, uint32_t reg_idx) {
const RegType& reg_type = GetRegisterType(verifier, reg_idx);
if (!reg_type.IsReferenceTypes()) {
verifier->Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "monitor-exit on non-object (" << reg_type << ")";
} else if (monitors_.empty()) {
verifier->Fail(VERIFY_ERROR_LOCKING);
if (kDumpLockFailures) {
VLOG(verifier) << "monitor-exit stack underflow while verifying "
<< verifier->GetMethodReference().PrettyMethod();
}
} else {
monitors_.pop_back();
bool success = IsSetLockDepth(reg_idx, monitors_.size());
if (!success && reg_type.IsZero()) {
// Null literals can establish aliases that we can't easily track. As such, handle the zero
// case as the 2^32-1 register (which isn't available in dex bytecode).
success = IsSetLockDepth(kVirtualNullRegister, monitors_.size());
if (success) {
reg_idx = kVirtualNullRegister;
}
}
if (!success) {
verifier->Fail(VERIFY_ERROR_LOCKING);
if (kDumpLockFailures) {
VLOG(verifier) << "monitor-exit not unlocking the top of the monitor stack while verifying "
<< verifier->GetMethodReference().PrettyMethod();
}
} else {
// Record the register was unlocked. This clears all aliases, thus it will also clear the
// null lock, if necessary.
ClearRegToLockDepth(reg_idx, monitors_.size());
}
}
}
bool FindLockAliasedRegister(uint32_t src,
const RegisterLine::RegToLockDepthsMap& src_map,
const RegisterLine::RegToLockDepthsMap& search_map) {
auto it = src_map.find(src);
if (it == src_map.end()) {
// "Not locked" is trivially aliased.
return true;
}
uint32_t src_lock_levels = it->second;
if (src_lock_levels == 0) {
// "Not locked" is trivially aliased.
return true;
}
// Scan the map for the same value.
for (const std::pair<const uint32_t, uint32_t>& pair : search_map) {
if (pair.first != src && pair.second == src_lock_levels) {
return true;
}
}
// Nothing found, no alias.
return false;
}
bool RegisterLine::MergeRegisters(MethodVerifier* verifier, const RegisterLine* incoming_line) {
bool changed = false;
DCHECK(incoming_line != nullptr);
for (size_t idx = 0; idx < num_regs_; idx++) {
if (line_[idx] != incoming_line->line_[idx]) {
const RegType& incoming_reg_type = incoming_line->GetRegisterType(verifier, idx);
const RegType& cur_type = GetRegisterType(verifier, idx);
const RegType& new_type = cur_type.Merge(
incoming_reg_type, verifier->GetRegTypeCache(), verifier);
changed = changed || !cur_type.Equals(new_type);
line_[idx] = new_type.GetId();
}
}
if (monitors_.size() > 0 || incoming_line->monitors_.size() > 0) {
if (monitors_.size() != incoming_line->monitors_.size()) {
verifier->Fail(VERIFY_ERROR_LOCKING);
if (kDumpLockFailures) {
VLOG(verifier) << "mismatched stack depths (depth=" << MonitorStackDepth()
<< ", incoming depth=" << incoming_line->MonitorStackDepth() << ") in "
<< verifier->GetMethodReference().PrettyMethod();
}
} else if (reg_to_lock_depths_ != incoming_line->reg_to_lock_depths_) {
for (uint32_t idx = 0; idx < num_regs_; idx++) {
size_t depths = reg_to_lock_depths_.count(idx);
size_t incoming_depths = incoming_line->reg_to_lock_depths_.count(idx);
if (depths != incoming_depths) {
// Stack levels aren't matching. This is potentially bad, as we don't do a
// flow-sensitive analysis.
// However, this could be an alias of something locked in one path, and the alias was
// destroyed in another path. It is fine to drop this as long as there's another alias
// for the lock around. The last vanishing alias will then report that things would be
// left unlocked. We need to check for aliases for both lock levels.
//
// Example (lock status in curly braces as pair of register and lock leels):
//
// lock v1 {v1=1}
// | |
// v0 = v1 {v0=1, v1=1} v0 = v2 {v1=1}
// | |
// {v1=1}
// // Dropping v0, as the status can't be merged
// // but the lock info ("locked at depth 1" and)
// // "not locked at all") is available.
if (!FindLockAliasedRegister(idx,
reg_to_lock_depths_,
reg_to_lock_depths_) ||
!FindLockAliasedRegister(idx,
incoming_line->reg_to_lock_depths_,
reg_to_lock_depths_)) {
verifier->Fail(VERIFY_ERROR_LOCKING);
if (kDumpLockFailures) {
VLOG(verifier) << "mismatched stack depths for register v" << idx
<< ": " << depths << " != " << incoming_depths << " in "
<< verifier->GetMethodReference().PrettyMethod();
}
break;
}
// We found aliases, set this to zero.
reg_to_lock_depths_.erase(idx);
} else if (depths > 0) {
// Check whether they're actually the same levels.
uint32_t locked_levels = reg_to_lock_depths_.find(idx)->second;
uint32_t incoming_locked_levels = incoming_line->reg_to_lock_depths_.find(idx)->second;
if (locked_levels != incoming_locked_levels) {
// Lock levels aren't matching. This is potentially bad, as we don't do a
// flow-sensitive analysis.
// However, this could be an alias of something locked in one path, and the alias was
// destroyed in another path. It is fine to drop this as long as there's another alias
// for the lock around. The last vanishing alias will then report that things would be
// left unlocked. We need to check for aliases for both lock levels.
//
// Example (lock status in curly braces as pair of register and lock leels):
//
// lock v1 {v1=1}
// lock v2 {v1=1, v2=2}
// | |
// v0 = v1 {v0=1, v1=1, v2=2} v0 = v2 {v0=2, v1=1, v2=2}
// | |
// {v1=1, v2=2}
// // Dropping v0, as the status can't be
// // merged but the lock info ("locked at
// // depth 1" and "locked at depth 2") is
// // available.
if (!FindLockAliasedRegister(idx,
reg_to_lock_depths_,
reg_to_lock_depths_) ||
!FindLockAliasedRegister(idx,
incoming_line->reg_to_lock_depths_,
reg_to_lock_depths_)) {
// No aliases for both current and incoming, we'll lose information.
verifier->Fail(VERIFY_ERROR_LOCKING);
if (kDumpLockFailures) {
VLOG(verifier) << "mismatched lock levels for register v" << idx << ": "
<< std::hex << locked_levels << std::dec << " != "
<< std::hex << incoming_locked_levels << std::dec << " in "
<< verifier->GetMethodReference().PrettyMethod();
}
break;
}
// We found aliases, set this to zero.
reg_to_lock_depths_.erase(idx);
}
}
}
}
}
// Check whether "this" was initialized in both paths.
if (this_initialized_ && !incoming_line->this_initialized_) {
this_initialized_ = false;
changed = true;
}
return changed;
}
} // namespace verifier
} // namespace art